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1. Introduction. With each set of points S of a distance space there is 
associated a set of non-negative real munbers D(S) called the distance set of 
5. The number x is an element of D(S) if and only if x is a distance between 
some pair of points of 5. The number zero is always an element of any distance 
set and no two distinct elements are equal. 

Sierpinski [5], Steinhaus [6], Piccard [4], and many others have considered 
the relationships existing between 5 and D(S) for subsets of various spaces, 
particularly the En. Most of these investigations have been concerned with 
the influence of measure and related properties of S on the associated distance 
set. For example, it has been shown [6] that the distance set of a set of posi­
tive Lebesgue measure must contain an interval with one end point zero. 
Miss Piccard, on the other hand, has considered the converse problem of in­
vestigating the nature of spaces with prescribed distance sets. I t is with the 
sharpening and extending of some of her results and substantial simplification 
of some of her proofs that this paper is concerned. Theorem 4.2 may be 
regarded as the principal contribution of this paper, but for the sake of com­
pleteness and because of the relative inaccessibility of [4] we have included 
the simplified proofs of certain basic theorems. 

2. Preliminary remarks. If p and q are points of a distance space, the dis­
tance between the two elements will be denoted by pq. If P and Q are two 
subsets, D(P, Q) will represent the set of all distances pq, with p 6 P and q Ç Q. 
The concept of distance set gives rise to a mapping of the subsets S of a given 
space onto subsets N of real non-negative numbers, (D(S) = N) as well as an 
inverse mapping of certain subsets of the non-negative numbers on the subsets 
of the space (D^ÇN) = S). Of course the inverse mapping need not be, and 
indeed rarely ist single valued. A subscript will serve to distinguish sets hav­
ing the same distance set, i.e., Dx~~l(N) is a particular set of the space with 
distance set N. 

A sequence of non-negative numbers particularly suited to our purposes is 
one-in which a t + i > 2a*. A finite set of numbers which may be so ordered is 
called an isosceles set, and an infinite set an isosceles sequence. I t is readily 
seen that any metric space whose distance set is isosceles has all of its tri­
angles isosceles with the base as the shortest side. I t is also apparent that 
any subset of an isosceles sequence or set has the isosceles property. 

We proceed now to a consideration of the following questions which seem 
fundamental in any systematic investigation of distance sets. In what spaces, 
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if any, can an arbitrary set of non-negative numbers including zero be realized 
as a distance set? What are the corresponding results for denumerable and 
finite sets? Are there sets of non-negative numbers including zero which can­
not be realized in specified spaces, in particular, the Euclidean and Hilbert 
spaces? 

3. Infinite distance sets. 
THEOREM 3.1. An arbitrary set of non-negative numbers including zero is 

the distance set for some metric space. 

Proof. Let N be such a set and construct a space whose elements are the 
numbers of N and with distance defined as follows: pq — max (py q) if p ^ q, 
and pq = 0 if p — q. The space is easily seen to be metric with distance set N. 

That this result cannot be substantially improved is shown by the following 
theorem. 

THEOREM 3.2. There exist sets of non-negative real numbers including zero 
which are not distance sets for any separable metric spjice. 

Proof. Consider an uncountable set of non-negative numbers, including 
zero, whose positive numbers are bounded away from zero. Any space with 
this as distance set is uncountable and discrete, hence not separable. 

In order to establish that any countable set of non-negative numbers in­
cluding zero is a distance set for some subset of Hilbert space, we need the 
following lemma. 

LEMMA 3.1. If 0 < ax < a2. . . <ak, and 
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thensgnD(k) = ( - 1)*+1. 

Proof. Let ax- a2- a 3 . . . • ak = A. By subtracting appropriate rows and 
columns, the determinant can be brought into the following form : 
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The problem then is one of showing that the sign of the &th order determinant 
Q(k) is ( - 1)*. To do this we first establish the fact that \Q(r)\ > \Q(r - 1)|. 
Noting that the relation is valid for r = 2, we assume it true for all n < r. The 
following recursion is easily verified : 

Q(r) = - 2Q(r - 1) - S£=! Q(r - 2). 

