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HYPERSURFACES WITH SPECIAL QUADRIC REPRESENTATIONS

LU JlTAN

Let x : Mn —> Em be an isometric immersion of an n-dimensional Riemannian
manifold into the m -dimensional Euclidean space. Then the map x = xxt (where
t denotes transpose) is called the quadric representation of M". In this paper, we
study and classify hypersurfaces in the Euclidean space Em which satisfy Ax =
Bx + C, where B and C are two constant matrices, and A is the Laplacian
operator of Mn. Some classification results are obtained.

1. INTRODUCTION

Let x be an isometric immersion of a smooth manifold Mn into a space form and
/ be a vector function on Mn. Assume A/ = Bf + C for suitable constant matrices
B and C. Then the question arises: what is the geometric meaning involved in this
algebraic condition? This question has been studied by many authors when / is the
position vector function of Mn, for example, [1, 4, 6]. In this paper, we try to answer
the same question when / is the quadric representation of M".

Let x : Mn —> Em be an isometric immersion of an n -dimensional Riemannian
manifold into the m-dimensional Euclidean space, and SM(m) be the m x m real
symmetric matrices space (this space becomes the standard l/(2m(m + 1))-dimension
Eclidean space when equipped with the metric g(P,Q) = \/{2tr{PQ)) [2]). We regard
i as a column matrix in Em and denote by x* the transpose of x. Let x = xxl,
then we obtain a smooth map x : Mn —> SM{m). Since the coordinates of x depend
on the coordinates of x in a quadric manner, we call x the quadric representation
of Mn [3]. x is an important map, because it has many interesting relations with
the geometric properties of the submanifold. In fact, for the hypersphere centred at the
origin embedded in the Euclidean space in the standard way, the quadric representation
is just the second standard embedding of the sphere. In [3], Dimitric established some
general results about the quadric representation, in particular those related to the
condition of x being of finite type. In [5], the author also gave some related results.
In this paper, we shall give some classification theorems for submanifolds in Em which
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satisfy the condition Ax = Bx+C. We prove that the only hypersurfaces with constant
mean curvature satisfying Ax = Bx + C are (a piece of) a hyperplane or a hypersphere
centred at the origin, but there is no hypersurface satisfying Ax = Bx. Especially, we
also give a classification theorem for surfaces in the 3-dimensional Euclidean space.

2. PRELIMINARIES

Let us fix the notations first. Let x : M" -> En+1 be a hypersurface. We denote
by H the mean curvature vector of Mn in Em. Let ei, • • • , en, en +i be a local field of
orthonormal frames of En+1, such that when restricted to M " , e\, • • • ,en are tangent
to M", and en + i is normal to Mn. Then H = a e n + 1 . Let (,) and V be the Euclidean
metric and the connection of En+l, and denote by V, h,D, A and Ĵ 4| respectively, the
connection of M " , the second fundamental form of Mn in Em, the normal connection
of M " in En+1, the Weigarten endomorphism relative to the normal direction e n + i ,
and the length of A.

In this setting, the indices i,j, k always range from 1 to n. At any point x € Mn,
for any V € Tx(E

n+1), we denote the tangent part to Mn of V by F T .

We define a map * from En+l x En+1 into SM(n + 1) by V * W = VWl + WVl

for column vectors V and W in En+1. Then V * W = W * V. Let V denote the
Euclidean connection of SM(n + 1). Then we have

(2.1) Vv(Wi * W2) = (VvWi) * W2 + Wl * (VVW2),

(2.2) g{Vx * V2, W1 * W2) = (VuWMVt, W2) + {Vlt W2)(V2, W2),

and

(2.3) A(V* W) = (AV) * W + V * (AW) - 2^2 (VeV) * (VeiW),
i

where V, W, Wi, W2, V\ and V2 are all vectors in Em, and A is the Laplacian operator

of Mn [3].

Using (2.3), by a lengthy but direct compution, we see

(2.4) Ax =-naen+i * x-^2ei* eii
i

and when a = 0,

(2.5) A2x = 2 |yl|2 en+1 * en+1 - 2 £ {Aet) * (Aet).
i

Unless mentioned otherwise, in the following we always denote by X , F and Z

the tangent vectors, of Mn.
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3. HYPERSURFACES SATISFYING Ax = Bx + C

Let x : Mn -> En+1 be a hypersurface. Suppose its quadric representation satisfies
the condition Ax = Bx + C . Let Q(x) = Bx + C-Ax, then Q(x) = 0. Differentiating
Q(x) = 0 along X, an arbitrary tangent vector of Mn, we have

(3.1) 0 = VxQ{x) = (BX)xt + (Bx)Xt + naen+1 *X + 2{AX) * en+1 - na(AX) *x.

Now we find the en+\ * en+i component of (3.1), that is

(3.2) {(BX, en+1) + 2nX(a)}(x, en+1) = 0.

