# MAPS WHICH INDUGE THE ZERO MAP ON HOMOTOPY 

C. S. HOO

1. Introduction. In this paper, all spaces will have the homotopy type of simply connected CW-complexes, and will have base points which are preserved by maps and homotopies. We denote by [X, Y] the set of homotopy classes of maps from $X$ to $Y$, and by $N[X, Y]$ the subset of those homotopy classes [ $f$ ] which induce the zero homomorphism on homotopy, that is, $f_{\#}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is the zero homomorphism for each $i$. We wish to find conditions which would imply that such a map is necessarily null-homotopic. We express our conditions in terms of Postnikov systems and Moore-Postnikov decompositions of certain fibre spaces.

In (3), D. W. Kahn obtained a condition for $N[X, Y]$ to be zero. This paper represents an attempt to improve this result. We prove below a result (Theorem 2) which implies Kahn's result. This work was done while the author was a Fellow of the Summer Research Institute of the Canadian Mathematical Congress in 1966.
2. Suppose that $Y$ is a simply connected space and $\Omega Y$ is the loop space of $Y$. Let $\Omega Y \rightarrow P Y \rightarrow Y$ be the path space fibration over $Y$. Then a MoorePostnikov decomposition of this fibre space (see (4;5)) gives a sequence of fibre spaces and commutative diagrams:

$$
\cdots \rightarrow \underset{\substack{Y_{i} \\ \\ \text { PY }} \stackrel{K\left(\pi_{i-1}(Y), i-2\right)}{\swarrow} Y_{i-1} \rightarrow \ldots \rightarrow Y_{3} \rightarrow Y_{2}=Y}{ }
$$

In case $\pi_{i-1}(Y)=0$, we can clearly identify $Y_{i}$ and $Y_{i-1}$. In general, we shall do this and omit the unnecessary terms in this sequence. A Postnikov system for $Y$ provides a sequence of fibre spaces and commutative diagrams:

$$
\begin{gather*}
\stackrel{K}{\swarrow} \rightarrow Y_{i}^{i} \rightarrow Y^{i-1} \rightarrow \ldots \rightarrow Y^{2}  \tag{2.2}\\
g_{i} \nwarrow_{Y}^{K} g_{i-1}
\end{gather*}
$$

Received November 2, 1966.
such that the map $g_{i}$ induces an isomorphism on homotopy groups in dimensions $\leqslant i$.

In diagram (2.1), let us denote the composite map $Y_{i} \rightarrow \ldots \rightarrow Y$ by $q_{i}$. This is a fibre map and the fibre space $Y_{i} \rightarrow Y$ is induced from the fibre space $P Y^{i-1} \rightarrow Y^{i-1}$ by the map $g_{i-1}$. Thus the fibre of $q_{i}$ is $\Omega Y^{i-1}$, and $Y_{i}$ is ( $i-1$ )-connected and $q_{i}$ induces isomorphisms on homotopy in dimensions $\geqslant i$. Let $\delta_{i} \in H^{i}\left(Y_{i}, \pi_{i}(Y)\right)$ be the fundamental class of $Y_{i}$. Let $f$ be a map from a space $X$ to $Y_{i}$. If $X$ is a CW-complex, then $f^{*} \delta_{i}$ is the obstruction to lifting the map $f$ to $Y_{i+1}$.

We recall that the fibration

$$
K\left(\pi_{i-1}(Y), i-2\right) \xrightarrow{j} Y_{i} \xrightarrow{p} Y_{i-1}
$$

is principal (see (4)), that is, there is an action

$$
\mu: K\left(\pi_{i-1}(Y), i-2\right) \times Y_{i} \rightarrow Y_{i}
$$

of the fibre on the total space with the following property: for classes $u$, $v \in\left[X, Y_{i}\right], p_{\#}(u)=p_{\#}(v)$ if and only if there exists a class

$$
\omega \in\left[X, K\left(\pi_{i-1}(Y), i-2\right)\right]
$$

with

$$
v \simeq \mu(\omega \times u) \Delta: Y_{i} \rightarrow Y_{i} \times Y_{i} \rightarrow K\left(\pi_{i-1}(Y), i-2\right) \times Y_{i} \xrightarrow{\mu} Y_{i}
$$

Moreover, if $l_{1}$ and $l_{2}$ are the usual inclusions

$$
\begin{gathered}
K\left(\pi_{i-1}(Y), i-2\right) \subset K\left(\pi_{i-1}(Y), i-2\right) \times Y_{i} \\
Y_{i} \subset K\left(\pi_{i-1}(Y), i-2\right) \times Y_{i}
\end{gathered}
$$

respectively, then $\mu l_{1} \simeq j$ and $\mu l_{2} \simeq$ identity.
3. In this section, $X$ will have the homotopy type of a finite-dimensional complex. For any space $Y$, we wish to consider $N[X, Y]$. Suppose that $0<n(1)<n(2)<\ldots$ are the dimensions in which $Y$ has non-zero homotopy groups, and let $\pi_{i}=\pi_{n(i)}(Y)$.

