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Preface

This book summarizes the developments over the past several decades in the field of strong
interactions at high energy. This is the first ever book almost entirely devoted to the physics
of parton saturation and the color glass condensate (CGC).

Our main goal in this book is to introduce the reader systematically to the ideas, problems,
and methods of high energy quantum chromodynamics (QCD). Over the years, these
methods and ideas have led to a new physical picture of high energy hadronic and nuclear
interactions, representing them as the interactions of a very dense system of tiny constituents
(quarks and gluons) having only a small value of the QCD coupling constant. Owing to
the high density of gluons and quarks the interactions in such systems are inherently
nonperturbative; nevertheless, a theoretical description of these interactions is possible due
to the smallness of the QCD coupling. Our main goals in the book are to show how these
new ideas arise from perturbative QCD and to enable the reader to enjoy the beauty and
simplicity of these emerging methods and equations.

The book’s intended audience is advanced graduate students, postdoctoral fellows, and
mature researchers from the neighboring subfields of nuclear and particle physics. We
assume that graduate student readers are familiar with quantum field theory at the level of
a standard graduate-level course based on the textbooks by Peskin and Schroeder (1995) or
Sterman (1993). We also recommend that students should have taken a theoretical particle
physics course before attempting to read this book. Nevertheless, we have tried to make
this book as self-sufficient as possible, and so we refer to the results of quantum field theory
only minimally.

The book is structured as follows. In Chapters 1 through 5 we present general concepts
and the results of high energy QCD at a level accessible to a graduate student beginning
his or her research in the field. Chapters 6 though 9 deal with more specialized topics and
are written at a somewhat higher level; now the reader is expected to do more independent
calculations and thinking to follow the presentation. Sections marked with an asterisk ∗
can be skipped in the first reading of the book.

The field of high energy QCD has been developing rapidly over the past few decades,
generating vast amounts of new and interesting results. It is impossible to fit all the recent
advances into a single book: inevitably some important results have had to be left out. We
have tried to overcome this shortcoming by incorporating sections on further reading at the

ix
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x Preface

ends of most chapters. In these sections we provide the reader with the references needed
to further develop his or her understanding of the subject.

At the ends of many chapters we provide exercises for readers. Fairly difficult problems
are marked with an asterisk ∗ and very hard problems are marked with a double asterisk
∗∗.

In this book we have aimed to bring the reader to the forefront of research on high
energy QCD. We would be thrilled if our readers were able to pursue work in the field after
reading this book, generating new theoretical ideas and results which ultimately could be
compared with experiment.

We would like to thank our colleagues and collaborators Javier Albacete, Ian Balitsky,
Jochen Bartels, Jean-Paul Blaizot, Kostya Boreskov, Eric Braaten, Yuri Dokshitzer, Adrian
Dumitru, Victor Fadin, Lonya Frankfurt, Dick Furnstahl, Francois Gelis, Asher Gotsman,
Ulrich Heinz, Will Horowitz, Edmond Iancu, Jamal Jalilian-Marian, Oleg Kancheli, Dima
Kharzeev, Valera Khoze, Boris Kopeliovich, Alex Kovner, Andrei Leonidov, Lev Lipatov,
Mike Lisa, Misha Lublinsky, Uri Maor, Cyrille Marquet, Larry McLerran, Al Mueller,
Marzia Nardi, Robert Perry, Robi Peschanski, Dirk Rischke, Misha Ryskin, Anna Stasto,
Mark Strikman, Lech Szymanowski, Derek Teaney, Kirill Tuchin, Raju Venugopalan,
Heribert Weigert for many productive discussions on the subjects covered in the book. This
book would not be possible without the intellectual pleasure and constant support of these
discussions. Special thanks go to Javier Albacete for preparing Figs. 4.29, 4.30, 4.31, and
6.3, to Anna Stasto for preparing Fig. 4.33, and to Kunihiro Nagano for preparing Fig. 2.7.

Most of all we are grateful to our wives, children, grandchildren, parents, and grandpar-
ents for their unwavering love and support and for their great patience during the writing
of this book.

yuri v. kovchegov

eugene levin
November 2011

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


1

Introduction: basics of QCD perturbation theory

Quantum chromodynamics (QCD) is the theory of strong interactions. This is an exciting
physical theory, whose Lagrangian deals with quark and gluon fields and their interactions.
At the same time, quarks and gluons do not exist as free particles in nature but combine
into bound states (hadrons) instead. This phenomenon, known as quark confinement, is one
of the most profound puzzles of QCD. Another amazing feature of QCD is the property of
asymptotic freedom: quarks and gluons tend to interact more weakly over short distances
and more strongly over longer distances.

This book is dedicated to another QCD mystery: the behavior of quarks and gluons in
high energy collisions. Quantum chromodynamics is omnipresent in high energy collisions
of all kinds of known particles. There are vast amounts of high energy scattering data
on strong interactions, which have been collected at accelerators around the world. While
these data are incredibly diverse they often exhibit intriguingly universal scaling properties,
which unify much of the data while puzzling both experimentalists and theorists alike. Such
universality appears to imply that the underlying QCD dynamics is the same for a broad
range of high energy scattering phenomena.

The main goal of this book is to provide a consistent theoretical description of high
energy QCD interactions. We will show that the QCD dynamics in high energy collisions
is very sophisticated and often nonlinear. At the same time much solid theoretical progress
has been made on the subject over the years. We will present the results of this progress by
introducing a universal approach to a broad range of high energy scattering phenomena.

We begin by presenting a brief summary of the tools needed to perform perturbative
QCD calculations. Since much of the material in this chapter is covered in standard field
theory and particle physics textbooks, we will not derive many results, simply summarizing
them and referring the reader to the appropriate literature for detailed derivations.

1.1 The QCD Lagrangian

Quantum chromodynamics is an SU(3) Yang–Mills gauge theory (Yang and Mills 1954)
describing the interactions of quarks and gluons. The QCD Lagrangian density is

LQCD =
∑

flavors f

q̄
f
i (x)
[
iγ μDμ − mf

]
ij
q

f
j (x) − 1

4 Fa
μνF

aμν (1.1)

1
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2 Introduction: basics of QCD perturbation theory

where q
f
i (x) and q̄

f
i (x) are the quark and antiquark spin-1/2 Dirac fields of color i, flavor

f , and mass mf , with q̄ = q†γ 0. A field Aa
μ(x) describes the gluon, which has spin equal

to 1, zero mass, and color index a in the adjoint representation of the SU(3) gauge group.
Summation over repeated color and Lorentz indices is assumed, with i, j = 1, 2, 3 and
a = 1, . . . , 8. The covariant derivative Dμ is defined by

Dμ = ∂μ − igAμ = ∂μ − igtaAa
μ. (1.2)

The ta are the generators of SU(3) in the fundamental representation (ta = λa/2, where the
λa are the Gell-Mann matrices). The non-Abelian gluon field strength tensor Fa

μν is defined
by

Fμν = taF a
μν = i

g

[
Dμ,Dν

]
(1.3)

or, equivalently, by

Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν, (1.4)

where f abc are the structure constants of the color group SU(3).
We work in natural units, with h̄ = c = 1. Our four-vectors are xμ = (t, �x), the partial

derivatives are denoted ∂μ = ∂/∂xμ, and the metric in t, x, y, z coordinates is gμν =
diag(+1,−1,−1,−1).

The Lagrangian of Eq. (1.1) was proposed by Fritzsch, Gell-Mann, and Leutwyler
(1973), Gross and Wilczek (1973, 1974), and Weinberg (1973). The form of the QCD
Lagrangian is based on two assumptions confirmed by experimental observations: all
hadrons consist of quarks and quarks cannot be observed as free particles. The first obser-
vation leads to a new quantum number for quarks: color. Indeed, without this quantum
number we cannot build the wave functions for baryons. For example the �− hyperon has
spin 3/2 and consists of three s-quarks. This means that the spin and flavor parts of its
wave function are symmetric with respect to interchange of the identical valence s-quarks.
Owing to the Pauli exclusion principle the full wave function of the three identical quarks
has to be antisymmetric. If spin and flavor were the only quantum numbers, it would appear
that the spatial wave function of the three s-quarks would have to be antisymmetric. How-
ever, this would contradict the fact that �− is a stable particle and is, therefore, a ground
state of the three s-quark system. The spatial wave function of a ground state has to be
symmetric. To resolve this conundrum we need to introduce a new quantum number that
should have at least three different values to make the three strange quarks different in the
�− hyperon. This quantum number is the quark color.

We then need to determine which particle is responsible for interactions between the
quarks forming quark bound states, the hadrons. The interactions between the quarks in
mesons and baryons have to be attractive, which indicates that they should depend on
quark color: if one introduced interactions between quarks using some global (not gauged)
non-Abelian color symmetry then one would not be able to obtain attractive interactions
between the quark and the antiquark in a meson and between a pair of quarks in a baryon
simultaneously, at least not in the lowest nontrivial order in the interaction. One therefore
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1.2 A review of Feynman rules for QCD 3

concludes that the non-Abelian color symmetry has to be gauged by introducing a non-
Abelian vector boson responsible for quark interactions. Moreover, as we will see below,
the high energy scattering data confirms this conclusion as it demonstrates that the particle
responsible for quark interactions has spin equal to 1.

The second experimental observation needed for the construction of the QCD
Lagrangian, that quarks are never seen as free particles, means that the forces between
quarks should be stronger at longer distances to prevent quarks from leaving a hadron.
For point-like particles our best chance of getting such forces is by assuming that quark
interactions are mediated by a massless particle. For such a particle the lowest-order quark–
antiquark interaction potential decreases at long distances roughly as to 1/r , where r is the
distance between the quarks. (Indeed in a full QCD calculation this behavior changes to
∼ r , that of a confining potential.) Massive particles would give an exponentially decreas-
ing potential, which would have a shorter range than the potential in the massless case.
We therefore conclude that the particle responsible for quark interactions is a non-Abelian
massless vector boson, a gluon.

However, particle interactions may generate a mass even for a particle that is massless at
the Lagrangian level. To protect the zero mass of the gluon from higher-order corrections we
have to assume the existence of gauge symmetry in our Lagrangian. Namely, the Lagrangian
should be invariant with respect to

q(x) → S(x) q(x), (1.5a)

q̄(x) → q̄(x) S−1(x), (1.5b)

Aμ(x) → S(x)Aμ(x)S−1(x) − i

g

[
∂μS(x)

]
S−1(x), (1.5c)

where we have defined a unitary 3 × 3 matrix

S(x) = eiαa (x) ta , (1.6)

where the αa(x) are arbitrary real-valued functions; summation over repeated color indices
a is again implied. The form of the Yang–Mills Lagrangian (1.1) can be derived directly
from the gauge symmetry in Eqs. (1.5) (see e.g. Peskin and Schroeder (1995)).

1.2 A review of Feynman rules for QCD

To derive the Feynman rules from the Lagrangian (1.1) we need to define the functional
integral (the QCD partition function)

ZQCD =
∫

DADq Dq̄ exp

{
i

∫
d4x LQCD (A, q, q̄)

}
. (1.7)

One can see that this integral is divergent since its integrand has the same value for an infinite
set of fields related to each other by all possible gauge transformations (1.5). However, the
values of physical observables are given by the expectation values of operators. For an
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4 Introduction: basics of QCD perturbation theory

arbitrary gauge-invariant operator O we have the vacuum expectation value

〈O〉 ≡
∫ DADq Dq̄ O exp

{
i
∫

d4xLQCD

}∫ DADq Dq̄ exp
{
i
∫

d4x LQCD

} (1.8)

The divergences caused by integrations over gauge directions in the numerator and in
the denominator of Eq. (1.8) cancel each other. Faddeev and Popov (1967) suggested a
procedure allowing one to see such cancellations in the most economic way by multiplying
the definition (1.7) with the functional integral identity1

1 =
∫

Dα δ(α) =
∫

Dα δ(G(Aα)) det

(
δG(Aα)

δ α

)
, (1.9)

where the integral runs over all gauge transformations labeled by αa (see Eq. (1.6)), Aα

is a gauge field related to the original one by the gauge transformation defined by αa , and
G(A) = 0 is the gauge-fixing condition. (For instance, G(A) = ∂μAμ in a covariant gauge.)
Let us restrict ourselves to gauges in which the functional determinant det[δG(Aα) /δα] is
independent of αa for a given Aα . Using Eq. (1.9) the expectation values of the operators
can be written as

〈O〉 =
(∫ Dα

) ∫ DADq Dq̄ O δ(G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

}
(∫ Dα

) ∫ DADq Dq̄ δ (G(A)) det
(

δG(Aα)
δ α

)
exp
{
i
∫

d4x LQCD

} , (1.10)

where we have relabeled the integration variable Aα as A everywhere except in the deter-
minants, in which one should put αa = 0 after differentiation thus turning Aα into A. The
infinities in the numerator and the denominator of Eq. (1.10) are clearly identifiable as
being due to the integration over αa . As nothing else in the integrands of Eq. (1.10) depends
on α we can simply cancel the Dα integrations, writing

〈O〉 =
∫ DADq Dq̄ O δ(G(A)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A)) det

(
δG(Aα )

δ α

)
exp
{
i
∫

d4x LQCD

} . (1.11)

To obtain the Feynman rules we have to put all the A-dependence in the integrands in
Eq. (1.11) into the exponents. We start with the delta functions and first note that making
the replacement in Eq. (1.11)

δ(G(A)) → δ(G(A) − r(x)) , (1.12)

where r(x) is some arbitrary function of xμ, would not change the values of the functional
integrals in the numerator and the denominator and would therefore leave 〈O〉 unchanged.
Indeed different choices of r(x) correspond to different choices of the gauge defined
by the G(A) = r(x) gauge condition. Thus the replacement (1.12) simply modifies the
function defining the gauge condition: G(A) → G(A) − r(x). Since our initial gauge-
defining function G(A) is arbitrary, and as neither of the integrals in the numerator and the
denominator of Eq. (1.11) depends on G(A), we conclude that nothing in the numerator

1 In discussing the Faddeev–Popov method we will follow closely the presentations in Peskin and Schroeder (1995) and
in Sterman (1993).
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1.2 A review of Feynman rules for QCD 5

or the denominator of Eq. (1.11) changes if we perform the replacement (1.12). Moreover,
the resulting expression,

〈O〉 =
∫ DADq Dq̄ O δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

}
∫ DADq Dq̄ δ(G(A) − r(x)) det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x LQCD

} , (1.13)

is independent of r(x) for the same reasons. We can integrate the numerator and the
denominator separately over r(x) by multiplying them with

1 = N (ξ )
∫

Dr exp

{
−i

∫
d4x

r2(x)

2ξ

}
, (1.14)

where N (ξ ) is a normalization function defined by Eq. (1.14) and ξ is an arbitrary number.
Multiplying both the numerator and the denominator of Eq. (1.13) by Eq. (1.14), canceling
N (ξ ), and performing the r-integrals with the help of the delta functions, we obtain

〈O〉 =
∫ DADq Dq̄ O det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)}
∫ DADq Dq̄ det

(
δG(Aα)

δ α

)
exp
{
i
∫

d4x
(
LQCD − 1

2ξ
[G(a)]2

)} . (1.15)

Finally, in order to remove the determinants of Eq. (1.15) into the exponents one intro-
duces the (unphysical) Faddeev–Popov ghost field ca(x), whose values are complex Grass-
mann numbers (Faddeev and Popov 1967, Feynman 1963, DeWitt 1967). The ghost field is
a Lorentz scalar in the adjoint representation of SU(3). With the help of the Faddeev–Popov
ghost field we write

det

(
δG (Aα)

δ α

)
=
∫

DcDc∗ exp

{
−i

∫
d4x c∗ δG (Aα)

δ α
c

}
(1.16)

with c∗ the complex conjugate of the c field. Using Eq. (1.16) in Eq. (1.15) we obtain

〈O〉 =
∫ DADq Dq̄ DcDc∗ O exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
}∫ DADq Dq̄ DcDc∗ exp

{
i
∫

d4x L(A, q, q̄, c, c∗)
} , (1.17)

where we have defined an effective Lagrangian

L(A, q, q̄, c, c∗) ≡ LQCD − 1

2ξ
[G(A)]2 − c∗ δG(Aα)

δ α
c. (1.18)

Now we are ready to derive the Feynman rules for QCD.
In this book we will employ two main gauge choices. One is the Lorenz gauge, defined

by the gauge condition

∂μAa μ = 0. (1.19)

Inserting G(A) = ∂μAa μ into Eq. (1.18), after some straightforward algebra (see e.g. Peskin
and Schroeder (1995)) we end up with

L = LQCD − 1

2ξ

(
∂μAa

μ

)2 + (∂μca ∗)(δac ∂μ + gf abcAb
μ

)
cc. (1.20)
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6 Introduction: basics of QCD perturbation theory

Using Eq. (1.20) we can derive the Feynman rules for QCD by substituting the Lagrangian
(1.20) into Eq. (1.7) in place of LQCD .

The other gauge choice that we will be using frequently throughout the book is the light
cone gauge, defined by

η · Aa = ημAa
μ = 0, (1.21)

with ημ a constant four-vector that is light-like, so that η2 = ημ ημ = 0. One can show that,
in the light cone gauge, det[δG (Aα)/δ α] does not depend on Aμ when we take the limit
ξ → 0. From Eq. (1.18) one can see that in this case the ghost field would not couple to
the gluon field and so can be integrated out in the functional integrals of Eq. (1.17). Hence
there is no ghost field in the light cone gauge. The effective Lagrangian (1.18) in the light
cone gauge becomes

L = LQCD − 1

2 ξ

(
ημAa

μ

)2
(1.22)

(with an implied ξ → 0 limit).
Below we list the Feynman rules for QCD, in the Lorenz and light cone gauges, which

follow from the Lagrangians in Eqs. (1.20) and (1.22). We use the standard notation for
a product of two four-vectors u · v = uμv

μ and for the square of a single four-vector
vμv

μ = v2. The Dirac gamma matrices in the standard Dirac representation, which we will
use here, are defined by

γ 0 =
(

1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, (1.23)

where 1 is a unit 2 × 2 matrix, i = 1, 2, 3, and σ i are the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
. (1.24)

As usual, we will write v/ = γ μvμ. Arrows on the quark and ghost propagators (see below)
indicate the flow of the particle number and, in the cases of the quark propagator and the
ghost–gluon vertex, they also indicate the momentum flow. As ghost fields do not exist in the
light cone gauge, the Feynman rules for ghosts listed below apply only in the Lorenz gauge.

1.2.1 QCD Feynman rules

Quark propagator: ij p = i(p/ + mf )

p2 − m2
f + iε

δij , (1.25)

Ghost propagator: ab k = i

k2 + iε
δab, (1.26)

Gluon propagator:
ab k

μν
= −iDμν(k)

k2 + iε
δab, (1.27)
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1.3 Rules of light cone perturbation theory 7

where in the Lorenz gauge (∂ · Aa = 0)

Dμν(k) = gμν − (1 − ξ )
kμkν

k2
; (1.28)

the choice ξ = 0 is referred to as the Landau gauge and the choice ξ = 1 is called the
Feynman gauge. In the light cone gauge η · Aa = 0 with ξ → 0 one has

Dμν(k) = gμν − ημkν + ηνkμ

η · k
. (1.29)

Quark–gluon vertex:

i

j aμ
= igγ μ (ta)ji , (1.30)

Ghost–gluon vertex
(Lorenz gauge only):

c

b aμ

p

p + k

= g(p + k)μf abc (1.31)

Three-gluon vertex
(all momenta flow
into the vertex):

c

b
a
μ ν

ρ

k1

k2
k3

= −gf abc [(k1 − k3)νgμρ

+ (k2 − k1)ρgμν + (k3 − k2)μgνρ]
(1.32)

Four-gluon vertex:

a

b

c
d

μ
ν

ρ

σ

=
−ig2

[
f abe f cde (gμρ gνσ − gμσ gνρ)
+ f ace f bde (gμν gρσ − gμσ gνρ)
+ f ade f bce (gμν gρσ − gμρ gνσ )

]
(1.33)

The Feynman rules that are standard for all field theories, such as the conservation of
four-momentum in the vertices and the inclusion of a factor −1 for each fermion loop or
of proper symmetry factors, apply to QCD as well and will not be explicitly spelled out
here.

1.3 Rules of light cone perturbation theory

Many calculations in this book will not be performed using the Feynman rules. Instead we
will use light cone perturbation theory (LCPT), following the rules introduced by Lepage
and Brodsky (1980) (see Brodsky and Lepage (1989) and Brodsky, Pauli, and Pinsky (1998)
for a detailed derivation of the LCPT rules). We begin by introducing the light cone notation.
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8 Introduction: basics of QCD perturbation theory

For any four-vector vμ we define

v+ = v0 + v3, v− = v0 − v3. (1.34)

With this notation we see immediately that

v2 = v+v− − �v 2
⊥, (1.35)

where we have defined a vector of transverse components �v⊥ = (v1, v2). A product of two
four-vectors vμ and uμ in light cone notation is

u · v = 1

2
u+v− + 1

2
u−v+ − �u⊥ · �v⊥. (1.36)

The metric has nonzero components g+− = g−+ = 1/2, g11 = g22 = −1. This gives

v− = v0 + v3

2
= v+

2
, v+ = v0 − v3

2
= v−

2
. (1.37)

Note also that ∂+ = (1/2) ∂− and ∂− = (1/2) ∂+.
Light cone perturbation theory is similar to time-ordered perturbation theory, except that

the light cone x+-direction plays the role of time. (For a good presentation of time-ordered
perturbation theory see Sterman (1993).) Our discussion of LCPT here will closely follow
Lepage and Brodsky (1980) and Brodsky and Lepage (1989). We will work in the particular
light cone gauge

A+ = 0, (1.38)

which can be obtained from Eq. (1.21) by choosing ημ = (0, 2, �0⊥), in the (+,−,⊥)
notation. Of the remaining A− and Ai

⊥ components of the gluon field (i = 1, 2), only
the transverse components Ai

⊥ are independent. The component A− can be expressed in
terms of the Ai

⊥ using the equations of motion for the QCD Lagrangian (1.1). The quark
field, which we will denote by q(x), dropping the flavor label, is separated into two spinor
components q+ and q− defined by

q±(x) = �± q(x), (1.39)

where the projection operators �± are given by

�± = 1

2
γ 0 γ ± (1.40)

and the Dirac matrix γ ± = γ 0 ± γ 3. Note that, just like any other projection operators,
�± obey the following relations: �+ �− = 0, �2

± = �±, and �+ + �− = 1. The two
projections q+ and q− are not independent and can also be related using the constraint part
of the equations of motion. The dependent field operators A− and q− are expressed in terms
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1.3 Rules of light cone perturbation theory 9

of Ai
⊥ and q+ as (see Lepage and Brodsky (1980))2

A− = − 2

∂+ ∂⊥ j · A
j
⊥ + 2g

(∂+)2

{[
i∂+A

j
⊥, A

j
⊥
]

+ 2q
†
+taq+ta

}
, (1.41)

q− = 1

i∂+ γ 0
(
−i γ

j
⊥D⊥ j + m

)
q+ (1.42)

where j = 1, 2. Next one defines free gluon and quark fields Ãμ and q̃ by

Ãμ = (0, Ã−, �A⊥), (1.43)

in the (+,−,⊥) notation, with

Ã− ≡ − 2

∂+ ∂⊥ j · A
j
⊥ (1.44)

and

q̃ ≡ q+ + 1

i∂+ γ 0
(
−iγ

j
⊥∂⊥ j + m

)
q+. (1.45)

The light cone Hamiltonian H is defined as the minus component of the four-momentum
vector, P −. It can be written as the sum of free and interaction terms:

H = P − = H0 + Hint , (1.46)

where (Lepage and Brodsky 1980, Brodsky and Lepage 1989, Brodsky, Pauli, and Pinsky
1998)

H0 = 1

2

∫
dx− d2x⊥

(
¯̃q γ + m2 − ∇2

⊥
i∂+ q̃ − Ãa

μ ∇2
⊥Ã

a μ

)
(1.47)

is the free part of the Hamiltonian, while the interaction part is given by

Hint =
∫

dx−d2x⊥

[
−2g tr

(
i∂μÃν[Ãμ, Ãν]

)− g2

2
tr
(
[Ãμ, Ãν][Ãμ, Ãν]

)
− g ¯̃qγ μAμq̃ + g2 tr

(
[i∂+Ãμ, Ãμ]

1

(i∂+)2
[i∂+ Ãν, Ãν]

)

+ g2 ¯̃qγ μAμγ + 1

2i∂+ γ νAνq̃ − g2¯̃qγ +
(

1

(i∂+)2
[i∂+Ãμ, Ãμ]

)
q̃

+ g2

2
q̄γ +taq

1

(i∂+)2
q̄γ +taq

]
. (1.48)

Quantizing the theory by expanding Ai
⊥ and q+ in terms of creation and annihilation

operators while treating the x+ light cone direction as time, one can construct light cone
time-ordered perturbation theory with the help of the light cone Hamiltonian H . The rules
of LCPT for the calculation of scattering amplitudes are given in the following subsection
(Lepage and Brodsky 1980, Brodsky and Lepage 1989, Zhang and Harindranath 1993,
Brodsky, Pauli, and Pinsky 1998).

2 Our notation in Eqs. (1.1), (1.2), and (1.4), and therefore throughout the book, can be obtained from that of Lepage
and Brodsky (1980) and Brodsky and Lepage (1989) by making the replacement g → −g.
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10 Introduction: basics of QCD perturbation theory

1.3.1 QCD LCPT rules

1. Draw all diagrams for a given process at the desired order in the coupling constant,
including all possible orderings of the interaction vertices in the light cone time x+. Assign
a four-momentum kμ to each line such that it is on mass shell, so that k2 = m2 with m

the mass of the particle. Each vertex conserves only the k+ and �k⊥ components of the
four-momentum. Hence for each line the four-momentum has components as follows:

kμ =
(

k+,
�k2
⊥ + m2

k+ , �k2
⊥

)
. (1.49)

2. With quarks associate on-mass-shell spinors in the Lepage and Brodsky (1980)
convention:

uσ (p) = 1√
p+
(
p+ + mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (σ ), (1.50)

vσ (p) = 1√
p+
(
p+ − mγ 0 + γ 0 �γ⊥ · �p⊥

)
χ (−σ ), (1.51)

with

χ (+1) = 1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , χ (−1) = 1√

2

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ . (1.52)

Gluon lines come with a polarization vector ε
μ
λ (k). In the A+ = 0 gauge this vector is

given by

ε
μ
λ (k) =

(
0,

2 �ε λ
⊥ · �k⊥
k+ , �ε λ

⊥

)
(1.53)

with transverse polarization vector

�ε λ
⊥ = − 1√

2
(λ, i) , (1.54)

where λ = ±1. Equation (1.53) follows from requiring that ε+
λ = 0 and ελ(k) · k = 0.

3. For each intermediate state there is a factor equal to the light cone energy denominator

1∑
inc

k− − ∑
interm

k− + i ε
(1.55)

where the sums run respectively over all incoming particles present in the initial state in
the diagram (“inc”) and over all the particles in the intermediate state at hand (“interm”).
According to rule 1 above, for each particle we have k− = (�k2

⊥ + m2)/k+. Since the k−

momentum component is not conserved at the vertices the intermediate states are not on
the “energy shell” and the light cone denominator in (1.55) is nonzero. Note that the light
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1.3 Rules of light cone perturbation theory 11

cone energy is conserved for the whole scattering process:
∑

inc k− is equal to
∑

out k
−,

where “out” stands for all outgoing particles.3

4. Include a factor

θ (k+)

k+ (1.56)

for each internal line, where k+ flows in the future light cone time direction.
5. For vertices include factors as follows (we assume that the light cone time flows from

left to right).
Quark–gluon vertex (i and j are quark color indices):

i j

a
q

p p + qσ σ

= −gūσ ′j (p + q) ε/λ(q) (ta)ji uσ i(p). (1.57)

Three-gluon vertex (all momenta flow into the vertex; asterisks denote complex
conjugation):

c

b
a k1

k2
k3

λ1

λ2λ3

=
−igf abc [(k1 − k3) · ε∗

λ2
(k2) ελ1 (k1) · ελ3 (k3)

+ (k2 − k1) · ελ3 (k3) ελ1 (k1) · ε∗
λ2

(k2)
+ (k3 − k2) · ελ1 (k1) ελ3 (k3) · ε∗

λ2
(k2)].

(1.58)

Four-gluon vertex:

a

b

c
d

λ1

λ2

λ3

λ4

=
g2
[
f abef cde (ελ1 · ελ3 ε∗

λ2
· ε∗

λ4
− ελ1 · ε∗

λ4
ελ3 · ε∗

λ2
)

+ f acef bde(ελ1 · ε∗
λ2

ελ3 · ε∗
λ4

− ελ1 · ε∗
λ4

ελ3 · ε∗
λ2

)
+ f adef bce(ελ1 · ε∗

λ2
ελ3 · ε∗

λ4
− ελ1 · ελ3 ε∗

λ2
· ε∗

λ4
)
]
.

(1.59)

In addition to the above vertices, which are (up to some trivial factors due to a different
convention) identical to the same vertices in the Feynman rules, there are instantaneous
terms in the light cone Hamiltonian giving the four vertices below. Again, light cone time
flows to the right while the momentum flow direction is indicated by arrows. Instant-
aneous quark and gluon lines are denoted by regular quark and gluon lines with a short

3 This light cone energy conservation condition does not apply to light cone wave functions, to be discussed shortly, as
they represent only part of the scattering process.
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12 Introduction: basics of QCD perturbation theory

line crossing them.

p1, σ1

p2, σ2
k1

k2

a λ1 b λ2

= g2 ūσ2j (p2) ε/λ1
(k1)

γ +

2(p+
1 − k+

2 )
ε/∗
λ2

(k2)

× (ta tb)ji uσ1i(p1), (1.60)

p1, σ1 p2, σ2

i j

k l
p3, σ3 p4, σ4

= g2 ūσ2j (p2) γ + (ta)ji uσ1i(p1)

× ūσ4l(p4) γ + (ta)lk uσ3k(p3)
1

(p+
1 − p+

2 )2
, (1.61)

p1, σ1 p2, σ2

k1, λ1 k2, λ2

i j

a b

= − g2 ūσ2j (p2) γ + (t c)ji uσ1i(p1)

× k+
1 + k+

2

(k+
1 − k+

2 )2
if abcε∗

λ2
· ελ1 , (1.62)

k3, λ3 k4, λ4

k1, λ1 k2, λ2

c d

a b

= g2f abef cdeε∗
λ2

· ελ1 ε∗
λ4

· ελ3

× (k+
1 + k+

2 ) (k+
3 + k+

4 )

(k+
1 − k+

2 )2
. (1.63)

6. For each independent momentum kμ integrate with the measure∫
dk+ d2k⊥

2(2π )3
. (1.64)

Sum over all internal quark and gluon polarizations and colors.
Again, standard parts of the rules, common to both LCPT and Feynman diagram calcu-

lations, such as symmetry factors and a factor −1 for fermion loops and for fermion lines
beginning and ending at the initial state, are assumed implicitly.

The rules of LCPT are supplemented by tables of Dirac matrix elements in appendix
section A.1. These tables are very useful in the evaluation of LCPT vertices.

1.3.2 Light cone wave function

An important quantity in LCPT, which is hard to construct in the standard Feynman diagram
language, is the light cone wave function. Its definition is similar to that of the wave function
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1.3 Rules of light cone perturbation theory 13

in quantum mechanics. In our presentation of the light cone wave function we will follow
Brodsky, Pauli, and Pinsky (1998). Imagine that we have a hadron state |�〉. In general this
is a superposition of different Fock states∣∣nG, nq

〉 ≡ ∣∣nG, {k+
i , �ki ⊥, λi, ai}; nq, {p+

j , �pj ⊥, σj , αj , fj }
〉
, (1.65)

where a particular Fock state has nG gluons and nq quarks (and antiquarks). The gluon
momenta are labeled k+

i , �ki⊥, with polarizations λi and gluon color indices ai where
i = 1, . . . , nG. (As usual in LCPT k−

i = �k 2
i ⊥/k+

i , as all particles are on mass shell.) The
quark momenta are labeled p+

j , �pj ⊥, with helicities σj , colors αj , and flavors fj where
j = 1, . . . , nq .

The Fock states form a complete basis such that∑
nG,nq

∫
d�nG+nq

|nG, nq〉〈nG, nq | = 1, (1.66)

where the phase-space integral is defined by∫
d�nG+nq

= 2P + (2π )3

Sn

∫ nG∏
i=1

∑
λi ,ai

dk+
i d2ki ⊥

2k+
i (2π )3

nq∏
j=1

∑
σj ,αj ,fj

dp+
j d2pj ⊥

2p+
j (2π )3

× δ

(
P + −

nG∑
l1=1

k+
l1

−
nq∑

l2=1

p+
l2

)
δ2

(
�P⊥ −

nG∑
m1=1

�km1 ⊥ −
nq∑

m2=1

�pm2 ⊥

)

(1.67)

with symmetry factor Sn = nG! nQ! nQ̄!. Here nQ and nQ̄ are respectively the numbers
of quarks and antiquarks in the wave function, so that nq = nQ + nQ̄. The delta functions
in Eq. (1.67) represent the conservation of the “plus” and transverse components of the
momenta, according to rule 1 of LCPT. The incoming hadron has longitudinal momentum
P + and transverse momentum �P⊥. We assume that each Fock state is normalized to 1, so
that 〈nG, nq |nG, nq〉 = 1.

Using Eq. (1.66) we can write∣∣�〉 = ∑
nG,nq

∫
d�nG+nq

∣∣nG, nq

〉 〈
nG, nq

∣∣�〉. (1.68)

The quantity

�(nG, nq) = 〈nG, nq

∣∣�〉 (1.69)

is called the light cone wave function. It is a multi-particle wave function, describing a Fock
state in the hadron with nG gluons and nq quarks.

Note that requiring that the state |�〉 is normalized to unity, 〈�|�〉 = 1, and using
Eq. (1.68) we can write

1 = 〈�∣∣�〉 = ∑
nG,nq

∫
d�nG+nq

∣∣�(nG, nq )
∣∣2. (1.70)
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14 Introduction: basics of QCD perturbation theory

qq

l

q − l

Fig. 1.1. A Feynman diagram in the φ3-theory considered here. The arrows indicate the
momentum flow.

We see that each light cone wave function �(nG, nq) is normalized to a number less than
or equal to 1.

1.4 Sample LCPT calculations

While we expect that the reader has a fluent knowledge of Feynman rules, we realize that
it is less likely that he or she is equally fluent with LCPT rules. Therefore, to help the
reader become more familiar with LCPT, here we will perform two LCPT calculations. We
will first “cross-check” LCPT by calculating a sample scattering amplitude using both the
Feynman and LCPT rules and showing that we obtain the same result. We will then set up
the rules for calculating light cone wave functions, by considering an example of a basic
wave function containing 1 → 2 particle splitting.

1.4.1 LCPT “cross-check”

We begin by calculating a simple amplitude in a real scalar φ3 field theory in two ways:
using standard Feynman rules and using the rules of LCPT. We will show that the two ways
give identical results. This demonstrates that LCPT is indeed equivalent to the standard
Feynman diagram approach.

The process we consider is illustrated in Fig. 1.1. We consider a field theory for a real
massive scalar field φ with Lagrangian

L = 1

2
∂μφ ∂μφ − m2

2
φ2 − λ

3!
φ3. (1.71)

The contribution of the diagram in Fig. 1.1 (henceforth labeled A) can be written down
using the Feynman rules for the real scalar field theory having Lagrangian (1.71) (see e.g.
Sterman (1993) on Peskin and Schroeder (1995)):

−i� = (−iλ)2

2!

