K-CORRECTION BIASES AND THE QUASAR LUMINOSITY FUNCTION

A. C. BAKER and P. C. HEWETT Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA England

Abstract.

By characterising the range of quasar UV-optical spectral indices and any correlation with it e.g. luminosity or line parameters, we hope to remove one more bias from the quasar luminosity function (QLF).

Although the rest-frame quasar UV-optical spectrum is well-fit by a power law $(f(\nu) \propto \nu^{\alpha})$ with a mean spectral index $\alpha_{\rm UVO} \sim 0.3$ (Francis et al. 1993 ApJ 407 519), this is not a sufficient description for the purposes of calculating the QLF. The QLF is 'blurred' by the *range* in spectral index (Warren et al. 1994 ApJ in press) and a flux-limited sample reaches deeper into the blue QLF, mimicing faster 'evolution'.

To combine with our existing B_J magnitudes, we have obtained JHK' photometry using IRIS on the AAT for over 100 quasars, selected from the LBQS to have a wide range in other properties. Preliminary $\alpha_{\rm UVO}$ for the first 29 objects in the sample are shown in Figure 1; note the range $-1 < \alpha_{\rm UVO} < 0$.

498

T. J.-L. Courvoisier and A. Blecha: Multi-Wavelength Continuum Emission of AGN, 498. © 1994 IAU. Printed in the Netherlands.