Then we have a Moore-Postnikov decomposition of the fibre space $\Omega Y \rightarrow P Y \rightarrow Y$ as follows:

$$
\ldots \rightarrow Y_{n(i)} \xrightarrow{p^{\prime}{ }_{n Y(i)}^{\prime}} Y_{n(i-1)} \rightarrow \ldots \rightarrow Y_{n(1)}=Y .
$$

We have an analogous result for the fibration $\Omega X \rightarrow P X \rightarrow X$. Combining various terms we have the diagram

$$
\ldots \rightarrow X_{n(i)} \xrightarrow{p_{n(i)}} X_{n(i-1)} \rightarrow \ldots \rightarrow X_{n(1)} \xrightarrow{p_{n(1)}} X .
$$

We note, of course, that $p_{n(i)}$ is the composition

$$
X_{n(i)} \rightarrow X_{n(i)-1} \rightarrow \ldots \rightarrow X_{n(i-1)+1} \rightarrow X_{n(i-1)}
$$

Let $q_{n(i)}=p_{n(1)} \ldots p_{n(i)}: X_{n(i)} \rightarrow X$.
Suppose we have a map $f: X \rightarrow Y$. Let $f_{1}=f p_{n(1)}: X_{n(1)} \rightarrow Y_{n(1)}$. Let $\delta_{n(i)} \in H^{n(i)}\left(Y_{n(i)}, \pi_{i}\right)$ be the fundamental class. Suppose for some $i>1$ we have defined $f_{j}: X_{n(j)} \rightarrow Y_{n(j)}$ for all $j<i$ such that $p_{n(j)}^{\prime} f_{j} \simeq f_{j-1} p_{n(j)}$ for such $j$. Now consider the function $f_{i-1} p_{n(i)}: X_{n(i)} \rightarrow Y_{n(i-1)}$. Since the obstruction to lifting $f_{i-1} p_{n(i)}$ to $Y_{n(i)}$ lies in $H^{n(i-1)}\left(X_{n(i)}, \pi_{i-1)}=0\right.$, we see that there exists a map $f_{i}: X_{n(i)} \rightarrow Y_{n(i)}$ such that ${ }^{p_{n(i)}^{\prime}} f_{i} \simeq f_{i-1} p_{n(i)}$. Thus we have the elementary

Proposition 1. A map $f: X \rightarrow Y$ induces maps $f_{i}: X_{n(i)} \rightarrow Y_{n(i)}$ for each $i$ such that $f_{1}=f p_{n(1)}$ and $p_{n(i)}^{\prime} f_{i} \simeq f_{i-1} p_{n(i)}$.

Let $F_{n(i-1)}$ be the fibre of $p_{n(i)}: X_{n(i)} \rightarrow X_{n(i-1)}$. The homotopy sequence of this fibration shows that $F_{n(i-1)}$ is $(n(i-1)-2)$-connected and

$$
\begin{aligned}
\pi_{j}\left(F_{n(i-1)}\right) & =0 \quad \text { if } j<n(i-1)-1 \text { or } j \geqslant n(i)-1, \\
\partial: \pi_{j+1}\left(X_{n(i-1)}\right) & \cong \pi_{j}\left(F_{n(i-1)}\right) \quad \text { if } n(i-1)-1 \leqslant j<n(i)-1,
\end{aligned}
$$

where $\partial$ is the homotopy boundary. Let

$$
\begin{gathered}
\delta_{n(i-1)}^{\prime} \in H^{n(i-1)}\left(X_{n(i-1)}, \quad \pi_{n(i-1)}(X)\right), \\
\alpha_{n(i-1)-1}^{\prime} \in H^{n(i-1)-1}\left(F_{n(i-1)}, \quad \pi_{n(i-1)}(X)\right), \\
\alpha_{n(i-1)-1} \in H^{n(i-1)-1}\left(K\left(\pi_{i-1}, \quad n(i-1)-1\right) ; \pi_{i-1}\right)
\end{gathered}
$$

be the fundamental classes. Then $\tau\left(\alpha_{n(i-1)-1}^{\prime}\right)=\delta_{n(i-1)}^{\prime}$ and

$$
\tau\left(\alpha_{n(i-1)-1}\right)=\delta_{n(i-1)}
$$

where $\tau$ stands for the transgression. Suppose $f: X \rightarrow Y$ is a map. Then we have induced maps $f_{i}: X_{n(i)} \rightarrow Y_{n(i)}$. We observe that