∫
d4l

(2π )4

i

l2 − m2 + iε

i

(q − l)2 − m2 + iε
. (1.72)

Here 1/2! is a symmetry factor and m is the mass of the scalar particles.
Working in the light cone variables

qμ = (q+, q−, �q⊥), lμ = (l+, l−, �l⊥), (1.73)
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1.4 Sample LCPT calculations 15

we write l2 = l+ l− − �l2
⊥ and (q − l)2 = (q+ − l+) (q− − l−) − (�q⊥ − �l⊥)2. Equa-

tion (1.72) can now be rewritten as

−i� = λ2

4

∫
dl+ dl− d2l⊥

(2π )4

1

l+l− − �l2
⊥ − m2 + iε

× 1

(q+ − l+)(q− − l−) − (�q⊥ − �l⊥)2 − m2 + iε
. (1.74)

Now we need to integrate over l−. In the complex l−-plane the integrand in Eq. (1.74) has
two poles,

l−1 =
�l2
⊥ + m2 − iε

l+
and l−2 = q− − (�q⊥ − �l⊥)2 + m2 − iε

q+ − l+
. (1.75)

The l−-integral is nonzero only if these two poles lie in different half-planes. This happens
for either (i) l+ > 0, q+ − l+ > 0 or (ii) l+ < 0, q+ − l+ < 0. As the incoming particle
with momentum q is physical we have q+ > 0, which makes case (ii) impossible to achieve,
as there one has q+ < l+ < 0. We are left with case (i). Closing the l−-integration contour
in the lower half-plane we pick up the pole at l−1 , obtaining

� = λ2

2

∫
dl+ d2l⊥
2(2π )3

θ (l+) θ (q+ − l+)

l+ (q+ − l+)

× 1

q− −
�l2
⊥ + m2 − iε

l+
− (�q⊥ − �l⊥)2 + m2 − iε

q+ − l+

= λ2

2!

∫
dl+ d2l⊥
2(2π )3

θ (l+) θ (q+ − l+)

l+ (q+ − l+)

× 1

q− −
�l2
⊥ + m2

l+
− (�q⊥ − �l⊥)2 + m2

q+ − l+
+ iε

. (1.76)

We observe that Eq. (1.76) is identical to what one would obtain for the diagram in
Fig. 1.1 if one calculated it using the rules of LCPT from Sec. 1.3 (modified for a scalar
particle), as illustrated in Fig. 1.2. Indeed Eq. (1.76) can be obtained by assigning

θ (l+)

l+
and

θ (q+ − l+)

q+ − l+
(1.77)

for each internal line (LCPT rule 4), including an energy denominator

1∑
inc

k− − ∑
interm

k− + i ε
= 1

q− −
�l2
⊥ + m2

l+
− (�q⊥ − �l⊥)2 + m2

q+ − l+
+ iε

(1.78)
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16 Introduction: basics of QCD perturbation theory

qq

l

q − l

A B

l

q − l

q

q

Fig. 1.2. Light cone perturbation theory diagrams in the φ3-theory corresponding to the
Feynman diagram in Fig. 1.1. Time flows to the right. The arrows indicate the momentum
direction. The vertical dotted line indicates an intermediate state.

for the intermediate state (denoted by the dotted line in Fig. 1.2A), according to LCPT
rule 3, and integrating over the internal momentum l with the integration measure

∫
dl+ d2l⊥
2(2π )3

, (1.79)

as prescribed by LCPT rule 6. In LCPT each vertex gives a factor λ (a modification of rule
5 for φ3-theory) and one has to include the symmetry factor 1/2! as well. (Scalar particles
obviously have no polarization. Neither do they have instantaneous terms.)

We have demonstrated that starting from the Feynman diagram amplitude expression
(1.72) we can reduce it to the result that one would obtain by the rules of LCPT. Hence the
two approaches in the end give identical expressions for the amplitudes, as expected.

A few words of caution are in order here. In principle the Feynman diagram in Fig. 1.1
corresponds to the two LCPT diagrams A and B shown in Fig. 1.2, which correspond to
two different orderings of the vertices (see LCPT rule 1). The two graphs A and B in
fact correspond to cases (i) and (ii) considered after Eq. (1.75). Our argument above was
simplified by the fact that diagram B in Fig. 1.2 is zero as, according to the LCPT rules, it
comes with a factor θ (−l+) θ (l+ − q+), which is zero for q+ > 0. The physical meaning
of this is quite clear: one cannot generate three particles with positive plus momenta out of
nothing (see the lower vertex in Fig. 1.2B). Conversely, three particles with positive plus
momenta cannot combine to give nothing (see the upper vertex in Fig. 1.2B). Because of
this simplification, we have a one-to-one correspondence between the Feynman diagram in
Fig. 1.1 and the LCPT diagram in Fig. 1.2A. In general, each Feynman diagram corresponds
to a sum of all the LCPT diagrams with the same topology, including all possible time-
orderings and instantaneous terms. A general derivation of an LCPT diagram starting from
a Feynman diagram does not simply involve integration over the minus components of the
internal momenta; one has to assign each vertex an x+-coordinate and Fourier transform
the diagram (by integrating over the minus momenta) into x+ coordinate space. One then
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1.4 Sample LCPT calculations 17

p

k1

k2

0⊥

2⊥

1⊥

Fig. 1.3. Light cone wave function for a scalar particle splitting into two. The vertical dotted
line denotes an intermediate state.

has to integrate over all the x+-coordinates of the vertices, imposing different orderings:
each ordering will lead to a different LCPT diagram.

1.4.2 A sample light cone wave function

Let us calculate, using the rules of LCPT, a sample light cone wave function. The calculation
will be instructive, as the wave function we will calculate is similar to certain light cone
wave functions that we will use throughout the book. In this calculation we will also
illustrate in more detail what is actually meant by the light cone wave function definition
(1.69) and will set up the rules for wave function calculations.

The sample wave function is depicted in Fig. 1.3. Again we are working in φ3 real scalar
field theory, with the Lagrangian (1.71). The wave function describes a single incoming
particle splitting into two. For the scalar field theory only rules 1, 3, 4, and 6 from Sec. 1.3
apply. On top of these rules there is a factor equal to the coupling λ coming from the vertex.
In calculating light cone wave functions one has to treat the “outgoing” state on the right of
the diagram (the state denoted by the dotted line in Fig. 1.3) as an intermediate state. The
reason is that, in describing a scattering process, the light cone wave function is thought of
as a part of a larger diagram in which this “outgoing” state in fact undergoes subsequent
interactions with other particles and therefore is truly an intermediate state. Our definition
of the boost-invariant integration measure (1.67) dictates a slight modification of LCPT
rule 4 as well, when calculating light cone wave functions: we treat the incoming lines (the
external lines on the left, e.g. line p in Fig. 1.3) as “internal” and include a factor 1/p+ for
them, while the outgoing lines (the lines on the right, e.g. lines k1 and k2 in Fig. 1.3) will
be treated as “external” and so will not bring in such factors.

To summarize, when calculating the light cone wave function using LCPT one should
follow the rules stated in Sec. 1.3, with the following modifications.

(i) The outgoing state on the right of a diagram is treated as an internal state and brings
in an energy denominator according to LCPT rule 3.

(ii) At the same time the outgoing external lines on the right of the diagram bring in only
factors θ (k+), in modification of LCPT rule 4. (As usual, light cone time flows to the
right.)
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18 Introduction: basics of QCD perturbation theory

(iii) The incoming external lines on the left of a diagram bring in factors 1/p+, i.e., LCPT
rule 4 is extended to apply to those lines. (We will drop θ (p+ > 0) as incoming lines
always have positive p+ momentum.)

According to the above-stated rules, the light cone wave function depicted in Fig. 1.3 is

�(k1, k2) = 1

p+
λ

p− − k−
1 − k−

2

= 1

p+
λ

�p2
⊥ + m2

p+ −
�k2

1 ⊥ + m2

k+
1

−
�k2

2 ⊥ + m2

k+
2

, (1.80)

where we have omitted the regulator iε for simplicity (in fact we will not need it below).
Before we simplify this expression, let us note that, as can be seen from Eq. (1.70), the
probability of finding such a configuration in a general “dressed” state |�〉 of the incoming
particle is ∫

d�2

∣∣�(k1, k2)
∣∣2, (1.81)

where, as follows from Eq. (1.67), the phase-space integral for two identical particles is
given by ∫

d�2 = 2p+ (2π )3

2!

∫
dk+

1 d2k1 ⊥
2k+

1 (2π )3

dk+
2 d2k2 ⊥

2k+
2 (2π )3

δ
(
p+ − k+

1 − k+
2

)
× δ2
(

�p⊥ − �k1 ⊥ − �k2 ⊥
)

= 1

2!

∫
dk+

1 d2k1 ⊥
2k+

1 (2π )3

p+

p+ − k+
1

. (1.82)

We see that k+
2 = p+ − k+

1 and �k2 ⊥ = �p⊥ − �k1 ⊥. Using these to replace k+
2 and �k2 ⊥ in

Eq. (1.80) and doing some algebra yields

�(k1, p − k1) = − λz1(1 − z1)

(�k1 ⊥ − z1 �p⊥)2 + m2 [1 − z1(1 − z1)]
, (1.83)

where

z1 = k+
1

p+ (1.84)

is the longitudinal fraction of the original particle’s momentum p carried by the particle k1,
which will be identified as a Feynman-x variable in the next chapter. Equation (1.83) gives
us the momentum-space two-particle light cone wave function at the lowest order in λ.

Substituting the wave function (1.83) into Eq. (1.81) and using Eq. (1.82) for the phase-
space integration measure, one obtains the probability for one particle to fluctuate into two
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1.5 Asymptotic freedom 19

particles:

λ2

2!

∫
dz1 d2k1⊥

2(2π )3

z1(1 − z1){
(�k1 ⊥ − z1 �p⊥)2 + m2 [1 − z1(1 − z1)]

}2 ∼ λ2

m2
. (1.85)

Thus the probability of the configuration in Fig. 1.3 is proportional to the coupling constant
squared. As the coupling in φ3-theory has the dimension of the mass, the factor m2 in the
denominator of Eq. (1.85) makes the expression dimensionless. We note in passing that
the effective dimensionless coupling constant for the perturbative expansion of φ3-theory
is λ/m.

It is also instructive to Fourier-transform the wave function (1.83) into transverse coor-
dinate space. The transverse coordinates of the lines are shown in Fig. 1.3. The Fourier
transform is accomplished by integrating over the independent transverse momenta, assign-
ing a factor ei�k⊥·�x⊥ for each line, with k the net outgoing momentum carried by the line. For
the two-particle wave function (1.83) we have

�(�x1 ⊥, �x2 ⊥, �x0 ⊥, z1)

=
∫

d2k1 ⊥ d2p⊥
(2π )4

ei�k1 ⊥·�x1 ⊥+i�k2 ⊥·�x2 ⊥−i �p⊥·�x0 ⊥ �(k1, p − k1)

=
∫

d2k1 ⊥ d2p⊥
(2π )4

ei�k1 ⊥·(�x1 ⊥−�x2 ⊥)−i �p⊥·(�x0 ⊥−�x2 ⊥) �(k1, p − k1). (1.86)

Substituting Eq. (1.83) into Eq. (1.86) and integrating yields (see Eq. (A.11))

�(�x1 ⊥, �x2 ⊥, �x0 ⊥, z1) = − λ

2π
z1(1 − z1) K0

(
|�x12| m

√
1 − z1(1 − z1)

)
× δ2(�x0⊥ − z1 �x1⊥ − (1 − z1)�x2⊥) , (1.87)

where �xij ≡ �xi ⊥ − �xj ⊥. Equation (1.87) gives us the 1 → 2 splitting wave function shown
in Fig. 1.3 in coordinate space. Even though this wave function has been obtained for
the scalar φ3-theory case it has a feature valid for theories with higher spin: it contains
a delta function insuring that �x0⊥ = z1 �x1⊥ + (1 − z1)�x2⊥. This means that the transverse
coordinate positions of the two produced particles are indeed related to each other (Kope-
liovich, Tarasov, and Schafer 1999): both the original particle and the two new particles
lie on one straight line in transverse coordinate space, and x02 : x01 = z1 : (1 − z1) where
xij = |�xij |. The transverse coordinate space structure of the wave function (1.87) is illus-
trated in Fig. 1.4. The same constraint on the transverse plane locations of the produced
particles as derived here for the φ3-theory applies to the splittings of particles in quantum
electrodynamics (QED) and in QCD.

1.5 Asymptotic freedom

A remarkable property of QCD, known as asymptotic freedom, is the fact that the running
QCD coupling tends to be small at short distances (corresponding to large values of the
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20 Introduction: basics of QCD perturbation theory

2 1

z 1 − z1

0

1~ ~

Fig. 1.4. The 1 → 2 splitting wave function pictured in transverse coordinate space. The
circles represent particles and the numbers label these particles in agreement with the
diagram in Fig. 1.3: 0 labels the original particle, while 1 and 2 label the produced particles.

relevant four-momentum squared, q2 = −Q2 with Q a real number). The running of the
QCD coupling constant is given by (Gross and Wilczek 1973, Politzer 1973)4

αs(Q
2) = αs(μ2)

1 + αs(μ2) β2 ln(Q2/μ2)
, (1.88)

where

β2 = 11Nc − 2Nf

12π
(1.89)

with Nc = 3 the number of colors and Nf the number of quark flavors. The QCD beta
function is given by

βQCD(α) = −β2 α2 + O(α3). (1.90)

While Nf = 6 in the Standard Model of particle physics, the effective number of flavors
relevant for a given physical process depends on the momentum scale Q and may be
smaller than six. One can clearly see from Eq. (1.88) that αs(Q2) → 0 as Q2 → ∞: the
strong coupling is small at large momenta. Thus quarks and gluons interact weakly at
asymptotically short distances; this is asymptotic freedom.

Such behavior is in striking contrast with the running of the coupling in quantum
electrodynamics (QED), where β2 is negative, making the QED coupling grow with Q2

(Landau, Abrikosov, and Halatnikov 1956). The main difference between QED and QCD is
in the non-Abelian interactions between the gluons. Owing to these interactions the gluon
propagator receives corrections not only from quark loops (which are quite similar to the
electron loops in QED) but also from gluon loops. The polarizations of virtual gluons in
these loops can be either transverse or longitudinal. The transverse gluon and quark loops
generate terms tending to make the QCD beta function positive (and β2 < 0). Owing to a
large contribution from the longitudinal gluon in the loop, however, the resulting QCD beta
function is negative (and β2 > 0), leading to asymptotic freedom (see Khriplovich (1969),
Gribov (1978), and Dokshitzer and Kharzeev (2004) for more details).

The quantity μ in Eq. (1.88) is an arbitrary scale (known as the renormalization point):
physical observables should not depend on its value. In fact Eq. (1.88) can be rewritten as

αs(Q
2) = 1

β2 ln(Q2/�2
QCD)

(1.91)

4 The QCD beta function was also calculated by ’t Hooft but the result was not included in t’ Hooft (1972).
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Fig. 1.5. The experimental data on the running QCD coupling from deep inelastic scattering
(DIS) experiments at HERA. The dashed line with a band around it is the theoretical predic-
tion for the strong coupling. (Reprinted with permission from H1 and ZEUS collaboration
(2008). Copyright 2008 by IOP Publishing.) A color version of this figure is available
online at www.cambridge.org/9780521112574.

where �QCD ≈ 200−300 MeV is the fundamental scale of QCD. (The exact value of
�QCD depends on the renormalization scheme used.) The strong coupling constant αs(Q2)
becomes large near Q ≈ �QCD , leading to strong forces between the quarks and gluons.
These strong forces presumably contribute to the confinement of quarks and gluons within
hadrons.

For the purposes of this book the most important implication of Eq. (1.88) is that at
short distances (large transverse momenta) the strong coupling is small. This small value
of the dimensionless running QCD coupling gives the naturally small parameter needed
to develop perturbation theory. Therefore the rules are simple: as we probe shorter and
shorter distances inside the hadron perturbative QCD calculations become better justified,
providing more theoretical control over the problem at hand.

Figure 1.5 shows a compilation of the data on the strong coupling constant determined
from deep inelastic electron–proton scattering experiments at a single collider, the Hadron
Electron Ring Accelerator (HERA) at the Deutsches Elektronen-Synchrotron (DESY) lab-
oratory in Hamburg, Germany. The dashed line with a narrow band around it in Fig. 1.5
represents our theoretical knowledge of αs(Q2), which is based on Eq. (1.88) along with
several higher-order corrections (up to three loops). The agreement between theory and data
shown in Fig. 1.5 is quite remarkable and is a major triumph in our attempts to understand
how QCD works.
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2

Deep inelastic scattering

In this chapter we present the cornerstones of perturbative QCD: the parton model
of deep inelastic scattering (DIS) and the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations. There exists an extensive literature covering these subjects
using Lorentz-covariant Feynman diagram techniques (see the further reading section at
the end of the chapter). Here we deviate from the traditional treatment and derive both the
parton model and the DGLAP equations using light cone perturbation theory (LCPT). We
argue that the light cone approach provides an intuitively clear space–time picture of the
scattering process, which is universally applicable for high energy scattering. Owing to this
universality, both the LCPT techniques used here and their space–time interpretation will
prove very useful in subsequent chapters.

2.1 Kinematics, cross section, and structure functions

One of the simplest scattering processes that occur at short distances is the reaction

e + p −→ e′ + X, (2.1)

known as deep inelastic electron–proton scattering (DIS). Here e and e′ are the incoming
and outgoing electron (or positron), p is the proton, and X stands for the other produced
particles. The process is illustrated diagrammatically in Fig. 2.1 in the rest frame of the
proton. The electron scatters on the proton through the exchange of a virtual photon
(denoted γ ∗) with a quark in the proton’s wave function. The virtual photon usually breaks
the proton apart, leading to the production of several new hadrons; these are labeled X in
Fig. 2.1. Hence the process is deeply inelastic, which explains its name.

We begin by working in the rest frame of the proton. As shown in Fig. 2.1, the four-
momentum of the proton is P μ = (m, �0), where m is the proton’s mass. The four-momentum
of the incoming electron is pμ = (E, �p), while the outgoing electron has four-momentum
p′μ = (E′, �p′). Out of the three independent four-momenta P μ, pμ, and p′μ one can
construct three Lorentz invariants relevant to the collision dynamics. (Note that P 2 = m2

and p2 = p′2 = m2
e , where me is the electron’s mass; while these masses are indeed Lorentz

scalars they do not carry any information about the scattering.) In terms of the virtual
photon’s four-momentum qμ ≡ pμ − p′μ, the three invariants usually employed to describe

22
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2.1 Kinematics, cross section, and structure functions 23

e : pμ = ( )

γ∗ : qμ = (E − E − p )

target:Pμ = (m, 0)

e : p μ = (E )

X

λ

λ

σ

Fig. 2.1. Feynman diagram describing deep inelastic electron–proton scattering. The
momentum labels of the lines correspond to the frame in which the target proton is at
rest. The wavy line denotes the virtual photon propagator while the corkscrew lines denote
the gluons inside the proton.

DIS are

Q2 ≡ − q2,

xBj ≡ Q2

2P · q
, (2.2)

y ≡ P · q

P · p
.

The quantity Q2 is called the virtuality of the photon, while xBj is the Bjorken-x variable.
In the rest frame of the proton one can easily show that

Q2 = 4EE′ sin2 θ

2
(2.3)

and

y = E − E′

E
. (2.4)

Here θ is the electron scattering angle, i.e., the angle between �p and �p ′. We therefore
see that q2 ≤ 0 or, equivalently, Q2 ≥ 0, which demonstrates that Q is indeed real. In the
proton’s rest frame the third Lorentz invariant y has a physical interpretation as the fraction
of the electron’s energy transferred to the proton.

Apart from the three independent invariants in Eq. (2.2) one usually defines other
Lorentz-invariant (but not independent) quantities,

ν ≡ P · q

m
= E − E′,

ŝ ≡ (P + q)2 = 2P · q + q2 + m2, (2.5)

s ≡ (P + p)2.
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24 Deep inelastic scattering

We see that in the proton’s rest frame the invariant ν stands for that part of the electron’s
energy that is transferred to the proton; s denotes the center-of-mass energy squared of
the electron scattering on the proton, while ŝ is the center-of-mass energy squared of the
γ ∗ + p reaction. The invariants in Eq. (2.5) are related to those in Eq. (2.2) via

xBj = Q2

ŝ + Q2 − m2
= Q2

2mν
,

(2.6)
Q2 = yxBj (s − m2 − m2

e) ≈ yxBj s.

The fact that DIS experiments are usually performed at very high energy s � m2 � m2
e

justifies the approximation in the last line of Eq. (2.6). We also see from Eq. (2.6) that
xBj ≤ 1 for DIS on a proton.

The DIS experiment allows us to investigate the structure of the hadron at short distances
by observing the recoil electron e′ in Eq. (2.1). As we will see shortly, a DIS experiment can
be thought of as a relativistic electron microscope. We can characterize this “microscope”
by its maximal resolution. We will show below that with this DIS microscope we can
resolve the sizes of the proton’s constituents down to 1/Q. Thus the physical meaning of
the photon virtuality Q2 is that it is related to the resolution of our “microscope”. However,
because our microscope is relavistic, we need to introduce one more variable, namely, the
time duration of the observation. The number of particles is not conserved in a relativistic
system: the number of quarks and gluons inside the proton constantly fluctuates owing
to particle splitting and annihilation. Some fluctuations have longer lifetimes while others
have shorter lifetimes. Therefore, the number of proton constituents can be different when
measured over different observation times. We will show below that the measuring time of
the DIS microscope is proportional to 1/xBj , so that t ∼ 1/(mxBj ). This gives one of the
two physical interpretations of xBj .

Using the covariant gauge for the photon propagator we can write the amplitude for the
DIS process pictured in Fig. 2.1 as

iMσ,λ,λ′ (X) = ie2

q2
ūλ′(p′) γμ uλ(p) 〈X|Jμ(0)|P, σ 〉. (2.7)

Here λ and λ′ are the electron polarizations before and after the interaction and σ is the
polarization of the proton (see Fig. 2.1). The initial state of the proton is denoted |P, σ 〉,
while the final state of the many produced hadrons X in Fig. 2.1 is correspondingly denoted
as |X〉. We define the quark electromagnetic current by

Jμ(x) =
∑
f

Zf q̄f (x) γ μ qf (x), (2.8)

where Zf is the quark’s electric charge in units of the electron charge e, qf (x) is the quark
field operator, and the sum in Eq. (2.8) runs over all quark flavors. (All operators in the
book are in the Heisenberg representation.)

To calculate the total DIS cross section we need to square the amplitude (2.7), integrate or
sum over the final-state quantum numbers, average over the initial-state quantum numbers,
divide by the flux factor, and impose energy–momentum conservation (see e.g. Peskin and
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2.1 Kinematics, cross section, and structure functions 25

W μν

Lμν

μ ν

Fig. 2.2. Diagrammatic representation of the DIS cross section calculation as the amplitude
squared. The vertical solid line denotes the final-state cut. The rectangular boxes encompass
the parts of the diagram contributing to the leptonic tensor Lμν and the hadronic tensor
Wμν .

Schroeder (1995)). We get

σ e p =
∫

d3p′

(2π )3 2E 2E′
1

4

∑
σ,λ,λ′

∑
X

|Mσ,λ,λ′(X)|2 (2π )4 δ4(P + q − pX). (2.9)

Here pX denotes the net four-momentum of all the hadrons produced in the scattering
process.

Without giving the details of the calculation, which can be found in standard textbooks
(Halzen and Martin 1984, Peskin and Schroeder 1995, Sterman 1993), we will write down
the following expression for the DIS cross section, which results from substituting Eq. (2.7)
into Eq. (2.9):

dσ

d3p′ = α2
EM

EE′Q4
LμνW

μν. (2.10)

Equation (2.10) is illustrated in Fig. 2.2, which shows the amplitude from Fig. 2.1 squared.
As shown graphically in Fig. 2.2, one can separate the electron and proton contributions to
the DIS cross section into leptonic and hadronic parts. Formally, the leptonic part brings in
a leptonic tensor Lμν , while the hadronic part yields a hadronic tensor Wμν .

From Eqs. (2.7) and (2.9) we can easily see that one defines the leptonic tensor by

Lμν = 1

2

∑
λ=±1

∑
λ′=±1

ūλ′(p′) γμ uλ(p)
[
ūλ′(p′) γν uλ(p)

]∗
. (2.11)

Summing over the initial and final electron polarizations yields

Lμν = 1

2
Tr
[(

p/′ + me

)
γμ (p/ + me) γν

]
= 2
(
pμp′

ν + pνp
′
μ − p · p′gμν + m2

e gμν

)
, (2.12)

where again me is the electron mass.
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26 Deep inelastic scattering

The hadronic tensor Wμν in Eq. (2.10) is given by

Wμν = 1

4πm

1

2

∑
σ=±1

∑
X

〈P, σ | Jμ(0) |X〉 〈X| J ν(0) |P, σ 〉

× (2π )4 δ4(P + q − pX), (2.13)

which can be simplified to

Wμν = 1

4πm

∫
d4x eiq·x 1

2

∑
σ=±1

∑
X

〈P, σ | Jμ(x) |X〉 〈X| J ν(0) |P, σ 〉

= 1

4πm

∫
d4x eiq·x 1

2

∑
σ=±1

〈P, σ | Jμ(x) J ν(0) |P, σ 〉

≡ 1

4πm

∫
d4x eiq·x 〈P | Jμ(x) J ν(0) |P 〉 (2.14)

where the last line defines an abbreviated notation for the spin-averaged proton state and m

is the mass of the proton.
The strong interaction dynamics in DIS (including nonperturbative contributions) is

entirely contained in the hadronic tensor Wμν ; therefore, it is very hard to calculate Wμν

in a “first principles” QCD calculation. However, we can infer more about its structure by
noting that conservation of the electromagnetic current (2.8) requires that

qμWμν = 0, qνW
μν = 0. (2.15)

Imposing the condition (2.15) on Wμν and assuming that the tensor is symmetric one can
show that, without loss of generality, it can be written in the following form (see Exercise
2.1 at the end of the chapter):

Wμν = − W1(xBj ,Q
2)

(
gμν − qμ qν

q2

)

+ W2(xBj ,Q
2)

m2

(
P μ − P · q

q2
qμ

) (
P ν − P · q

q2
qν

)
. (2.16)

Here W1 and W2 are unknown scalar functions of xBj and Q2, called structure functions.
As Wμν describes the interaction of the virtual photon with the proton, there are only two
four-momentum vectors on which it depends: P μ and qμ. As P 2 = m2 one can construct
only two Lorentz invariants from them that describe the scattering process. We will use xBj

and Q2 as the two invariants on which W1 and W2 depend.
Substituting Eq. (2.16) into Eq. (2.10), after some algebra one can show that the cross

section of the reaction e + p → e′ + X in terms of the functions W1 and W2 is (for details
of the derivation see, for example, the book Halzen and Martin (1984), Chapter 8)

dσ ep

dE′ d�
= α2

EM

4 E2 sin4 θ
2

[
W2(xBj ,Q

2) cos2 θ

2
+ 2W1(xBj ,Q

2) sin2 θ

2

]
. (2.17)
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2.2 Parton model and Bjorken scaling 27

In arriving at Eq. (2.17) we have neglected the mass of the electron me, to write

d3p′ = p′2 dp′ d� ≈ E′2 dE′ d�,

where � is the solid scattering angle. We have also used Eq. (2.3) to replace Q2. Equa-
tion (2.17) demonstrates that the structure functions W1 and W2 can be measured experi-
mentally by studying the angular dependence of the DIS cross section.

Note that the structure functions W1 and W2 have the dimension of inverse mass.1 It is
more convenient to define dimensionless structure functions F1 and F2, by

F1(xBj ,Q
2) ≡ mW1(xBj ,Q

2), (2.18a)

F2(xBj ,Q
2) ≡ νW2(xBj ,Q

2) = Q2

2mxBj

W2(xBj ,Q
2). (2.18b)

All the QCD physics in DIS is contained in F1 and F2. We will now attempt to calculate
these structure functions.

2.2 Parton model and Bjorken scaling

To find the structure functions F1 and F2 it is easier to change the frame in which we are
working. Instead of the proton’s rest frame we will now use a frame in which the proton is
ultrarelativistic. Such a frame is usually referred to as the infinite momentum frame (IMF)
or Bjorken frame. The proton is taken to be moving along the z-axis, and its momentum in
this frame is

P μ ≈
(

P + m2

2P
, 0, 0, P

)
(2.19)

in the (P 0, P 1, P 2, P 3) notation. We assume that the proton’s momentum is much larger
than its mass, P � m. The virtual photon in the IMF has q3 = 0, so that

qμ = (q0, q1, q2, 0). (2.20)

The part of the DIS process relevant for the calculation of the structure functions, virtual
photon–proton scattering, is depicted in Fig. 2.3. Note that, unlike Fig. 2.2, we now draw
the proton at the top of the diagram. In fact, in our normal convention a proton at rest (or any
other target) is drawn at the bottom of the diagram, while a proton (or any other projectile)
moving at high energy is shown at the top of the diagram.

2.2.1 Warm-up: DIS on a single free quark

As a warm-up calculation in preparation for the full parton model, let us simply assume that
the proton consists of noninteracting quarks and gluons, which we will refer to as partons.
As we will see below in Sec. 2.3, this is not such a bad approximation as in the IMF the

1 Our single-particle states are normalized such that 〈p|p′〉 = (2π )3 2Ep δ3( �p − �p′), which allows one to see that the
dimension of Wμν in Eq. (2.14) is that of inverse mass.
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28 Deep inelastic scattering

γ∗
q

μ ν

P

k, r
k , r

k, r

Fig. 2.3. Virtual photon–proton scattering in the IMF.

γ∗

k, r

q

k , r

Fig. 2.4. Interaction of a virtual photon with one point-like particle (a parton), as the basic
ingredient of the parton model. As usual, the vertical solid line denotes the final-state cut.

typical time scale of the quark and gluon interactions inside the proton is much longer than
the time scale of DIS. Hence for the duration of the virtual photon–proton scattering we
can assume that the quarks and gluons do not interact with each other. Thus the photon
simply interacts with a quark in the proton. To better understand photon–quark scattering
let us assume that we simply have one free quark instead of the proton. The diagram giving
the cross section of the DIS process is shown in Fig. 2.4.

The hadronic tensor Wμν for the interaction of the virtual photon with the point-like
particle (a single quark) has a structure similar to Lμν in Eq. (2.11), namely

W quark
μν = Z2

f

2

∑
r=±1

∑
r ′=±1

ūr ′(k′) γμ ur (k)
[
ūr ′(k′) γν ur (k)

]∗ 1

2mq

δ
(
k′2 − m2

q

)

= Z2
f

2
Tr
[(

k/′ + mq

)
γμ

(
k/ + mq

)
γν

] 1

2mq

δ
(
k′2 − m2

q

)
, (2.21)

where k′ = k + q while r and r ′ are the quark helicities (see Fig. 2.4) and mq is the quark
mass. Equation (2.21) can be obtained from Eq. (2.13) by replacing X in it by a single
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2.2 Parton model and Bjorken scaling 29

particle (a quark), so that

∑
X=one particle

=
∫

d3k′

2k′0 (2π )3

∑
r ′=±1

along with pX → k′ and P → k. It is then easy to show that

1

4πmq

∫
d3k′

2k′0 (2π )3
(2π )4 δ4(k + q − k′) = 1

2mq

δ
(
(k + q)2 − m2

q

)
, (2.22)

justifying the delta function factor in Eq. (2.21).
We can rewrite δ((k + q)2 − m2

q) as follows:

δ
(
(k + q)2 − m2

q

) = δ
(
2k · q − Q2

) = 1

2 k · q
δ

(
1 − Q2

2 k · q

)
, (2.23)

where we have used the fact that the incoming quark is on mass shell.
Calculating the trace in Eq. (2.21), comparing the result with Eq. (2.16), and using

Eqs. (2.18a) and (2.18b) with P replaced by k we obtain for DIS on a point-like particle
(a quark)

F
quark

1

(
xBj ,Q

2) = mqW
quark

1

(
xBj ,Q

2) = Z2
f

2
δ
(
1 − xBj

)
(2.24)

F
quark

2

(
xBj ,Q

2) = Q2

2mqxBj

W
quark

2

(
xBj ,Q

2) = Z2
f δ
(
1 − xBj

)
. (2.25)

We have used the fact that, for DIS on a single quark, xBj = Q2/(2k · q). We see that for
DIS on a point-like particle the structure functions F1 and F2 turn out to depend only on
one variable, xBj . This behavior is known as Bjorken scaling (Bjorken 1969).

2.2.2 Full calculation: DIS on a proton

The idea that the actual interaction in DIS occurs with the point-like constituents of a
hadron (the partons) can be illustrated by studying the full DIS process. Let us consider
DIS on the whole proton, as shown in Fig. 2.3. We want to calculate the diagram in Fig. 2.3
using the rules of light cone perturbation theory (LCPT) outlined in Sec. 1.3 (see also
Sec. 1.4). We first rewrite all four-momenta in the light cone (+,−,⊥) notation. In the
IMF/Bjorken frame the proton has a very large momentum. The proton’s momentum in
Eq. (2.19) becomes, in light cone notation,

P μ ≈ (P +, 0, 0⊥) (2.26)

with very large P + ≈ 2P . Quarks and gluons in such an ultrarelativistic proton also have
very large light cone plus momenta. The quark in Fig. 2.3 has four-momentum kμ =
(k+, (�k2

⊥ + m2
q)/k+, �k⊥); we assume that it has a large k+ component. We define the

Feynman-x variable as the fraction of the light cone momentum of the proton carried by
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30 Deep inelastic scattering

ki⊥, xi

k⊥, x, r, f

Fig. 2.5. Light cone wave function of the proton.

this quark2

x ≡ k+

P + , (2.27)

writing kμ = (xP +, (�k2
⊥ + m2

q)/(xP +), �k⊥).
In LCPT every particle is on mass shell. However, we want to calculate the virtual

photon–proton scattering cross section for the process shown in Fig. 2.3. By the definition
of the problem the incoming photon is virtual, q2 = −Q2. Hence in LCPT we can treat
this virtual photon as having an imaginary mass iQ. The virtual photon momentum (2.20)
becomes, in light cone notation,

qμ =
(

q+,
�q 2
⊥ − Q2

q+ , �q⊥

)
(2.28)

with (q+)2 = �q 2
⊥ − Q2 in the IMF.

In the calculations below we will assume that Q2 is very large. First, for QCD per-
turbation theory to be applicable Q2 has to be much larger than the confinement scale
�QCD: Q2 � �2

QCD . Second, for the parton model (which we are about to present) to
be valid, Q has to be much larger than the transverse momentum of any other particle in
the problem. This applies to the quark line carrying momentum k in Fig. 2.3, for which we
have Q2 � �k2

⊥,m2
q . If, for a particular wave function configuration the upper boxed part

of Fig. 2.3 contains n partons with transverse momenta �ki ⊥ for i = 1, . . . , n, then we will
assume that Q2 � �k2

i ⊥ for any i. Note that �q 2
⊥ = Q2 + (q+)2 > Q2 is also very large.