Thus, at any given point of Mn, we know that (x, en+i) = 0 or {-BX, en+i) +2nX{a) =
0. We shall discuss both cases.

CASE 1. (en+i, x) = 0. In this case x = XT and for any tangent vector Y of M " ,

(3.3) 0 = Y(en+1,x) = -(Ax,Y),

and

(3.4) Ax = 0.

Finding the Z *Y component of (3.1), we have

(3.5) (BX, Z) (x,Y) + (BX, Y) (x,Z) + (Bx, Z) (X, Y) + (Bx, Y) (X, Z)

= 2na(AX, Y)(x, Z) + 2na(AX, Z)(x, Y).

In (3.5), let Z — Y = ej and sum on j :

(3.6) (BX, xT) + (Bx,X) = 2na(AX, x).

In (3.5), letting X = Y — x and using (3.4), we have (BX,x) = 0. Combining it with

(3.6) and using (3.3), we obtain

(3.7) (Bx,X} = 0.

Finding the en+i * Y component of (3.1), we obtain

(3.8) (BX, Y)(x, en+1) + (Bx, en+1)(X, Y) - 2na(AX, Y)(en+1, x)

+ (BX, en+l)(x, Y) + 2nX(a)(x, Y) + 2na(X, Y) + 4(AX, Y) = 0.
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Using the condition (en+i, x) = 0, we have

(3.9) (BX,en+1)(x,Y) + (Bx,en+1){X,Y)

+ 2nX(a){x, Y) + 2na(X, Y) + 4(AX, Y) = 0.

Letting X = Y = x in (3.9), we have

(3.10) (Bx,en+i) =—na — nx(a).

Letting X = Y = e* in (3.9) and summing on i, we obtain

(3.11) (n + l)(Bx, en+i) + 2nx{a) + 2n2a + 4na = 0.

Combining (3.10) with (3.11), we get

(3.12) x(a) = ^i^a.
Tii i.

From formula (3.9), since Y is arbitrary, we deduce

(3.13) ({BX, en+1) + 2nX(a))x + {{Bx, en+1) + 2na)X + 4AX = 0.

Using (3.7), (3.13) becomes

X{((Bx, en+i> + 2na)x - 4en+1} = 0,

and then ((Bx, en+i) + 2na)x — 4en+i = Xo,

where Xo is a constant vector. We also deduce

(3.14) ((Bx, en+i) + 2na)2(x, x) = Cu

where C\ is a constant. Combining (3.10) and (3.12) with (3.14), we know that
a2(x,x) — C%, where C2 is also a constant. Differentiating this formula along the
tangent vector field x, we have that a(x,x)(x(a) + a) = 0 . Using (3.12) we deduce
a = 0.

CASE 2. (x,en+i) / 0. Then (BX,en+1) + 2nX(a) = 0, and (3.8) becomes

(3.15) (Bx, en+1)(X, Y) + 2na(X, Y) + 4(AX, Y)

- 2na(AX, Y)(en+1,x) + (BX, Y)(x, en+l) = 0.

From this formula, we get

(3.16) (BX,Y) = (BY,X).
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On substituting Y = XT in (3.15), we have

(Bx, en+l)(X, x) + 2na(X, x) + 4(AX, x)

- 2na(AX,x){en+ux) + (BX,xT)(x,en+1) = 0.

Combining this relation with (3.6), we obtain

(3.17) 2na(X,x) + (Bx,en+1){X,x) + 4(AX,x) - (Bx,X){en+1,x) = 0,

that is,

(3.18) {{Bx,en+i) + 2na)xT + 4AxT - {en+ux){Bx)T = 0.

In (3.5), letting X = Y = ej and summing on i, we have

(3.19) (n + l){Bx)T = 2naAxT + (2n2a2 - ^ ( B e i ; e^xr - {BxT)T.

From (3.15) we also have

0 = {{Bx,en+i) +2na)X + (4 - 2na{en+i,x))AX + {en+1,x){BX)T.

But by using (3.16), we can obtain from (3.6)

(3.21) (BxT)T + {Bx)T = 2naAxT-

By combining (3.21) with (3.19) and (3.18), we obtain

(3.22) AUAXT + [n{Bx, en+i) + 2n2a + {^{Bei, ei) - 2n2a2) (en+1, x)|a;T = 0.
i

In (3.15), letting X — Y = ej and summing on i, we obtain

(3.23) n(Bx, en+1) + 2n2a + Ana + {^{Bei,ei) - 2n2a2) {en+1,x) = 0.

By combining (3.23) with (3.22) we deduce AXT = axr- Hence, we have proved
the following result:

PROPOSITION 3 . 1 . Let x : M" -t En+1 be a hypersurface. If its quadric
representation satisfies the condition Ax = Bx + C, then a = 0 or AXT = axj- •
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4. THE MAIN RESULTS

First, let us give some examples satisfying the condition Ax = Bx + C.