$$
\left(f_{i} \mid F_{n(i-1)}\right)_{\#:} \pi_{n(i-1)-1}\left(F_{n(i-1)}\right) \rightarrow \pi_{i-1}
$$

and

$$
f_{i-1 \sharp}: \pi_{n(i-1)}\left(X_{n(i-1)}\right) \rightarrow \pi_{n(i-1)}\left(Y_{n(i-1)}\right)
$$

are identifiable with

$$
f_{\#}: \pi_{n(i-1)}(X) \rightarrow \pi_{n(i-1)}(Y)=\pi_{i-1} .
$$

Each of the above homomorphisms induces a coefficient homomorphism which we shall denote by $f^{*}{ }_{c}$ (see (2)). Then we have

Proposition 2. $f^{*}{ }_{c} \delta^{\prime}{ }_{n(i-1)}=f^{*}{ }_{i-1} \delta_{n(i-1)}$ for each $i$.

Proof. For simplicity, let us denote $\pi_{n(i-1)}(X), p_{n(i)}, p_{n(i)}^{\prime}, f_{i} \mid F_{n(i-1)}$ by $\pi_{i-1}^{\prime}, p_{i}, p_{i}^{\prime}, k_{i}$, respectively. Let $\delta$ denote the coboundary in the cohomology sequence of a pair. Then we have the following diagram of commutative squares:


We have

$$
\begin{aligned}
f_{c}^{*} \delta^{\prime}{ }_{n(i-1)} & =f_{c}^{*} \tau\left(\alpha^{\prime}{ }_{n(i-1)-1}\right)=f_{c}^{*} p^{*}{ }_{i}{ }^{-1} \delta\left(\alpha^{\prime}{ }_{n(i-1)-1}\right) \\
& =p^{*}{ }_{i}{ }^{-1} f^{*}{ }_{c} \delta\left(\alpha^{\prime}{ }_{n(i-1)-1}\right)=p^{*}{ }_{i}{ }^{-1} \delta f^{*}{ }_{c}\left(\alpha^{\prime}{ }_{n(i-1)-1}^{\prime}\right)
\end{aligned}
$$

Now $\alpha_{n(i-1)-1}^{\prime}$ can be represented by a map

$$
\bar{\alpha}^{\prime}: F_{n(i-1)} \rightarrow K\left(\pi^{\prime}{ }_{i-1}, n(i-1)-1\right) .
$$

The homomorphism $f_{\sharp: \pi_{n(i-1)}}(X) \rightarrow \pi_{i-1}$ induces the coefficient homomorphism

$$
f_{c}^{*}: H^{n(i-1)}\left(X_{n(i-1)} ; \pi_{n(i-1)}(X)\right) \rightarrow H^{n(i-1)}\left(X_{n(i-1)} ; \pi_{i-1}\right)
$$

Let $\bar{f}_{c}: K\left(\pi_{n(i-1)}(X), n(i-1)-1\right) \rightarrow K\left(\pi_{i-1}, n(i-1)-1\right)$ be a map which induces $f_{\#}$ on the $(n(i-1)-1)$ st homotopy group. Then $f^{*}{ }_{c}\left(\alpha_{n(i-1)-1}\right)$ can be represented by the $\operatorname{map} \bar{f}_{c} \bar{\alpha}^{\prime}$. Hence as an element of $\operatorname{Hom}\left(\pi^{\prime}{ }_{i-1}, \pi_{i-1}\right)$, it is the map

$$
\pi_{i-1}^{\prime} \xrightarrow{i d} \pi_{i-1}^{\prime} \xrightarrow{f_{\#}} \pi_{i-1} .
$$

Also, the element $f^{*}{ }_{i}\left(\alpha_{n(i-1)-1}\right)$ can be represented by the map

$$
F_{n(i-1)} \xrightarrow{f_{i}} K\left(\pi_{i-1}, n(i-1)-1\right) \xrightarrow{i d} K\left(\pi_{i-1}, n(i-1)-1\right) .
$$

Hence it corresponds to the homomorphism

$$
\pi_{n(i-1)-1}\left(F_{n(i-1)}\right) \underset{f_{i \neq}}{\longrightarrow} \pi_{i-1} \xrightarrow[i d]{\longrightarrow} \pi_{i-1} .
$$

Thus we have

$$
f_{c}^{*}\left(\alpha_{n(i-1)-1}^{\prime}\right)=f_{i}^{*}\left(\alpha_{n(i-1)-1}\right) .
$$