Now let us assume that these n partons carry light cone momentum components k+
i or,

equivalently, have Feynman-x values given by xi for i = 1, . . . , n. We can then define the
light cone wave function of the (n + 1)-parton Fock state of the proton and denote it by
�

f
n ({xi, ki⊥}; x, k⊥; r). The proton has n “spectator” partons (both quarks and gluons) and

one quark carrying momentum k in Fig. 2.3 that interacts with the photon. This quark has
helicity r and flavor f . The light cone wave function �

f
n ({xi, ki⊥}; x, k⊥; r) is illustrated

in Fig. 2.5. In our discussion and notation we will suppress the polarization indices of the

2 The Feynman-x variable was originally defined as x = 2k3/
√

s in the center-of-mass frame with kμ the momentum
of the produced outgoing particle (Feynman 1969). Our definition here is different, but is also widely used in the
community: it maps back onto the original definition at large x.
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2.2 Parton model and Bjorken scaling 31

proton and the polarization, color, and flavor indices of the spectator partons: averaging
over the proton polarizations and summation over the polarization, color, and flavor of the
partons will always be implicitly assumed to be made after we have multiplied the wave
function �

f
n ({xi, ki⊥}; x, k⊥; r) by its complex conjugate. Note also that k⊥ = |�k⊥| (the

same notation applies to the other transverse momenta).
Let us now calculate the proton’s Wμν using Eq. (2.13). Note that after the interaction

the n spectator partons, along with the quark that interacts with the photon, together
form what is denoted X in Eq. (2.13). Therefore, for n partons we have (see also
Eq. (1.67))

∑
X=n partons

=
∫

dk′+

k′+
d2k′

⊥
2(2π )3

1

Sn

∑
r ′=±1

n∏
i=1

dk+
i

k+
i

d2ki⊥
2(2π )3

=
∫

dk′+

k′+
d2k′

⊥
2(2π )3

1

Sn

∑
r ′=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

, (2.29)

where for physical particles all integrals over the k+
i and k′+ run from 0 to P +, which

translates into integrals over the xi running from 0 to 1. Here k′+ = k+ + q+, �k′
⊥ = �k⊥ + �q⊥,

and r ′ is the helicity of the k′ quark line (see Fig. 2.3). The symmetry factor Sn is defined
after Eq. (1.67).

Following the definition of the hadronic tensor in Eq. (2.13) and with the help of the
diagram in Fig. 2.3 we can write, using the LCPT rules presented in Secs. 1.3 and 1.4,

Wμν = 1

4πm

∑
n, f

∫
dk′+ d2k′

⊥
2k′+ (2π )3

1

Sn

∑
r,r ′,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× P +

k+ �f
n ({xi, ki⊥}; x, k⊥; r)

[
P +

k+ �f
n

({xi, ki⊥}; x, k⊥; r ′′)]∗ Z2
f

× ūr ′ (k′) γμ ur (k)
[
ūr ′(k′) γν ur ′′ (k)

]∗
(2π )4 δ4

(
P + q − k′ −

n∑
j=1

kj

)
. (2.30)

The labeling of the quark helicities r, r ′, and r ′′ is defined in Fig. 2.3. Note that, unlike in
the simple case of DIS on a single quark considered above, the helicity of the quark line k

in Fig. 2.3 is different on the left and on the right of the final-state cut. The factors P +/k+

multiplying the wave functions in Eq. (2.30) appear for two reasons. A factor 1/k+, which
has to be included by the rules of LCPT from Sec. 1.3, is due to the internal quark line
carrying momentum k and is not included in our definition of the light cone wave function
outlined in Sec. 1.4. The same definition from Sec. 1.4 dictates that each light cone wave
function contains a factor 1/P + for each incoming line but, as the general LCPT rules in
Sec. 1.3 prescribe no such factor for the full diagram for the scattering process, we need to
remove this factor by multiplying the wave functions by P +.

The delta function in Eq. (2.30) imposes the conservation of the transverse and “+”
components of momenta. However, of particular importance is the conservation of the light
cone energy that is also imposed by this delta function. Using Eq. (2.26) and rewriting the
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32 Deep inelastic scattering

light cone energies of all partons in terms of the transverse and “+” components of their
momenta we obtain

1

k′+ δ

(
P − + q− − k′− −

n∑
j=1

k−
j

)

= 1

k+ + q+ δ

(
q− − (�k⊥ + �q⊥)2

k+ + q+ −
n∑

j=1

k2
j ⊥
k+
j

)
. (2.31)

For simplicity we will now assume that all the partons are massless. This assumption also
applies to the quark that interacts with the photon, for which we now put mq = 0.

Since Q2, �q 2
⊥ � �k2

⊥, k2
i ⊥ for any i we approximate (�k⊥ + �q⊥)2 as �q 2

⊥ and also neglect
all k2

j ⊥/k+
j in the argument of the delta function in Eq. (2.31). This leaves us with

1

k+ + q+ δ

(
q− − (�k⊥ + �q⊥)2

k+ + q+ −
n∑

j=1

k2
j ⊥
k+
j

)
≈ δ
(
(k+ + q+) q− − �q 2

⊥
)

= δ
(
k+ q− − Q2

) = δ
(
x P +q− − Q2

) ≈ δ
(
x 2P · q − Q2

)
, (2.32)

where the last approximation was made using Eq. (2.26). Using the definition of xBj the
last delta function can be rewritten as

δ
(
x 2P · q − Q2) = 1

2P · q
δ(x − xBj ) = xBj

Q2
δ(x − xBj ). (2.33)

We see that Feynman x is identical to Bjorken x. The physical meaning of xBj becomes
clear: it is the fraction of the light cone momentum of the proton carried by the struck
quark!

Since the two quantities are equal, below we will use x and xBj interchangeably, using
the notation with a subscript (xBj ) only in cases when we need to avoid the potential
confusion of x with other quantities.

Using Eq. (2.33) in Eq. (2.30) and summing over the helicities r ′ yields

Wμν = 1

4m

∑
n, f

∫
dk+ d2k⊥

1

Sn

∑
r,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×�f
n

(
{xi, ki⊥}; k+

P + , k⊥; r

) [
�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r ′′
)]∗

Z2
f

× ūr ′′ (k) γν (k/ + q/) γμ ur (k) δ

(
P + − k+ −

n∑
l=1

k+
l

)
δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)

×
(

P +

k+

)2
xBj

Q2
δ

(
xBj − k+

P +

)
, (2.34)

where we have switched from integration variables k′+ and �k′
⊥ to k+ and �k⊥.

An important assumption of the parton model is that the integrals in Eq. (2.34) are
convergent even if we impose no integration limit on the transverse momentum integrals.
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2.2 Parton model and Bjorken scaling 33

As will be shown below, this assumption is not true in QCD, where we have to cut off the k⊥-
integral at Q2 in the ultraviolet (UV), which leads to corrections to the naive parton model
presented in this section; the k⊥-integral converges in the UV for a theory in which partons
are scalars. For now we will not address this issue and simply assume that, owing to some
(perturbative or nonperturbative) physics beyond our present formalism, the k⊥-integral is
convergent in the UV.

We can then see that all the integrals in Eq. (2.34) “know” only about one momentum
external to the integration: that momentum is P . Hence writing k/ + q/ from Eq. (2.34) as
(k + q)αγ α we can argue, on the basis of Lorentz transformation properties, that after all
integrations in Eq. (2.34) have been carried out the factor γ α will have been replaced by P α .
From Eq. (2.26) we then see that only the α = + term will contribute to the final answer,
as P + is larger by far than any other component of the momentum P α . We thus can replace
γ α with γ + from the start, substituting (1/2)(k + q)−γ + ≈ (Q2/2k+) γ + in to Eq. (2.34)
in place of k/ + q/. (We have used the fact that �q2

⊥ ≈ Q2 is the largest transverse momentum,
while k+ = xP + � q+.) We obtain

Wμν = 1

4m

∑
n, f

∫
dk+ d2k⊥

1

Sn

∑
r,r ′′

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×�f
n

(
{xi, ki⊥}; k+

P + , k⊥; r

) [
�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r ′′
)]∗

Z2
f

× ūr ′′ (k) γνγ
+γμ ur (k) δ

(
P + − k+ −

n∑
l=1

k+
l

)
δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)

× 1

2xBjk+ δ

(
xBj − k+

P +

)
, (2.35)

where we have also made use of the last delta function in Eq. (2.34) to replace (P +/k+)2

by 1/x2
Bj .

With the help of Table A.1 in appendix section A.1 and employing Eq. (2.35), it is easy
to see that

Wμ+ = W+μ ∝ ūr ′′ (k) γ μγ +γ + ur (k) = 0,

W−− ∝ ūr ′′ (k) γ −γ +γ − ur (k) = ūr ′′ (k) γ − ur (k) = 2δr r ′′k2
⊥

k+ . (2.36)

To find the transverse components of Wμν we note that, from Eq. (2.14), this tensor is
symmetric. Anticipating that the final result of the integrations in Eq. (2.35) yields a
symmetric tensor, we can therefore symmetrize the transverse components to get

Wi j ∝ ūr ′′ (k) γ jγ +γ i ur (k) = ūr ′′ (k) 1
2

(
γ jγ +γ i + γ iγ +γ j

)
ur (k)

= − 1
2 ūr ′′ (k) γ + {γ j , γ i

}
ur (k) = −gi j ūr ′′ (k) γ + ur (k) = −gi j δr r ′′ 2k+ (2.37)

for i, j = 1, 2. As k+ � k⊥ we see that Wi j is much larger than W−− and is, therefore, the
only nonnegligible component of the hadronic tensor Wμν . (Similarly, one can show that
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34 Deep inelastic scattering

P

k, r k, r

γ+δ xBj− k+

P+

Fig. 2.6. Cut (Mueller) vertex in DIS, denoted by the solid circle.

W− i = Wi − ∝ ki
⊥, which is much smaller than Wi j and integrates out to zero in Eq. (2.35)

owing to the absence of a preferred transverse direction in the problem.)
From Eqs. (2.37) and (2.35) we see that, in the usual Feynman diagram language, the

quark–photon part of the diagram in Fig. 2.3 can be replaced by a single effective vertex
containing γ +δ(xBj − k+/P +), as shown in Fig. 2.6. This effective vertex is known as a
cut vertex or Mueller vertex (Mueller 1970, 1981).

From the general decomposition of Wμν in Eq. (2.16) and using the fact that, by our
frame choice, �P⊥ = 0 we can write

Wi j = −W1(xBj ,Q
2) gij + qiqj

q2

[
W1(xBj ,Q

2) + W2(xBj ,Q
2)

m2

(P · q)2

q2

]
. (2.38)

Comparing Eq. (2.38) with Eq. (2.37), for which we showed that Wi j ∝ gij , we see that
the hadronic tensor is given by the first term in Eq. (2.38):

Wi j = −W1(xBj ,Q
2) gij . (2.39)

Substituting Eq. (2.37) into Eq. (2.35), summing over r ′′, and comparing the result with
Eq. (2.39) we can read off the structure function W1:

W1(xBj ,Q
2) = 1

4mxBj

∑
n, f

Z2
f

∫
dk+ d2k⊥

1

Sn

∑
r

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×
∣∣∣∣�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r

) ∣∣∣∣2 δ

(
P + − k+ −

n∑
l=1

k+
l

)

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
xBj − k+

P +

)
. (2.40)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


2.2 Parton model and Bjorken scaling 35

Let us now define the quark distribution function by

qf (xBj ) = 1

2xBj

∑
n

∫
dξ d2k⊥

1

Sn

∑
r

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

×
∣∣∣∣�f

n

(
{xi, ki⊥}; k+

P + , k⊥; r

) ∣∣∣∣2 δ

(
1 − ξ −

n∑
l=1

xl

)

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ
(
xBj − ξ

)
, (2.41)

where ξ = k+/P +. With the help of Eq. (2.41) we can rewrite Eq. (2.40) as

W1(xBj ) = 1

2m

∑
f

Z2
f qf (xBj ). (2.42)

Note that both the quark distribution function and the structure function W1 are functions
of Bjorken x only! Just as in the case of DIS on a single free quark, this is Bjorken
scaling.

To find the remaining structure function, W2, we note that, as we have just shown in
Eq. (2.37), Wi j ∝ gij . Therefore the term in square brackets in Eq. (2.38) must be zero.
Equating it to zero, and recalling the definitions of xBj and ν from Eqs. (2.2) and (2.5), we
write

ν W2(xBj ) = 2mxBj W1(xBj ). (2.43)

Using the definitions in Eqs. (2.18a) and (2.18b) we can rewrite Eq. (2.43) as

F2(xBj ) = 2xBj F1(xBj ). (2.44)

Equation (2.44) is known as the Callan–Gross relation (Callan and Gross 1969). This
relation is characteristic of spin-1/2 partons, such as quarks, and would be different if the
proton had constituents with a different spin interacting with the virtual photon.

Combining Eqs. (2.18a), (2.42), and the Callan–Gross relation we write

F1(xBj ) = 1

2

∑
f

Z2
f qf (xBj ), (2.45)

F2(xBj ) =
∑
f

Z2
f xBj qf (xBj ). (2.46)

We can see that both structure functions are independent of Q2 and are functions of xBj

only. Therefore, if we assume that some nonperturbative QCD effects lead to a natural UV
cutoff on the transverse momenta of the partons then the DIS cross section can be described
by two functions, F1 and F2, that are dependent on only one variable, xBj . This is a more
general form of Bjorken scaling (Bjorken 1969). We have now shown that Bjorken scaling
results from a full parton model calculation.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


36 Deep inelastic scattering
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Fig. 2.7. Compilation of the world F2 data for DIS on a proton. The proton F2 structure
function is plotted as a function of Q2 for a range of values of x, as indicated next to the
data. It can be seen that, except for very small x, F2 is independent of Q2, a manifestation
of Bjorken scaling. (We thank Kunihiro Nagano for providing us with this figure.) A color
version of this figure is available online at www.cambridge.org/9780521112574.

In Fig. 2.7 we show a summary of the world knowledge of the proton F2 structure
function. This structure function is plotted as a function of Q2 for many different fixed
values of Bjorken-x. One can clearly see that, when x is not too small, F2 is independent of
Q2. This is the experimental manifestation of Bjorken scaling. We see that the theory we
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2.2 Parton model and Bjorken scaling 37

have been presenting here agrees very well with the data, at least at the qualitative level. (The
curves going through the data points result from the solution of the QCD renormalization
group equations in Q2, which are presented below.)

The quark distribution function defined in Eq. (2.41) counts the number of quarks with
longitudinal momentum fraction xBj . While this may not be obvious from Eq. (2.41), we
may check this statement for DIS on a single quark. Comparing Eq. (2.45) for a single
flavor with Eq. (2.24) yields

q
f
one-quark(xBj ) = δ(1 − xBj ) (2.47)

meaning that our target “proton” indeed consists of a single quark which carries all the
“proton” momentum, i.e., the quark is at xBj = 1. Equation (2.47) can also be obtained
from Eq. (2.41) directly by setting n = 0 in the latter equation and also using |�f

0 |2
= 1.

As one can see from Eqs. (2.45) and (2.46), the functions F1 and F2 have a very
simple physical meaning: namely, F1 gives the number of partons in the hadron with
longitudinal momentum fraction xBj (weighted by Z2

f /2) while F2 gives the average
longitudinal momentum fraction of the partons in the hadron (weighted by Z2

f ) times
the number of partons.

Using Eqs. (2.45) and (2.46) we can understand the physics behind the parton model.
The proton arrives with partons in its wave function, which, for the duration of the DIS
interaction, can be thought of as free particles. To be specific, let us concentrate on the
F2 structure function. The interaction of each quark with the virtual photon yields a factor
Z2

f xBj , as seen in Eq. (2.46). The full expression for the proton structure function F2 in
Eq. (2.46) can be interpreted as the product of the number of quarks in the proton (qf (xBj ))
and the amplitude for the interaction of each quark with the photon (Z2

f xBj ). We thus
have a clear physical picture of a proton with noninteracting partons in its wave function
scattering on a virtual photon in such a way that each parton interacts with the photon
independently of the other partons. We can therefore write (for the details see Sterman
(1993))

F2(xBj ) =
∑
f

1∫
0

dξ qf (ξ ) C
f
2

(
xBj

ξ

)
. (2.48)

The distribution function qf gives the number of quarks in the proton’s wave function,
while the coefficient function C

f
2 expresses the interaction between a quark with flavor f

and the virtual photon. At the lowest order, considered here, Cf
2 = Z2

f δ(xBj/ξ − 1). When
used in Eq. (2.48) it leads to Eq. (2.46).

One can easily express the structure functions in terms of the photon–proton cross section
σγ ∗p for transverse and longitudinal polarizations of the virtual photon. In particular one
obtains (see Halzen and Martin (1984) along with the derivation in Sec. 4.1 below)

F2(xBj ,Q
2) = Q2

4π2αEM

σ
γ ∗p
tot , (2.49)
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38 Deep inelastic scattering

where σ
γ ∗p
tot is the total γ ∗p cross section summed over all photon polarizations. With the

help of Eq. (2.49), Eq. (2.48) can be rewritten directly for the cross section as

σ
γ ∗p
tot (xBj ,Q

2) =
∑
f

∫
dξ

ξ
ξ qf (ξ ) σ̂ γ ∗+partonf

(
xBj

ξ
,Q2

)

=
∑
f

∫
dy ′ Nf

(
y ′) σ̂ γ ∗+partonf

(
e−(y−y ′),Q2

)
, (2.50)

where Nf (y = ln 1/xBj ) = xBj qf (xBj ) is the number of partons (quarks) inside the hadron
having flavor f per unit rapidity y = ln(P +/k+) = ln 1/xBj . The factor σ̂ γ ∗+partonf(x,Q2)
is the cross section for parton–virtual photon scattering. In Eq. (2.50) we have y = ln 1/xBj

and y ′ = ln 1/ξ . One can see from Eq. (2.25) that in the “naive” parton model considered
here one has

σ̂ γ ∗+ partonf
(
xBj ,Q

2
) = 4π2 αEM

Q2
Z2

f xBj δ(1 − xBj ) = 4π2αEM

Q2
Z2

f δ(y). (2.51)

Using Eq. (2.51) in Eq. (2.50) reduces the latter to Eq. (2.46).
Equations (2.48) and (2.50) show that, in the framework of the parton approach, finding

cross sections is reduced to two separate problems: finding the light cone wave function
of the hadron, which does not depend on the probe, and calculating the cross section
for scattering of the parton on the probe, γ ∗ in the case of electron DIS. The process is
illustrated in Fig. 2.10. This simple parton model with an additional obvious assumption
that the partons are quarks, anti-quarks, and gluons is able to describe a striking amount
of experimental data. See Feynman (1972), as well as our main textbooks Peskin and
Schroeder (1995) and Halzen and Martin (1984), for more detailed comparisons of the
parton model with the data.

2.3 Space–time structure of DIS processes

Equation (2.48) is very simple and intuitively sound. It would be useful to visualize it in
terms of the space–time dynamics of partons. For this purpose we will rewrite Eq. (2.14)
for the cross section of the virtual photon interaction as the imaginary part of the Compton
scattering amplitude at zero angle. In the space–time representation it looks as follows:

Wμν

(
xBj ,Q

2
) = 1

2πm
Im

{
i

∫
d4x eiq·x 〈P |T [Jμ (x) Jν (0)]|P 〉

}
, (2.52)

where as usual |P 〉 denotes the state of the target (the proton) and T denotes time-ordering.
The right-hand side of Eq. (2.52) is simply the imaginary part of the forward scattering
amplitude for the photon–proton interaction. The coordinate four-vector xμ in the forward
amplitude describes the space–time separation between absorption and re-emission of the
virtual photon by a quark inside the proton.

Let us first work in the rest frame of the proton. Just as in Sec. 2.1 we have P μ = (m, �0).
However, now we are interested in the photon–proton interaction: we can forget about the
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2.3 Space–time structure of DIS processes 39

electron in Sec. 2.1 that gave rise to the photon and choose our coordinate axis in such a way
that the photon’s four-momentum is qμ = (q0, �0⊥, q3). We then have 2P · q = 2 q0 m =
Q2/xBj , so that

q0 = Q2

2mxBj

� Q (2.53)

since Q � m and xBj ≤ 1. By the definition of Q2 we have 0 ≤ Q2 = −q2 = (q3)2 −
(q0)2. Hence q3 ≥ q0 � Q. Therefore q0 ≈ q3 � Q. We can then write

q+ = q0 + q3 ≈ 2q0,

q− = q0 − q3 = q+ q−

q+ ≈ − Q2

2q0
= −mxBj . (2.54)

Writing q · x in the exponent in Eq. (2.52) as 1
2 (q+x− + q−x+), we argue that the typical

x− range is given by 2/q+, while the typical x+ range is given by 2/q−. Therefore

x− ≈ 2

q+ ≈ 2mxBj

Q2
� 1

μ
,

(2.55)

x+ ≈ 2

|q−| ≈ 2

mxBj

≥ 1

μ
,

where μ ∼ �QCD ∼ m is the scale of the nonperturbative (soft) QCD interactions, which
gives the average transverse momenta of the partons in the parton model. From Eq. (2.55) we
see that, for large Q, one has x− = t − z ≈ 0 and x+ = t + z ≈ 2t ≈ 2/(mxBj ). Therefore
the light cone time of observation is given by

x+ ≈ 2

mxBj

. (2.56)

This time is known as the Ioffe time (Ioffe 1969, Gribov, Ioffe, and Pomeranchuk 1966).
It can be interpreted as the typical longitudinal distance of the interaction (the coherence
length). We see that this longitudinal range in DIS increases with decreasing Bjorken x.3

We can also determine the transverse coordinate resolution of the virtual photon in DIS.
Imposing the causality of the interactions in the forward scattering amplitude (2.52), i.e.,
x2 = x+x− − x2

⊥ > 0, and using Eq. (2.55) we get

x2
⊥ < x+x− ∝ 4

Q2
� 1

μ2
. (2.57)

We see that the typical transverse resolution of the virtual photon is of order 1/Q. Therefore
the photon can resolve very short distances, deep inside the proton: this enables it to “pick
out” a quark with which to interact independently of the other “spectator” partons. This

3 The careful reader will notice that for small enough xBj the light cone time, i.e., the coherence length, in Eq. (2.56)
becomes larger than the size of the target proton. Therefore at least one of the electromagnetic currents Jμ in Eq. (2.52)
has to be located outside the proton. How can an interaction with the proton happen outside the proton? We will explain
this phenomenon in more detail later, in Chapter 4, but here we briefly note that at very small xBj the incoming current
can decay into a quark–antiquark pair outside the proton, the qq̄ pair subsequently interacting with the proton.
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Proton

quarks

and

gluons

x  = 1/QΔ

Fig. 2.8. A depiction of a proton during DIS in the transverse plane. The blobs represent
partons (quarks and gluons), while the dashed circle denotes the virtual photon. A color
version of this figure is available online at www.cambridge.org/9780521112574.

conclusion is illustrated in Fig. 2.8, where we show a proton in the transverse plane with the
quarks and gluons in its wave function denoted by blobs with random shapes. The virtual
photon is represented by a dashed circle whose size is of order 1/Q, in agreement with
Eq. (2.57). One can see explicitly now that the DIS experiment works as a microscope:
varying Q2 changes the transverse size of the photon and so changes the “resolution” of the
DIS experiment, allowing the virtual photon to interact with partons of different transverse
extent.

Now, let us consider DIS process in the IMF or Bjorken frame. There the proton
momentum is given by Eq. (2.19) (or, equivalently, Eq. (2.26)), while the virtual photon
momentum is given by Eq. (2.20) (Eq. (2.28)). We see that 2P · q ≈ 2Pq0 = Q2/xBj ,
giving

q0 ≈ Q2

2xBjP
. (2.58)

We conclude that the interaction time in the IMF is

tDIS ≈ 1

q0
≈ 2xBjP

Q2
. (2.59)

This time needs to be compared with the typical time scale with which partons interact
inside the proton. In the rest frame of the proton, the interparton interaction time is nonper-
turbatively long, of order 1/μ. In the IMF or Bjorken frame the time is dilated by the boost
factor P/m, giving

tpartons ≈ 1

μ

P

m
. (2.60)

Comparing Eqs. (2.59) and (2.60) one can see clearly that since xBjμm ≤ μm � Q2 we
have

tDIS � tpartons . (2.61)
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γ∗
q

P

Fig. 2.9. An example of a higher-twist correction.

Therefore we have justified a main assumption in Sec. 2.2, that the typical time scale of
interpartonic interactions is much longer than the typical time scale of DIS. One does not
have to worry about partons interacting with each other during DIS.

The time-scale argument presented here can be supported by explicit diagrammatic
calculations showing that diagrams in which the quark struck by the photon exchanges
gluons with other partons, such as the graph shown in Fig. 2.9, are suppressed by powers
of μ2/Q2 and m2/Q2. Such corrections are known as higher-twist terms. The twist of
an operator is defined as its mass dimension minus its spin (Peskin and Schroeder 1995,
Sterman 1993). In the operator product expansion (OPE) for the hadronic tensor Wμν in
Eq. (2.14) the contribution of higher-twist operators enters with an extra 1/Q2 suppression
compared with the leading large-Q2 term that we found above. In the language of LCPT the
higher-twist operators correspond to a proton light cone wave function in which we tag on
(i.e., detect) more than one particle. The reader particularly interested in twist expansions
is referred to Sterman (1993) or Peskin and Schroeder (1995).

The transverse space dynamics is particularly simple in the IMF/Bjorken frame: from
Eq. (2.58) we see that q0 � Q, so that Q2 = q2

⊥ − (q0)2 ≈ q2
⊥. Hence the transverse

resolution of the virtual photon is

x⊥ ≈ 1

q⊥
≈ 1

Q
, (2.62)

just as in the proton’s rest frame.
Equation (2.55) also has a very clear meaning in another frame, the Breit frame, where

the photon momentum is equal to

qμ = (q0 = 0, �0⊥, q3 = −Q) (2.63)

and the proton’s momentum is given by Eq. (2.26), as it is in the IMF. In this frame
q+ = −q− = −Q; thus x− ∝ 1/Q and x+ ∝ 1/Q, leading to x2

⊥ < 1/Q2 by a causality
argument just as in the proton’s rest frame. All space and time intervals between photon
absorption and re-emission are short, of order 1/Q. The photon interacts with the target
during a very short time interval. The interparton interaction time in the Breit frame is the
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time

tpartons tDIS

σ(γ∗ + parton)

Fig. 2.10. The space–time structure of DIS in the IMF/Bjorken and Breit frames. For this
illustration, it is sufficient that all partons (both quarks and gluons) are denoted by straight
solid lines, for simplicity.

same as in the IMF/Bjorken frame and is given by Eq. (2.60). Then one can easily see that,
with tDIS = 1/Q in the Breit frame and since P Q � μm, we still have tpartons � tDIS in
this frame.

Having these estimates in mind we can view the deep inelastic scattering process in
either the Breit or the IMF/Bjorken frame, as shown in Fig. 2.10. The fast-moving par-
ticle (the proton), long before the interaction, “produces” a system of point-like particles
(partons) which can be described by a light cone wave function. At the moment of inter-
action, the parton with the lowest energy (the “wee” parton) interacts with the virtual
photon. The virtual photon in the Breit frame is a standing wave that interacts only with
partons that have the same wavelength; in other words, it interacts with the parton whose
momentum is equal to Q/2. The last statement follows from momentum conservation for
the wee parton, whose momentum is k before and k′ after its interaction with photon,
namely,

k0 = k′0 , k3 − k′3 = Q, �k⊥ = �k′
⊥. (2.64)

(To obtain Eq. (2.64) note that k′ = k + q and use Eq. (2.63).) From Eq. (2.64), and
assuming that the incoming parton is on mass shell, one can show that k3 = −k′3 = Q/2.
Assuming also that Q � k⊥ and neglecting the quark mass we get k0 ≈ k3 = Q/2, leading
to k+ ≈ Q. The fraction of the proton’s light cone momentum P + carried by the struck
quark is equal to x = k+/P + ≈ Q/P + = Q2/(P +q−) = xBj , just as in Eq. (2.33).

Therefore the DIS process happens in two stages. The first stage is the creation of many
point-like partons and can be described by the light cone wave function of the fast-moving
hadron. The second stage is the interaction of the slowest (wee) parton with the virtual
photon, which occurs at low energies. It should be stressed that in this section we have not
used the fact that the transverse momenta of partons are restricted in the UV, though we did
in the previous section. This fact gives us hope that the whole structure, consisting of the
wave function of the fast-moving hadron and the interaction of the parton with the photon,
will remain correct in a more general approach. However, the wee parton interaction could
be more complicated than in the naive parton model.
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 43

2.4 Violation of Bjorken scaling;
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution equation

2.4.1 Parton distributions

Let us study the QCD corrections to the naive parton model presented above. First we rewrite
the quark distribution function qf (x,Q2) for a quark of flavor f from Eq. (2.41) as follows:

qf (x,Q2) =
∑

n

1

x

∫
d2k⊥

2(2π )3

1

Sn

∑
σ=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× |�f
n ({xi, ki⊥}; x, k⊥; σ ) |2 (2π )3

× δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l=1

xl

)
. (2.65)

The quark carries a fraction x of the longitudinal momentum of the proton; x is identical
to the Bjorken-x variable defined in Eq. (2.2). Unlike in the naive parton model the quark
distribution function now depends on the momentum scale Q2, which enters Eq. (2.65) as
the renormalization scale. Roughly, this implies that the integral over the quark’s transverse
momentum k⊥ is bounded from above by Q, so that k⊥ ≤ Q. The same applies to the
other transverse momentum integrals in (2.65) along with the virtual loop integrals within
the wave function �n. (In the naive parton model, we assumed that the k⊥-integrals were
sufficiently convergent that one could simply replace Q in the upper limit of integration
by infinity without changing the value of the integral; this is, strictly speaking, only true
for super-renormalizable theories and so is not true for QCD.) The goal of this subsection
is to understand this Q-dependence in more detail.

The light cone wave function �
f
n ({xi, ki⊥}; x, k⊥; σ ) describes a Fock state in the proton

containing the quark we are measuring along with n “spectator” partons with transverse
momenta ki⊥ and longitudinal momentum fractions xi . The sum over n runs from some
small number, determined by the nonperturbative physics defining the proton, up to ∞.
(If we were studying the wave function of a single quark under the assumption that it is
completely perturbative, then n would run from 0 to ∞.) Note that the quark helicity, which
was labeled r in Sec. 2.2 to avoid confusion with the proton polarization, will be labeled
from now on by σ , since here the proton helicity does not enter our calculations explicitly.

The quark distribution function (2.65) is illustrated by the diagram in Fig. 2.11. The
definition (2.65) is the LCPT analogue of the standard operator definition in the light cone
gauge A+ = 0 (see for instance Sterman (1993)).

In analogy with (2.65) we can define the gluon distribution function:

G(x,Q2) =
∑

n

1

x

∫
d2k⊥

2(2π )3

1

Sn

∑
λ=±1

n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

× |�n ({xi, ki⊥}; x, k⊥; λ) |2

× (2π )3δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l=1

xl

)
. (2.66)
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xBj, k⊥

ff

Fig. 2.11. A diagrammatic representation of the quark distribution function. The vertical
solid line separates the light cone wave function from its complex conjugate.

xBj, k⊥

Fig. 2.12. A diagrammatic representation of the gluon distribution function.

Here �n ({xi, ki⊥}; x, k⊥; λ) is the proton light cone wave function containing n “specta-
tors” along with a measured gluon having longitudinal momentum fraction x, transverse
momentum k⊥, and polarization λ. Again Q2 enters (2.66) as the renormalization scale. The
definition of the gluon distribution function given by Eq. (2.66) is the LCPT analogue of
the operator definition in terms of gluon operators in the light cone gauge A+ = 0 (Sterman
1993). It is illustrated in Fig. 2.12.

The k⊥-integral in the definition of qf (x,Q2) given in Eq. (2.65) is effectively cut off
by Q, making the quark distribution function Q-dependent in general. The essential idea
of Bjorken scaling is that for very large Q we can simply set the upper cutoff of the k⊥-
integral to infinity. In the naive parton model it is assumed that the k⊥-integral is convergent
in the UV, owing to some (presumed nonperturbative) universal cutoff. The resulting quark
distribution becomes a function of x only, qf (x,Q2 → ∞) ≈ qf (x). This leads to the
Bjorken scaling seen in Eqs. (2.45) and (2.46).

In reality the k⊥-integral in Eq. (2.65) (and that in Eq. (2.66)) is not convergent in the
UV and so needs this Q2 cutoff: hence a Q2-dependence remains in the quark and gluon
distributions even at very high Q2. To determine the Q2-dependence of the distribution
functions one needs to understand exactly how the proton’s light cone wave function �n
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xBj, k⊥

BA C

Fig. 2.13. Lowest-order QCD corrections to the quark distribution function. The virtual
diagrams should be understood as including instantaneous terms.

depends on k⊥. To do so we have to assume that at least part of the distribution function is
perturbative. In terms of diagrams this perturbative dynamics takes place in the part of the
diagram adjacent to the parton that we are describing by the distribution function. This will
be justified later by the large transverse momentum of the parton. We thus need to calculate
the QCD corrections to the parton distribution functions of the naive parton model pictured
in Figs. 2.11 and 2.12.

2.4.2 Evolution for quark distribution

Let us start with the quark distribution function qf (x,Q2) shown in Fig. 2.11. The lowest-
order QCD corrections to |�f

n ({xi, ki⊥}; x, k⊥; σ ) |2 are shown in Fig. 2.13. They consist of
the “real” emission diagram A and the “virtual” diagrams B and C. (The virtual corrections
in LCPT should include graphs with instantaneous terms; these are not shown explicitly.)
Diagrams in which the gluon line attaches to other partons in the wave function denoted by
the oval (i.e., diagrams with the gluon going into the oval) are suppressed. To see why this is
so, one has to identify the resummation parameter of the calculation to be performed shortly.
Indeed each diagram in Fig. 2.13 has an extra factor equal to the coupling αs as compared
with the naive parton model quark distribution in Fig. 2.11. However, we will not calculate
the rest of the diagram exactly: instead we will extract the leading contribution at large Q2.
These leading contributions, after integration over k⊥, will turn out to be proportional to
ln(Q2/�2

QCD). Hence the diagrams in Fig. 2.13 will each give us an expression proportional
to αs ln(Q2/�2

QCD). This will be the resummation parameter of our approximation: for each
power of αs we will pick up one power of ln(Q2/�2

QCD). Owing to asymptotic freedom
at large Q2 we have αs(Q2) � 1 while ln(Q2/�2

QCD) � 1. Our resummation parameter is
thus the product of a small quantity (the coupling) and a large quantity (the logarithm), and
therefore

αs ln
Q2

�2
QCD

∼ 1. (2.67)

The resummation of the parameter in Eq. (2.67) is called the leading logarithmic approxi-
mation (LLA).
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k, σ

k , σ
k − k, λ

a

1 2

Fig. 2.14. Lowest-order correction to the proton light cone wave function contributing to
the quark distribution. The vertical dotted lines denote intermediate states.

As one can show explicitly using the techniques we will develop below, the diagrams
with an extra gluon connecting to the oval are, in fact, outside the leading logarithmic
approximation. That is, they would generate powers of the coupling αs not enhanced
by powers of the logarithm of Q2. This is why such diagrams are neglected in our
analysis.

We will begin by calculating the diagram in Fig. 2.13A. Instead of calculating the
diagram for the wave function squared it is better to start by calculating corrections to
the wave function itself. The correction to the light cone wave function corresponding to
Fig. 2.13A is shown in Fig. 2.14. There the intermediate states are denoted by the dotted
vertical lines and are labeled 1 and 2.