Thus \Q(r)\ - [Q(r - 1)| = \2Q{r l)-<±±Q{r-2)\-\Q{r-')\. If 
U T 

()(r — 1) and Q(r — 2) have the same sign, it follows at once that \Q(r)\ 
>\Q(r — 1)|. If the signs are opposite, we have 

10(01-I<2(r-1)1 2\Q(r-l)-^Q(r-2)\-\Q(r-l)\ 

= lG(r-l)|-^|e(r-2)|, 

which is greater than zero, since ar > ar-\ and by the inductive hypothesis 
\Q(r - 1)| > \Q(r - 2)|. 

We return now to the problem of establishing the sign of Q(k), assuming 

that the sign of Q(r) is ( - l ) r for r < k. Since Q(k) = - 2 Q(k-1) - ^ 

• Q(fc - 2), it follows that sgn Q(k) = - sgn [2Q(k - 1) + — Q(* - 2)], 

and in view of the fact that \Q(k - 1)| > \Q(k ~ 2)|, we have sgn Q(k) 
= — sgn Q(k — 1) = (— 1)*. With the observation that the relation is valid 
for k = 1,2, the induction proof is complete and the lemma is proved. 

Remark. I t is interesting to note that Q(k) is essentially a continuant. 
(See any treatise on determinants.) 

THEOREM 3.3. Any countable set of non-negative real numbers including 
zero is a distance set for some subset of Hilbert space. 

Proof. Let N be such a set and metrize it as in Theorem 3.1. Consider any 
finite subset of this space consisting of the numbers 0 < a\ < a2 < a%. . . < a*. 
The space will be imbeddable congruently in Hilbert space [2, p. 68] if 
and only if for each Jfe, A has the sign (— 1)*+1 or is zero, where 

A(k) = 

0 1 1 1 1 
1 0 a!2 

Û 2 2 a*! 

1 « 2 2 0 Û 2 2 a*1 

1 as2 ai> 0 

1 . . 0 « i 

1 Cfc2 a*2 ak
2 0 

That A has the appropriate sign follows from the lemma. 
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THEOREM 3.4. There exist countable sets of non-negative real numbers, in­
cluding zero, which are not distance sets in any En. 

Proof. We will prove that no isosceles sequences {a»} is realizable as a 
distance set in any En. Assume this to be the case for k < n and proceed by 
induction. Suppose 5 a subset of En with an isosceles sequence as distance 
set. Let p and q be elements of S such that pq is a minimum. The points of 
S — p — q are equidistant from p and q and hence are in an En-\. Further­
more, since 5 is denumerably infinite, 5 — p — q is also. If D(S — p — q) 
were finite, S — p — q would be bounded and hence have an accumulation 
point. This is impossible and D{S — p — q) is infinite. But D(S — p — q) 
is a subsequence of an isosceles sequence and is thus itself an isosceles sequence. 
This contradicts the inductive assumption. To complete the induction, we 
note that no isosceles sequence is realizable as a distance set in E\. 

Remark. While many other examples might be given of countable sets not 
realizable as distance sets in any Eni the following seem particularly worthy of 
note. The odd integers and zero is not the distance set in any En. For 
Erdôs and Anning [1] have shown that any infinite set in En all of whose dis­
tances are integers is a subset of the line. But it is seen at once that the odd 
integers and zero cannot be realized as a distance set on the line. As a second 
example, consider the sequence 1 + 2"~n€. For *'small" € these numbers are 
4'almost equal". But there is no "almost equilateral" infinite set in En. 

4. Finite distance sets. 

THEOREM 4.1. Any set of n positive numbers and zero is the distance set for 
a subset of En-

Proof. Let 0 < a i < a 2 . . . < a n b e the set of numbers and metrize it as 
in Theorem 3.1. This space is congruently contained in En if and only if the 
feth ordered bordered principal minors of the determinant A(n) have the sign 
( — l)*""1 or are zero [2, p. 64]. That this is the case follows as in Theorem 3.3. 

We are thus assured that any k distinct positive numbers and zero, k ^ w, 
can serve as the distance set for some subset of En. On the other hand, a set 
of \n{n — 1) + 1 "almost equal" positive numbers and zero cannot serve as 
the distance set for a subset of the En since any almost equilateral subset of 
the En consists of a t most n + 1 points. The question as to whether there 
exists a set of n + 1 positive numbers and zero which is not realizable as a 
distance set in the En naturally arises. In order to establish an affirmative 
answer to this question we need the following lemmas. 