Hence

$$
\begin{aligned}
f^{*}{ }_{c} \delta^{\prime}{ }_{n}(i-1) & =p^{*}{ }_{i}{ }^{-1} \delta f^{*}{ }_{c}\left(\alpha^{\prime}{ }_{n(i-1)-1}\right)=p^{*}{ }_{i}{ }^{1} \delta f^{*}{ }_{i}\left(\alpha_{n(i-1)-1}\right) \\
& =p^{*}{ }_{i}-{ }^{-1} f^{*}{ }_{i} \delta\left(\alpha_{n(i-1)-1}\right)=f^{*}{ }_{i-1} p^{*}{ }_{i}{ }^{-1} \delta\left(\alpha_{n(i-1)-1}\right) \\
& =f^{*}{ }_{i-1} \tau\left(\alpha_{n(i-1)-1}\right)=f^{*}{ }_{i-1} \delta_{n(i-1)} .
\end{aligned}
$$

Remark 1. Thus we see that if $[f] \in N[X, Y]$, we have that $f^{*}{ }_{i} \delta_{n(i)}=0$ for each $i \geqslant 1$.

Remark 2. We now state a simple result which we shall be using repeatedly. Consider the principal fibration $F \rightarrow E \rightarrow B$. Let $\mu: F \times E \rightarrow E$ be the action of the fibre. Suppose $f: X \rightarrow E$ is a map and $\omega: X \rightarrow F$ is a map such that $\omega \simeq 0$. Then it is easily seen that $f \simeq \mu(\omega \times f) \Delta: X \rightarrow X \times X \rightarrow F \times E \rightarrow E$; for example, see (4).

Theorem 1. $[f] \in N[X, Y]$ if and only if each $f_{i}$ lifts to a map $h_{i}: X_{n(i-1)}$ $\rightarrow Y_{n(i)}$ such that $h_{i} p_{n(i)} \simeq f_{i}, p_{n(i)}^{\prime} h_{i} \simeq f_{i-1}$.

Proof. Suppose there exist such maps $h_{i}$. Now

$$
f_{j \neq}: \pi_{k}\left(X_{n(j)}\right) \rightarrow \pi_{k}\left(Y_{n(j)}\right)
$$

coincides with $f_{\#}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ for $k \geqslant n(j)$. Since $Y_{n(j)}$ is $(n(j)-1)$ connected, the result follows easily.

Conversely, suppose $[f] \in N[X, Y]$. The obstruction to lifting $f_{i-1}$ to $Y_{n(i)}$ is $f^{*}{ }_{i-1} \delta_{n(i-1)}$. By Remark 1 following Proposition 2, it follows that this is zero. Thus we can find maps $h_{i}: X_{n(i-1)} \rightarrow Y_{n(i)}$ such that $p_{n(i)}^{\prime} h_{i} \simeq f_{i-1}$. It remains to show that $f_{i} \simeq h_{i} p_{n(i)}$. Consider the maps $f_{i}, h_{i} p_{n(i)}: X_{n(i)} \rightarrow Y_{r(i)}$. Now $p_{n(i)}^{\prime} f_{i} \simeq f_{i-1} p_{n(i)} \simeq p_{n(i)} h_{i} p_{n(i)}$. Since $p_{n(i)}^{\prime}: Y_{n(i)} \rightarrow Y_{n(i-1)}$ is a principal fibration, there exists a map $\omega: X_{n(i)} \rightarrow K\left(\pi_{i-1}, n(i-1)-1\right)$ such that $f_{i} \simeq \mu\left(\omega \times h_{i} p_{n(i)}\right) \Delta$, where $\Delta$ is the diagonal map of $X_{n(i)}$. Now $\omega \simeq 0$ since $X_{n(i)}$ is $(n(i)-1)$-connected. Hence $\mu\left(\omega \times h_{i} p_{n(i)}\right) \Delta \simeq h_{i} p_{n(i)}$. This completes the proof.

Now let $q_{n(i)}=p_{n(1)} \ldots p_{n(i)}: X_{n(i)} \rightarrow X$. This is a fibration which is induced from the path space fibration $\Omega X^{n(i)-1} \rightarrow P X^{n(i)-1} \rightarrow X^{n(i)-1}$ by the $\operatorname{map} g_{n(i)-1}: X \rightarrow X^{n(i)-1}$. Thus we have a diagram


We can convert the map $g_{n(i)-1}$ into a fibration. It is easily seen that when we do this, the fibre is precisely $X_{n(i)}$; for example, see (5). Thus we can consider

$$
X_{n(i)} \xrightarrow{q_{n(i)}} X \xrightarrow{g_{n(i)-1}} X^{n(i)-1}
$$

as a fibration. We then obtain an exact sequence:

$$
0 \rightarrow H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) \xrightarrow{g_{n(i)-1}^{*}} H^{n(i)}\left(X, \pi_{i}\right) \xrightarrow{q_{n(i)}^{*}} H^{n(i)}\left(X_{n(i)}, \pi_{i}\right) \rightarrow .
$$

Hence $H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)=0$ if and only if

$$
q^{*}{ }_{n(i)}: H^{n(i)}\left(X, \pi_{i}\right) \rightarrow H^{n(i)}\left(X_{n(i)}, \pi_{i}\right)
$$

is a monomorphism. Thus we obtain a result which is equivalent to Kahn's result.