Denoting by �
f
n−1({xi, ki⊥}; x ′, k′

⊥; σ ′) the wave function for a proton with n − 1
spectator partons (i.e., without the gluon emitted in Fig. 2.14), we note that the energy
denominator corresponding to intermediate state 1 (denoted by the left-hand vertical dotted
line) is already included in �n−1. Using the rules of LCPT outlined in Sec. 1.3 and their
modification for the calculation of wave functions in Sec. 1.4, we can write down the
contribution to the proton’s wave function from the diagram in Fig. 2.14 as

�f
n

({k+
i , ki⊥}; x, k⊥; σ

) = gta θ (k+) θ (k′+ − k+)

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

× ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′)
k′+ �

f
n−1

({k+
i , ki⊥}; x ′, k′

⊥; σ ′) . (2.68)

Here g is the QCD coupling, ta is the color matrix (the gluon carries color a), and x ′ =
k′+/P +. The quark line carrying momentum k′ is internal and therefore contributes a factor
1/k′+ which is not included in the definition of the light cone wave function �

f
n−1 and so

has to be included explicitly in Eq. (2.68). The intermediate state 2 from Fig. 2.14 gives the
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 47

light cone energy denominator in Eq. (2.68):

1

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

≡ 1

(�k′
⊥ − �k⊥)2

k′+ − k+ +
�k2
⊥

k+ +
n−1∑
j=1

�k2
j

k+
j

− P −
. (2.69)

Here P − is the light cone energy of the incoming proton state. It is negligibly small, as it is
inversely proportional to the large light cone plus momentum of the proton, P − ∼ 1/P +,
not enhanced by a large transverse momentum. (Indeed, for a “proton” consisting of a
single valence quark of mass mq one has P − = ( �P 2

⊥ + m2
q)/P + with �P⊥ the transverse

momentum of the “proton”.)
We are working in the A+ = 0 light cone gauge. The gluon polarization vector is

ε
μ
λ (k′ − k) =

(
0,

2�ε λ
⊥ · k′+ − k+

�k′
⊥ − �k⊥

, �ε λ
⊥

)

in the (+,−,⊥) notation with �ε λ
⊥ = −(1/

√
2)(λ, i). One can thus write

ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′) = ūσ (k) γ + uσ ′(k′)

�ε λ ∗
⊥ · (�k′

⊥ − �k⊥)

k′+ − k+

− ūσ (k) �γ⊥ uσ ′(k′) · �ε λ ∗
⊥ . (2.70)

Using the tables for Dirac matrix elements from appendix section A.1 one obtains after
some algebra

ūσ (k) γ · ε∗
λ(k′ − k) uσ ′(k′) = − δσσ ′√

z (1 − z)
�ε λ ∗
⊥ · (�k⊥ − z �k′

⊥)

× [1 + z + σλ(1 − z)] , (2.71)

where z = k+/k′+ and we have assumed that the quarks are massless for simplicity. In
arriving at Eq. (2.71) we have used �ε λ ∗

⊥ × �k⊥ = iλ �ε λ ∗
⊥ · �k⊥, which is valid in two dimen-

sions.
We will be working in the approximation where all transverse momenta are ordered:

Q2 � k2
⊥ � k

′ 2
⊥ � k2

n−1,⊥ � · · · � k2
1,⊥ ∼ �2

QCD. (2.72)

Such a regime corresponds to the LLA discussed above. One also assumes that all relevant
large transverse momentum scales are much larger than the quark masses, which justifies
the massless quark approximation we have just used. In the regime defined by Eq. (2.72)
the light cone energy denominator becomes (see Eq. (2.69))

1

(k′ − k)− + k− +
n−1∑
j=1

k−
j − P −

≈ k′+z(1 − z)
�k2
⊥

. (2.73)
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48 Deep inelastic scattering

Substituting Eqs. (2.71) and (2.73) into Eq. (2.68) and assuming that k2
⊥ � k

′ 2
⊥ yields

�f
n ({xi, ki⊥}; x, k⊥; σ ) = −gta θ (z) θ (1 − z) δσσ ′

√
z

�ε λ ∗
⊥ · �k⊥

k2
⊥

× [1 + z + σλ(1 − z)] �
f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) . (2.74)

Multiplying the wave function (2.74) by its complex conjugate and summing over the quark
and gluon polarizations and colors we get

∑
σ,σ ′,λ,a

|�f
n ({xi, ki⊥}; x, k⊥; σ )|2 = 8παs CF θ (z) θ (1 − z) z(1 + z2)

1

k2
⊥

×
∑

σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2; (2.75)

in arriving at Eq. (2.75) we have used the fact that �ε λ
⊥ = −(1/

√
2)(λ, i) and

∑N2
c −1

a=1 ta ta =
CF , where

CF = N2
c − 1

2Nc

(2.76)

is the Casimir operator in the fundamental representation of SU(Nc).
Substituting Eq. (2.75) into the definition of the quark distribution function (2.65) yields

the contribution of the diagram in Fig. 2.13A:

q
f
A (x,Q2) =

∑
n

1

x

∫ n−1∏
i=1

dxi

xi

d2ki⊥
2(2π )3

d2k⊥
2(2π )3

d(k′+ − k+)

k′+ − k+
d2(�k′

⊥ − �k⊥)

2(2π )3

× 8παsCF θ (z) θ (1 − z)
z(1 + z2)

k2
⊥

∑
σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2

× (2π )3 δ2

(
�k′
⊥ +

n−1∑
j=1

�kj ⊥

)
δ

(
1 − x ′ −

n−1∑
l=1

xl

)
. (2.77)

Note that the symmetry factor Sn from Eq. (2.65) is eliminated by the momentum ordering
(2.72), which makes the particles in the wave function distinct. Since we are keeping k+

fixed, the integral over k′+ − k+ can be rewritten as follows:

P +−k+∫
0

d(k′+ − k+)

k′+ − k+ =
P +∫

k+

dk′+

k′+ − k+ =
1∫

x

dz

z(1 − z)
. (2.78)
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 49

Then we can rewrite Eq. (2.77):

q
f
A (x,Q2) = αs CF

2π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz
1 + z2

1 − z

×
∑

n

∫ n−1∏
i=1

dxi

xi

d2ki⊥
2(2π )3

d2k′
⊥

2(2π )3

∑
σ ′=±1

|�f
n−1

({xi, ki⊥}; x ′, k′
⊥; σ ′) |2

× (2π )3 δ2

(
�k′
⊥ +

n−1∑
j=1

�kj ⊥

)
δ

(
1 − x ′ −

n−1∑
l=1

xl

)
, (2.79)

where the integral over k′
⊥ is cut off by k⊥ from above owing to our momentum ordering

Q2 � k2
⊥ � k

′ 2
⊥ � �2

QCD .
Comparing with Eq. (2.65) we recognize the last two lines of Eq. (2.79) as x ′qf (x ′, k2

⊥).
Equation (2.79) thus gives

q
f
A (x,Q2) = αs CF

2π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz
1 + z2

1 − z
x ′qf (x ′, k2

⊥). (2.80)

Remembering that z = k+/k′+ = x/x ′, we write

q
f
A (x,Q2) = αs CF

2π

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz

z

1 + z2

1 − z
qf

(
x

z
, k2

⊥

)
. (2.81)

This is the contribution of diagram A in Fig. 2.13 to the quark distribution function. As
promised above, it contains the coupling αs as a factor and a logarithmic integral dk2

⊥/k2
⊥

cut off by Q2 in the UV and by some nonperturbative scale ∼ �2
QCD in the infrared (IR).

We have thus shown that the leading large-Q2 contribution of diagram A in Fig. 2.13 to the
quark distribution function is proportional to αs ln Q2/�2

QCD .
Now imagine that we slowly increase Q2. As Q2 gets larger, the phase space for

the emitted gluons increases, generating larger and larger ln(Q2/�2
QCD) values and thus

increasing the probability of gluon emission. The modification δq
f
A (x,Q2) of the quark

distribution with increasing Q2 due to the gluon emission in Fig. 2.13A can be obtained by
differentiating Eq. (2.81) with respect to Q2:

Q2 ∂q
f
A (x,Q2)

∂Q2
= αs CF

2π

1∫
x

dz

z

1 + z2

1 − z
qf

(
x

z
,Q2

)
. (2.82)

An example of a diagram that does not give a leading logarithmic contribution is shown
in Fig. 2.15, where the oval of Fig. 2.13 is reduced to a gluon line for simplicity. The
dotted vertical lines in Fig. 2.15 represent the intermediate states contributing light cone
energy denominators. The diagram is of order α2

s . Let us show that it does not give an
LLA contribution, by using the results obtained above. We will work in the transverse
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k

1 2 43

k
p

p− k

Fig. 2.15. An example of a diagram outside the leading-logarithmic approximation.

momentum ordering approximation of Eq. (2.72): k2
⊥ � k′2

⊥ in terms of the momentum
labeling in Fig. 2.15. Keeping track of the transverse momenta we see that the energy
denominators of the intermediate states 1 through 4 in Fig. 2.15 each give 1/k2

⊥, since they
are dominated by the large light cone energy of the k-quark line (cf. Eq. (2.73)). In the
same large-k⊥ approximation each quark–gluon splitting gives a factor �k⊥ in the amplitude
(cf. Eq. (2.71)) for the net contribution of k2

⊥. Assuming that gluon–gluon splitting gives
a similar factor k2

⊥ (this will be demonstrated explicitly in Sec. 2.4.4 below), we conclude
that the contribution of the graph in Fig. 2.15 is proportional to (1/k2

⊥)4(k2
⊥)2 = 1/k4

⊥.
Performing the integrals over k2

⊥ and k
′ 2
⊥ with the k2

⊥ � k′2
⊥ � �2

QCD ordering, we find that
the diagram in Fig. 2.15 is proportional to

α2
s

Q2∫
�2

QCD

dk2
⊥

k2
⊥∫

�2
QCD

dk′2
⊥

k4
⊥

≈ α2
s

Q2∫
�2

QCD

dk2
⊥

k2
⊥

= α2
s ln

Q2

�2
QCD

. (2.83)

We observe that this diagram is certainly beyond the LLA, as it brings in two powers of αs

with only one power of ln(Q2/�2
QCD), whereas an LLA diagram at the same order in αs

would bring in two powers of ln(Q2/�2
QCD). Therefore, it (and other graphs not included

in Fig. 2.13) is subleading and can be neglected in the LLA.
The contributions of diagrams B and C in Fig. 2.13 to the change in the quark distribution

can be calculated directly, similarly to that of diagram A. However, instead of embarking
upon another possibly tedious calculation we will derive these contributions using a unitarity
argument.

Unitarity argument Let us start with a proton state |�〉, normalized for simplicity to 1,
〈�|�〉 = 1. Single-gluon corrections of the diagrams in Fig. 2.13 modify the state |�〉 as
follows:

|�〉 → |� ′〉 = |�〉 + R|�〉 + V |�〉. (2.84)

Here the new state |� ′〉 consists of a sum of the following terms: (i) the “old” state |�〉
corresponding to no gluon corrections at all; (ii) the “real” emission shown in Fig. 2.13A,
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k , σ

k, σ

k − k , λ

a

k, σ

Fig. 2.16. Virtual correction to the quark–quark splitting function.

which turns |�〉 into R|�〉 where R denotes the factor relating �n and �n−1 in Eq. (2.74);
(iii) the “virtual” emission shown in Figs. 2.13B, C, where the gluon is reabsorbed back into
the wave function from which it was emitted, thus leaving the number of partons unchanged
and generating a contribution V |�〉.

Requiring unitarity, i.e., probability conservation 〈� ′|� ′〉 = 〈�|�〉 = 1, in Eq. (2.84)
leads to

R†R + V + V ∗ = 0 (2.85)

to order g2. Therefore, the sum of the contributions of diagrams B and C in Fig. 2.13 is

V + V ∗ = −R†R. (2.86)

We see that instead of calculating diagrams B and C in Fig. 2.13 we can simply multiply
the contribution of diagram A by its conjugate, integrate over the phase space, and sum
over the quantum numbers of the produced and measured partons, multiplying the result
by −1.

Using the unitarity prescription of Eq. (2.86) along with Eq. (2.77) for the contribution
of diagram A, we write the contribution of diagrams B and C from Fig. 2.13 (along with
instantaneous terms) as

q
f
B+C(x,Q2) = −

∑
n

∫ n∏
i=1

dxi

xi

d2ki⊥
2(2π )3

1

x ′
d2k′

⊥
2(2π )3

d(k+ − k′+)

k+ − k′+
d2k⊥

2(2π )3

× 8παs CF θ (z) θ (1 − z)
z(1 + z2)

k′2
⊥

∑
σ=±1

|�f
n ({xi, ki⊥}; x, k⊥; σ ) |2

× (2π )3 δ2

(
�k⊥ +

n∑
j=1

�kj ⊥

)
δ

(
1 − x −

n∑
l

xl

)
. (2.87)

Equation (2.87) is illustrated in Fig. 2.16. In arriving at Eq. (2.87) we have swapped k and k′

as compared with the real emission diagram shown in Fig. 2.14. After emitting a gluon, the
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52 Deep inelastic scattering

quark now carries momentum k′; the fraction of the light cone momentum of the incoming
quark k+ carried by the quark in the loop is z = k′+/k+. As above,

P +∫
0

d(k+ − k′+)

k+ − k′+
1

x ′ =
k+∫

0

dk′+P +

k′+(k+ − k′+)
= 1

x

1∫
0

dz

z(1 − z)
. (2.88)

Note that the lower limit of the z-integration in Eq. (2.88) is different from that in Eq. (2.78):
this is due to the virtual nature of the diagram in Fig. 2.16. It is also important to remember
that now the large transverse momentum is k′

⊥, so that k′2
⊥ � k2

⊥, which accounts for the
factor k

′ 2
⊥ in the denominator in Eq. (2.87).

With the help of Eq. (2.88) and the quark distribution definition (2.65) we can rewrite
Eq. (2.87) as

q
f
B+C(x,Q2) = −αsCF

2π

Q2∫
dk′2

⊥
k′2
⊥

1∫
0

dz
1 + z2

1 − z
qf (x, k′2

⊥), (2.89)

where, owing to the constraint k′2
⊥ � k2

⊥, we may cut off the k⊥-integral in Eq. (2.87) by
k′2
⊥ in the UV. The result is that k′2

⊥ is the scale of the quark distribution function on the
right-hand side of Eq. (2.89). Note that the k′

⊥-integral is a loop integral and is, in general,
divergent: it has to be regularized, and so a graph with a counterterm should be added to the
diagram in Fig. 2.16. Since Q is the renormalization scale, to leading-logarithmic accuracy
we simply cut off the k′2

⊥-integral in Eq. (2.89) by Q2 in the UV.
Equation (2.89) is the contribution of the virtual diagrams B and C in Fig. 2.13. Just as

for the real diagram A, we now imagine that we slowly increase Q2: the contribution of
graphs B and C to the variation in the quark distribution function is

Q2 ∂q
f
B+C(x,Q2)

∂Q2
= −αs CF

2π

1∫
0

dz
1 + z2

1 − z
qf (x,Q2). (2.90)

The total modification of the quark distribution, δqf (x,Q2) = δq
f
A (x,Q2) +

δq
f
B+C(x,Q2), is obtained by summing Eqs. (2.82) and (2.90). This yields

Q2 ∂qf (x,Q2)

∂Q2
= αs CF

2π

⎡
⎣ 1∫

x

dz

z

1 + z2

1 − z
qf

(
x

z
,Q2

)

−
1∫

0

dz
1 + z2

1 − z
qf (x,Q2)

⎤
⎦ . (2.91)

To write Eq. (2.91) in the standard notation, we define the quark–quark splitting function
Pqq (z) by

Pqq (z) ≡ CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
(2.92)
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 53

with the “plus” notation defined in Sterman (1993),

1∫
x

dz
1

(1 − z)+
f (z) =

1∫
x

dz
1

1 − z
[f (z) − f (1)] + f (1) ln(1 − x), (2.93)

for an arbitrary function f (z) defined for 0 ≤ x ≤ 1. With the help of Pqq (z) we rewrite
Eq. (2.91) in the more compact form

Q2 ∂qf (x,Q2)

∂Q2
= αs

2π

1∫
x

dz

z
Pqq (z) qf

(
x

z
,Q2

)
. (2.94)

We have thus obtained a differential equation for the quark distribution function. The
initial condition for this equation is usually given by the quark distribution qf (x,Q2

0) at
some initial virtuality Q2

0. At low Q2
0 such an initial condition is likely to be due to some

nonperturbative (large-αs) physics: it cannot be calculated using perturbative techniques
and is usually inferred from the data. Given the initial condition qf (x,Q2

0), Eq. (2.94)
allows one to uniquely construct the quark distribution function at all Q2 > Q2

0 (with
leading-logarithmic accuracy). Therefore Eq. (2.94) evolves the quark distribution function
in Q2 from some initial value at Q2

0 to its value at another scale Q2: equations like (2.94)
are usually referred to as evolution equations. The variation of a distribution function with
Q2 is known as the Q2-evolution of the distribution function.

The physical meaning of the splitting function Pqq (z) is clear from our derivation of
Eq. (2.94): Pqq (z) is proportional to the probability of finding one quark in another quark’s
wave function, with the “measured” quark carrying a fraction z of the original quark’s light
cone momentum.

Another important question concerns the scale of the coupling constant αs in Eq. (2.94).
Without going into details of the calculation of the running coupling corrections, we simply
note that, up to a z-dependent factor, the scale is simply Q2, so that αs = αs(Q2). Thus
the coupling runs with the perturbative (hard) scale of the problem, justifying the use of
perturbation theory.

2.4.3 The DGLAP evolution equations

Equation (2.94) is not complete yet: so far we have ignored gluons. Indeed, a quark in the
proton’s wave function may also result from the splitting of a gluon into a qq̄ pair! Thus the
gluon distribution G(x,Q2) also contributes to the modification of the quark distribution.
Conversely, the gluon distribution also gets modified owing to the splitting of gluons into
gluon pairs, or the emission of gluons from quarks as in Fig. 2.13A.

Including the gluon contribution requires additional calculations, similar to those carried
out above. Before outlining these calculations let us first present the result.

We define the flavor nonsinglet distribution function by

�f f̄ (x,Q2) = qf (x,Q2) − qf̄ (x,Q2), (2.95)
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54 Deep inelastic scattering

where f̄ denotes the antiquark of flavor f . Since the splitting of a gluon into qq̄ pairs
contributes equally to the creation of quarks and anti-quarks in the proton’s wave func-
tion, it should not contribute to the nonsinglet distribution �f f̄ (x,Q2). Hence the evo-
lution of �f f̄ (x,Q2) is driven only by the quark evolution from Eq. (2.94). We thus
write

Q2 ∂�f f̄ (x,Q2)

∂Q2
= αs(Q2)

2π

1∫
x

dz

z
Pqq (z) �f f̄

(
x

z
,Q2

)
. (2.96)

To take the gluon contribution into account we define the flavor singlet distribution
function

�(x,Q2) =
∑
f

[
qf (x,Q2) + qf̄ (x,Q2)

]
. (2.97)

The evolution equations for �(x,Q2) and G(x,Q2) read

Q2 ∂

∂Q2

(
�(x,Q2)
G(x,Q2)

)
= αs(Q2)

2π

1∫
x

dz

z

(
Pqq (z) PqG(z)
PGq(z) PGG(z)

)

×
(

�
(
x/z,Q2

)
G
(
x/z,Q2

)) . (2.98)

Equations (2.96) and (2.98) are known as the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations. The QED version of these equations (involving electrons and
photons) in (x,Q2)-space was originally derived by Gribov and Lipatov (1972), while the
QCD version was obtained independently by Altarelli and Parisi (1977) and by Dokshitzer
(1977). In the Mellin moment space (to be defined shortly) the QED equations were derived
by Christ, Hasslacher, and Mueller (1972) and the QCD equations were derived by Georgi
and Politzer (1974) and by Gross and Wilczek (1974).

Equations (2.96) and (2.98) contain the splitting function, Pqq (z) from Eq. (2.92), along
with three other splitting functions, PqG(z), PGq(z), and PGG(z). For reference purposes,
let us first list all the splitting functions, even though we have already found Pqq (z) above.
They are

Pqq (z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (2.99a)

PGq(z) = CF

1 + (1 − z)2

z
, (2.99b)

PqG(z) = Nf

[
z2 + (1 − z)2

]
, (2.99c)

PGG(z) = 2Nc

[
z

(1 − z)+
+ 1 − z

z
+ z (1 − z)

]
+ 11Nc − 2Nf

6
δ(1 − z).

(2.99d)
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Fig. 2.17. The diagram contributing to the splitting function PGq (z).

z

1 − z

Fig. 2.18. The diagram contributing to the splitting function PqG(z).

The “plus” notation is defined above in Eq. (2.93).
The splitting function PGq(z) is easy to find knowing Pqq (z): PGq(z) represents the

probability of finding a gluon in a quark’s light cone wave function. Its contribution consists
of one diagram, pictured in Fig. 2.17. One can see that the calculation of PGq(z) would be
similar to that of diagram A in Fig. 2.13. The main difference would be in the fact that now
it is the gluon that one wants to “measure”, and therefore it is the gluon line that carries
the longitudinal momentum fraction z of the quark. Since in the calculation of Fig. 2.13A
the gluon line carried the momentum fraction 1 − z, all we have to do to find PGq(z) is to
replace z by 1 − z in the contribution of graph A. To single out the contribution of diagram
A we need to remove the contributions of the virtual diagrams B and C in Fig. 2.13 from
Eq. (2.99a), which is easily accomplished by removing the plus sign in the subscript on the
right-hand side and dropping the delta function term, yielding

P real
qq (z) = CF

1 + z2

1 − z
. (2.100)

Replacing z by 1 − z in P real
qq (z) yields PGq(z), Eq. (2.99b), which is the correct result for

the gluon–quark splitting function.
Finding the quark–gluon splitting function PqG(z) is a little more subtle. The only

diagram contributing to the splitting function PqG(z) is shown in Fig. 2.18. (One also
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D E F

Fig. 2.19. The diagrams contributing to the splitting function PGG(z). The complex conju-
gates of the last two diagrams (E and F) have to be included in the calculation, along with
the instantaneous terms in the quark and gluon propagators in the loops.

has to add in a diagram where we “measure” the antiquark instead of the quark, but the
contribution of this diagram is equal to that of the graph in Fig. 2.18.) Comparing this with
Fig. 2.14 we see that there are three differences between PqG(z) and the real part of Pqq (z):
(i) the incoming quark line in Fig. 2.14 becomes an outgoing antiquark line in Fig. 2.18 and
the outgoing gluon line in Fig. 2.14 becomes an incoming gluon line in Fig. 2.18; (ii) the
color factors are different in the two diagrams; (iii) one has to sum over all quark flavors
f and over both quarks and anti-quarks to obtain PqG(z) from Fig. 2.18. Differences (ii)
and (iii) are easily addressed. The color factor in Fig. 2.18 is 1/2, which replaces CF in
Eq. (2.99a). The sum over quarks and anti-quarks and over their flavors trivially gives 2Nf .
Hence in the end one has to replace CF in Eq. (2.99a) by (1/2) × 2Nf = Nf . Difference
(i) can be taken into account by applying the crossing symmetry. In the end the prescription
is

PqG(z) = Nf

CF

z P real
qq

(
1 − 1

z

)
, (2.101)

which, with the help of P real
qq (z) = CF (1 + z2)/(1 − z), gives Eq. (2.99c). Indeed, the

heuristic derivation of PqG(z) given here needs to be verified by explicit diagrammatic
calculations. We leave the explicit calculation of PqG(z) using the diagram in Fig. 2.18 as
an exercise for the reader; see Exercise 2.2 at the end of the chapter.

Finding the remaining splitting function PGG(z) requires some explicit diagrammatic
calculations as well. We will present them in the next (special-topic) chapter.

2.4.4 Gluon–gluon splitting function∗

Our goal here is to derive the gluon–gluon splitting function PGG(z). To calculate PGG(z)
one has to sum the graphs shown in Fig. 2.19. There we show only half the diagrams with
virtual corrections; the complex conjugates of graphs E and F need to be calculated too.
As in the case of the quark–quark splitting function Pqq (z), we will calculate only the
real emission diagram D in Fig. 2.19 and derive the contributions of the remaining virtual
diagrams E and F (and their conjugates) by using unitarity.
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k, λ

k , λ
k − k, λ

c

1 2

a

b

Fig. 2.20. A gluon splitting into two gluons in the proton light cone wave function. As
usual, the vertical dotted lines denote intermediate states.

Just as in Sec. 2.4.2, to calculate the graph in Fig. 2.19D for the light cone wave function
squared we first need to find the wave function itself. To that end we start with the diagram
pictured in Fig. 2.20. Again, the intermediate state 1 is included in the wave function �n−1

at the previous step of the evolution. Using the rules of LCPT outlined in Secs. 1.3 and 1.4,
we can write the contribution of the graph in Fig. 2.20 as follows:

�n ({xi, ki⊥}; x, k⊥; λ) = igf abcθ (k+)θ (k′+ − k+)

(k′ − k)− + k− +∑n−1
j=1 k−

j − P −
1

k′+

× [(k′ + k) · ε∗
λ′′(k′ − k) ε∗

λ(k) · ελ′(k′) + (k − 2k′) · ε∗
λ(k)

× ελ′(k′) · ε∗
λ′′(k′ − k) + (k′ − 2k) · ελ′(k′) ε∗

λ′′(k′ − k) · ε∗
λ(k)
]

×�n−1
({xi, ki⊥}; x ′, k′

⊥; λ′) , (2.102)

where now �n ({xi, ki⊥}; x, k⊥; λ) is the light cone wave function of the proton containing
n “spectator” partons and the gluon being tagged. As usual x = k+/P + and x ′ = k′+/P +

are the fractions of the proton’s light cone momentum P + carried by the gluons.
Using the gluon polarizations in the A+ = 0 light cone gauge,

ελ
μ(k) =

(
0,

2�ελ
⊥ · �k⊥
k+ , �ελ

⊥

)
, (2.103a)

ελ′
μ (k′) =

(
0,

2�ελ′
⊥ · �k′

⊥
k′+ , �ελ′

⊥

)
, (2.103b)

ελ′′
μ (k′ − k) =

(
0,

2�ελ′′
⊥ · (�k′

⊥ − �k⊥)

k′+ − k+ , �ελ′′
⊥

)
(2.103c)

with �ελ
⊥ = −(1/

√
2)(λ, i) (and similar expressions involving λ′ and λ′′), and imposing the

transverse momentum ordering |�k⊥| � |�k′
⊥| (and, therefore, simply neglecting all terms
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58 Deep inelastic scattering

containing �k′
⊥), after some straightforward algebra we get

(k′ + k) · ε∗
λ′′(k′ − k) ε∗

λ(k) · ελ′(k′) + (k − 2k′) · ε∗
λ(k) ελ′(k′) · ε∗

λ′′(k′ − k)

+ (k′ − 2k) · ελ′(k′) ε∗
λ′′(k′ − k) · ε∗

λ(k)

≈ 2

1 − z
�k⊥ · �ελ′′∗

⊥ �ελ∗
⊥ · �ελ′

⊥ + 2

z
�k⊥ · �ελ∗

⊥ �ελ′
⊥ · �ελ′′∗

⊥ − 2�k⊥ · �ελ′
⊥ �ελ∗

⊥ · �ελ′′∗
⊥ . (2.104)

Here, as usual, z = k+/k′+. Using Eqs. (2.104) and (2.73) we can write Eq. (2.102) as

�n ({xi, ki⊥}; x, k⊥; λ)

= igf abcθ (z)θ (1 − z)
z(1 − z)

�k2
⊥

×
(

2

1 − z
�k⊥ · �ελ′′∗

⊥ �ελ∗
⊥ · �ελ′

⊥ + 2

z
�k⊥ · �ελ∗

⊥ �ελ′
⊥ · �ελ′′∗

⊥ − 2�k⊥ · �ελ′
⊥ �ελ∗

⊥ · �ελ′′∗
⊥

)
×�n−1

({xi, ki⊥}; x ′, k′
⊥; λ′) . (2.105)

(We can use Eq. (2.73) since the approximations used in calculating the splitting func-
tion Pqq (z) are the same as those that we are assuming here for the splitting function
PGG(z).)

Multiplying the wave function in Eq. (2.105) by its complex conjugate and summing
over polarizations and colors yields

∑
λ,λ′,λ′′,a,b,b′,c

|�n ({xi, ki⊥}; x, k⊥; λ) |2

= 16παsNcθ (z)θ (1 − z)
1
�k2
⊥

× [z2 + (1 − z)2 + z2(1 − z)2
]∑

λ′,b

|�n−1
({xi, ki⊥}; x ′, k′

⊥; λ′) |2.
(2.106)

Note that the definition of the gluon distribution corresponding to Fig. 2.12 implies a
summation over the colors of the two gluon lines. The color of the gluon line to the left
of the cut is equal to the color of the gluon line to the right of the cut. We have made this
color summation explicit in Eq. (2.106) to facilitate the calculation of the color factor: the
color of the internal gluon line, which is labeled b in Fig. 2.20, is denoted b′ in the complex
conjugate wave function. In arriving at Eq. (2.106) we have used f abcf ab′c = Ncδ

bb′
and

|�k⊥ · �ελ′
⊥ |2 = �k2

⊥/2.
Following the steps outlined in Sec. 2.4.2 for the quark distribution function, which led

to Eq. (2.80), we infer from Eq. (2.106) that the contribution of diagram D in Fig. 2.19 to
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the gluon distribution function is

GD(x,Q2) = αsNc

π

1

x

Q2∫
dk2

⊥
k2
⊥

1∫
x

dz

z(1 − z)

[
z2 + (1 − z)2 + z2(1 − z)2]

× x ′G(x ′, k2
⊥), (2.107)

with z = x/x ′. Again assuming that we are varying Q2, Eq. (2.107) can be trivially rewritten
as

Q2 ∂GD(x,Q2)

∂Q2
= αsNc

π

1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)
. (2.108)

Using the unitarity argument of Sec. 2.4.2 we can calculate the contribution of diagram
E in Fig. 2.19 along with its complex conjugate and all the virtual gluon graphs with
instantaneous terms (cf. Eq. (2.90)), obtaining

Q2 ∂GE(x,Q2)

∂Q2
= −αsNc

π

1

2

1∫
0

dz

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G(x,Q2). (2.109)

The factor 1/2 in Eq. (2.109) is simply a symmetry factor, as the two propagators in the loop
of graph E are identical gluons. The z-integration in Eq. (2.109) has two singularities: one
at z = 1 and the other at z = 0. The singularities correspond to either one or the other gluon
in the loop of diagram E having a small longitudinal momentum. The two singularities have
therefore identical physical origins. We rewrite them as one singularity at z = 1:

1∫
0

dz

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
=

1∫
0

dz

[
−1 + 1

1 − z
+ 1

z
− 1 + z(1 − z)

]

=
1∫

0

dz

[
2

1 − z
− 2 + z(1 − z)

]
=

1∫
0

dz
2

1 − z
− 11

6
. (2.110)

With the help of this rearrangement the sum of diagrams D and E is (cf. Eq. (2.91))

Q2 ∂GD+E(x,Q2)

∂Q2
= αsNc

π

{ 1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)

−
1∫

0

dz
1

1 − z
G(x,Q2) + 11

12
G(x,Q2)

}
. (2.111)

Here we are not going to calculate the contribution of diagram F in Fig. 2.19 explicitly.
Instead we will use the splitting function PqG(z) illustrated in Fig. 2.18 and given in
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Eq. (2.99c). As one can see from Figs. 2.18 and 2.19, the contribution of graph F in the
latter is simply a virtual correction to the diagram in Fig. 2.18. With the help of PqG(z) from
Eq. (2.99c) and the unitarity argument of Sec. 2.4.2 we obtain the contribution of diagram
F:

Q2 ∂GF(x,Q2)

∂Q2
= −αsNf

2π

1

2

1∫
0

dz
[
z2 + (1 − z)2]G(x,Q2). (2.112)

The factor 1/2 is inserted to remove the double-counting associated with tagging on both
the quark and the antiquark in the calculation of PqG(z). Equation (2.112) trivially gives

Q2 ∂GF(x,Q2)

∂Q2
= − αs

2π

Nf

3
G(x,Q2). (2.113)

Combining Eqs. (2.111) and (2.113) we arrive at the contribution of all three diagrams
in Fig. 2.19:

Q2 ∂G(x,Q2)

∂Q2
= αs

2π

{
2Nc

1∫
x

dz

z

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
G

(
x

z
,Q2

)

− 2Nc

1∫
0

dz
1

1 − z
G(x,Q2) + 11Nc − 2Nf

6
G(x,Q2)

}
.

(2.114)

(Even though Eq. (2.114) looks like a closed integro-differential equation, one has to
remember that the quark distribution’s contribution is not included in its right-hand side
and that the full DGLAP evolution for the gluon distribution is given in Eq. (2.98).)
Rewriting Eq. (2.114) in the compact form

Q2 ∂G(x,Q2)

∂Q2
= αs

2π

1∫
x

dz

z
PGG(z) G

(
x

z
,Q2

)
, (2.115)

we immediately see that

PGG(z) = 2Nc

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]
+ 11Nc − 2Nf

6
δ(1 − z),

which is exactly Eq. (2.99d)! We have thus derived the gluon–gluon splitting function.

2.4.5 General solution of the DGLAP equations

To solve the DGLAP equations (2.96) and (2.98), one usually writes them first in moment
space. The moment fω(Q2) of a distribution function f (x,Q2) is defined by the Mellin
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transform

fω(Q2) ≡
1∫

0

dx xωf (x,Q2), (2.116)

where f = �f f̄ or � for the nonsinglet or singlet quark distribution functions respectively
and f = G for the gluon distribution. Inverting Eq. (2.116), we write the distribution
function as

f (x,Q2) =
a+i∞∫

a−i∞

dω

2πi
x−ω−1fω(Q2), (2.117)

where the integral in ω-space runs along a contour parallel to the imaginary axis and to the
right of all the singularities of the moment fω(Q2) (which can be chosen by adjusting the
arbitrary real number a).

As one can show (see Exercise 2.5), in the moment space the DGLAP equations (2.96)
and (2.98) become

Q2 ∂�
f f̄
ω (Q2)

∂Q2
= αs(Q2)

2π
γqq (ω)�f f̄

ω (Q2) (2.118)

and

Q2 ∂

∂Q2

(
�ω(Q2)
Gω(Q2)

)
= αs(Q2)

2π

(
γqq (ω) γqG(ω)
γGq(ω) γGG(ω)

)(
�ω(Q2)
Gω(Q2)

)
. (2.119)

In arriving at Eqs. (2.118) and (2.119) we have defined anomalous dimensions γij (ω) by

γij (ω) =
1∫

0

dz zωPij (z), (2.120)

where i, j can each be equal to either q or G. With the help of Eqs. (2.99) and (2.120) one
can show that the DGLAP anomalous dimensions are (Georgi and Politzer 1974, Gross and
Wilczek 1974)

γqq (ω) = CF

[
3

2
+ 1

(1 + ω)(2 + ω)
− 2ψ(ω + 2) + 2ψ(1)

]
, (2.121a)

γGq(ω) = CF

[
1

2 + ω
+ 2

ω(1 + ω)

]
, (2.121b)

γqG(ω) = Nf

[
1

1 + ω
− 2

(2 + ω)(3 + ω)

]
, (2.121c)

γGG(ω) = 11Nc − 2Nf

6

+ 2Nc

[
1

ω(1 + ω)
+ 1

(2 + ω)(3 + ω)
− ψ(ω + 2) + ψ(1)

]
, (2.121d)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


62 Deep inelastic scattering
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Fig. 2.21. The DGLAP equations in the (ln 1/x, Q2)-plane.

where ψ(w) = �′(w)/�(w) is the digamma function. Note that ψ(1) = −γE , with γE

Euler’s constant. We leave the derivation of the anomalous dimensions (2.121) as an
exercise; see Exercise 2.5.

Equations (2.118) and (2.119) are easy to solve. Suppose that the (usually nonperturba-
tive) initial conditions for the equations are given at some initial scale Q2

0. That is, we know
�f f̄ (x,Q2

0), �(x,Q2
0), and G(x,Q2

0). Using Eq. (2.116) we can find the initial conditions

for the moments, obtaining �
f f̄
ω (Q2

0), �ω(Q2
0), and Gω(Q2

0). Solving Eqs. (2.118) and
(2.119) we can now find the moments of the distribution functions at all Q2:

�f f̄
ω (Q2) = exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)

2π
γqq (ω)

⎫⎪⎬
⎪⎭�f f̄

ω (Q2
0), (2.122)

(
�ω(Q2)
Gω(Q2)

)
= exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)

2π

(
γqq (ω) γqG(ω)
γGq(ω) γGG(ω)

)⎫⎪⎬
⎪⎭
(

�ω(Q2
0)

Gω(Q2
0)

)
.