LEMMA 4.1. / / the distance set of a finite metric space is isosceles, the space 
may be decomposed into two non-null sets P and Q with D(P, Q) = d where d 
is the diameter of M. 

Proof. Let Q be a maximum set such that D(p, Q) = d where p is an ele­
ment of M — Q, and suppose pf any other element of M — Q. From the 
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triangle inequality it follows that pq = p'q = d. Thus Q and M — Q = P 
is the desired decomposition. 

LEMMA 4.2. 7/ //*£ distance set of a metric space of n points is an isosceles set, 
it consists of at most n numbers. 

Proof. Proceeding by induction we note that the theorem is true for 
n = 1, 2, 3. Assume it true for all k < n. Let P and Q be the two sets of the 
decomposition of M assured by Lemma 4.1. Suppose P consists of ki and Q 
of k2 points. Then by the inductive hypothesis, D(P) contains at most ki 
and D(Q) at most k2 numbers including zero. Thus D(P) and D(Q) together 
contain at most ki + k2 — 2 = n — 2 distinct positive numbers and M has 
at most n — 1 positive numbers. 

COROLLARY. If the distance set of a metric space is an isosceles set of n 
numbers, the space consists of at least n points. 

DEFINITION. Sn,r will denote the surface of the sphere of radius r in JE«. 

LEMMA 4.3. If a set M is a subset of an Sn,r, but not of any 5n_i,r, and if 

the center of Sn,r is interior to the convex cover of M, then r2 ^ ^ — : — ^ d2, 
l\n + I) 

where d is the diameter of M. 

Proof. Clearly there are in M vertices of a non-degenerate n-dimensional 
simplex which contains the centre 0 of Sn, r- Using this as a reference simplex, 
we introduce a barycentric coordinate system and employ a formula of Lagrange. 
If mlf m2, . . . , mn+i are coordinates of a point Q with Yjni = 1; Aly A2f . . . , 
An+i are vertices of the reference simplex; a2J- = AiAj and P is any other 
point of En, then PQ2 = J^PAfmi — £ a^m^mj (indices from 1 to n + 1 in 

all cases). Let P = Q = 0. Then 0 = r2 — £ ai?m#nj, and r2 <a 2 £ #*,-*»>, 

a the maximum edge. The numbers w» are all positive since 0 is interior to 
the simplex, and it is easily shown that the maximum value of ]£ w,-m;- is 

n/2(n + 1), from which it follows that r < [n/2(n+l)]a2^ [n/2(n+l)]d2, and 
the lemma is proved. 

LEMMA 4.4. If the distance set of a non degenerate n-dimensional simplex is 
isosceles, the circumcenter is a point of the simplex. 

Proof. Proceeding by induction and noting that the theorem is true for 
n = 1, 2, we assume it true for all k < n. Suppose P and Q the sets of the 
decomposition oi the simplex (vertices) assured by Lemma 4.1. The points 
of P and Q form non degenerate simplices each of dimension less than n and 
hence the circumcenters 0P and 0q of these "faces" are, by the inductive 
hypothesis, points of the respective faces. Furthermore, the feet of the per­
pendiculars from the points of P onto the face determined by Q coincide in 0q 
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since all the distances pq are equal. Thus Oq is equidistant from the points of 
P and also from the points of Q, and similarly for 0P. Since 0P and 0q are 
each in the equidistant locus of the points of P as well as that of the points of 
Q, the line joining them is also. 

Consider now the function px/qx where p is a fixed point of P, q a fixed point 
of Q, and x a variable point on the closed segment 0v0q. When x = 0P, it 
follows from Lemma 4.3 and the Pythagorean theorem applied to the triangle 
pOvq that pOp/qOp < 1, while from similar considerations pOq/qOq > 1 when 
x = 0q. Thus for some point 0 of the segment 0p0q, pO = qO and 0 is the 
center of the circumsphere of the simplex. 

COROLLARY, / / r is the circumradius of a non degenerate n-dimensional sim­
plex with isosceles distance set, then r2 < [n/2(n — l)]a2 where a is the maximum 
edge of the simplex. 

THEOREM 4.2. There exist sets of n + 1 positive numbers and zero which art 

not distance sets for any subset of En-

Proof. Let {a{\ = 0 < ai < a2... . < an+i be an isosceles set of numbers. 
Proceeding by induction, we will show that such a set is not realizable in En. 
We note that the theorem holds for n = 1 and assume then that no set in Ek, 
k < n, can have an isosceles distance set of k + 2 numbers. 