Proposition 3. If $X$ has the homotopy type of a finite-dimensional complex and

$$
q^{*}{ }_{n(i)}: H^{n(i)}\left(X, \pi_{i}\right) \rightarrow H^{n(i)}\left(X_{n(i)}, \pi_{i}\right)
$$

is a monomorphism for each $i=1,2, \ldots$, then $N[X, Y]=0$.
Remark. This result could also be proved directly by using our results above.

Now we recall that in (4), Thomas defined two sequences of cohomology operations depending on $Y$. They are described as follows. In a Postnikov decomposition of $Y$ :

$$
\begin{aligned}
& \quad \begin{array}{l}
l_{n(i)} \swarrow \\
\rightarrow \\
\left.\rightarrow Y_{i}^{n(i)} \rightarrow Y_{i}, n(i)\right) \\
n(i-1)
\end{array} \ldots
\end{aligned}
$$

let $k_{n(i)}$ be the $i$ th $k$-invariant of $Y$, that is,

$$
k_{n(i)}: Y^{n(i)} \rightarrow K\left(\pi_{i+1}, n(i+1)+1\right)
$$

Let

$$
\Psi_{n(i)}=-k_{n(i)} \circ l_{n(i)}: K\left(\pi_{i}, n(i)\right) \rightarrow K\left(\pi_{i+1}, n(i+1)+1\right)
$$

This gives a sequence of cohomology operations defined for $i \geqslant 1$. Let

$$
\Phi_{n(i)-1}=\sigma \Psi_{n(i)}: K\left(\pi_{i}, n(i)-1\right) \rightarrow K\left(\pi_{i+1}, n(i+1)\right),
$$

where $\sigma$ is the suspension of cohomology operations. Then, in (4), it is shown that $\Phi_{n(i)-1}=j^{\prime}{ }_{n(i+1)} \delta_{n(i+1)}$ and image of $\Phi_{n(i-1)-1} \subset$ kernel of $\Psi_{n(i)}$ for each $i>1$. Finally, we observe that since $\Psi_{n(i)}$ is the first $k$-invariant for the space $Y_{n(i)}$, we have $\Psi_{n(i)}\left(\delta_{n(i)}\right)=0$.

We shall also need the following result, which we quote from Thomas (4).
Proposition 4. Let g be a map from a CW-complex $X$ into $Y_{n(i)}(i \geqslant 2)$. The map $p^{\prime}{ }_{n(i)} g$ lifts to $Y_{n(i+1)}$ if and only if

$$
g^{*} \delta_{n(i)} \in \text { image } \Phi_{n(i-1)-1} \subset H^{n(i)}\left(X, \pi_{i}\right)
$$

We now recall that, in (2), Kahn showed that a map $f: X \rightarrow Y$ induces maps $f^{n(i)-1}: X^{n(i)-1} \rightarrow Y^{n(i)-1}$ which, when combined with our constructions, give a diagram of homotopy commutative squares:


This leads to a commutative diagram

where each row is exact; for example, see (1). For $i>1$, we have the following commutative square:

$$
\begin{aligned}
& 0 \rightarrow \underbrace{H^{n(i-1)-1}\left(X^{n(i)-1}, \pi_{i-1}\right) \xrightarrow{g_{n(i)-1}^{*}} H^{n(i-1)-1}\left(X, \pi_{i-1}\right) \rightarrow 0} \begin{array}{l}
\Phi_{n(i-1)-1} \\
0 \rightarrow \Phi_{n(i-1)-1} \\
H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) \xrightarrow[g_{n(i)-1}^{*}]{ }
\end{array} \quad H^{n(i)}\left(X, \pi_{i}\right) \rightarrow
\end{aligned}
$$

Thus

$$
\Phi_{n(i-1)-1} H^{n(i-1)-1}\left(X, \pi_{i-1}\right) \subset g_{n(i)-1}^{*} H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) .
$$

Then, for each $i>1$, we put

$$
T^{n(i)}(X, Y)=\frac{\left[\operatorname{ker} \Psi_{n(i)}\right] \cap g^{*}{ }_{n(i)-1} H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)}{\Phi_{n(i-1)-1} H^{n(i-1)-1}\left(X, \pi_{i-1}\right)}
$$

where $\left[\operatorname{ker} \Psi_{n(i)}\right.$ ] is the least subgroup of $H^{n(i)}\left(X, \pi_{i}\right)$ which contains the kernel of $\Psi_{n(i)}: H^{n(i)}\left(X, \pi_{i}\right) \rightarrow H^{n(i+1)+1}\left(X, \pi_{i+1}\right)$.