(2.123)

Equations (2.122) and (2.123) allow one to find the distribution functions in moment
space. With the help of Eq. (2.117) one then can transform the moments of the distribution
functions back into x-space, thus obtaining the distribution functions solving the DGLAP
equations at all Q2.

The way in which the DGLAP equations work is depicted in Fig. 2.21 in the (ln 1/x,
Q2)-plane, which we will often use to demonstrate our results. The initial values of the
distribution functions for DGLAP evolution are set at some initial scale Q2

0 for all the
relevant values of x: thus the initial conditions are given along the vertical line on the left
in Fig. 2.21. Given the initial conditions, the DGLAP equations then give the distribution
functions at other values of Q2. For instance, using the DGLAP equations one may obtain
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 63

distribution functions along the vertical line on the right in Fig. 2.21. Thus the DGLAP
equations evolve the distribution functions in Q2 from some initial conditions at Q2

0 to their
values at some other Q2, as indicated by the arrows in Fig. 2.21. Note that the curves shown
in Fig. 2.7 resulted from using the DGLAP equations, having adjusted the initial conditions
to fit the DIS data.

Indeed the DGLAP equations (2.98) and (2.96) presented above are valid only at the
leading-logarithmic level. They are often referred to as the leading-order (LO) DGLAP
equations, since the integral kernel on the right-hand side is given at the lowest order in
αs (i.e., at order αs). Higher-order corrections to the splitting functions would generate
terms with higher powers of αs on the right-hand sides of Eqs. (2.98) and (2.96). For
instance Eqs. (2.98) and (2.96), with right-hand sides calculated up to O(α2

s ), are referred
to as next-to-leading-order DGLAP or simply NLO DGLAP. The next order after that
is called next-to-next-to-leading-order DGLAP (NNLO DGLAP), etc. Note that at such
higher orders the naive factorization relations (2.45) and (2.46) (see also Eq. (2.48)) between
the structure functions and the quark distribution function would be modified. Even the
LO DGLAP evolution of Eqs. (2.98) and (2.96) obviously violates Bjorken scaling. It also
generates corrections to the Callan–Gross relation (2.44).

2.4.6 Double logarithmic approximation

Let us now study structure functions and parton distributions at small Bjorken x using the
DGLAP equations. This limit is interesting and important for our discussion, since small
x corresponds to high energy ŝ of virtual photon–proton scattering, as one can see from
Eqs. (2.6). A brief inspection of Fig. 2.7 shows that the structure function F2 clearly rises
at small x. The question that we would like to address is whether DGLAP evolution can
provide a theoretical explanation for such a rise.

To answer this question we need to analyze Eqs. (2.96) and (2.98) at small x. At small x

the z-integral in Eqs. (2.96) and (2.98) may get extra enhancement from the small-z region.
To see this let us study the small-z asymptotics of the splitting functions. Using Eqs. (2.99)
one can show that only two of the splitting functions are singular at small z:

PGq(z)

∣∣∣∣
z�1

≈ 2CF

z
, PGG(z)

∣∣∣∣
z�1

≈ 2Nc

z
. (2.124)

Thus, in Eqs. (2.96) and (2.98) only the second line of Eq. (2.98) is enhanced at small x.
We conclude that the evolution of the gluon distribution G(x,Q2) runs much faster than
that of the quark distributions (both singlet and nonsinglet), at small x. Therefore we can
neglect the evolution of the quark distribution functions compared with that of the gluon.
Also, the quark contribution to the gluon evolution, which enters via PGq(z) into Eq. (2.98),
is negligible as well: as �(x,Q2) is small owing to the lack of small-x enhancement to its
own evolution, it would not contribute much to the gluon evolution.

Neglecting the quark distribution in the DGLAP equation (2.98) and using the approx-
imation for the gluon–gluon splitting function from Eq. (2.124), we can write down an
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64 Deep inelastic scattering

evolution equation for the gluon distribution only,

Q2 ∂G(x,Q2)

∂Q2
= αs(Q2)

2π

1∫
x

dz

z

2Nc

z
G

(
x

z
,Q2

)
, (2.125)

which of course is valid only at small x.
Before we solve Eq. (2.125), let us clarify the approximation that we have made in

arriving at this equation. To see this more clearly, let us redefine z as x/x ′ and write
Eq. (2.125) as

Q2 ∂xG(x,Q2)

∂Q2
= αs(Q2)Nc

π

1∫
x

dx ′

x ′ x ′G(x ′,Q2). (2.126)

Differentiating Eq. (2.126) with respect to ln(1/x), we can write it as

∂2xG(x,Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

= αs(Q2)Nc

π
xG(x,Q2) (2.127)

with Q0 a constant initial-virtuality scale.
For simplicity let us imagine that the coupling constant is fixed, αs(Q2) = αs . We can

then see clearly from Eq. (2.127) that its solution iterates powers of αs multiplied not
just by one logarithm, ln(Q2/Q2

0), as in the DGLAP equations, but by two logarithms,
ln(1/x) ln(Q2/Q2

0). Thus the resummation parameter of Eq. (2.127) is

αs ln
1

x
ln

Q2

Q2
0

. (2.128)

Thus at small coupling αs � 1, large Q2 � Q2
0, and small x such that ln(1/x) � 1, we

see that the small coupling αs is multiplied by two large logarithms, which makes the
resummation parameter (2.128) large and important to resum. Resummation of a series in
powers of the parameter (2.128) is called the double logarithmic approximation (DLA).

With the DLA parameter (2.128) the approximations we made in obtaining Eq. (2.125)
become clear. The absence of 1/z singularities in Pqq (z) and PqG(z) insures that no ln(1/x)
factor is generated in each step of the DGLAP evolution for the singlet and nonsinglet quark
structure functions. Hence the evolution of �(x,Q2

0) and of �f f̄ (x,Q2
0) is subleading in

the DLA parameter (2.128) and can be neglected in the approximation that resums only
powers of the logarithms of both Q2 and 1/x in Eq. (2.128).

Now let us solve Eq. (2.125). Substituting the approximate gluon–gluon splitting func-
tion from Eq. (2.124) into Eq. (2.120) we obtain

γGG(ω) ≈ 2Nc

ω
. (2.129)

One can see that the small-z singularity in PGG(z) translates into a singularity at ω = 0 in
γGG(ω). This is an important result, which we will use below.

With the help of Eq. (2.129) we can write Eq. (2.125) in moment space:

Q2 ∂Gω(Q2)

∂Q2
= αs(Q2)Nc

π

1

ω
Gω(Q2). (2.130)
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 65

From Eqs. (2.121) one can see that only γGG(ω) and γGq(ω) have singularities at ω = 0:
using this observation we could have derived the DLA DGLAP evolution equation in
moment space (2.130) directly from Eq. (2.119).

The solution of Eq. (2.130) is easily found and reads

Gω(Q2) = exp

⎧⎪⎨
⎪⎩

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)Nc

πω

⎫⎪⎬
⎪⎭Gω(Q2

0). (2.131)

Inverting the Mellin transform (2.116) with the help of Eq. (2.117), we obtain the gluon
distribution function in the DLA:

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
exp

⎧⎪⎨
⎪⎩ω ln

1

x
+

Q2∫
Q2

0

dQ′2

Q′2
αs(Q′2)Nc

πω

⎫⎪⎬
⎪⎭Gω(Q2

0). (2.132)

The Q′2-integral is easy to carry out. Taking the one-loop running coupling constant

αs(Q
2) = 1

β2 ln(Q2/�2
QCD)

and assuming that Q2
0 > �2

QCD , we can write Eq. (2.132) as

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
exp

{
ω ln

1

x
+ Nc

πβ2ω
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

}
Gω(Q2

0). (2.133)

Note that, with the inclusion of the running coupling corrections, the transverse logarithm
ln(Q2/Q2

0) in Eq. (2.128) turns into the logarithm of the ratio of logarithms seen in the
exponent of Eq. (2.133).

The integral in Eq. (2.133) cannot be calculated exactly without explicit knowledge of
the initial conditions, which give Gω(Q2

0). However, it can be evaluated approximately for
very small x and very large Q2 using the saddle point (steepest descent) approximation. To
do so we rewrite Eq. (2.133) as

xG(x,Q2) =
a+i∞∫

a−i∞

dω

2πi
eP (ω)Gω(Q2

0) (2.134)

with all the x- and Q2-dependent terms assembled in the exponent:

P (ω) = ω ln
1

x
+ Nc

πβ2ω
ρ(Q2), (2.135)

where we have defined an abbreviated notation

ρ(Q2) ≡ ln
ln(Q2/�2

QCD)

ln(Q2
0/�

2
QCD)

= ln
αs(Q2

0)

αs(Q2)
. (2.136)

Indeed, P (ω) is also a function of x and Q2: we have suppressed these arguments for
brevity.
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66 Deep inelastic scattering

First we need to find the saddle points of the exponent P (ω), which are defined by the
condition

P ′(ω = ωsp) = 0, (2.137)

where the prime denotes a (partial) derivative with respect to ω. For P (ω) from Eq. (2.135)
we get the saddle points

ωsp = ±
√

Nc

πβ2

ρ(Q2)

ln(1/x)
. (2.138)

One can easily argue that at small x the saddle point with the plus sign in Eq. (2.138)
dominates. From here on we will label by ωsp the expression in Eq. (2.138) with the plus
sign.

Our next step is to approximate the exponent P (ω) by its Taylor expansion around the
saddle point up to the quadratic term:

P (ω) ≈ P (ωsp) + 1
2P ′′(ωsp)(ω − ωsp)2, (2.139)

where the term linear in ω − ωsp is zero owing to the condition (2.137). Since P ′′(ωsp) is
real and positive, distorting the integration contour in Eq. (2.134) so that it goes through ωsp

when crossing the real axis in the complex ω-plane (i.e., setting a = ωsp), we can define a
new integration variable w by

ω − ωsp ≡ iw. (2.140)

Note that w is real along the new integration contour.
With this contour distortion and variable redefinition, Eq. (2.134) becomes

xG(x,Q2) ≈ eP (ωsp)Gωsp
(Q2

0)

∞∫
−∞

dw

2π
e−P ′′(ωsp)w2/2, (2.141)

where we also assume that Gω is a slowly varying function of ω such that, owing to saddle
point dominance, Gω(Q2

0) ≈ Gωsp
(Q2

0). Performing w-integration yields

xG(x,Q2) ≈ Gωsp
(Q2

0)√
2πP ′′(ωsp)

eP (ωsp). (2.142)

With the help of Eqs. (2.138) (with the plus sign), (2.135), and (4.176) we obtain the DLA
gluon distribution function in the saddle point approximation,

xG(x,Q2) ≈ Gωsp
(Q2

0)√
4π

{
Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

}1/4 (
ln

1

x

)−3/4

× exp

⎧⎨
⎩2

√√√√ Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

ln
1

x

⎫⎬
⎭ . (2.143)
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 67

To justify the expansion (2.139) that led ultimately to Eq. (2.143) we need to estimate
the next (cubic) term in the expansion, which previously we neglected:

P ′′′(ωsp)(ω − ωsp)3. (2.144)

Since in the integral in Eq. (2.141) the typical width is

ω − ωsp ∼ 1√
P ′′(ωsp)

, (2.145)

we see that

P ′′′(ωsp)(ω − ωsp)3 ∼ P ′′′(ωsp)[P ′′(ωsp)]−3/2. (2.146)

Using Eqs. (2.138) and (2.135) one can readily show that

P ′′′(ωsp)(ω − ωsp)3 ∼ [ρ(Q2)
]−1/4

(
ln

1

x

)−1/4

, (2.147)

which is negligibly small at small x and large Q2, justifying our approximation.
Our main result from Eq. (2.143) is that

xG(x,Q2) ∼ exp

⎧⎨
⎩2

√√√√ Nc

πβ2
ln

ln(Q2/�2
QCD)

ln(Q2
0/�

2
QCD)

ln
1

x

⎫⎬
⎭ . (2.148)

That is, xG(x,Q2) increases as x decreases and/or Q2 increases. The rise in xG(x,Q2)
with decreasing x is therefore a prediction of the DGLAP evolution. As we can see from
Eq. (2.148), the DGLAP equation predicts a rise in xG(x,Q2) with decreasing x that
is faster than any power of ln(1/x) but is slower than a power of 1/x. A rising gluon
distribution would translate into a rising (but smaller) quark distribution; both would lead
to an increase in the structure function F2(x,Q2) at small x, which is in (at least) qualitative
agreement with the data in Fig. 2.7. A detailed analysis of the DIS data shows that DGLAP-
based fits are able to describe most data (after a suitable choice of initial conditions is
made), as demonstrated by the curves in Fig. 2.7.

A physical picture of DGLAP evolution is shown in Fig. 2.22 using the transverse plane
representation of the proton from Fig. 2.8. On the left of Fig. 2.22 we show a proton
with partons in it, as seen by a virtual photon with virtuality Q0 corresponding to the
resolution scale 1/Q0 in the transverse plane. On the right we show what happens when
the same proton is probed by a virtual photon with higher virtuality, Q > Q0, which is able
to resolve shorter transverse distances 1/Q. When probing the partons (quarks) at shorter
distances the photon is able to distinguish that each quark may fluctuate into itself along
with, say, several gluons and/or quark–antiquark pairs, as we see from the DGLAP splitting
functions. The net number of partons at the higher scale Q is thus larger than at the scale
Q0, in agreement with the prediction from Eq. (2.148). To illustrate how the DGLAP
equation works in practice, we will present some distribution functions extracted from DIS
experiments on protons. One usually distinguishes contributions to the quark distribution
function coming from the valence quarks (the two u quarks and the d quark in the proton)
and from the sea quarks (all the other quarks in the proton).
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Fig. 2.22. A graphical illustration of the DGLAP evolution equations. The blobs indi-
cate partons (quarks and gluons). A color version of this figure is available online at
www.cambridge.org/9780521112574.
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Fig. 2.23. Valence and sea quark distributions in the proton, plotted along with the gluon
distribution, as functions of Bjorken x for fixed Q2 = 10 GeV2. (Reprinted with kind
permission from Springer Science +Business Media: H1 and ZEUS collaboration (2010).)
A color version of this figure is available online at www.cambridge.org/9780521112574.

Figure 2.23 shows the valence quark distributions xuv(x,Q2) and xdv(x,Q2), along with
the sea quark distribution xS and the gluon distribution xg. All distributions are plotted as
functions of x for fixed Q2 = 10 GeV2. The curves in Fig. 2.23 are the result of a combined
NLO DGLAP-based fit of the data from the H1 and ZEUS collaborations at DESY (H1
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Fig. 2.24. Gluon and sea quark distributions in the proton plotted as functions of Bjorken
x for six different values of Q2. (Reprinted with permission from ZEUS collaboration
(2003). Copyright 2003 by the American Physical Society.) A color version of this figure
is available online at www.cambridge.org/9780521112574.

and ZEUS collaboration 2010). Note that the sea quark and gluon distributions were scaled
down by a factor 0.05 to fit into the same plot as the valence quark distributions. One can
see clearly that the gluon and sea quark distributions dominate at small x, in qualitative
agreement with the DLA DGLAP predictions.

In Fig. 2.24 we give the sea quark and gluon distributions as functions of x for six
different values of Q2. The curves in Fig. 2.24 are the results of an NLO DGLAP-based

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

http://www.cambridge.org/9780521112574
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


70 Deep inelastic scattering
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n

k⊥n−1, k
+
n−1
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Fig. 2.25. An example of a ladder diagram contributing to DLA DGLAP evolution for the
gluon distribution function. The momenta of the gluons in the rungs of the ladder are labeled
on the right. The incoming proton has light cone momentum P +, and the last t-channel
gluon in the ladder has light cone momentum k+.

fit to the DIS data performed by the ZEUS collaboration at HERA (ZEUS collaboration
2003). The initial condition for DGLAP evolution was set at Q2

0 = 1 GeV2. Again one can
see that at small x the gluon distribution dominates the quark distributions. In agreement
with the DGLAP-based prediction, we see that the gluons play the most important role at
small x.

In closing the chapter we will rederive Eq. (2.148) using a more diagram-based approach.
Let us construct the solution for the DLA DGLAP evolution equation for the gluon distri-
bution (2.125) by summing diagrams that iterate the kernel of the evolution equation given
by the real part of the gluon–gluon splitting function in Fig. 2.19D. (Note that the parts of
the splitting functions that are singular at small z, given by Eq. (2.124), are entirely due to
the real emission diagrams). Diagrams iterating the gluon emission kernel have a “ladder”
structure, as shown in Fig. 2.25. There the transverse momenta of the gluons in the rungs
of the ladder, when ordered as

k2
⊥n � k2

⊥n−1 � · · · � k2
⊥2 � k2

⊥1 (2.149)
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2.4 Violation of Bjorken scaling; the DGLAP evolution equation 71

give the transverse logarithms of DGLAP evolution. As we are interested in the DLA limit,
the longitudinal momenta of the gluons in Fig. 2.25 can be ordered too, as

k+
1 � k+

2 � · · · � k+
n−1 � k+

n � k+, (2.150)

to generate the logarithms of x. Each rung of the ladder generates a logarithmic integral over
longitudinal momenta dk+/k+, a logarithmic integral over transverse momenta dk2

⊥/k2
⊥,

and a power of the coupling constant αs(k2
⊥). Each rung also brings in a color factor Nc

and a factor 1/π coming from more careful diagram evaluation, which we will not perform
here. Ordering all the integrations, we get

xG(x,Q2) ∼
∞∑

n=0

Q2∫
Q2

0

dk2
⊥n

k2
⊥n

ᾱs(k
2
⊥n)

k2
⊥n∫

Q2
0

dk2
⊥n−1

k2
⊥n−1

ᾱs(k
2
⊥n−1) · · ·

×
k2
⊥2∫

Q2
0

dk2
⊥1

k2
⊥1

ᾱs(k
2
⊥1)

P +∫
k+

dk+
1

k+
1

k+
1∫

k+

dk+
2

k+
2

· · ·
k+
n−1∫

k+

dk+
n

k+
n

, (2.151)

where

ᾱs(Q
2) ≡ αs(Q2)Nc

π
. (2.152)

Performing the integrals yields (as x = k+/P +)

xG(x,Q2) ∼
∞∑

n=0

1

(n!)2

⎡
⎢⎣

Q2∫
Q2

0

dk2
⊥

k2
⊥

ᾱs(k
2
⊥) ln

1

x

⎤
⎥⎦

n

(2.153)

or, equivalently,

xG(x,Q2) ∼
∞∑

n=0

1

(n!)2

[
Nc

πβ2
ρ(Q2) ln

1

x

]n
, (2.154)

which after summation gives a modified Bessel function:

xG(x,Q2) ∼ I0

(
2

√
Nc

πβ2
ρ(Q2) ln

1

x

)
. (2.155)

The exact index of the modified Bessel function depends on the initial conditions for the
evolution and is not always 0 (Gorshkov et al. 1968). Using the large-argument asymptotics
of the modified Bessel function, Iν(z) ∼ ez, we obtain Eq. (2.148). The prefactor in front
of the exponent, shown in Eq. (2.143), can be obtained similarly, by keeping the prefactor
in the asymptotics of the modified Bessel function and matching the initial conditions to
those used in obtaining Eq. (2.143).

The derivation we have presented shows the diagrammatic origin of the result (2.148).
Diagrams also allow one to understand the space–time structure of the parton emissions.
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72 Deep inelastic scattering

Consider the proton in Fig. 2.25, which, as throughout this chapter, is moving in the light
cone plus direction. The light cone times of gluon emissions, which we label x+

i for the
ith gluon shown in the ladder in Fig. 2.25, owing to the uncertainty principle are given
by x+

i ≈ 1/k−
i . As the gluons in the rungs of the ladder are on mass shell, k−

i = k2
⊥i/k+

i

and x+
i ≈ k+

i /k2
⊥i . The DGLAP ordering of transverse momenta (2.149) of itself insures

that

x+
1 � x+

2 � · · · � x+
n . (2.156)

The ordering of longitudinal momenta (2.150) merely reinforces the ordering of gluon
lifetimes (2.156). We see that the gluons with the lowest transverse momentum and/or largest
longitudinal momentum are emitted earliest and have the longest lifetimes. Conversely the
gluons with the largest transverse momenta and/or smallest longitudinal momenta are
emitted last and exist over the shortest lifetimes. This time-ordering of gluon emissions is
not only important for our understanding of DGLAP evolution, but will be useful when we
start talking about the small-x evolution equations, as it applies there too.

Further reading

A detailed pedagogical discussion of DIS and the DGLAP evolution equations covering
topics omitted in this chapter can be found in Halzen and Martin (1984), Sterman (1993),
Peskin and Schroeder (1995), Ellis, Stirling, and Webber (1996), and Weinberg (1996).

The reader can find NLO splitting functions for DGLAP evolution in Ellis, Stirling, and
Webber (1996). For further discussion of the running coupling scale in DGLAP evolution
we refer the reader to Dokshitzer and Shirkov (1995).

Exercises

2.1 Show that, in general, the hadronic tensor Wμν(p, q) can be written in the form
(2.16). Do this by observing that it is a function of two four-vectors pμ and qμ

only, demanding that Wμν is symmetric (Wμν = Wνμ), and imposing the conditions
(2.15).

2.2∗ Calculate the splitting function PqG(z) in light cone perturbation theory using the
diagram in Fig. 2.18. You should get Eq. (2.99c).

2.3 Show that the DGLAP equations conserve the longitudinal momentum of the partons.
Starting from Eq. (2.98), and using Eqs. (2.99), show that

1∫
0

dx x
[
�(x,Q2) + G(x,Q2)

]
(2.157)

is independent of Q2. With the help of Eq. (2.119) argue that this momentum conserva-
tion requires that all the anomalous dimensions are zero at ω = 1, i.e., γij (ω = 1) = 0.
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Exercises 73

2.4 Show that the DGLAP equations conserve baryon number. Starting from Eq. (2.96),
and using Eq. (2.99a), show that

1∫
0

dx�f f̄ (x,Q2) (2.158)

is independent of Q2.

2.5 (a) Starting from Eqs. (2.96) and (2.98), and with the help of Eq. (2.116), derive the
DGLAP equations in moment space, obtaining Eqs. (2.118) and (2.119) with the
anomalous dimensions defined in Eq. (2.120).

(b) Explicitly derive the DGLAP anomalous dimensions shown above in
Eqs. (2.121): that is, use Eq. (2.120) to integrate the splitting functions given
by Eqs. (2.99).

2.6 Using the methods in Sec. 2.4.6, solve the DGLAP equation for the gluon distribution,

Q2 ∂

∂Q2
G(x,Q2) = αs

2π

∫ 1

x

dz

z
PGG(z) G

(
x

z
,Q2

)
,

with

PGG(z) = 2Nc

z

in the small-x asymptotics but now with fixed coupling constant αs (i.e., for αs

independent of Q2). In particular show that, in the saddle point approximation, the
small-x asymptotics for the gluon distribution is given by

xG(x,Q2) ∼ exp

(
2

√
αsNc

π
ln

1

x
ln

Q2

Q2
0

)
. (2.159)
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3

Energy evolution and leading logarithm-1/x
approximation in QCD

We now begin the presentation of our main subject: high energy QCD, also known as
small-x physics. We argue that at small Bjorken x it is natural to try to resum leading
logarithms of 1/x, that is, powers of αs ln 1/x. Resummation of this parameter in the linear
approximation corresponding to low parton density is accomplished by the Balitsky–Fadin–
Kuraev–Lipatov (BFKL) evolution equation, which we describe in this chapter using the
standard approach based on Feynman diagrams. Note that our derivation of the BFKL
equation in this chapter is rather introductory in nature; a more rigorous re-derivation
employing LCPT is left until for the next chapter. We point out some problems with the
linear BFKL evolution; in particular we argue that it violates unitarity constraints for the
scattering cross section. We describe initial attempts to solve the BFKL unitarity problem by
introducing nonlinear corrections to the BFKL evolution, resulting in the Gribov–Levin–
Ryskin and Mueller–Qiu (GLR–MQ) evolution equation. We discuss properties of the
GLR–MQ evolution equation and, for the first time, introduce the saturation scale Qs .

3.1 Paradigm shift

Our goal in this book is to study the high energy behavior of QCD. In the context of DIS
the high energy asymptotics can be explored by fixing the photon virtuality Q2 and taking
the photon–proton center-of-mass energy squared ŝ to be large. In this limit the Bjorken-x
variable becomes small, as follows from Eq. (2.6). The small-x asymptotics is therefore
synonymous with the high energy limit of QCD:

small x ⇐⇒ high energy s. (3.1)

The small-x asymptotics of the gluon distribution function xG(x,Q2) in the framework
of DGLAP evolution was discussed in Section 2.4.6. For the LLA DGLAP, the small-x
asymptotics corresponds to summation of the parameter

αs ln
1

x
ln

Q2

Q2
0

, (3.2)

which constitutes the double logarithm approximation (DLA). While in Sec. 2.4.6 we
worked out the running coupling case, the small-x asymptotics of the gluon distribution
function for fixed coupling can be shown to be that in Eq. (2.159). The resulting gluon
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3.1 Paradigm shift 75

Table 3.1. The transverse and longitudinal leading logarithmic approximations (LLAs)
and the double logarithmic approximation (DLA)

Transverse Longitudinal
Approximation Coupling logarithm logarithm

LLA in Q2 αs(Q2) � 1 αs ln(Q2/Q2
0) ≈ 1 αs ln 1/x � 1

LLA in 1/x αs � 1 αs ln(Q2/Q2
0) � 1 αs ln 1/x ≈ 1

DLA αs(Q2) � 1 αs ln(Q2/Q2
0) � 1 αs ln 1/x � 1︸ ︷︷ ︸

but αs ln(Q2/Q2
0) ln 1/x ≈ 1

distribution grows with decreasing x in such a way that(
1

x

)a

� xG
(
x,Q2

) ∝ exp

(
2

√
αsNc

π
ln

1

x
ln

Q2

Q2
0

)
� lnn 1

x
, (3.3)

which is faster than any positive power n of ln 1/x but slower than any positive power a of
1/x.

The asymptotics of the gluon distribution (3.3) is valid in the double logarithmic limit
of small x and large Q2. However, if one is interested in studying the high energy (Regge)
limit of QCD, one simply needs to fix Q2 at some, not necessarily large, value and study
the small-x asymptotics. As there is no need to take the large-Q2 limit, ln(Q2/Q2

0) is now
neither a large nor a small parameter. We therefore drop it from Eq. (3.2) and aim to resum
the parameter

αs ln
1

x
. (3.4)

Resummation of a series in powers of the parameter (3.4) is referred to as the leading-
logarithmic approximation (LLA) in 1/x. As with previous logarithmic approximations
we assume that the relevant transverse momentum scales are large enough that αs � 1.
At small x we have ln 1/x � 1, so that αs ln 1/x ∼ 1 and is an important parameter to
resum. (Indeed, as we have seen from Sec. 2.4.6 already, and as will be clear from the
calculations below, for gluon distribution functions and for total hadronic scattering cross
sections one can have at most one power of ln 1/x per power of the coupling αs , i.e., there
is no resummation parameter like αs ln2 1/x in xG though there are other observables, such
as �ff̄ , which depend on this parameter: however, these are suppressed at high energy and
the presentation of their low-x asymptotics is beyond the scope of this book.) As we will
see in the next chapter, the resummation of gluon emissions in the light cone wave function
presented in Sec. 2.4.2 can also be done in the LLA in 1/x instead of the LLA in Q2, as
used for DGLAP evolution.

Table 3.1 gives for comparison the two leading logarithmic approximations, that in Q2

of Eq. (2.67) leading to the DGLAP equations and that in 1/x from Eq. (3.4), which we will
study below. As discussed in Sec. 2.3, the photon virtuality Q determines the transverse size
resolution of a DIS experiment, while Bjorken x determines the longitudinal (Ioffe) lifetime
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76 Energy evolution and leading logarithm-1/x approximation in QCD

of the partonic fluctuation: we therefore refer to ln Q2 as the transverse logarithm and to
ln 1/x as the longitudinal logarithm. As one can see from Table 3.1, the two LLA regimes
should give identical results when they overlap in the double logarithmic approximation
(DLA).

As discussed in the previous chapter, the LLA in Q2 leads to the evolution described by
the DGLAP equations, which allows us to determine the number of partons with transverse
size larger than 1/Q if we know the number of partons with size larger than 1/Q0. Formally
speaking, Q0 is chosen to be large enough that αs

(
Q2

0

)� 1. In x-evolution we hope to
find the number of partons of roughly the same transverse size at low x if we know
this number at some x = x0. Therefore Fig. 2.22 would have to be modified for small-x
evolution. We will return to this subject later, after deriving the linear small-x evolution
equation.

Resummation of the leading logarithms of 1/x instead of those of Q2 is the essential
paradigm shift needed in studying the small-x asymptotics. The equation resumming lead-
ing logarithms of 1/x will be, unlike the DGLAP equation, an evolution equation in x not
an evolution equation in Q2. A main goal of this chapter is to develop the technique of
summing such longitudinal logarithmic contributions. We will show that the summation of
powers of αs ln 1/x leads to gluon distributions increasing as a power of 1/x at small x,
namely as (1/x)1+const αs . For hadron–hadron scattering cross sections, ln 1/x is replaced by
ln s (cut off by some dimensionful scale), so that the resummation of longitudinal logarithms
gives cross sections growing as a power of the center-of-mass energy: σtot ∼ s1+const αs .

3.2 Two-gluon exchange: the Low–Nussinov pomeron

We start our analysis of high energy scattering with the lowest-order diagrams. As men-
tioned earlier, in this chapter we will be using the usual Feynman diagram technique. For
simplicity let us consider the high energy scattering of two quark–antiquark bound states
(quarkonia) on each other. We assume that the quarkonia either resulted from a splitting of
virtual photons of high virtuality Q (γ ∗ + γ ∗ scattering) or consist of quarks sufficiently
heavy to insure the applicability of perturbative QCD methods.

Before we start the calculation let us formulate a general rule for high energy scattering,
which will be confirmed by explicit calculations below, albeit for the particular case of
gluons. Consider a high energy scattering event in which a particle of spin j is exchanged
in the t-channel between some scatterers, as shown in Fig. 3.1. The rule is simple: if one
wants to count the powers of the center-of-mass energy squared s in the total scattering
cross section then the contribution of each t-channel exchange of particle with spin j to the
scattering cross section is (Regge 1959, 1960)1

sj−1. (3.5)

To avoid confusion between contributions to the scattering amplitude and to the cross
section we note that in our (standard) normalization the cross section is σ ∼ |M|2/s2, where

1 This simple rule applies only to counting powers of s and cannot be used to count the powers of ln s, which is a much
slower function of s than a power and is therefore neglected by the rule.
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3.2 Two-gluon exchange: the Low–Nussinov pomeron 77

=⇒ σ ∼ sj−1 . . .. . .spin-j

particle

Fig. 3.1. A t-channel exchange of a particle with spin j between two particles scattering
at high energy. The exchange shown is assumed to be part of some amplitude squared
contributing to the scattering cross section. The contribution of each particle exchange to
the resulting scattering cross section is sj−1.

σ ∼ 1
s2 ×

Fig. 3.2. The scattering cross section as the amplitude squared of the t-channel exchange
diagram from Fig. 3.1 divided by the appropriate kinematic factors, including s2. The
vertical solid line denotes the final-state cut.

M is the scattering amplitude (see e.g. Amsler et al. (2008)). An exchange of k particles
of spin j in the amplitude and k particles in the complex conjugate amplitude leads to a
cross section scaling as σ ∼ s(j−1)2k , while the amplitude with k exchanged particles would
then scale as M ∼ s1+(j−1)k . Hence one-particle exchange contributes sj to the amplitude
(k = 1), while the exchange of two particles (k = 2) gives a factor s2j−1 in the amplitude,
etc.

As an example, consider the contribution of the squared amplitude in Fig. 3.1 to the
total scattering cross section, as shown in Fig. 3.2. According to the above rule the cross
section receives contributions from the exchanges of two t-channel particles of spin j , each
contributing sj−1. The resulting scattering cross section scales as

σ ∼ s2(j−1). (3.6)

Thus, if the particles exchanged in the t-channel were gluons with spin j = 1, the cross
section would scale as

σgluons ∼ s0. (3.7)

On the basis of rule (3.6) we would expect the cross section due to a two-gluon exchange
to be constant with energy. This is an important observation, which we will soon verify by
explicit calculations.
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78 Energy evolution and leading logarithm-1/x approximation in QCD

p1

p2

l

p1 + l

p2 − l

a

σ1 σ1

σ2 σ2

i i

j j

Fig. 3.3. Onium–onium high energy scattering amplitude at leading order. The arrows on
the quark lines denote the directions of both the particle number flow and the momentum
flow.

Alternatively, if the particles exchanged in the t-channel in Fig. 3.2 were quarks with
spin j = 1/2 then the cross section would scale as

σquarks ∼ 1

s
(3.8)

and would decrease with energy. We see that, according to the above rule, the gluon con-
tribution to the scattering cross section dominates the quark contribution. This conclusion
is certainly in line with our earlier observation in Sec. 2.4.6 that the gluon distribution
dominates in DIS at small x. We see that in high energy processes gluons play a more
important role than quarks.

Let us consider the case when scalar particles are exchanged in the t-channel of Fig. 3.2
(we are now going beyond QCD and are considering a scalar theory). The cross section
would scale as

σscalars ∼ 1

s2
(3.9)

and is also, like the cross section for quark exchanges, small at high energy.
Finally, if spin-2 particles, such as gravitons, are exchanged in the t-channel of Fig. 3.2

then one gets

σgravitons ∼ s2 (3.10)

and the cross section would grow rather fast with energy. Luckily, despite this energy
enhancement, gravity is rather weakly coupled at the energies of modern-day accelerators
and does not contribute significantly to the total cross sections.

Let us now return to QCD and to the high energy scattering of two quarkonia (to which
we will often simply refer to as “onia”). In view of the above rule, and as can be shown
by a simple calculation, at high energy the dominant lowest-order contribution to the QCD
scattering amplitude is due to a t-channel gluon exchange, as shown in Fig. 3.3.

We are working in the center-of-mass frame, where the top onium (along with its quark
and antiquark) in Fig. 3.3 has a large plus light cone component of momentum, while
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3.2 Two-gluon exchange: the Low–Nussinov pomeron 79

the lower onium has a large minus momentum component. Specifically, for simplicity
neglecting the quark masses one may choose the incoming quarks in Fig. 3.3 to be light-
like:

p
μ
1 = (p+

1 ≡ P + = √
s, 0, 0⊥) and p

μ
2 = (0, p−

2 ≡ P − = √
s, 0⊥), (3.11)

using the (+,−,⊥) notation. Note that, in our high energy kinematics, P + and P − are the
two largest momentum scales in the problem; all other momenta are assumed to be much
smaller than P + and P −. This is known as the eikonal approximation.

A simple calculation in the covariant (Feynman) gauge yields the amplitude for the
diagram in Fig. 3.3:

iM0
qq→qq = −ig2(ta)i ′i(t

a)j ′j
1

l2
⊥

ūσ ′
1
(p1 + l)γ μuσ1 (p1) ūσ ′

2
(p2 − l)γμuσ2 (p2). (3.12)

In arriving at Eq. (3.12) we have used the fact that the outgoing quarks are on mass shell,
so that

0 = (p1 + l)2 = p+
1 l− + l2, (3.13)

giving

l− = − l2

p+
1

= − l2

P + ≈ 0. (3.14)

Similarly

l+ = l2

p−
2

= l2

P − ≈ 0 (3.15)

and, therefore,

l2 ≈ −l2
⊥. (3.16)

We see that in the high energy approximation the exchanged gluon has no longitudinal
momentum: we will refer to it as an instantaneous or Coulomb gluon.