EXAMPLE 4.1. The hyperplane in En+1 : for the standard hyperplane En = {x =
(xi, • • • ,xn,xn+i) ; xn+\ = 0}, we can easily obtain

Ax =

and for any hyperplane Mn = {x = Q(x\, •
XQ is a constant vector }, then we have

0 /

x0 ; = 0, QQl =

Ax =
- 2

\ 0 /

Q*.

EXAMPLE 4.2. The hypersphere in En+1 centred at the origin: S(r) = {x; (x,x) =
r2}. In this case, Ax = (2(n + l)/r2)x - 21.

We remark that a hypersphere not centred at the origin does not satisfy the con-
dition Ax = Bx + C; this can be obtained by a direct computation.

THEOREM 4 . 1 . Let x : Mn -» En+1 be a hypersurface with constant mean
curvature. Then its quadric representation satisfies the condition Ax = Bx + C if and
only if it is (a piece of) a hyperplane or a hypersphere centred at the origin.

PROOF: Let x : Mn —> En+1 be a hypersurface satisfying the given condition.
Then from Proposition 3.1 we know that a — 0 or AXT = cexr •

If a = 0, let p(x) = A2x — B(Ax). Obviously, we have p(x) = 0. From (2.4) and
(2.5) we obtain that p(x) = 2 |j4|2en+i * en+i - 2J2 (Aei) * (Aei) - i * ei)

g{p, en+\ * en+i) — 4\A\ = 0 , then Mn is (a piece of ) a totally geodesic hypersurface
of En+1, that is to say, a hyperplane.

If XT = 0, then for any tangent vector field X, we have (X, x) = 0, that is,
(x,x) =constant, and M" is (a piece of) a hypersphere centred at the origin.

If XT / 0, let ei, • • • ,en be the principal directions of Mn with e\ in the direction
of XT , let XT = ve\, and let n\,- • • , /in be the corresponding principal curvatures with
Hi — a. Since X = Vxx = VX^T + h(X,XT) - (x, en+i)AX + DxxN , by comparing
those parts tangent to M", we obtain

(4.1) V XXT = X + {x,en+1)AX.
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By substituting X = XT = ve\ into this relation, we obtain Veiei — 0 and
ei(v) = 1 + a(x,en+i). Putting X = ek, k ^ 2, into (4.1), we obtain w^e^) = 0 for
I :/ k and wiif(ej;) = 1 + (x, en+i)fj,k- By using the above relations and the Codazzi
equation (Vei^4)efc = (VeiA)e\, for k ^ 2, and comparing the e^ components we have

(4.2) ei{fj.k) = {a- M* V i (efc) = - ( a - /*fc)(l + (a;, en +i)/i f c) .

From (4.2), by addition over k, we obtain

neM) = l(na2 - \A\2)(x,en+l) = 0;

this implies no2 = \A\2. But n |A|2 = n(na2) + J2i<j (Mi ~ Mj)2 holds for any hy-
persurface. Thus we get that n^ = a, and then the submanifold is (a piece of) a
hypersphere, and from the remark at the beginning of the section, we know that it
must centre at the origin. U

THEOREM 4 . 2 . Let M2 —t E3 be a surface. Then its quadric representation
satisfies Ax = Bx + C if and only if M2 is (a piece of) a plane or a sphere centred at
the origin.

PROOF: Following the same argument as in the proof of Theorem 4.1, we can prove
that if a = 0, M2must be (a piece of ) a plane, and that if XT = 0, M2must be (a
piece of) a sphere centred at the origin. But if XT / 0, we have \x-i = a = fii, without
the assumption that a is constant. Then the surface is (a piece of) a sphere. Obviously
it can centre only at the origin. D

THEOREM 4 . 3 . There is no hypersurface in En+l whose quadric representation

satisfies Air = Bx.

PROOF: Obviously a hypersurface in En+l satisfying A J = Bx can not be mini-
mal. Then a / 0 and

(4.3) Bx + y^ e, * ej + naen+\ * x = 0.
i

From the proof of Proposition 3.1, we know that (3.2) and (3.6) hold.

If (en+i,x) = 0, then x = XT, and (3.7) holds. By finding the e ; * ej component
of the above equation and summing on j , we have (Bx,xx) + 2n = 0. This is a
contradiction to (3.7).

If (en+i,x) y£ 0, then 2nX(a) + (Bx,en+i) — 0 . By finding the e n + i * e n + i and
e n + i * X components of (4.3) respectively, we obtain

(4.4) (Bx, e n + i ) +2na = 0,
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and

(4.5) {Bx,en+1)(X,x) + {x,en+l){Bx,X) + 2na(x,X) = 0.

Combining the last two relations, we get {x, en+-\){Bx, X) = 0. Thus (Bx, X) = 0.

This contradicts {Bx,xT) + 2n = 0. 0
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