Put $\quad T^{n(1)}(X, Y)=\left[\operatorname{ker} \Psi_{n(1)}\right] \cap g_{n(1)-1}^{*} H^{n(1)}\left(X^{n(1)-1}, \pi_{1}\right)$.
Clearly, if $H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)=0$, then $T^{n(i)}(X, Y)=0$. Our result is:
Theorem 2. If $X$ has the homotopy type of a finite-dimensional complex and $T^{n(i)}(X, Y)=0$ for all $i \geqslant 1$, then $N[X, Y]=0$.

Proof. Suppose $[f] \in N[X, Y]$. We need to show that $f$ lifts to each $Y_{n(i)}$. The obstruction to lifting $f$ to $Y_{n(2)}$ is $f^{*} \delta_{n(1)}$. Now

$$
p_{n(1)}^{*} f^{*} \delta_{n(1)}=f^{*}{ }_{1} \delta_{n(1)}=0
$$

The fibration

$$
X_{n(1)} \xrightarrow[p_{n(1)}]{ } X \underset{g_{n(1)-1}}{ } X^{n(1)-1}
$$

gives an exact sequence

$$
0 \rightarrow H^{n(1)}\left(X^{n(1)-1}, \pi_{1}\right) \xrightarrow{g^{*}{ }_{n(1)-1}} H^{n(1)}\left(X, \pi_{1}\right) \xrightarrow{p_{n(1)}^{*}} H^{n(1)}\left(X_{n(1)}, \pi_{1}\right) \rightarrow .
$$

Hence $f^{*} \delta_{n(1)}=g^{*}{ }_{n(1)-1}(a)$ for a unique $a \in H^{n(1)}\left(X^{n(1)-1}, \pi_{1}\right)$. Now

$$
\Psi_{n(1)} f^{*} \delta_{n(1)}=f^{*} \Psi_{n(1)} \delta_{n(1)}=0 .
$$

Thus

$$
\begin{aligned}
f^{*} \delta_{n(1)} & \in\left[k \operatorname{er} \Psi_{n(1)}\right] \cap g_{n(1)-1}^{*} H_{n(1)}\left(X^{n(1)-1}, \pi_{1}\right) \\
& =T^{n(1)}(X, Y) \\
& =0 \quad \text { by hypothesis. }
\end{aligned}
$$



$$
p_{n(2)}^{\prime} l_{2} q_{n(2)} \simeq f q_{n(2)} \simeq f_{1} p_{n(2)} \simeq p_{n(2)}^{\prime} f_{2}
$$

Hence there exists a map $\omega: X_{n(2)} \rightarrow K\left(\pi_{1}, n(1)-1\right)$ such that $l_{2} q_{n(2)} \simeq$ $\mu\left(\omega \times f_{2}\right) \Delta$, where $\Delta$ is the diagonal map $X_{n(2)} \rightarrow X_{n(2)} \times X_{n(2)}$. Since $\omega \simeq 0$, it follows that $l_{2} q_{n(2)} \simeq f_{2}$. Suppose $f$ lifts to a map $l_{i}: X \rightarrow Y_{n(i)}$ for $i>2$ with $q^{\prime}{ }_{n(i)} l_{i} \simeq f$ and $l_{i} q_{n(i)} \simeq f_{i}$. We need to show that $f$ lifts to $Y_{n(i+1)}$. Now put $\mu=l^{*}{ }_{i} \delta_{n(i)}$. We have $q^{*}{ }_{n(i)}(\mu)=q^{*}{ }_{n(i)} l^{*}{ }_{i} \delta_{n(i)}=f^{*}{ }_{i} \delta_{n(i)}=0$. The fibration

$$
X_{n(i)} \xrightarrow[q_{n(i)}]{ } X \underset{g_{n(i)-1}}{ } X^{n(i)-1}
$$

gives an exact sequence

$$
0 \rightarrow H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) \xrightarrow{g_{n(i)-1}^{*}} H^{n(i)}\left(X, \pi_{i}\right) \xrightarrow{q_{n(i)}^{*}} H^{n(i)}\left(X_{n(i)}, \pi_{i}\right) \rightarrow .
$$

Hence we have $\mu=g^{*}{ }_{n(i)-1}(\nu)$ for a unique class $\nu \in H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)$. Also,

$$
\Psi_{n(i)}(\mu)=\Psi_{n(i)} l_{i}^{*} \delta_{n(i)}=l^{*}{ }_{i} \Psi_{n(i)} \delta_{n(i)}=0
$$