To keep only leading powers of P + and P − we use the following trick: we consider
that the spinors of the quark line with the large plus momentum (the upper line in Fig. 3.3)
are chosen in the Lepage and Brodsky (1980) convention while the spinors in the quark
line with the large minus momentum (the lower line in Fig. 3.3) are also chosen in the
Lepage and Brodsky (1980) convention but with the P − and P + momenta interchanged
(see Eqs. (1.50) and (1.51)). Using Table A.1 in Appendix A we see that γ + dominates in
the upper quark line of Fig. 3.3 since it carries a large P + momentum while γ − dominates
in the lower quark line, which carries a large P − momentum. With the help of Table A.1
we then obtain2

M0
qq→qq(�l⊥) = −2g2(ta)i ′i(t

a)j ′j δσ1σ
′
1
δσ2σ

′
2

s

l2
⊥

. (3.17)

2 One may also use standard notation for Dirac spinors (see e.g Peskin and Schroeder (1995)). In this case, neglecting
l compared to p1 and p2, one should use the relation ūσ ′ (p)γ μuσ (p) = 2pμδσσ ′ , which follows from the Gordon
identity, to simplify Eq. (3.12).
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80 Energy evolution and leading logarithm-1/x approximation in QCD

The square of the amplitude in Eq. (3.17) leads to the following high energy cross section:

σ 0
qq→qq = 2α2

s CF

Nc

∫
d2l⊥
(l2

⊥)2
. (3.18)

We see that, in agreement with the rule in Eq. (3.6), the cross section due to two t-channel
gluon exchanges is independent of energy at high energy. This feature of QCD was first
noticed by Low (1975) and Nussinov (1976). The two t-channel gluon exchange cross
section is sometimes called the Low–Nussinov pomeron, since this result was the first
successful attempt to describe hadronic cross sections in the framework of perturbative
QCD: in pre-QCD language hadronic cross sections were described as being due to the
t-channel exchange of a hypothetical particle with the quantum numbers of the vacuum
called the pomeron, named after I. Y. Pomeranchuk (1958). The contribution of the pomeron
to the scattering amplitude is

M ∼ sα(t), (3.19)

where s and t are Mandelstam variables and α(t) is the “angular momentum” of the pomeron,
usually referred to as the pomeron trajectory. The contribution of a single pomeron exchange
to the total cross section is

σtot ∼ sα(0)−1. (3.20)

Here α(0) is the value of the pomeron trajectory at t = 0, which is the point where it
intercepts the angular momentum axis in the (t, α)-plane. Therefore α(0) is referred to as
the pomeron intercept and is sometimes denoted by αP . As one can see from Eq. (3.20),
the pomeron intercept always comes in the combination α(0) − 1: according to a com-
mon notation, we will often refer to α(0) − 1 = αP − 1 as itself the pomeron intercept.
Frequently one uses a linear expansion of the pomeron trajectory near t = 0:

α(t) ≈ α(0) + α′t. (3.21)

The parameter α′ is called the slope of the pomeron trajectory. A tantalizing feature of
strong interactions is that the linear approximation (3.21) actually describes the pomeron
trajectory α(t) rather well at all values of t . This observation gave rise to the development
of string theory, which started out as a candidate theory for strong interactions (see e.g.
Green, Schwarz, and Witten (1987)).

From Eq. (3.18) it is clear that the Low–Nussinov pomeron has intercept α(0) − 1 = 0.
In high energy proton–proton (pp) (and proton–antiproton, pp̄) collisions, analysis of
the experimental data showed that the total cross section grows approximately as follows
(Donnachie and Landshoff 1992):

σ
pp
tot ∼ s0.08. (3.22)

That is, using pre-QCD language, the pomeron intercept αP − 1 = 0.08. Since soft non-
perturbative QCD physics is probably responsible for much of the total pp cross section
observed at many modern-day accelerators, the pomeron with intercept αP − 1 = 0.08 is
usually called the “soft pomeron”.
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3.2 Two-gluon exchange: the Low–Nussinov pomeron 81

1⊥

2⊥

l l

Fig. 3.4. A diagram contributing to the onium–onium high energy scattering cross section
at leading order. The arrows next to the gluon lines indicate the direction of momentum
flow and the vertical straight line denotes the final state cut.

We see that the prediction of Low and Nussinov that αP − 1 = 0, while it does not give
the correct pomeron intercept, is not far from it, in the sense of giving a cross section that
at least does not decrease with energy. (Of course there is no a priori reason to expect a
perturbative calculation to describe the total pp scattering cross section, but it is good to
have at least qualitative agreement between the two.) As we will see below, higher-order
perturbative corrections to the cross section (3.18) generate a positive order-αs contribution
to the αP − 1 = 0 result. Note that the fact that experimental measurement of the total pp

scattering cross section (3.22) gives a result that does not fall off with energy but instead
rises slowly with s, when combined with the above rule for counting powers of s (see (3.6)),
demonstrates that there must exist a spin-1 particle responsible for strong interactions – the
gluon. This is exactly the argument for the existence of gluons mentioned in Sec. 1.1.

The l⊥-integral in Eq. (3.18) has an infrared (IR) divergence. This is natural since
we are calculating a cross section for the scattering of free color charges (quarks). To
make the cross section IR-finite we need to remember that the scattering quarks are part
of the onium wave functions. Suppose that the qq̄ pairs have separations �x1⊥ and �x2⊥ in
transverse coordinate space, though the impact parameter between the two onia has been
integrated out. By summing diagrams with all possible gluon connections to quarks and
antiquarks, one of which is shown in Fig. 3.4, one can then show that the total onium–onium
scattering cross section is

σ onium+onium
tot =

∫
d2x1⊥d2x2⊥

1∫
0

dz1dz2 |�(�x1⊥, z1)|2 |�(�x2⊥, z2)|2σ̂ onium+onium
tot (3.23)

with

σ̂ onium+onium
tot = 2α2

s CF

Nc

∫
d2l⊥
(l2

⊥)2

(
2 − e−i�l⊥·�x1⊥ − ei�l⊥·�x1⊥

)(
2 − e−i�l⊥·�x2⊥ − ei�l⊥·�x2⊥

)
, (3.24)

at the lowest order in αs . Here �(�x⊥, z) is the onium light cone wave function with quark
light cone momentum fraction z. The exact form of the wave function is not important
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1⊥

2⊥

l l

l l

G
⎛
⎝l⊥, l⊥, Y

⎞
⎠

Fig. 3.5. A general representation of the onium–onium scattering cross section at high
energy. The rectangle denotes all leading-ln s corrections to the two-gluon exchange cross
section from Fig. 3.5.

for the moment. The summation and averaging over all appropriate quantum numbers is
implicit in the |�|2 factors in Eq. (3.23).

The l⊥-integral in Eq. (3.24) is now finite; if we average over the directions of �x1⊥ and
�x2⊥ then it can be easily carried out, giving

〈σ̂ onium+onium
tot 〉 = 4πα2

s CF

Nc

x2
<

(
ln

x>

x<

+ 1

)
, (3.25)

where x>(<) = max (min){|�x1⊥|, |�x2⊥|} and 〈· · · 〉 denotes angular averaging.
We will now look for corrections to this lowest-order result.

3.3 The Balitsky–Fadin–Kuraev–Lipatov evolution equation

As discussed in Sec. 3.1, in high energy scattering (or at small Bjorken x) one would like to
sum the longitudinal logarithms, i.e., the powers of αs ln s (or αs ln 1/x). We will denote the
sum of all such corrections to the Born-level onium–onium scattering cross section found
above in Sec. 3.2 by the shaded rectangle in Fig. 3.5.

Generalizing the cross section in Eq. (3.24) we write

σ̂ onium+onium
tot = 2α2

s CF

Nc

∫
d2l⊥d2l′⊥

l2
⊥l

′2
⊥

(
2 − e−i�l⊥·�x1⊥ − ei�l⊥·�x1⊥

)
×
(

2 − e−i�l′⊥·�x2⊥ − ei�l ′
⊥·�x2⊥
)

G
(
�l⊥, �l ′

⊥, Y
)

, (3.26)

where l and l′ are the momenta of the gluon lines on each side of the shaded rectangle,
as illustrated in Fig. 3.5. We also define the rapidity variable Y = ln(s|�x1⊥||�x2,⊥|); it is
important that Y ∼ ln s, though the exact cutoff under the logarithm of the energy is not
important in the leading-logarithmic approximation that we would like to apply here. The
shaded rectangle in Fig. 3.5 brings in a factor G(�l⊥, �l ′

⊥, Y ). The lowest-order expression
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3.3 The BFKL evolution equation 83

(3.24) is recovered by substituting

G
(
�l⊥, �l ′

⊥, Y = 0
)

= G0

(
�l⊥, �l ′

⊥
)

= δ2
(
�l⊥ − �l ′

⊥
)

(3.27)

in Eq. (3.26).

Below we will construct an equation for G
(
�l⊥, �l ′

⊥, Y
)

by analyzing the one-gluon

order-αs corrections to Eq. (3.24) and to Fig. 3.4.

3.3.1 Effective emission vertex

Let us start with the real one-gluon corrections to Fig. 3.4, i.e., corrections where the extra
gluon is present in the final state (the gluon is cut). The difference between the quark–quark
scattering cross section (3.18) and the onium–onium cross section (3.24) is only in the
so-called impact factors, which at the lowest order, considered here, are simply factors like
2 − e−i�l⊥·�x1⊥ − ei�l⊥·�x1⊥ ; see the large parentheses in Eq. (3.26). Thus we will first consider
corrections to the quark–quark high energy scattering amplitude.

All possible real-gluon emission corrections to the quark–quark scattering amplitude of
Fig. 3.3 are shown in Fig. 3.6. In order to extract the leading-ln s contribution we assume that
k+ � P +, k− � P −, where kμ is the momentum of the produced (i.e., final-state) gluon.
If one performs the calculation in the covariant (Feynman) gauge then all the diagrams
in Fig. 3.6 will contribute (Fadin, Kuraev, and Lipatov 1975). Here we will perform the
calculation in the η · A = A+ = 0 light cone gauge. The advantage of this gauge is that in
it diagrams D and E in Fig. 3.6 do not contribute (at high energy). To see this we again
use the same trick and choose the Lepage and Brodsky (1980) convention for spinors for
the upper quark line and the same convention with P − and P + interchanged for the lower
line. Again with the help of Table A.1, one can see that the dominant contribution of each
diagram at high energy comes from the γ +’s in the quark–gluon vertices in the upper quark
line and from the γ −’s in the the quark–gluon vertices in the lower quark line. (For instance,
the numerator of the quark propagator corresponding to the lower line in diagram D gives
(p2 − q) · γ ≈ (1/2)p−

2 γ +, so that, since (γ +)2 = 0, the adjacent vertices can only give
either γ − or γ ⊥; the γ ⊥ contribution is suppressed by powers of P −, though, leaving only
the γ − vertices.) The polarization vector of the outgoing gluon in the A+ = 0 light cone
gauge can be parametrized as

ε
μ
λ (k) =

(
0,

2�ελ
⊥ · �k⊥
k+ , �ελ

⊥

)
(3.28)

with transverse vector �ελ
⊥ = −(1/

√
2) (λ, i). We see that the γ − from the emission vertex of

the gluon carrying momentum k in graphs D and E is multiplied by ε+∗
λ = 0 and therefore

gives zero. We are left with diagrams A, B, and C to calculate.
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84 Energy evolution and leading logarithm-1/x approximation in QCD

Let us start by calculating diagrams B and C. Using the Feynman rules we write for
diagram B (note that ημ = (0, 2, 0⊥))

iMB
qq→qqG = g3(tatc)i ′i(t

c)j ′j ūσ ′
1
(p1 − k + q)ε�∗

λ(k)
p�1 + q�

(p1 + q)2
γ μuσ1 (p1)

× ūσ ′
2
(p2 − q)γ νuσ2 (p2)

−i

q2

(
gμν − ημqν + ηνqμ

η · q

)
. (3.29)

(The colors and polarizations of the incoming and outgoing quarks are labeled in the same
way as in Fig. 3.3.) As in the lowest-order case we note that the outgoing quarks are on
mass shell, so that (p1 − k + q)2 = 0 and (p2 − q)2 = 0. These conditions give

q− = k− + O

(
1

P +

)
, q+ = O

(
1

P −

)
. (3.30)

We see that q2 ≈ −�q 2
⊥ and, therefore, the gluon with momentum q is an instantaneous

(Coulomb) gluon.
Using the Dirac equation we see that the qν-term in the large parentheses in Eq. (3.29),

which postmultiplies the matrix element ūσ ′
2
(p2 − q)γ νuσ2 (p2), is zero. The ην-term in the

gluon propagator of Eq. (3.29) gives ηνūσ ′
2
(p2 − q)γ νuσ2 (p2) = ūσ ′

2
(p2 − q)γ +uσ2 (p2),

which, if one uses the Lepage and Brodsky (1980) convention for spinors with the + and −
momenta interchanged, is suppressed by 1/P −2 in comparison with the leading-order term
arising from ūσ ′

2
(p2 − q)γ −uσ2 (p2). This leaves us with only the gμν-term within the large

parentheses. Therefore ν = − and μ = + gives the dominant contribution in the matrix
elements in Eq. (3.29). Making the approximations (p1 + q) · γ ≈ (1/2)P +γ − and (p1 +
q)2 ≈ P +q− in the quark propagator, and using Table A.1 along with Eq. (3.30), yields

iMB
qq→qqG = 4ig3(tatc)i ′i(t

c)j ′j δσ1σ
′
1
δσ2σ

′
2

s

q2
⊥

�ελ∗
⊥ · �k⊥
k2
⊥

. (3.31)

A similar calculation for diagram C in Fig. 3.6 would readily show that its contribution
MC

qq→qqG is different from MB
qq→qqG in Eq. (3.31) by an overall minus sign and by a change

in the order of the color matrices: tatc → t cta . The sum of the two graphs is

MB
qq→qqG + MC

qq→qqG = −4ig3f abc(tb)i ′i(t
c)j ′j δσ1σ

′
1
δσ2σ

′
2

s

q2
⊥

�ελ∗
⊥ · �k⊥
k2
⊥

. (3.32)

It is important to note that, for an Abelian theory such as QED, the sum of diagrams B
and C would be zero, owing to the absence of color matrices. This makes physical sense:
as we will see below in more detail, the high energy approximation used above implies that
each quark moves without recoil along its light cone throughout the scattering process. For
an electron this would mean that high energy scattering does not affect it at all: it does not
acquire any acceleration. Therefore, without acceleration or deceleration the electron will
not radiate; this statement is equivalent to the cancellation of graphs B and C in QED. In
non-Abelian theories such as QCD, radiation is caused not only by acceleration but also
by color rotation. Thus the recoilless motion of the quarks does not mean the absence of
radiation: what happens in diagrams B and C in Fig. 3.6 is that the color of the upper
quark line is rotated by the t-channel gluon exchange interaction with the lower quark line.
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kk − q

q
k

kq
q

k k
q

BA

EDC

p2

p2

p1

q
a

c

a

c

p1 − k + q

p1 p1 − k + q

μ

ν p2 − q
a

c

b
p1

p2

Fig. 3.6. The effective real-gluon emission vertex (the Lipatov vertex), defined as the sum
of all gluon emission diagrams. The triple gluon vertex is denoted by the smaller solid
circle while the Lipatov vertex is shown by the larger solid circle.

Because of this color flip, diagrams B and C no longer cancel, which means that, unlike in
QED, the radiations from the upper quark before (C) and after (B) the interaction do not
cancel. Thus, we see that in QCD the gluon radiation can be entirely due to color rotation:
this is an essentially non-Abelian feature of the theory.

We now need to calculate the amplitude represented by diagram A in Fig. 3.6. Applying
the Feynman rules we write

iMA
qq→qqG = g3f abc(tb)i ′i(t

c)j ′j ε∗
λρ(k) ūσ ′

1
(p1 − k + q)γ μ′

uσ1 (p1)

× ūσ ′
2
(p2 − q)γ ν ′

uσ2 (p2)
[
(k − 2q)ρgμν + (q − 2k)νgμρ + (q + k)μgνρ

]
× 1

q2

(
gνν ′ − ηνqν ′ + ην ′qν

η · q

)
1

(k − q)2

(
gμμ′ − ημ(k − q)μ′ + ημ′(k − q)μ

η · (k − q)

)
.

(3.33)

(The Lorentz indices, while not explicitly shown in Fig. 3.6A, should be self-evident.)
The evaluation proceeds along lines similar to the calculation of graphs B and C. We
first note that in the q-line propagator the qν ′ -term is zero by the Dirac equation (current
conservation), while the ην ′-term is strongly suppressed at high energy (see Table A.1):
this leaves only the gνν ′-term to contribute. As a side observation, we note that the A+ = 0
light cone gauge is equivalent to the covariant (Feynman) gauge for the lower part of the
diagrams in Fig. 3.6. This is a useful tool, which we will employ again later.

Again, using Table A.1 and the Lepage and Brodsky (1980) convention for spinors
(with + and − momenta interchanged), we see that γ − gives the leading contribution in
the matrix element ūσ ′

2
(p2 − q)γ ν ′

uσ2 (p2). Since in the A+ = 0 light cone gauge we have
ε+
λ = 0 and since the propagator of the k − q line is also zero when either of its (upper)

indices is +, we conclude that only the gμρ term in the triple-gluon vertex contributes at
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86 Energy evolution and leading logarithm-1/x approximation in QCD

high energy. Similarly, γ + gives the leading contribution in ūσ ′
1
(p1 − k + q)γ μ′

uσ1 (p1).
Finally, since we have taken care to have the external lines carry the same momenta (and
other quantum numbers) in all the graphs in Fig. 3.6, we see that Eq. (3.30) applies for
diagram A as well. Applying all the above simplifications, we rewrite Eq. (3.33) as

MA
qq→qqG = 4ig3f abc(tb)i ′i(t

c)j ′j δσ1σ
′
1
δσ2σ

′
2

s

q2
⊥(�k⊥ − �q⊥)2

�ελ∗
⊥ · (�k⊥ − �q⊥). (3.34)

Adding all the diagrams in Fig. 3.6 yields

Mqq→qqG = 2ig2(tb)i ′i(t
c)j ′j δσ1σ

′
1
δσ2σ

′
2

s

q2
⊥(�k⊥ − �q⊥)2

�ελ∗
⊥ · ��abc

⊥ , (3.35)

where we have defined an effective vertex

��abc
⊥ = 2gf abc

[
�k⊥ − �q⊥ − (�k⊥ − �q⊥)2

k2
⊥

�k⊥

]
. (3.36)

The vertex ��abc
⊥ was first derived in Fadin, Kuraev, and Lipatov (1975, 1977). In the

literature it is usually referred to as the Lipatov vertex. It is pictured on the left-hand side
of Fig. 3.6, where it is denoted by the large solid circle. The origin of this notation can be
seen in Eq. (3.35), which one can regard as containing the propagators of the two t-channel
gluon lines (�q2

⊥ and (�k⊥ − �q⊥)2), the color factors and Kronecker deltas coming from the
quark lines, an overall factor of s characteristic of the leading high energy amplitudes, and
the vertex ��abc

⊥ . We see that all five diagrams A–E in Fig. 3.6 can be thought of as one
diagram with an effective Lipatov vertex ��abc

⊥ instead of the triple-gluon vertex.
We have to add here that there are gauges in which diagrams B through E in Fig. 3.6 do

not contribute in the high energy limit, so that the amplitude is simply given by diagram A.
An example would be the A0 = 0 gauge.

Squaring the amplitude in Eq. (3.35), we write the corresponding cross section as

σqq→qqG = 2α3
s CF

π2

∫
d2k⊥d2q⊥

k2
⊥q2

⊥(�k⊥ − �q⊥)2

P +∫
�k2
⊥/P −

dk+

k+ . (3.37)

As in the derivation of the DGLAP evolution equations in Chapter 2, we obtain a logarithmic
longitudinal integral – the integral over k+ in the above expression. Since Eq. (3.37) was
derived in the high energy approximation with P + � k+, in order to obtain the leading
logarithmic (ln s) contribution we put P + as the upper limit of the k+ integral (the same
applies to the lower limit of this integral): defining the rapidity of the gluon by3

y = ln
P −

k− , (3.38)

3 The standard rapidity definition is y = (1/2) ln(k+/k−) in the center-of-mass frame. Our definition here is different by
an overall shift, making the rapidity equal to zero in the direction of one of the onia and equal to Y = ln(s/k2

⊥) in the
direction of the other.
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we rewrite the gluon production cross section as

σqq→qqG = 2α3
s CF

π2

∫
d2k⊥d2q⊥

k2
⊥q2

⊥(�k⊥ − �q⊥)2

Y∫
0

dy. (3.39)

Here Y = ln s/k2
⊥ is the total rapidity interval between the colliding quarks; since our goal

is to track the leading-ln s contribution to the cross section, this Y is for us not different
from the Y = ln(s|�x1,⊥||�x2⊥|) defined earlier in the chapter. The difference between the
two does not contain ln s and can be disregarded at degree of our precision. For simplicity,
every time we discuss leading-ln s asymptotics we will assume that Y = ln(s/m2

⊥), with m⊥
some transverse momentum scale the exact value of which is irrelevant in the leading-ln s

approximation.
Just as for the quark–quark scattering in Eq. (3.18), the cross section in Eq. (3.37) has

IR divergences at �q⊥ = 0 and �q⊥ = �k⊥ since we are considering free quark scattering.
Generalizing this result to onium–onium scattering by summing over all interactions of
quarks and antiquarks, we include the impact factors that regulate these divergences,4

obtaining, after relabeling the momenta to match those in Eq. (3.26),

σ̂ onium+onium
1,real = 2α2

s CF

Nc

∫
d2l⊥d2l′⊥

l2
⊥l

′2
⊥

(
2 − e−i�l⊥·�x1⊥ − ei�l⊥·�x1⊥

)
×
(

2 − e−i�l′⊥·�x2⊥ − ei�l′⊥·�x2⊥
)

Greal
1

(
�l⊥, �l ′

⊥, Y
)

, (3.40)

where

Greal
1

(
�l⊥, �l ′

⊥, Y
)

= αsNc

π2
Y

1

(�l⊥ − �l ′
⊥)2

. (3.41)

A contribution to Eq. (3.40) is shown in Fig. 3.7; the circles denote Lipatov vertices.
(Indeed, one has to sum the diagram in Fig. 3.7 over all connections of t-channel gluons to
all quark lines to obtain Eq. (3.40).)

We have made the first step in understanding the structure of the shaded rectangle in
Fig. 3.5 by calculating the lowest-order real-emission correction to Fig. 3.4. Our results so
far can be written as (see Eqs. (3.26) and (3.27))

G
(
�l⊥, �l ′

⊥, Y
)

= G0

(
�l⊥, �l ′

⊥
)

+ Greal
1

(
�l⊥, �l ′

⊥, Y
)

+ · · ·

= G0

(
�l⊥, �l ′

⊥
)

+ αsNc

π2

Y∫
0

dy

∫
d2q⊥

(�l⊥ − �q⊥)2
G0

(
�q⊥, �l ′

⊥
)

+ · · · (3.42)

While at the moment Eq. (3.42) may seem like a trivial rewriting of Eq. (3.41), it will be
useful later.

4 The divergence at k⊥ = 0 still remains in the real-gluon contribution to the total cross section; it will be discussed
further in Chapter 8 when we consider gluon production.
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1⊥

2⊥

l l

l l

Fig. 3.7. The sum of the real one-gluon corrections to the two-gluon exchange cross section
of Fig. 3.4 represented with the help of the effective Lipatov vertices from Fig. 3.6, denoted
by the solid circles.

1⊥

2⊥

Fig. 3.8. An example of a leading-ln s order-αs virtual correction to the Born amplitude.

3.3.2 Virtual corrections and reggeized gluons

To complete our calculation of the order-αs corrections to the Born-level onium–onium
scattering cross section in Eq. (3.24) we need to include the virtual corrections, i.e., diagrams
where the extra gluon is not present in the final state. In the amplitude squared we are
interested in interference terms between the leading-order single-gluon exchange amplitude
of Fig. 3.3 and order-α2

s diagrams including one-gluon virtual corrections to it: an example
of such a diagram is shown in Fig. 3.8.

Diagrams representing the main types of virtual correction to quark–quark scattering
are shown in Fig. 3.9. (All other virtual corrections may be obtained by mirror reflections
of the graphs in Fig. 3.9.) As before we assume that all momenta are much smaller than
P + and P −.
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F G H

KJI

q q − l

a b

a b

Fig. 3.9. The main classes of the leading-order virtual corrections to the quark–quark
scattering amplitude from Fig. 3.3. The small solid circles denote three- and four-gluon
vertices.

Our goal is to find the order-α2
s amplitude in Fig. 3.9. Instead of a lengthy direct calcula-

tion we use the following double-subtracted dispersion relation for scattering amplitudes:5

M(s, t) = M(s = 0, t) + s∂sM(s = 0, t)

+ s2

π

⎡
⎣ ∞∫

4m2

ds ′ ImsM(s ′, t)
s ′2(s ′ − s)

+
∞∫

4m2−t

du′ ImuM(u′, t)(
4m2 − t − u′)2 (u′ − u)

⎤
⎦ (3.43)

where ∂s denotes a partial derivative with respect to s. The first term in the brackets in
Eq. (3.43) contains a discontinuity in the s-channel, while the second term has a dis-
continuity in the u-channel. (To underscore this, we have relabeled the argument of the
amplitude M in the second term to show explicitly its dependence on u and have replaced
s ′ by 4m2 − t − u′ in the denominator of the second term.) Above, having in mind the
qq → qq scattering amplitude, we have assumed here that quarks have a small mass m,
such that 4m2 is the particle production threshold in both the s- and the u-channel.

We see from Eq. (3.43) that in order to find the order-α2
s amplitude in Fig. 3.9 we need the

diagrams that have an imaginary part. Therefore we do not need diagrams H–K in Fig. 3.9
since those lead to amplitudes that are purely real (they cannot be cut). The amplitudes given
by diagrams F and G have s- and u-channel discontinuities correspondingly. Denoting them

5 The dispersion relations used here are derived in Appendix B. Their derivation can also be found in Forshaw and Ross
(1997), in Collins, P. D. B. (1977), and, in a slightly different form, in Weinberg (1996).
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MF
qq→qq and MG

qq→qq we note that, owing to the optical theorem, in the forward scattering
case we would have (see e.g. Peskin and Schroeder (1995))

Im MF
qq→qq (forward) = sσ 0

qq→qq ; (3.44)

here we have averaged over the incoming quarks’ quantum numbers in the forward ampli-
tude. The cross section σ 0

qq→qq was calculated above and is given by Eq. (3.18). The
scattering in Fig. 3.9 is not forward but we can easily correct Eq. (3.44) for that and write

Im MF
qq→qq =

∫
d2q⊥

(4π )2s

∑
M0

qq→qq (�q⊥)
[
M0

qq→qq(�q⊥ − �l⊥)
]∗

, (3.45)

where the sum runs over the colors and polarizations of the internal quark lines in graph F
and �l⊥ is the net momentum transfer between the quarks, as shown in Fig. 3.9. Working in
the covariant (∂μAμ = 0) Feynman gauge we substitute the one-gluon exchange amplitude
M0

qq→qq(�q⊥) from Eq. (3.17) into Eq. (3.45), obtaining

Im MF
qq→qq = 4α2

s (tbta)i ′i(t
bta)j ′j δσ1σ

′
1
δσ2σ

′
2

∫
d2q⊥

q2
⊥(�q⊥ − �l⊥)2

s. (3.46)

(Here the colors and helicities of the external quark lines are labeled in the same way as in
Eq. (3.17) and as shown in Fig. 3.3.)

The imaginary part of the amplitude MG
qq→qq is obtained from Im MF

qq→qq by inter-
changing s and u and the color indices a and b along one quark line:

Im MG
qq→qq = 4α2

s (tbta)i ′i(t
atb)j ′j δσ1σ

′
1
δσ2σ

′
2

∫
d2q⊥

q2
⊥(�q⊥ − �l⊥)2

u. (3.47)

Substituting Eqs. (3.46) and (3.47) into Eq. (3.43), we find the total order-α2
s amplitude

for qq → qq scattering:

M1
qq→qq(s, t = −l2

⊥)

= M1
qq→qq(s = 0, t) + s∂sM

1
qq→qq (s = 0, t) + 4α2

s s
2

π
δσ1σ

′
1
δσ2σ

′
2

∫
d2q⊥

q2
⊥(�q⊥ − �l⊥)2

(tbta)i ′i

×
⎡
⎣(tbta)j ′j

∞∫
4m2

ds ′ 1

s ′(s ′ − s)
+ (tatb)j ′j

∞∫
4m2−t

du′ u′(
4m2 − t − u′)2 (u′ − u)

⎤
⎦ . (3.48)

Note that the s ′-integral in Eq. (3.48) is divergent for s > 4m2 owing to a singularity at
s ′ = s and should be understood as the ε → 0 limit of the regulated expression obtained
by replacing s by s + iε in it and integrating. The u′-integral is regulated in a similar way.

We require the high energy asymptotics of the amplitude M1
qq→qq(s, t). Moreover, we

need the leading-ln s contribution; noting that at high energy u ≈ −s and neglecting s ′ � s

and 4m2 − t � u′ � |u|, while cutting off the s ′-integral by s and the u′-integral by |u| ≈ s
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in the UV to obtain the leading logarithms of s, yields

M1
qq→qq (s, t = −l2

⊥) = −4α2
s s

π
δσ1σ

′
1
δσ2σ

′
2

∫
d2q⊥

q2
⊥(�q⊥ − �l⊥)2

× (tbta)i ′i

[
(tbta)j ′j ln

( −s

4m2

)
− (tatb)j ′j ln

(
s

4m2 − t

)]
. (3.49)

The factor ln(−s) arises from the exact integration over s ′ in (3.48); it reflects the fact
that this amplitude has a branch cut at s > 0. (Note that integration over u′ does not
lead to such singularities.) In arriving at Eq. (3.49) we have dropped M1

qq→qq (s = 0, t) +
s∂sM

1
qq→qq (s = 0, t), since these terms grow with energy as at most s, which is subleading

compared with the s ln s scaling of the leading part of the term that we have kept on the
right-hand side of Eq. (3.49).

We see from Eq. (3.49) that, as in real-gluon emission, the only reason why the diagrams
F and G do not cancel is the presence of color factors: in QED the leading logarithms of
energy would vanish for graphs F and G taken together. Keeping ln s ∼ Y terms only we
obtain

M1
qq→qq = 2α2

s Ncs

π
(ta)i ′i(t

a)j ′j δσ1σ
′
1
δσ2σ

′
2

∫
d2q⊥

q2
⊥(�q⊥ − �l⊥)2

Y. (3.50)

Note that the color factors have become the same as for the single-gluon exchange amplitude
(3.17): we see that the two exchanged gluons in diagrams F and G are in the color octet
state. We also see that when the two t-channel gluons are in the color singlet state, as in
Fig. 3.4 and Eq. (3.24), no logarithms of the energy are generated, whereas when the two
gluons are in the color octet state one gets a ln s contribution, as we have just seen.

Comparing Eq. (3.50) and Eq. (3.17) we can rewrite the former as

M1
qq→qq(�l⊥) = M0

qq→qq (�l⊥) ωG(l⊥) Y, (3.51)

where we have defined the gluon Regge trajectory

ωG(l⊥) = −αsNc

4π2

∫
d2q⊥

l2
⊥

q2
⊥(�q⊥ − �l⊥)2

. (3.52)

One can show further that virtual corrections to the amplitude in Eq. (3.17) that are of
higher order in αs , bringing in leading logarithms of s, lead to a simple exponentiation of
the result (3.51), so that one can replace the gluon propagator (3.17) by (Fadin, Kuraev, and
Lipatov 1975, 1976, 1977; see Sec. 3.3.5 below)

igμν

l2
⊥

→ igμν

l2
⊥

eωG(l⊥)Y ∼ igμν

l2
⊥

sωG(l⊥). (3.53)

As discussed in Section 3.2, the propagator (3.53) can be viewed as describing the exchange
of a particle with spin j = 1 + ωG(l⊥). We will refer to this “quasi-particle” as a reggeized
gluon. It is given by the sum of all leading-ln s virtual corrections to a single-gluon exchange
and is illustrated in Fig. 3.10. We will denote reggeized gluons by a thick corkscrew line,
as shown in Fig. 3.10.
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92 Energy evolution and leading logarithm-1/x approximation in QCD

Fig. 3.10. Reggeized gluon (bold corkscrew line) represented as the sum of all leading-ln s

corrections to the single-gluon exchange amplitude for qq → qq scattering.

To find the order-αs virtual correction to the two-gluon exchange cross section, we
have to consider the interference between the lowest-order amplitude in Fig. 3.3 and the
amplitude in Fig. 3.9:

M1
qq→qq

(
M0

qq→qq

)∗ + M0
qq→qq

(
M1

qq→qq

)∗ = |M0
qq→qq |22ωG(l⊥)Y. (3.54)

The correction contributing to the shaded rectangle in Fig. 3.5 is then

Gvirtual
1

(
�l⊥, �l ′

⊥, Y
)

= G0

(
�l⊥, �l ′

⊥
)

2ωG(l⊥)Y. (3.55)

Equation (3.55) resums diagrams like that shown in Fig. 3.8. Using (3.55) we can now
include all order-αs corrections in Eq. (3.42), turning it into

G
(
�l⊥, �l ′

⊥, Y
)

= G0

(
�l⊥, �l ′

⊥
)

+ αsNc

π2

Y∫
0

dy

∫
d2q⊥

(�l⊥ − �q⊥)2

×
[
G0

(
�q⊥, �l ′

⊥
)

− l2
⊥

2q2
⊥

G0

(
�l⊥, �l ′

⊥
)]

+ O(α2
s ). (3.56)

We will now discuss how to generalize this result to all orders in αs .

3.3.3 The BFKL equation

The shaded rectangle in Fig. 3.5 can be written as a sum of gluon corrections order by order
in αs :

G
(
�l⊥, �l ′

⊥, Y
)

=
∞∑

m=0

Gm

(
�l⊥, �l ′

⊥, Y
)

, (3.57)

where each Gm is of order αm
s , where αs is the coupling constant. One can readily see

that Eq. (3.56) represents the first (order-αs) iteration for the solution of the following
equation:

∂G
(
�l⊥, �l ′

⊥, Y
)

∂Y
= αsNc

π2

∫
d2q⊥

(�l⊥ − �q⊥)2

[
G
(
�q⊥, �l ′

⊥, Y
)

− l2
⊥

2q2
⊥

G
(
�l⊥, �l ′

⊥, Y
)]

(3.58)
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C.C.

l

l

l l

G l⊥, l⊥,Y

q
l l

l l

G ⊥, l⊥,Y

q q

∂
∂Y

l l

l l

G l⊥, l⊥,Y

Fig. 3.11. Diagrammatic representation of the BFKL evolution equation (3.58). The second
diagram on the right-hand side represents virtual corrections; c.c. denotes the complex
conjugate contribution.

with initial condition

G
(
�l⊥, �l ′

⊥, Y = 0
)

= δ2
(
�l⊥ − �l ′

⊥
)

. (3.59)

In fact, as was shown by Fadin, Kuraev, and Lipatov (1977) and by Balitsky and Lipatov
(1978), Eq. (3.58) correctly resums all leading-ln s corrections to the Born-level onium–
onium scattering amplitude of Fig. 3.4. This is the Balitsky–Fadin–Kuraev–Lipatov (BFKL)
evolution equation (Fadin, Kuraev, and Lipatov 1977, Balitsky and Lipatov 1978). The
object G(�l⊥, �l′⊥, Y ) is called the Green function of the BFKL equation: it describes the
propagation of two t-channel gluons over the rapidity interval Y .