Suppose 5 is a set in En with {a*} as distance set, and let P and Q be the 
subsets of the decomposition assured by Lemma 4.1. By the Corollary to 
Lemma 4.2, S contains at least n + 2 points. Suppose the points of P lie 
irreducibly in an m dimensional subspace. Since the points of Q are equi­
distant from those of P , they are in an En-m. By the inductive hypothesis, 
then D(P) consists of at most m positive numbers and D(Q) at most n — m. It 
follows, since D(S) has n + 1 positive numbers, that D(P) and D(Q) contain 
-exactly m and n — m positive numbers respectively, and that neither contains 
D(P, Q) = a. 

The feet of the perpendiculars from the points of Q onto the Em containing 
P coincide in a point, say 0, equidistant from the points of P . Furthermore, 
0 is equidistant from the points of Q and is in the En-m containing Q (irredu­
cibly). Thus 0 is the centre of an m-dimensional sphere containing the points 
of P and also the centre of an n — m dimensional sphere containing the points 
of Q. Among the points of P are the vertices of a proper w-dimensional 
simplex and, by the Corollary to Lemma 4.4, its circumradius is less than the 
largest edge. Thus rp < \a. Similarly, rq < \a. But in the triangle pOq, 
p Ç P and q Ç Q, pO + Oq ̂  pq, that is, rp + rq > a, a contradiction. . 

COROLLARY. There exist sets of n + k numbers, k = 2, 3, 4, . . . , including 
zero, which are not distance sets for any subset of En. 
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S. Concluding remarks. Theorem 4.2 focuses attention on sets of points 
realizable as distance sets in £ n+i, but not in £ n . This leads naturally to the 
definition. 

DEFINITION. A set N of positive numbers and zero is said to be irreducibly 
n-dimensional relative to Euclidean spaces if it is realizable as a distance set 
in £„, but not in E»_i; i.e., Dx~~l(N) C En for some x, but Dx~

l{N) <J_ En^x 

for any x. 

DEFINITION. A set N is said to be properly n-dimensional relative to 
Euclidean spaces if Dx~

l{N) C En for all x and Dz~
l(N) Ç£ En-i for any x. 

DEFINITION. A set N is said to be rigid relative to a space S provided 
Dx-

l{N) C 5 for all x and Dx~
l{N) C 5 and Dfl(N) C 5 implies Dx~

l{N) is 
congruent to Dy~

l{N). 
Thus any isosceles set of n + 1 numbers including zero is irreducibly «-dimen­

sional relative to Euclidean spaces, while from the Anning-Erdôs theorem, it 
follows that the even integers, for example, are properly one-dimensional. 
On the other hand, the distance set of zero together with the integral powers 
of ten is a D set rigid relative to Euclidean spaces, being realizable on the line in 
"essentially' ' only one way. These examples give substance to the definitions, 
but it would be interesting to know if there exist non-degenerate rigid sets, 
as well as proper sets, in all dimensions. While we have not yet established 
the existence of such sets, the following theorem is pertinent. 

THEOREM 5.1. No finite set of non-negative numbers is proper relative to 
Euclidean spaces. 

Proof. Let N consist of n + 1 numbers including zero and adjoin to N a 
second zero, forming the set N*. Metrize N and TV* as in Theorem 3.1 except 
for the distance between the two zeros which will be the smallest positive 
number in N. It is a simple matter to verify that the (n + 2)-tuple is con-
gruently imbeddable in £n+i, but not En. Thus the metrized N and N* have 
the same distance sets, but lie in different dimensions. 

COROLLARY. No finite set of non-negative numbers is rigid relative to Euclidean 
spaces. 

A similar argument is employed to establish the following theorem. 

THEOREM 5.2. No countable set of non-negative numbers whose positive 
numbers have a minimum is rigid relative to Hilbert space. 

It should be observed that while we have operated largely in Euclidean 
spaces, many of the results, with obvious modifications, are valid in any 
locally Euclidean space (i.e., Riemannian), in particular, hyperbolic and elliptic 
spaces. A more complete analysis of sets of distances peculiar to various 
familiar spaces is in progress. 
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