Thus $\mu \in\left[\operatorname{ker} \Psi_{n(i)}\right] \cap g^{*}{ }_{n(i)-1} H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)$. By hypothesis,

$$
T^{n(i)}(X, Y)=0
$$

Hence $l^{*}{ }_{i} \delta_{n(i)}=\mu \in \operatorname{im} \Phi_{n(i-1)-1}$. By Proposition 5, it follows that $p_{n(i)}^{\prime} l_{i}$ lifts to $Y_{n(i+1)}$, that is, there exists a map $l_{i+1}: X \rightarrow Y_{n(i+1)}$ with $p^{\prime}{ }_{n(i)} p_{n(i+1)}^{\prime} l_{i+1} \simeq p^{\prime}{ }_{n(i)} l_{i}$. Thus $q_{n(i+1)}^{\prime} l_{i+1} \simeq p_{n(2)}^{\prime} \ldots p_{n(i)}^{\prime} p^{\prime}{ }_{n(i+1)} l_{i+1} \simeq$ $q^{\prime}{ }_{n(i)} l_{i} \simeq f$. Now

$$
\begin{aligned}
p_{n(i)}^{\prime} p_{n(i+1)}^{\prime} l_{i+1} q_{n(i+1)} & \simeq p_{n(i)}^{\prime} l_{i} q_{n(i+1)} \\
& \simeq p_{n(i)}^{\prime} l_{i} q_{n(i)} p_{n(i+1)} \\
& \simeq p_{n(i)}^{\prime} f_{i} p_{n(i+1)} \\
& \simeq p_{n(i)}^{\prime} p_{n(i+1)}^{\prime} f_{i+1} .
\end{aligned}
$$

This means that there exists a map $\omega_{1}: X_{n(i+1)} \rightarrow K\left(\pi_{i-1}, n(i-1)-1\right)$ with $p_{n(i+1)}^{\prime} l_{i+1} q_{n(i+1)} \simeq \mu\left(\omega_{1} \times p_{n(i+1)}^{\prime} f_{i+1}\right) \Delta$, where $\Delta$ is the diagonal map $X_{n(i+1)} \rightarrow X_{n(i+1)} \times X_{n(i+1)}$. Since $\omega_{1} \simeq 0$, we have

$$
p_{n(i+1)}^{\prime} l_{i+1} q_{n(i+1)} \simeq p_{n}^{\prime}{ }_{n+1)} f_{i+1}
$$

Again, this means that there exists a map $\omega_{2}: X_{n(i+1)} \rightarrow K\left(\pi_{i}, n(i)-1\right)$ with $l_{i+1} q_{n(i+1)} \simeq \mu\left(\omega_{2} \times f_{i+1}\right) \Delta$, where $\Delta$ is the diagonal map $X_{n(i+1)} \rightarrow X_{n(i+1)} \times$ $X_{n(i+1)}$. Since $\omega_{2} \simeq 0$, it follows that

$$
l_{i+1} q_{n(i+1)} \simeq f_{i+1}
$$

This completes the induction and the proof.
Now, following (4), we shall define a sequence of non-negative integers $\tau_{n(i)}$ as follows. Suppose that $\pi_{i}$ is a cyclic group, and let $f: S^{n(i)} \rightarrow Y$ represent a generator. Define $\tau_{n(i)}$ to be the least positive integer such that

$$
\tau_{n(i)} S_{i} \in f^{*} H^{n(i)}\left(Y, \pi_{i}\right)
$$

where $S_{i}$ generates the cyclic group $H^{n(i)}\left(S^{n(i)}, \pi_{i}\right)$. If $f^{*} H^{n(i)}\left(Y, \pi_{i}\right)=0$, or if $\pi_{i}$ is not cyclic, put $\tau_{n(i)}=0$. Denote by $\tau_{n(i)}^{*}$ the cohomology operation given by multiplying each cohomology class by the integer $\tau_{n(i)}$. We shall consider this operation only in dimension $n(i)$ and with coefficients in $\pi_{i}$. Define, for each $i>1$,
where

$$
R^{n(i)}(X, Y)=\frac{\operatorname{ker} \tau_{n(i)}^{*} \cap\left[\operatorname{ker} \Psi_{n(i)}\right]}{\operatorname{ker} \tau_{n(i)}^{*} \bigcap \operatorname{im} \Phi_{n(i-1)-1}}
$$

$$
\begin{aligned}
\tau_{n(i)}^{*}: H^{n(i)}\left(X, \pi_{i}\right) & \rightarrow H^{n(i)}\left(X, \pi_{i}\right), \\
\Psi_{n(i)}: H^{n(i)}\left(X, \pi_{i}\right) & \rightarrow H^{n(i+1)+1}\left(X, \pi_{i+1}\right), \\
\Phi_{n(i-1)-1}: H^{n(i-1)-1}\left(X, \pi_{i-1}\right) & \rightarrow H^{n(i)}\left(X, \pi_{i}\right) .
\end{aligned}
$$