The BFKL equation for the Green function G(�l⊥, �l ′
⊥, Y ) is represented graphically in

Fig. 3.11. It shows that in one step of BFKL evolution the Green function gets corrected
either by real-gluon emissions (summarized in the first diagram on the right-hand side by
the square of a Lipatov vertex) or by virtual corrections on either of the two t-channel
gluon lines (represented by the second diagram on the right-hand side of Fig. 3.11 together
with its complex conjugate). Iterations of the corrections shown in Fig. 3.11 lead to the
representation of BFKL evolution by “ladder” diagrams such as those shown in Fig. 3.12.

By performing the calculation at order α3
s of the onium–onium scattering amplitude we

have obtained two main ingredients that describe high energy scattering in the leading-
ln s approximation: the reggeized gluon and and the new effective (Lipatov) vertex of
Eq. (3.36). Fadin, Kuraev, and Lipatov (1975, 1976, 1977) proved that the general diagram
contributing to the high energy amplitude at the leading-ln s level can be written as a sum
over the produced gluons of the simple ladder-type diagram shown in Fig. 3.12. In this
diagram, each vertex is of the type (3.36), each t-channel gluon is a reggeized gluon with
propagator (3.53), while all the produced (s-channel) gluons are the regular gluons of the
QCD Lagrangian. We are not going to reproduce here the original proof of the BFKL
equation. Instead we will rederive this equation in the next chapter in a more rigorous way
using LCPT: for a complete derivation using the conventional techniques outlined here we
refer the reader to Lipatov (1997, 1999), Del Duca (1995), or Forshaw and Ross (1997).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


94 Energy evolution and leading logarithm-1/x approximation in QCD

Fig. 3.12. Representation of BFKL evolution as a ladder diagram with effective Lipatov
vertices (large solid circles) and reggeized gluons (bold corkscrew lines).

Comparing Fig. 3.12 with Fig. 2.25 we see that both the DGLAP and the BFKL equations
effectively resum ladder diagrams, though the “rungs” of the two ladders and the vertices
should be understood differently. (Of course, Fig. 2.25 was used to illustrate DLA DGLAP,
which is contained in BFKL evolution, as we will shortly see: however, a general DGLAP
evolution can also be represented by a ladder diagram resulting from iteration of the
DGLAP splitting functions. Unlike the BFKL ladder, the DGLAP ladder would include
quarks.) Another major difference between the DGLAP and BFKL ladders is the kinematics
of the produced partons. As we saw in Eq. (2.72), the partons in DGLAP evolution are
strongly ordered in their transverse momenta, while there is no ordering in their longitudinal
momenta. In the BFKL case the kinematics is opposite: it is the longitudinal momenta that
are strongly ordered, while there are no constraints on the transverse momenta. One can
see this from our derivation of one iteration of the BFKL equation, presented above: we
assumed that the plus components of the momenta of all gluons in Figs. 3.6 and 3.9 are
much smaller than P +, while the minus components are much smaller than P −. At the
same time we did not impose any constraints on the transverse momenta of the gluons in
Figs. 3.6 and 3.9. If the momenta of the gluons in the ladder are labeled k

μ
1 , k

μ
2 , . . . , k

μ
n (as

shown in Fig. 3.13), the BFKL kinematics corresponds to

P + � k+
1 � k+

2 � · · · � k+
n , (3.60a)

k−
1 � k−

2 � · · · � k−
n � P −, (3.60b)

k1⊥ ∼ k2⊥ ∼ · · · ∼ kn⊥. (3.60c)

The kinematics in Eqs. (3.60) is known as the multi-Regge kinematics and is also sometimes
referred to as the multi-peripheral model. It is illustrated by Fig. 3.13. Since the first two
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k1⊥, y1

k2⊥, y2

k3⊥, y3

kn⊥, yn

kn−1⊥, yn−1

P+

P−

Fig. 3.13. A scattering amplitude the square of which gives the BFKL ladder diagram of
Fig. 3.12. The produced gluons have multi-Regge kinematics.

of Eqs. (3.60) imply in terms of rapidities that

Y � y1 � y2 � · · · � yn � 0, (3.61)

where yi , the rapidity of the ith produced gluon, is defined in Eq. (3.38), we see that the
multi-Regge kinematics corresponds to the situation where the produced gluons uniformly
cover the whole available rapidity interval. Note that owing to this property, the BFKL
approach gives us the possibility to calculate the exclusive production cross section for any
given number of gluons in the multi-Regge kinematics.

To better understand the dynamics resulting from the BFKL evolution, let us now find
the solution of the BFKL equation.

3.3.4 Solution of the BFKL equation

To find the general solution of Eq. (3.58) we need to find eigenfunctions of its integral
kernel KBFKL, defined by∫

d2q⊥KBFKL(l, q)f (�q⊥) ≡ 1

π

∫
d2q⊥

(�l⊥ − �q⊥)2

[
f (�q⊥) − l2

⊥
2q2

⊥
f (�l⊥)

]
(3.62)

for an arbitrary function f (�q⊥). The BFKL kernel (3.62) is conformally invariant. There-
fore, one would expect that its set of eigenfunctions consists of powers of the transverse
momentum times the complex exponentials of an integer number multiplying the azimuthal
angle:

l
2(γ−1)
⊥ einφl (3.63)

with γ an arbitrary complex number (analogous to the DGLAP anomalous dimension).
Here φl is the angle between the vector �l⊥ and some chosen axis in the transverse plane,
and n is an integer. To see that the functions in Eq. (3.63) are indeed BFKL eigenfunctions
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96 Energy evolution and leading logarithm-1/x approximation in QCD

we need to find the action of the BFKL kernel on these functions, that is, we need to evaluate∫
d2q⊥KBFKL(l, q) q

2(γ−1)
⊥ einφq

= 1

π

∫
d2q⊥

(�l⊥ − �q⊥)2

[
q

2(γ−1)
⊥ einφq − l2

⊥
2q2

⊥
l
2(γ−1)
⊥ einφl

]
. (3.64)

Note that the BFKL equation (3.58) has IR singularities both in the real (first) and virtual
(second) terms on its right-hand side. Indeed, the first term is singular at �q⊥ = �l⊥, while
the second is singular both at �q⊥ = �l⊥ and at �q⊥ = 0. As can also be seen from Eq. (3.58)
the singularities cancel each other, making the result of the integration IR-finite.

To evaluate (3.64) we first note that6

1

q2
⊥(�l⊥ − �q⊥)2

= 1

q2
⊥
[
q2

⊥ + (�l⊥ − �q⊥)2
] + 1

(�l⊥ − �q⊥)2
[
q2

⊥ + (�l⊥ − �q⊥)2
] , (3.65)

so that we obtain, using the substitution �q⊥ → �l⊥ − �q⊥ in the first term,∫
d2q⊥

q2
⊥(�l⊥ − �q⊥)2

= 2
∫

d2q⊥

(�l⊥ − �q⊥)2
[
q2

⊥ + (�l⊥ − �q⊥)2
] . (3.66)

After a little more algebra Eq. (3.64) can be written as∫
d2q⊥KBFKL(l, q) q

2(γ−1)
⊥ einφq

= 1

π

∫
d2q⊥

{
q

2(γ−1)
⊥ einφq

(�l⊥ − �q⊥)2
− l

2γ
⊥ einφl

q2
⊥

[
1

(�l⊥ − �q⊥)2
− 1

q2
⊥ + (�l⊥ − �q⊥)2

]}
. (3.67)

Taking l
2(γ−1)
⊥ einφl outside the integral we obtain∫

d2q⊥KBFKL(l, q)q2(γ−1)
⊥ einφq = χ (n, γ )l2(γ−1)

⊥ einφl , (3.68)

where

χ (n, γ ) =
∞∫

0

dt

⎡
⎣ 1

2π

2π∫
0

dφq

1 + t − 2
√

t cos(φq − φl)
tγ−1ein(φq−φl )

−1

t

(
1

|t − 1| − 1√
4t2 + 1

)⎤⎦ (3.69)

with t = q2
⊥/l2

⊥. In arriving at Eq. (3.69) we have used Eqs. (A.13) and (A.15) from
appendix section A.2 to do the angular integration of the second term in Eq. (3.67).

We see from Eq. (3.68) that l
2(γ−1)
⊥ einφl is indeed an eigenfunction of the BFKL kernel

KBFKL, with χ (n, γ ) the corresponding eigenvalue.

6 Our evaluation of the BFKL eigenvalue follows the strategy outlined in the review article by Del Duca (1995).
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3.3 The BFKL evolution equation 97

To perform the remaining angular integral in Eq. (3.69) we define a new complex variable
z = ei(φq−φl ) and write the integral as

i

2π
√

t

∮
dz

tγ−1z|n|(
z − √

t
)(

z − 1√
t

) , (3.70)

where the z-integral runs clockwise along a unit circle around the origin in the complex
z-plane. To arrive at Eq. (3.70) we also noticed that the angular integral in Eq. (3.69) is an
even function of n (and hence is a function of |n|), so that, to simplify the z-integration in
Eq. (3.70), we can replace n by |n|. Performing the z-integral in Eq. (3.70) by the method
of residues, we obtain for Eq. (3.69)

χ (n, γ ) =
∞∫

0

dt

[
θ (1 − t)

tγ−1+|n|/2

1 − t
+ θ (t − 1)

tγ−1−|n|/2

t − 1
− 1

t

(
1

|t − 1| − 1√
4t2 + 1

)]
.

(3.71)

Employing the variable substitution t → 1/t for t > 1, we can rewrite Eq. (3.71) as

χ (n, γ ) =
1∫

0

dt
tγ−1+|n|/2

1 − t
+

1∫
0

dt
t−γ+|n|/2

1 − t
− 2

1∫
0

dt

1 − t
−

1∫
0

dt

t
+

∞∫
0

dt

t
√

4t2 + 1
.

(3.72)

Regulating the last two integrals in Eq. (3.72) by multiplying their integrands by t ε , per-
forming the integrations, and taking the limit ε → 0 one can see that they cancel each other.
For the first three integrals in (3.72) we use the integral representation of the logarithmic
derivative of the gamma function (see e.g. Gradshteyn and Ryzhik (1994), formula 8.361.7),

ψ(z) = d

dz
ln �(z) =

1∫
0

dt
tz−1 − 1

t − 1
+ ψ(1), Re z > 0, (3.73)

to write (Balitsky and Lipatov 1978)

χ (n, γ ) = 2ψ(1) − ψ

(
γ + |n|

2

)
− ψ

(
1 − γ + |n|

2

)
. (3.74)

Note that the sum of integrals in Eq. (3.72) gives a finite answer only for 0 < Re γ < 1.
Therefore, strictly speaking, the functions l

2(γ−1)
⊥ einφl are the eigenfunctions of the BFKL

kernel with eigenvalues χ (n, γ ), (3.74), only for 0 < Re γ < 1.
Expanding the general solution of the BFKL equation (3.58) over the eigenfunc-

tions of the BFKL kernel and using the fact that the BFKL Green function is symmet-

ric, G
(
�l⊥, �l ′

⊥, Y
)

= G
(
�l ′
⊥, �l⊥, Y

)
, which follows from its definition (see Fig. 3.5 and

Eq. (3.26)), we write

G
(
�l⊥, �l ′

⊥, Y
)

=
∞∑

n=−∞

a+i∞∫
a−i∞

dγ

2πi
Cn,γ (Y ) l

2(γ−1)
⊥ l′2(γ ∗−1)

⊥ ein(φ−φ′), (3.75)
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98 Energy evolution and leading logarithm-1/x approximation in QCD

where the Cn,γ (Y ) are some unknown functions, γ ∗ is the complex conjugate of γ , and φ

and φ′ are the angles between �l⊥ and �l ′
⊥ and some arbitrary axis in the transverse plane.

The integral over γ runs along a contour which is a straight line parallel to the imaginary
axis in the γ -plane, defined by Re γ = a such that 0 < a < 1.

Substituting Eq. (3.75) into Eq. (3.58) and using the eigenvalues from Eq. (3.74) we find

Cn,γ (Y ) = C0
n,γ exp

{
αsNc

π
χ (n, γ )Y

}
, (3.76)

where the coefficient C0
n,γ is fixed by the initial condition (3.59):

C0
n,γ = 1

π
. (3.77)

The initial condition (3.59) also fixes a as 1/2. Using this along with Eqs. (3.76) and (3.77),
in Eq. (3.75) we obtain the solution of the BFKL equation (3.58):

G
(
�l⊥, �l ′

⊥, Y
)

=
∞∑

n=−∞

1/2+i∞∫
1/2−i∞

dγ

2π2i
exp

{
αsNc

π
χ (n, γ )Y

}
l
2(γ−1)
⊥ l′2(γ ∗−1)

⊥ ein(φ−φ′).

(3.78)

Since the integration contour in Eq. (3.78) runs along the Re γ = 1/2 line, if we define

γ = 1

2
+ iν (3.79)

with real ν we can rewrite Eq. (3.78) as

G
(
�l⊥, �l ′

⊥, Y
)

=
∞∑

n=−∞

∞∫
−∞

dν

2π2
exp

{
αsNc

π
χ (n, ν)Y

}
l−1+2iν
⊥ l′−1−2iν

⊥ ein(φ−φ′), (3.80)

where

χ (n, ν) = 2ψ(1) − ψ

(
1 + |n|

2
+ iν

)
− ψ

(
1 + |n|

2
− iν

)
. (3.81)

Note that Eqs. (3.81) and (3.74) are related by the substitution (3.79).
Unfortunately an exact analytic evaluation of Eq. (3.80) does not appear to be feasible.

We will therefore construct approximate solutions below.

Diffusion approximation Consider the case l⊥ ∼ l′⊥, i.e., the two transverse momentum
scales involved in the problem are not very different from each other. To evaluate the ν-
integral in Eq. (3.80) we will now employ the saddle point method, which we have already
used in Sec. 2.4.6. A simple analysis of the saddle points of the function χ (n, ν) at ν = 0
allows one to conclude that at high energy, i.e., large rapidity Y , the dominant contribution
to the amplitude is given by the n = 0 term in the sum in Eq. (3.80), as χ (n = 0, ν = 0) >
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χ (n �= 0, ν = 0). We will therefore keep only the n = 0 term in Eq. (3.80) and write

G
(
�l⊥, �l ′

⊥, Y
)

≈
∞∫

−∞

dν

2π2l⊥l′⊥
exp

{
ᾱsχ (0, ν)Y + 2iν ln

l⊥
l′⊥

}
; (3.82)

here

ᾱs ≡ αsNc

π
. (3.83)

Expanding χ (n = 0, ν) around the saddle point at ν = 0 we get

χ (0, ν) ≈ 4 ln 2 − 14ζ (3)ν2, (3.84)

where ζ (z) is the Riemann zeta function. Using Eq. (3.84) in Eq. (3.82) we perform the
ν-integration, obtaining (Balitsky and Lipatov 1978)

G
(
�l⊥, �l ′

⊥, Y
)

≈ 1

2π2l⊥l′⊥

√
π

14ζ (3)ᾱsY
exp

{
(αP − 1)Y − ln2(l⊥/l′⊥)

14ζ (3)ᾱsY

}
, (3.85)

where we have used, for the intercept of the perturbative BFKL pomeron,

αP − 1 = 4αsNc

π
ln 2. (3.86)

The essential feature of Eq. (3.85) is that it shows that cross sections mediated by the
BFKL ladder exchange grow as a power of the energy:

σ ∼ e(αP −1)Y ∼ sαP −1. (3.87)

This behavior is reminiscent of pomeron exchange in pre-QCD language (see Eq. (3.20)).
The BFKL ladder from Fig. 3.12 is therefore referred to as the “hard” (perturbative)
pomeron or as the BFKL pomeron. We see that BFKL evolution modifies the energy-
independent Low–Nussinov pomeron, which simply corresponds to a two-gluon exchange
and has αP − 1 = 0, which makes the perturbative pomeron intercept αP > 1 as seen
from Eq. (3.86). The numerical value of the BFKL intercept (3.86) is rather large: for
αs = 0.3 one gets αP − 1 ≈ 0.79, which is much larger than the “soft” pomeron intercept
of 0.08 observed, say, for the total proton–proton scattering cross section (Donnachie and
Landshoff 1992).

Double logarithmic approximation Let us consider the case l⊥ � l′⊥. Now ln(l⊥/l′⊥) is
large, and this may affect the location of the saddle point of the ν-integral in Eq. (3.80). The
way the saddle point is shifted is shown in Fig. 3.14 for the n = 0 term in the series (3.80).
As one can show analytically and as can be seen from Fig. 3.14, the effect of (l⊥/l′⊥)2iν

in (3.80) is to shift the saddle point in the imaginary ν direction, moving it closer to the
singularity of χ (0, ν) at ν = i/2. One can also show that the same is true for any integer
n: the saddle point in the nth term in Eq. (3.80) is shifted toward the singularity of χ (n, ν)
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100 Energy evolution and leading logarithm-1/x approximation in QCD

0.4 0.2 0.2 0.4

10

10

20

30

χ (0 , ν)

−iν

Fig. 3.14. The eigenvalue of the BFKL kernel χ (0, ν) plotted as a function of −iν (medium-
bold line) for Re ν = 0. The thin straight line is due to the linear term 2iν ln(l⊥/l′⊥) in the
exponent of Eq. (3.82). The boldest curve is a sum of the medium-bold line and the thin
straight line: it represents the complete expression in the exponent of Eq. (3.82). A color
version of this figure is available online at www.cambridge.org/9780521112574.

at ν = i(|n| + 1)/2. However, near these saddle points the nth term in the series (3.80)
scales as

1

l2
⊥

(
l′2⊥
l2
⊥

)|n|
; (3.88)

we see that terms with |n| > 0 are suppressed by powers of l′2⊥/l2
⊥ � 1 compared with the

n = 0 term (i.e., they are higher-twist corrections). Therefore the n = 0 term dominates
again and, as before, we can work with Eq. (3.82).

Expanding the n = 0 eigenvalue of the BFKL kernel near ν = i/2, we find that

χ (0, ν) ≈ − i

ν − i/2
, (3.89)

and the saddle point of the integral in Eq. (3.82) is then given by

νDLA ≈ i

2
− i

√
ᾱsY

ln(l2
⊥/l′2⊥)

. (3.90)

Distorting the ν-integration contour to run through νDLA and expanding the exponent of
Eq. (3.82) up to terms of order (ν − νDLA)2, we integrate the result over ν, obtaining

G
(
�l⊥, �l ′

⊥, Y
)

≈ 1

2π3/2l2
⊥

(ᾱsY )1/4

ln3/4(l2
⊥/l′2⊥)

exp

{
2
√

ᾱsY ln(l2
⊥/l′2⊥)

}
. (3.91)

Comparing the exponential in Eq. (3.91) with that in Eq. (2.143) or, since here we are
assuming a fixed coupling constant, with Eq. (2.159), we see that the DLA limit is indeed the
same when obtained from the DGLAP or the BFKL equations! Identifying Y in Eq. (3.91)
with ln 1/x in Eq. (2.159) and the transverse logarithm ln (l2

⊥/l′2⊥) in Eq. (3.91) with
ln (Q2/Q2

0) in Eq. (2.159), we see complete agreement between the exponents in the two
cases. The prefactor of Eq. (3.91) is different from what one would obtain in Eq. (2.159),
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3.3 The BFKL evolution equation 101

since here we are calculating a different quantity (the BFKL Green function) from the gluon
distribution calculated in Chapter 2.

The agreement thus found between the DLA limits of BFKL and DGLAP is, of course,
simply a self-consistency check: since the former resums powers of αs ln 1/x keeping the
functions of transverse momentum exact while the latter resums powers of αs ln Q2 keeping
functions of Bjorken x exact, they should include the same powers of αs ln 1/x ln Q2. This
result was illustrated in Table 3.1 in Section 3.1; we have proven it explicitly here.

We can also think of BFKL evolution as a property of the hadronic (or onium for the
case at hand) light cone wave function, constructed similarly to the DGLAP evolution in
the previous chapter. In essence one can absorb the shaded rectangle in Fig. 3.5, which
includes the ladder in Fig. 3.12, into the light cone wave function of one onium. While
we will demonstrate this explicitly in Chapter 4, here we absorb the BFKL evolution into
the onium wave function by defining the unintegrated gluon distribution of an onium (cf.
Eqs. (3.23) and (3.26)):

φ(xBj , k
2
⊥) = αsCF

π

∫
d2x⊥

1∫
0

dz|�(�x⊥, z)|2

×
∫

d2l⊥
l2
⊥

(
2 − e−i�l⊥·�x⊥ − ei�l⊥·�x⊥

)
G(�k⊥, �l⊥, y = ln 1/xBj ). (3.92)

One can show that in the small-x LLA the unintegrated gluon distribution φ(xBj , k
2
⊥) is

related to the gluon distribution function (2.66) by

φ(x,Q2) = ∂xG(x,Q2)

∂Q2
. (3.93)

This implies that φ(x, k2
⊥) counts the number of partons in a hadron at a given value of

k⊥ (and a given value of Bjorken x), unlike xG, which counts the number of partons
with k⊥ ≤ Q. This provides a physical interpretation of φ(x, k2

⊥) as the unintegrated gluon
distribution.

Looking at Eq. (3.58), it is clear that the unintegrated gluon distribution φ(xBj , k
2
⊥) from

Eq. (3.92) obeys the same BFKL evolution equation:

∂φ(x, k2
⊥)

∂ ln(1/x)
= αsNc

π2

∫
d2q⊥

(�k⊥ − �q⊥)2

[
φ(x, q2

⊥) − k2
⊥

2q2
⊥

φ(x, k2
⊥)

]
. (3.94)

By analogy with how we arrived at Eq. (3.78), for an unpolarized axially symmetric onium
state we can write the solution of Eq. (3.94) as

φ(x, k2
⊥) =

∞∫
−∞

dν

2π
Cν exp

{
αsNc

π
χ (0, ν) ln

1

x

}
k−1+2iν
⊥ �−1−2iν , (3.95)

with � some typical transverse momentum scale characterizing the onium (e.g. the inverse
size of the onium) and Cν an unknown function determined by the initial conditions at
x = x0.
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0
Measure the gluon

distribution here

the distribution here
BFKL gives

Q2

ln 1/ x

ln 1/ x

BFKL

Fig. 3.15. The BFKL evolution in the (ln 1/x, Q2)-plane. A color version of this figure is
available online at www.cambridge.org/9780521112574.

The BFKL equation for the distribution function gives us the evolution in x. This is
demonstrated in the (ln 1/x,Q2) plane in Fig. 3.15. Given the initial unintegrated gluon
distribution φ(x0, k

2
⊥) one can find Cν and then, substituting it into Eq. (3.95), one obtains an

expression for the unintegrated gluon distribution φ(x, k2
⊥) at other values of x (in the LLA

approximation). Comparing Fig. 3.15 with Fig. 2.21 we can see the essential difference
between the BFKL evolution in x and the DGLAP evolution in Q2.

If the transverse momentum of the gluons is not too large, i.e., k⊥ ∼ �, while still much
larger than �QCD, we can evaluate the ν-integral in Eq. (3.95) in the diffusion approximation.
Employing (3.84) and integrating yields an expression similar to Eq. (3.85):

φ(x, k2
⊥) ≈ C0

2π

1

k⊥�

√
π

14ζ (3) ᾱs ln(1/x)

(
1

x

)αP −1

exp

{
− ln2(k⊥/�)

14ζ (3) ᾱs ln(1/x)

}
.

(3.96)

We see that the unintegrated gluon distribution (and therefore, owing to (3.93), the regular
gluon distribution xG as well) generated by the BFKL evolution grows as a power of 1/x

at small x:

φ(x, k2
⊥) ∼

(
1

x

)αP −1

, (3.97)

with αP − 1 given by Eq. (3.86). This should be contrasted with the growth of the gluon
distribution at small x resulting from DGLAP evolution, as shown in Eq. (3.3). The small-x
growth of a gluon distribution given by BFKL evolution is much faster than that given by
the DGLAP equation.

Since BFKL evolution does not impose any transverse momentum ordering, the par-
tons generated by the evolution (3.94) have comparable transverse momenta, as given by
Eq. (3.60b), and, according to Eq. (3.61), they are ordered in x,

x1 � x2 � · · · � xn � 1, (3.98)

since y = ln(P −/k−) = ln 1/x for the onium moving in the light cone minus direction.
It is instructive to consider the spatial distribution of the partons generated by BFKL

evolution. Since the typical transverse size (wavelength) of a parton is x⊥ ≈ 1/k⊥, we see
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ProtonProton

o

x0   >>  x

parton

Δ

Smaller xLarger x

x  = 1 / k

(x, k  )(x  , k  )

partons overlap

Fig. 3.16. Transverse coordinate space representation of BFKL evolution. The blobs
indicate gluons. (Reprinted from Jalilian-Marian and Kovchegov (2006), with per-
mission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

that Eq. (3.60b) implies that

x1⊥ ∼ x2⊥ ∼ · · · ∼ xn⊥, (3.99)

that is, BFKL evolution in, say, a proton wave function generates partons of roughly the
same transverse size. At the same time, owing to Eq. (2.56) the ordering in Bjorken x simply
indicates that gluons with smaller x have a larger typical longitudinal spread. The BFKL
evolution in transverse coordinate space is shown in Fig. 3.16. As Bjorken x decreases,
more gluons are generated in the hadron wave function. The partons (gluons) produced are
of roughly the same transverse size. (Compare this with the DGLAP evolution in Fig. 2.22.)
As a result, after a sufficient number of gluons is generated they may start to overlap with
each other in transverse space, as shown in the right-hand panel of Fig. 3.16. This leads to
the creation of regions of high parton density in the hadronic wave functions. Therefore one
can think of the BFKL equation as a “high parton density machine”: it results in high parton
density in the hadronic wave functions. This is what makes BFKL (and small-x physics in
general) interesting, but it also leads to some problems for BFKL evolution, which we will
discuss below.

3.3.5 Bootstrap property of the BFKL equation∗

Let us now explain the reggeization of a t-channel gluon in the BFKL ladder. There is a
widespread belief in the community that gluon reggeization may be a fundamental property
of high energy QCD: thus, while gluon reggeization is not important for the material we
present below, no book on high energy QCD would be complete without the presentation
of this remarkable feature of strong interactions.

In Sec. 3.3.2 we found the lowest-order correction to the one-gluon exchange amplitude
in Fig. 3.3. This correction turned out to be rather simple and is given by Eqs. (3.51) and
(3.52). To incorporate the higher-order leading-ln s corrections into the t-channel gluon

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

http://www.cambridge.org/9780521112574
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


104 Energy evolution and leading logarithm-1/x approximation in QCD

propagator, we will again use the dispersion relation (3.43): it follows from Eq. (3.43) that
to construct the full amplitude we need to know only the imaginary part of the amplitude.
As in the calculation in Sec. 3.3.2, we will need the diagrams with color-octet exchanges
in the t-channel that have an imaginary part. Diagrams F and G in Fig. 3.9 are the lowest-
order examples of such graphs, for s- and u-channel processes respectively. We now need
to find the leading-ln s corrections to the imaginary part of diagram F (diagram G can be
obtained by replacing s by u in diagram F, as we have pointed out before). There are two
important differences between the imaginary part of diagram F in Fig. 3.9 and the diagram
in Fig. 3.4, for which the leading logarithmic corrections were summed by the BFKL
evolution equation. (i) As can be seen from Eq. (3.50), the color structure of the leading
high energy part of diagram F is the same as for the single-gluon exchange amplitude
(3.17), which implies that at high energy the two t-channel gluons in diagram F are in the
color-octet state. This is to be contrasted with the diagram in Fig. 3.4, which is a diagram for
the total cross section; therefore, the two t-channel gluons in it are in the color-singlet state.
(ii) Since the diagram in Fig. 3.4 is for the total cross section, there is no net momentum
transfer between the onium states in the corresponding forward amplitude. At the same
time, in diagram F there is no restriction on the momentum transfer, which is in general
nonzero.

One may argue (see Fadin, Kuraev, and Lipatov (1976)) that, despite the two differences
stated above, the leading-ln s corrections to diagram F can still be resummed using the
BFKL-like ladder from Fig. 3.12. Items (i) and (ii) above simply require that now the ladder
should be nonforward, with the t-channel state projected on the color-octet configuration.
We start by rewriting the imaginary part of the color-octet t-channel-exchange qq → qq

amplitude M (8)
qq→qq as (cf. Eq. (3.46))

Im M (8)
qq→qq(�q⊥) = 4α2

s (tbta)i ′i(t
bta)j ′j δσ1σ

′
1
δσ2σ

′
2
s

×
∫

d2l⊥
l2
⊥(�l⊥ − �q⊥)2

d2l′′⊥
l
′′2
⊥ (�l ′′

⊥ − �q⊥)2
G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y
)

, (3.100)

where G(8)(�l⊥, �l ′′
⊥ ; �q⊥; Y ) is the color-octet nonforward analogue of the BFKL Green func-

tion defined in Eq. (3.26) above. The octet nonforward Green function G(8) is illustrated
on the left-hand side of Fig. 3.17. Equation (3.46) representing diagram F in Fig. 3.9 is
recovered by inserting

G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y = 0
)

= l
′′2
⊥ (�l ′′

⊥ − �q⊥)2δ2(�l⊥ − �l ′′
⊥ ) (3.101)

into Eq. (3.100).
By analogy with the construction of the BFKL equation we can construct the evolution

equation for the octet Green function, following the prescription indicated in Fig. 3.17. First
we note that the virtual corrections in the color-octet case are the same as they were in the
color-singlet case of BFKL evolution, given by Eq. (3.55). The real emission in the case of
BFKL evolution was obtained by squaring the Lipatov vertex (3.36); however, since now
the process is nonforward, the t-channel gluons’ momenta should be different in the two
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C.C.

l

l − q

l l − q

l
l l − q

l l − q

l l − q

∂
∂Y

l l − q

l l − q

G(8) l⊥, l⊥ ; ;Y G(8) l⊥, l⊥ ; ;Y G(8) l⊥, l⊥ ; ;Y

Fig. 3.17. Diagrammatic representation of the leading-ln s evolution of the color-octet
nonforward Green function. The notation is the same as in Fig. 3.11.

factors of the Lipatov vertex. In the end we obtain the following evolution equation:

∂

∂Y
G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y
)

=
∫

d2l′⊥K
(8)
NF

(
�l⊥, �l ′

⊥; �q⊥
)

G(8)
(
�l ′
⊥, �l ′′

⊥ ; �q⊥; Y
)

+ωG(l⊥)G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y
)

+ωG(|�l⊥ − �q⊥|)G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y
)

. (3.102)

The terms containing ωG(l⊥), which is defined in Eq. (3.52), are due to virtual cor-
rections. The part of the nonforward color-octet BFKL kernel coming from real-gluon
emission,

K
(8)
NF

(
�l⊥, �l ′

⊥; �q⊥
)

= αsNc

4π2

[
l2
⊥

l′2⊥(�l⊥ − �l ′
⊥)2

+ (�l⊥ − �q⊥)2

(�l ′
⊥ − �q⊥)2(�l⊥ − �l ′

⊥)2
− q2

⊥
l′2⊥(�l ′

⊥ − �q⊥)2

]
,

(3.103)

results from the (nonforward) square of the Lipatov vertex (3.36) divided by the propagators
of the two t-channel gluons below the vertex (the l′- and (l′ − q)-lines in the first diagram
on the right-hand side of Fig. 3.17). In arriving at Eq. (3.102) we have also employed the
fact that, for the color-octet two-gluon state in the t-channel, the color factor generated by
the real part of the kernel is equal to Nc/2 instead of Nc, which one has for the color-singlet
(BFKL) evolution. The initial condition for Eq. (3.102) is given by Eq. (3.101).

While the nonforward (t �= 0) BFKL equation (3.102) appears to be more complicated
than the forward (t = 0) BFKL equation (3.58), in fact its solution is rather straight-
forward if one is just interested in the resulting scattering amplitude. We begin by
defining

Ḡ(8)
(
�l⊥; �q⊥; Y

)
≡
∫

d2l′′⊥
l
′′2
⊥ (�l ′′

⊥ − �q⊥)2
G(8)
(
�l⊥, �l ′′

⊥ ; �q⊥; Y
)

. (3.104)
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106 Energy evolution and leading logarithm-1/x approximation in QCD

For this new quantity the evolution equation is the same as (3.102):

∂

∂Y
Ḡ(8)
(
�l⊥; �q⊥; Y

)
=
∫

d2l′⊥K
(8)
NF

(
�l⊥, �l ′

⊥; �q⊥
)

Ḡ(8)
(
�l ′
⊥; �q⊥; Y

)
+ωG(l⊥) Ḡ(8)

(
�l⊥; �q⊥; Y

)
+ ωG(|�l⊥ − �q⊥|) Ḡ(8)

(
�l⊥; �q⊥; Y

)
(3.105)

with initial condition Ḡ(8)
(
�l⊥; �q⊥; Y = 0

)
= 1 (cf. Eq. (3.101)). Now we write Ḡ(8) as an

inverse Laplace transform,

Ḡ(8)
(
�l⊥; �q⊥; Y

)
=
∫

dω

2πi
eωY Ḡ(8)

ω

(
�l⊥; �q⊥

)
, (3.106)

where, as usual, the ω-integration runs parallel to the imaginary axis in the complex ω-plane
to the right of all the singularities of the integrand. Substituting (3.106) into Eq. (3.105) and
performing a Laplace transform on both sides of the resulting equation yields the bootstrap
equation [

ω − ωG(l⊥) − ωG(|�l⊥ − �q⊥|)
]
Ḡ(8)

ω

(
�l⊥; �q⊥

)
= 1 +

∫
d2l′⊥K

(8)
NF

(
�l⊥, �l ′

⊥; �q⊥
)

Ḡ(8)
ω

(
�l ′
⊥; �q⊥

)
. (3.107)

(We have also made use of the initial condition Ḡ(8)
(
�l⊥; �q⊥; Y = 0

)
= 1.) It is easy to see

that

Ḡ(8)
ω

(
�l⊥; �q⊥

)
= 1

ω − ωG(q⊥)
(3.108)

in fact solves Eq. (3.107) for the kernel given by Eq. (3.103). Substituting Eq. (3.108) into
Eq. (3.106) we obtain the solution of Eq. (3.105):

Ḡ(8)
(
�l⊥; �q⊥; Y

)
= eωG(q⊥)Y . (3.109)

Using Eqs. (3.109) and (3.104) in Eq. (3.100) we obtain the imaginary part of the color-octet
exchange amplitude,

ImM (8)
qq→qq (�q⊥) = 4α2

s (tbta)i ′i(t
bta)j ′j δσ1σ

′
1
δσ2σ

′
2
s

∫
d2l⊥

l2
⊥(�l⊥ − �q⊥)2

eωG(q⊥)Y , (3.110)

where, as usual in the leading-ln s approximation, we have Y = ln(s/m2
⊥) with m⊥ some

transverse momentum scale, the exact value of which is outside the precision of the approx-
imation.

To obtain the complete color-octet exchange amplitude we substitute Eq. (3.110) into
Eq. (3.43) (adding the u-channel contribution obtained from Eq. (3.110) on replacing s

by u). Integrating in the leading-logarithmic approximation, we obtain the high energy
color-octet exchange amplitude

M (8)
qq→qq (�q⊥) = M0

qq→qq(�q⊥)eωG(q⊥)Y , (3.111)
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3.3 The BFKL evolution equation 107

where M0 is the single-gluon exchange amplitude given in Eq. (3.17). Note that Eq. (3.111)
is in effect the same as Eq. (3.53), which we employed in deriving the BFKL evolution
equation.