If $i=1$, put $R^{n(1)}(X, Y)=\left[\operatorname{ker} \Psi_{n(1)}\right] \cap g^{*}{ }_{n(1)-1} H^{n(1)}\left(X^{n(1)-1}, \pi_{1}\right)$. Then we have

Theorem 3. Let $X$ be a space having the homotopy type of a finite-dimensional CW-complex. If $R^{n(i)}(X, Y)=0$ for all $i \geqslant 1$ and

$$
\tau^{*}{ }_{n(i)}: H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) \rightarrow H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)
$$

is zero for all $i \geqslant 2$, then $N[X, Y]=0$.
Proof. Since $R^{n(1)}(X, Y)=0=T^{n(1)}(X, Y)$, we have, as in the proof of Theorem 2, that there exists a map $l_{2}: X \rightarrow Y_{n(2)}$ with $p_{n(2)}^{\prime} l_{2} \simeq f$ and $l_{2} q_{n(2)} \simeq f_{2}$. Suppose that for some $i>2$, we have a map $l_{i}: X \rightarrow Y_{n(i)}$ with $q_{n(i)}^{\prime} l_{i} \simeq f$ and $l_{i} q_{n(i)} \simeq f_{i}$. We need to show that $f$ lifts to $Y_{n(i+1)}$. Put $\mu=l^{*}{ }_{i} \delta_{n(i)}$. Then $q^{*}{ }_{n(i)}(\mu)=q^{*}{ }_{n(i)} l^{*}{ }_{i} \delta_{n(i)}=f^{*}{ }_{i} \delta_{n(i)}=0$. The fibration

$$
X_{n(i)} \xrightarrow[q_{n(i)}]{ } X \xrightarrow[g_{n(i)-1}]{ } X^{n(i)-1}
$$

gives an exact sequence

$$
0 \rightarrow H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right) \xrightarrow[g_{n(i)-1}^{*}]{ } H^{n(i)}\left(X, \pi_{i}\right) \xrightarrow[q_{n(i)}^{*}]{ } H^{n(i)}\left(X_{n(i)}, \pi_{i}\right) \rightarrow .
$$

Hence we have that $\mu=g^{*}{ }_{n(i)-1}(\nu)$, where $\nu \in H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)$. Also

$$
\Psi_{n(i)}(\mu)=\Psi_{n(i)} l^{*}{ }_{i} \delta_{n(i)}=l^{*}{ }_{i} \Psi_{n(i)} \delta_{n(i)}=0 .
$$

Thus $\mu \in \operatorname{ker} \Psi_{n(i)}$. Further,

$$
\tau^{*}{ }_{n(i)}(\mu)=\tau_{n(i)}^{*} g^{*}{ }_{n(i)-1}(\nu)=g^{*}{ }_{n(i)-1} \tau_{n(i)}^{*}(\nu)
$$

Since $\nu \in H^{n(i)}\left(X^{n(i)-1}, \pi_{i}\right)$, the hypotheses of the theorem imply that $\tau_{n(i)}^{*}(\mu)=0$. Thus $\mu \in\left[\operatorname{ker} \Psi_{n(i)}\right] \cap \operatorname{ker} \tau^{*}{ }_{n(i)}$. By hypothesis, $R^{n(i)}(X, Y)=0$. Hence $\mu \in \operatorname{im} \Phi_{n(i-1)-1}$. It follows from Proposition 4 that we can find a map $l_{i+1}: X \rightarrow Y_{n(i+1)}$ with $p^{\prime}{ }_{n(i)} p_{n(i+1)}^{\prime} l_{i+1} \simeq p^{\prime}{ }_{n(i)} l_{i}$. The proof is completed by reproducing the last part of the proof of Theorem 2.

## References

1. S. T. Hu, Homotopy theory (Academic Press, New York, 1959).
2. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc., 107 (1963), 432-450.
3.     - Maps which induce the zero map on homotopy, Pacific J. Math., 15 (1965), 537-540.
4. E. Thomas, Homotopy classification of maps by cohomology homomorphisms, Trans. Amer. Math. Soc., 3 (1964), 138-151.
5. ———Lectures on fibre spaces, Notes by J. McClendon (Springer-Verlag, New York, 1966).

University of Alberta, Edmonton, Alberta