Equation (3.107) represents the so-called “bootstrap” idea, which states that the evolution
of the reggeized gluon is given by the evolution of the color-octet t-channel state of two
gluons. It is referred to as the bootstrap equation. It has been conjectured that the bootstrap
equation (3.107) with its rather simple solution (3.108) holds at any order in αs . (Indeed
both K

(8)
NF and ωG receive corrections at higher orders in αs : the conjecture states that these

corrections leave Eqs. (3.107) and (3.108) in exactly the same form as shown above, only
modifying K

(8)
NF and ωG in them.) So far the conjecture has been verified at the two lowest

orders in αs : the leading order-αs result is presented here, and the validity of the bootstrap
equation at order α2

s has been shown by Fadin, Kotsky, and Fiore (1995, 1996).
We see that the bootstrap equation (3.107) with its solution leading to Eq. (3.111)

implies that the nonforward BFKL equation for the color-octet state of two gluons should
lead to a reggeized gluon with the Regge trajectory αG(q⊥) = 1 + ωG(q⊥). This observation
completes the proof that in high energy scattering a t-channel gluon should be treated as a
reggeized gluon whose spin depends on its transverse momentum.

3.3.6 Problems of BFKL evolution: unitarity and diffusion

The BFKL equation represents an important step towards understanding the high energy
asymptotics of QCD. Nonetheless, as for every major scientific advance, the BFKL
equation raises some important questions, which we will describe in this section. In
particular we will show that as the collision energy increases (i) the leading-logarithmic
BFKL equation violates unitarity and (ii) the transverse momenta of the gluons inside the
BFKL ladder tend to drift to both the UV and IR, the latter drift eventually leading to a
violation of the assumption of the perturbative nature of the interactions.

The Froissart–Martin bound

We begin our presentation of the unitarity bound with a discussion of the black disk limit.
Imagine the high energy scattering of a point particle on a “black disk” of radius R. Using
the language of nonrelativistic quantum mechanics one can think of the black disk as an
infinite potential well occupying a spherical region of space. It can then be shown that the
total cross section for the scattering of the point particle from the disk is limited from above
by

σtot ≤ 2πR2 (3.112)

(see Landau and Lifshitz (1958), vol. 3, Chapter 131, and the discussion in Appendix B).
The total cross section can be as large as twice the geometric cross sectional area of the
disk: this doubling is due to Babinet’s principle in optics, which states that the diffractive
patterns of complementary screens are identical (see Jackson (1998) or Landau and Lifshitz
(1958), vol. 2, Chapter 61). In optics Babinet’s principle implies that the amount of light
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108 Energy evolution and leading logarithm-1/x approximation in QCD

diffracted by a screen is equal to the amount of light it absorbs. For very high energy
scattering it implies that, when the scattering occurs from a black disk, the elastic (σel)
and inelastic (σinel) cross sections are equal. Since the inelastic cross section is equal to
the cross sectional area of the disk πR2, we have σel = σinel = πR2, so that the total cross
section is σtot = σinel + σel = 2πR2.

Our derivation of the Froissart–Martin bound will incorporate the argument put forward
by Heisenberg (1952, 1939) with the proof devised by Froissart (1961) and Martin (1969).
Consider hadron–hadron scattering at impact parameter b. Let us assume that b is large
enough that the black-disk limit described above has not been reached. Inspired by the
above examples of the BFKL equation and the Low–Nussinov pomeron, we may assume
that the interaction between the hadrons is accomplished though an exchange of one or
several particles, so that the cross section grows as some positive power � of the energy:
σ ∼ s�. At the same time the strength of the interaction should fall off as we increase b:
the slowest physically possible fall off is the exponential e−2mπ b, where mπ is the mass of
the lightest QCD bound state, the pion.7 (As the pion has negative parity, the exchange of
a single pion cannot contribute to the total cross section, hence we need to exchange two
pions, one in the amplitude and the other in the complex-conjugate amplitude.) We thus
have a probability p of interaction that scales with energy and impact parameter as follows:

p ∼ s�e−2mπ b. (3.113)

The interaction gets strong when the probability is of order 1. In fact, for p of order 1
the black-disk-limit behavior should begin to set in. Thus the upper limit on the radius
of the black disk can be determined by requiring that p ≈ 1, which, as we can see from
Eq. (3.113), occurs at impact parameter b∗ defined by

s�e−2mπ b∗ = 1, (3.114)

which gives

R = b∗ ∼ �

2mπ

ln s. (3.115)

Since b∗ is the upper bound on the black-disk radius, the total cross section, dominated by
the black-disk contribution, is then limited by 2πR2 = 2πb∗2, yielding eventually

σtot ≤ π�2

2m2
π

ln2 s. (3.116)

We conclude that the total cross section in QCD cannot grow faster than the logarithm of
energy squared. Equation (3.116) is known at the Froissart–Martin bound and was first
rigorously proven by Froissart (1961) and Martin (1969) (see also Lukaszuk and Martin
(1967)).

7 As discussed by Nussinov (2008), it is possible that for realistic estimates the pion mass in this exponential should in
fact be replaced by the mass of the lightest glueball (a QCD bound state having no valence quarks) since, as we have
seen above, gluons dominate in high energy interactions.
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3.3 The BFKL evolution equation 109

As we saw above (see e.g. Eq. (3.87)), the BFKL equation in the diffusion approximation
implies that the total cross section grows as a power of the energy,

σ BFKL
tot ∼ sαP −1, (3.117)

which clearly violates the Froissart–Martin bound (3.116). Things do not get much better
in the double logarithmic limit of the BFKL equation, which, according to Eq. (3.91), gives

σ DLA BFKL
tot ∼ exp

{
2
√

ᾱs ln s ln(l2
⊥/l′2⊥)

}
, (3.118)

where l⊥ and l′⊥ are the momentum scales at the two ends of the BFKL ladder, with
l⊥ � l′⊥ in the DLA. The energy growth of the cross section in Eq. (3.118) is exponential
in

√
ln s, and, as such, is much faster than any power of ln s: therefore, DLA BFKL also

violates the Froissart–Martin bound. Note that since DLA BFKL is equivalent to DLA
DGLAP, the DGLAP evolution also violates unitarity, making this an inherent problem
of standard perturbative QCD: no matter how high the larger perturbative scale l⊥ is, at
sufficiently high energy s, unitarity will still be violated, as follows from Eq. (3.118).
We thus conclude that unitarity violation happens at perturbatively large momentum scales,
where perturbative QCD is still applicable. Thus, it is natural to expect that the resolution of
this problem should also happen through a QCD perturbative mechanism. We will discuss
shortly how a nonlinear evolution equation was proposed by Gribov, Levin, and Ryskin
(GLR) to remedy this problem of the BFKL evolution (Gribov, Levin, and Ryskin 1983).

One may indeed argue that in deriving the Froissart–Martin bound above we have used
the fact that QCD is a confining theory with bound states such as pions, which one certainly
does not see in the perturbative calculations leading to the BFKL equation. Therefore, since
the QCD mass gap mπ is not present in perturbation theory (which has a zero mass gap), one
should not expect BFKL evolution to satisfy the Froissart–Martin bound. This argument is
indeed correct; however, as we will show below, the BFKL equation can also be written in
impact parameter space. As we argue in Appendix B, in impact parameter space the high
energy cross sections are given by

σtot = 2
∫

d2b
[
1 − Re S(s, �b⊥)

]
, (3.119a)

σel =
∫

d2b
∣∣∣1 − S(s, �b⊥)

∣∣∣2 , (3.119b)

σinel =
∫

d2b
[
1 − |S(s, �b⊥)|2

]
, (3.119c)

with S(s, �b⊥) the forward matrix element of the scattering S-matrix. Since at high energy
S → 0 we see that dσtot/d

2b⊥ ≤ 2, which is equivalent to the black-disk limit (3.112). The
BFKL-dominated total cross section at a fixed impact parameter b grows as a power of
the energy s, eventually violating the bound dσtot/d

2b⊥ ≤ 2 at very high energy. Thus the
BFKL equation violates unitarity not only through the fast growth of the black-disk radius
but also by the fact that the cross section at each impact parameter becomes larger than the
black-disk bound dσtot/d

2b⊥ ≤ 2. While the former problem cannot be remedied in QCD
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110 Energy evolution and leading logarithm-1/x approximation in QCD

l

k

l

G(l⊥, k⊥, Y− y)

G(k⊥, l⊥, y)y

Y − y

Fig. 3.18. The BFKL ladder, with a t-channel gluon with momentum �k⊥ singled out for
study of its momentum distribution. The vertical soild line denotes a cut.

perturbation theory, one may hope to remedy the latter problem; as we will see below it is
cured by the use of nonlinear evolution equations.

We conclude that the BFKL equation violates unitarity (or, more precisely, the black-
disk limit). Therefore one would expect it to be modified at very high energies, in order to
satisfy those bounds. This is the first problem of BFKL evolution.

Diffusion into the infrared

The second problem of BFKL evolution becomes apparent if we look “inside” the BFKL
ladder. To do this, let us pick a particular gluon in the ladder sufficiently far from the
ends of the ladder. This is illustrated in Fig. 3.18, where we are considering the transverse
momentum distribution of a t-channel gluon with momentum �k⊥ and rapidity y (of adjacent
rungs) inside the BFKL ladder. The ladder can be split into two sub-ladders, each of which
is a BFKL ladder in its own right, as indicated by the right-hand square brackets in Fig. 3.18.
The BFKL Green function (3.80) can correspondingly be written as a convolution of two
BFKL Green functions,

G
(
�l⊥, �l ′

⊥, Y
)

=
∫

d2k⊥G
(
�l⊥, �k⊥, Y − y

)
G
(
�k⊥, �l ′

⊥, y
)

, (3.120)

where the net rapidity interval is Y and the transverse momenta at the ends of the original
ladder are �l⊥ and �l ′

⊥.
Let us assume that all the transverse momenta involved are comparable, l⊥ ∼ l′⊥ ∼ k⊥,

so that we can use the diffusion approximation (3.85). As follows from Eq. (3.120), the
k⊥-distribution dn/d2k⊥ for the t-channel gluon in Fig. 3.18 is given by the product of the
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ln  k

ln  l

ln  ΛQCD

ln  l

Y0 Y/2

Fig. 3.19. The ln k⊥-distribution of the momentum of a t-channel gluon inside the BFKL
ladder (shaded oval). For a large enough rapidity interval Y the ln k⊥-distribution overlaps
with the nonperturbative region k⊥ � �QCD (the shaded rectangle). A color version of this
figure is available online at www.cambridge.org/9780521112574.

two BFKL Green functions and, in the diffusion approximation (3.85), it is proportional to

dn

d ln k2
⊥

= k2
⊥G
(
�l⊥, �k⊥, Y − y

)
G
(
�k⊥, �l ′

⊥, y
)

∼ exp

{
− ln2(l⊥/k⊥)

14ζ (3) ᾱs(Y − y)
− ln2(k⊥/l′⊥)

14ζ (3) ᾱsy

}
. (3.121)

We see that the distribution in ln k2
⊥ is Gaussian. The width of the distribution depends

on the rapidity, reaching a maximum at y = Y/2. As we increase the total energy (or,
equivalently, the net rapidity interval Y ), the ln k2

⊥-distribution at y ≈ Y/2 gets broader: the
values of k⊥ deviate more and more from the original momenta l⊥ and l′⊥ at the ends of the
ladder. This feature of BFKL evolution is potentially dangerous in QCD, for the following
reason. Suppose that to justify the use of perturbative QCD we choose l⊥ ∼ l′⊥ � �QCD.
As we increase the net rapidity interval Y the transverse momentum in the ladder diffuses
away from l⊥ ∼ l′⊥, fluctuating both into the UV and IR, so that at y = Y/2 we have

l⊥e−const×√
Y/2 � k⊥ � l⊥econst×√

Y/2. (3.122)

(We have assumed for simplicity that l⊥ = l′⊥ and that const = √
(7/2)ζ (3)ᾱs in

Eq. (3.122).) Clearly, for large enough energies or rapidities Y , the lower limit of the
k⊥-range in Eq. (3.122) may reach �QCD, invalidating the applicability of perturbative
QCD to the problem (Bartels 1993b, Bartels, Lotter, and Vogt 1996). The ln k2

⊥-distribution
is plotted in Fig. 3.19; owing to its cigar-like shape, it is sometimes referred to as the Bartels
cigar (Bartels 1993b).

The problem of BFKL evolution becoming nonperturbative at high Y values implies
that we cannot use the BFKL equation at arbitrarily high energies: its applicability is thus
limited. Therefore, either the true high energy asymptotics of QCD is nonperturbative and
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112 Energy evolution and leading logarithm-1/x approximation in QCD

cannot be described by perturbative QCD or it may still be perturbative and described by a
different evolution equation that does not have the same IR problem as the BFKL equation.
We will show in the next chapter that the latter option is in fact the case.

3.4 The nonlinear Gribov–Levin–Ryskin and
Mueller–Qiu evolution equation

3.4.1 The physical picture of parton saturation

In order to understand how the BFKL unitarity problem can be addressed, let us first
determine the kinematic region where unitarity is violated by BFKL evolution. Consider
onium–onium scattering mediated by the BFKL ladder exchange studied above. The expres-
sion for the total onium–onium scattering cross section can be obtained by substituting the
LLA Green function (3.85) into Eq. (3.26). At the moment we are not interested in the
exact result (see Exercise 3.5 at the end of the chapter) and will only note that in Eq. (3.26)
the typical momenta are l⊥ ≈ 1/x1⊥ and l′⊥ ≈ 1/x2⊥. The total cross section is then

σ onium +onium
tot ∼ α2

s x1⊥x2⊥e(αP −1)Y , (3.123)

where we have kept only the most physically important factors, those depending on the total
rapidity Y and on the sizes of the onia. We know, however, that the cross section should be
bounded from above by the black-disk limit, σ onium +onium

tot ≤ 2πR2. While the radius of the
black disk R grows logarithmically with energy, as shown in Eq. (3.115), for the moment
we will forget about this growth since it is much slower than the power-of-energy growth of
the total cross section in Eq. (3.123), and will fix R to be of the order of a typical hadronic
radius, R ≈ rh. In fact let us assume that our onium–onium scattering models a DIS event,
in which the first onium comes from the decay of a virtual photon and the other mimics the
proton (we will present this dipole picture of DIS in more detail in the next chapter). Then
x2⊥ ≈ rh and x1⊥ ≈ 1/Q, with Q the virtuality of the photon (the only scale at the photon
end of the ladder). Imposing the black-disk limit on Eq. (3.123) yields

α2
s

rh

Q
e(αP −1)Y ≤ 2πr2

h. (3.124)

The equality is reached at the saturation scale Q = Qs given by

Qs ∼ α2
s �QCDe(αP −1)Y = α2

s �QCD

(
1

x

)αP −1

, (3.125)

where, for simplicity, we have replaced the typical hadronic size rh with 1/�QCD: the two
scales differ only by a constant coefficient, irrelevant for our rough estimates. The saturation
momentum Qs is a new dimensional scale in the problem (Gribov, Levin, and Ryskin 1983,
Mueller and Qiu 1986, McLerran and Venugopalan 1994a).

We conclude that a violation of unitarity occurs for Q < Qs . Note that for very small
Bjorken x (large Y ) the saturation scale can be much larger than the confinement scale,
Qs � �QCD. This implies that the violation of unitarity starts at short distances of the
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Fig. 3.20. The BFKL evolution of Fig. 3.13 shown here as a time-ordered gluon cascade in
the proton wave function, in the IMF/Bjorken or Breit frames.

order of 1/Qs , still in the domain of validity of perturbative QCD. Therefore, the unitarity
problem of BFKL evolution has to be solved in the framework of perturbative QCD.

To address this unitarity problem we first need to understand what goes wrong with
BFKL evolution. This is easier to do if we absorb the BFKL ladder into the wave function
of a hadron in DIS in the Breit frame, as for the DGLAP evolution in the previous chapter.
(Formally, the BFKL light cone wave function is constructed in the next chapter.) The small-
x evolution then appears as a cascade in the proton’s wave function, shown in Fig. 3.20
(compare with Figs. 2.25 and 2.10). The fast proton will decay into a system of partons
long before the interaction with the virtual photon, which is at rest. The time ordering of
emissions is given by Eq. (2.156) in the DLA DGLAP case (the proton is moving in the
light cone plus direction)

x+
1 � x+

2 � · · · � x+
n , (3.126)

and this would still be valid: in the general BFKL case the DGLAP ordering of transverse
momenta (2.149) is replaced by the comparability of all transverse momenta, as given by
Eq. (3.60b), with the ordering (2.150) of longitudinal momenta from DLA DGLAP still in
place (see Eq. (3.60a)). The latter fact insures that the typical lifetimes of gluon fluctuations,
given by x+

i ≈ k+
i /k2

⊥i , are still ordered as in Eq. (3.126) and as shown in Fig. 3.20. Thus,
in terms of time-ordering, the BFKL cascade is quite similar to the DGLAP cascade.

During the long time of parton-cascade evolution a large number of “wee” partons
(gluons) are created in the proton’s wave function, as in Fig. 3.20, of order (1/x)αp−1 for
BFKL evolution. Each gluon in the cascade is emitted from a pre-existing (larger-x) gluon
in the proton’s wave function. Each such “wee” parton interacts with the virtual photon over
a very short time. This interaction destroys the coherence of the partons (which are mostly
gluons at low x). The further fate of the partons is not important to us since any possible
interaction in the final state will not change the total cross section of the deep inelastic
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Fig. 3.21. Parton cascade in the Breit frame for DIS (see Sec. 2.3 for the definition of this
frame). Both quarks and gluons are denoted by straight lines for simplicity. At the end of
the cascade, just before interaction with a virtual photon of wavelength 1/qz, the quarks
have momentum qz/2 along the collision axis. A color version of this figure is available
online at www.cambridge.org/9780521112574.

process. A space–time picture of the QCD evolution that we have just outlined is given
in Fig. 3.21; here the straight lines denote both quarks and gluons. The QCD evolution
(both DGLAP and BFKL) leads to an increase in the number of “wee” partons with energy.
This is a very natural result since both the DGLAP and BFKL equations take into account
the emission of partons (along with the virtual corrections). Each emission increases the
number of partons at lower energy (i.e., at lower x).

The BFKL evolution creates partons of roughly the same transverse size, as indicated in
Fig. 3.16 and discussed in Sec. 3.3.4. As we decrease x the parton density grows. However,
at some very small (critical) x = xcr , where

xcr ∼
(

Q

α2
s �QCD

)1/(αP −1)

, (3.127)

corresponding to Qs(xcr ) = Q, the density of partons in the transverse plane becomes so
large that the wave functions of the partons start to overlap, as shown in Fig. 3.21. For such
a densely populated system we need to take into account interactions between the partons
(Gribov, Levin, and Ryskin 1983).

We conclude that for Q2 < Q2
s we should write down a new evolution equation that

includes interactions between the partons. This new evolution should slow down and finally
stop (saturate) the increase in the number of “wee” partons, leading to the saturation of
the parton density (Gribov, Levin, and Ryskin 1983). We want to stress again that, since
Q2

s � �2
QCD, the value of the QCD coupling is small and therefore we can apply perturbative

QCD methods in the region where unitarity corrections become important.
Our discussion of parton densities is summarized in Fig. 3.22, in our first attempt at

constructing a map of high-energy QCD. Figure 3.22 displays the distributions of partons
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Fig. 3.22. The parton distribution in the transverse plane as a function of ln 1/x and ln Q2.
The bold curve gives the saturation scale Qs(x).

in the proton’s transverse plane as a function of Q2 and x, with the saturation scale (3.125)
shown by the bold curve. One can see that this saturation momentum curve divides the
entire kinematic region in two parts: the region of perturbative QCD with linear evolution
for the parton densities (DGLAP, BFKL) and the saturation domain, in which the parton
density is large but the running QCD coupling is still small (αs(Q2

s ) � 1). Therefore we
need to develop a theoretical description for a system of partons that interact with each
other weakly but whose number is so large that we cannot apply the regular methods of
perturbative QCD with linear evolution for the parton densities to describe them.

3.4.2 The GLR–MQ equation

To tackle the BFKL unitarity problem and to understand how the growth of the gluon
distribution can be tamed, Gribov, Levin, and Ryskin (1983) (GLR) considered the gluon
distribution functions of a “dense” proton or a nucleus. By a “dense” proton we mean
a proton filled with various sources of color charge (sea quarks and gluons) that were
pre-created in the proton’s wave function by some nonperturbative mechanism. Gribov,
Levin, and Ryskin argued that for such systems multiple BFKL ladder exchanges may
become important; indeed, as we saw in Eq. (3.124), the BFKL equation violates unitarity
when the cross section per unit impact parameter, dσ/d2b, becomes of order 1. Hence the
contribution of double BFKL ladder exchange at this point should be comparable with that
of single BFKL ladder exchange. Moreover, owing to the high density of partons, ladder
mergers should also be possible as they evolve away from the proton or nucleus in rapidity.
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116 Energy evolution and leading logarithm-1/x approximation in QCD

Fig. 3.23. An example of a “fan” diagram resummed by the GLR–MQ equation.

Owing to the large number of partons in the proton or nucleus, the ladders can all connect
to different sources of color charge and interact with the proton or nucleus independently.
(It may be instructive to mention that in the case of a nuclear target this assumption can
be proven to be correct (Schwimmer 1975, Kovchegov 1999, 2000) since the nucleus has
a parameter, the atomic number A, allowing one to justify the independent-interaction
approximation.) Since we are interested in the gluon distribution, which is a correlation
function for two gluon fields, these multiple ladders should all merge in the end into a
single ladder, leading to the so-called “fan” diagrams. An example of a fan diagram is
shown in Fig. 3.23. There, multiple BFKL ladders start from different quarks and gluons in
the proton or nucleus; these are shown by straight lines at the bottom of Fig. 3.23. Owing
to the high density of the gluon fields, the ladders cannot stay independent for long. As the
energy increases so does the gluon density, eventually leading to merging of the ladders, as
shown in Fig. 3.23.

Indeed, BFKL ladders can also first split and then recombine, leading to the so-called
pomeron loop diagrams, one of which is shown in Fig. 3.24. In a purely perturbative picture
of the process, such corrections are not enhanced by large parton densities in the proton or
nucleus and are therefore subleading. In the original GLR work it was argued that, since the
amplitude of a pomeron loop increases with the rapidity interval covered by the loop, the
dominant contribution of the pomeron loop diagram as pictured in Fig. 3.24 comes from a
loop covering the whole interval in rapidity. It was then argued that in such a contribution
the pomeron recombination vertex would be close to the proton in rapidity and, if the proton
is nonperturbatively strongly coupled, the vertex can then be effectively absorbed into the
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3.4 The nonlinear GLR–MQ evolution equation 117

Fig. 3.24. A pomeron loop diagram.

proton. This would make the resulting diagram into a pomeron “fan” diagram, with some
complicated nonperturbative interaction with the proton. The latter interaction would then
be modeled by independent scatterings of pomeron ladders on different constituents in the
proton. We will present the physical parameters justifying the fan diagram approximation
in a more systematic way in the next chapter.

Ladder recombination in fan diagrams is described by effective ladder merger vertices,
denoted by the ovals in Fig. 3.23. These vertices are called triple pomeron vertices, since
they connect three different ladders (BFKL pomerons). For their calculation we refer the
reader to Bartels and Wusthoff (1995) and Bartels and Kutak (2008) and references therein.
If one views the DIS process in the infinite momentum frame described above, the ladder
mergers appear to be exactly the partonic interactions that enter when the gluon density
becomes high. It turns out that such interactions are not simple individual parton mergers
but are, in fact, of a more collective nature, as they consist of ladder mergers, i.e., mergers
of different linear parton evolutions.

Note that the diagram in Fig. 3.23 contains only triple pomeron vertices, i.e., 2 → 1
ladder mergers. In the next chapter we will argue that while all higher-order (3 → 1, 4 → 1,
etc.) mergers exist, in the LLA they are suppressed by powers of N2

c and can therefore be
neglected in the large-Nc (fixed-αsNc) limit (Bartels and Wusthoff 1995, Braun 2000a).
Before those results became known, in their original work Gribov, Levin, and Ryskin (1983)
had suggested that, before the energy becomes sufficiently high for all nonlinear effects to
become important, there could be an intermediate energy region where the physics of gluon
distributions is dominated by 2 → 1 ladder recombination. This recombination would bring
in a quadratic correction to the linear BFKL equation for the unintegrated gluon distribution
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118 Energy evolution and leading logarithm-1/x approximation in QCD

(3.94), leading to the GLR evolution equation (Gribov, Levin, and Ryskin 1983)

∂φ(x, k2
⊥)

∂ ln(1/x)
= αsNc

π

∫
d2l⊥KBFKL(k, l) φ(x, k2

⊥) − α2
s Ncπ

2CF S⊥

[
φ(x, k2

⊥)
]2

, (3.128)

with the LO BFKL kernel defined in Eq. (3.62). In writing down Eq. (3.128), for simplicity
we have assumed that the proton or nucleus has the shape of a cylinder oriented along
the beam axis with cross sectional area S⊥ = πR2; however, the GLR equation (3.128)
can be generalized easily to any shape of proton or nucleus, as the impact parameter (b⊥)
integration can be carried out separately for each ladder (Gribov, Levin, and Ryskin 1983).
As expected, the linear term in Eq. (3.128) is equivalent to the BFKL equation (3.94), while
the quadratic term, responsible for ladder mergers, introduces damping and thus slows
down the growth of the gluon distributions with energy. This phenomenon became known
as the saturation of parton distributions. A more quantitative discussion of the role of the
damping term on small-x evolution will be presented in the next chapter.

The GLR equation (3.128) was rederived by Mueller and Qiu (1986) in the double
leading-logarithmic approximation (DLA) for the integrated gluon distribution function
related to the unintegrated distribution by (cf. Eq. (3.93))

xG(x,Q2) =
∫ Q2

dk2
⊥φ(x, k2

⊥). (3.129)

Employing the DLA and analyzing diagrams with two merging DGLAP ladders, Mueller
and Qiu arrived at the following evolution equation (again written here for a cylindrical
proton or nucleus):

∂2xG(x,Q2)

∂ ln(1/x)∂ ln(Q2/�2)
= αsNc

π
xG(x,Q2) − α2

s Ncπ

2CF S⊥

1

Q2
[xG(x,Q2)]2, (3.130)

which is known as the GLR–MQ equation.
Equation (3.130) is easily rewritten in terms of the density of gluons (with transverse

size 1/Q) in the transverse plane,

ρglue(x,Q2) = xG(x,Q2)

S⊥
; (3.131)

we obtain

∂2ρglue

∂ ln(1/x)∂ ln(Q2/�2)
= αsNc

π
ρglue − α2

s Ncπ

2CF Q2
ρ2

glue. (3.132)

This equation has a simple probabilistic interpretation, given in Fig. 3.25. There we
show several BFKL gluon cascades in the amplitude, each the same as in Fig. 3.20 but
drawn in a time-ordered way (cf. Fig. 2.25) in the IMF/Bjorken or Breit frames. The proton
or nucleus is envisioned as being at the top of each diagram though not shown explicitly.
The first term on the right of Eq. (3.132) clearly describes the emission of an extra gluon
at rapidity Y = ln 1/x (see the left-hand panel in Fig. 3.25), which leads to an increase in
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Fig. 3.25. Probabilistic interpretation of the two terms on the right-hand side of the GLR–
MQ equation (3.130). The horizontal dashed lines denote one step �Y of the evolution in
rapidity.

the number of s-channel gluons. The gluon can be emitted from any of the three cascades
in this panel.

The second term on the right-hand side of Eq. (3.132) corresponds to a process in which
two gluon cascades merge together, reducing the number of cascades to two, as shown in
the right-hand panel of Fig. 3.25. The s-channel gluon emitted after the merger can only be
produced by the two remaining cascades. Thus the cascade merger leads to a decrease in
the rate of new gluon production; therefore, it should enter Eq. (3.132) with a minus sign.
Since in this process two (t-channel) gluons meet to interact, its contribution is proportional
to ρ2

glue and to the cross section of the GG → GG process (see the right-hand panel in
Fig. 3.25), which, on dimensional and power-counting grounds, should be proportional
to σ ∼ α2

s /Q
2. This is exactly what goes into the second term on the right-hand side of

Eq. (3.132). In the next chapter we will put this probabilistic interpretation on a more
rigorous basis.

Equation (3.130) allows one to estimate more precisely the saturation scale Q2
s at which

the nonlinear saturation effects become important. To do that we have to equate the linear
and quadratic terms on the right-hand side of Eq. (3.130). This gives

Q2
s = αsπ

2

S⊥2CF

xG(x,Q2
s ). (3.133)

The gluon distribution near the saturation region grows as a power of 1/x at small x (see
(3.97)):

xG ∼
(

1

x

)λ

, (3.134)

with λ > 0 to be specified in the next chapter in a more detailed estimate. (This behavior
of the gluon distribution is supported by experimental data.) Note that for a nucleus con-
sisting of A nucleons we have to multiply this distribution function by the factor A. Using
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120 Energy evolution and leading logarithm-1/x approximation in QCD

Eq. (3.134), multiplied by A, in Eq. (3.133) yields

Q2
s ∼ A

S⊥

(
1

x

)λ

∼ A1/3

(
1

x

)λ

, (3.135)

in qualitative agreement with Eq. (3.125). An important additional feature of Eq. (3.135)
is that it contains a power of the atomic number A. (In deriving the rightmost expression in
Eq. (3.135) we have used the fact that for a nucleus S⊥ ∼ R2 ∼ A2/3, since R ∼ A1/3.) This
factor A1/3 is important: it means that the saturation scale not only grows with decreasing x

(increasing energy) but also that it is large for large nuclei. Since nonlinear saturation effects
are important for all Q � Qs , we observe that the saturation region is actually broader for
DIS on a nucleus. Also, for the same value of Bjorken x the saturation scale for DIS on a
nucleus is larger than that for DIS on a proton, providing a stronger justification for the use
of perturbative QCD approach in the former case.

It is instructive to rewrite the saturation condition (3.133) in terms of the transverse
gluon density defined in Eq. (3.131). The condition (3.133) implies that

1

Q2
s

ρglue(x,Q2
s ) ∼ 1

αs

, (3.136)

i.e., that the number of gluons in an element of the transverse area comparable with the
typical size of the gluon (which is the number of gluons on top of each other in the transverse
plane) needs to be of order 1/αs for nonlinear effects to become important. Remembering
that xG ∼ 〈AμAμ〉, we see from Eq. (3.136) that this implies that the corresponding gluon
field should be

Aμ ∼ 1

g
. (3.137)

At small coupling this is the strongest that a gluon field can be: the regime of (3.137)
sets in when the interaction terms in the QCD Lagrangian (1.1) become parametrically
comparable to the kinetic (free) term, as one can see from Eq. (1.4). We have obtained
another interpretation of the saturation physics: saturation occurs because the gluon field
gets as strong as it can possibly be, leading to the saturation of the gluon field strength and
the parton distribution functions. A careful reader might also notice that a strong field of
the type (3.137) usually occurs in classical problems, where one is looking for a classical
gluon field (e.g. instantons). We will return to this observation and its implications below
(McLerran and Venugopalan 1994a, b, c).

When the GLR–MQ equation was originally derived, the quadratic damping term that
occurs in both Eqs. (3.128) and (3.130) was believed to be important only near the border
of the saturation region, for Q ∼ Qs , where nonlinear effects were only starting to become
important (Gribov, Levin, and Ryskin 1983, Mueller and Qiu 1986). It was expected that
higher-order nonlinear corrections would show up as one goes deeper into the saturation
region towards Q < Qs . For instance, a nonlinear AGL evolution equation was proposed
by Ayala, Gay Ducati, and Levin (1996, 1997, 1998) that included the suggestion that
there should be corrections at all orders in φ on the right-hand side of Eq. (3.128). In the
next chapter we will present a systematic way of unitarizing the BFKL evolution equation
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Exercises 121

by including it in the light cone wave function, similarly to how we derived the DGLAP
evolution above.

Further reading

For a more detailed and extensive discussion of the pre-QCD pomeron and its phenomenol-
ogy see Collins (1977), Forshaw and Ross (1997), Barone and Predazzi (2002), and
Donnachie, Dosch, and Landshoff (2005).

For readers interested in finding out more details on the BFKL equation and its solution
we recommend the article by Del Duca (1995). We also recommend the review of Lipatov
(1997), which summarizes everything that was then known about the solution to this linear
equation. We believe that any difficulty in reading this paper will be compensated by the
beauty of the problem. A very nice and detailed presentation of BFKL physics, gluon
reggeization and the bootstrap equation, and higher-order corrections to BFKL evolution
can be found in the book by Ioffe, Fadin, and Lipatov (2010).

The triple BFKL pomeron vertex has been extensively studied also. We recommend
the paper by Bartels and Kutak (2008) and references therein. One can learn a lot from
this paper about the classification and summation of Feynman diagrams in high energy
scattering.

Exercises

3.1 Find the quark–quark scattering cross section dσqq→qq/dt at the Born level (order α2
s ),

expressing the answer in terms of the Mandelstam variables s and t . (For simplicity
assume that quarks are massless.) Take the limit of high energy s keeping t fixed and
demonstrate that the expression obtained reduces to the cross section found in Sec. 3.2
above. Explain why the diagram in Fig. 3.3 dominates at high energy.

Repeat the above for the Born-level quark–antiquark scattering cross section
dσqq̄→qq̄/dt .

3.2 (a) Derive Eq. (3.24) starting from Eq. (3.18).
(b) Average Eq. (3.24) over the directions of �x1⊥ and �x2⊥ and integrate it over l⊥ to

obtain Eq. (3.25).

3.3 Consider onium–onium scattering at fixed impact parameter �b⊥.
(a) Generalize Eq. (3.24) to the fixed impact parameter case. You should obtain the

following cross section per impact parameter:

dσ̂ onium+onium
tot

d2b
= α2

s CF

2π2Nc

∫
d2l⊥d2l′⊥

l2
⊥l

′2
⊥

[
e
i�l⊥·
(
�b⊥+�x1⊥/2

)
− e

i�l⊥·
(
�b⊥−�x1⊥/2

)]

×
[
e−i�l⊥·�x2⊥/2 − ei�l⊥·�x2⊥/2

] [
e
−i�l′⊥·

(
�b⊥+�x1⊥/2

)
− e

−i�l ′
⊥ ·
(
�b⊥−�x1⊥/2

)]
×
[
ei�l ′

⊥ ·�x2⊥/2 − e−i�l ′
⊥ ·�x2⊥/2

]
. (3.138)
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122 Energy evolution and leading logarithm-1/x approximation in QCD

Make sure that integrating Eq. (3.138) over the impact parameter reduces it back
to Eq. (3.24).

(b) With the help of Eq. (A.9) integrate Eq. (3.138) over �l⊥ and �l ′
⊥ to obtain

dσ̂ onium+onium
tot

d2b
= 2α2

s CF

Nc

ln2

∣∣∣�b⊥ + 1
2 �x1⊥ + 1

2 �x2⊥
∣∣∣ ∣∣∣�b⊥ − 1

2 �x1⊥ − 1
2 �x2⊥
∣∣∣∣∣∣�b⊥ + 1

2 �x1⊥ − 1
2 �x2⊥
∣∣∣ ∣∣∣�b⊥ − 1

2 �x1⊥ + 1
2 �x2⊥
∣∣∣ .
(3.139)

3.4 Show that the azimuthally symmetric eigenfunction χ (0, ν) of the BFKL kernel from
Eq. (3.81) reduces to

χ (0, ν) = 4

1 + 4ν2
(3.140)

if we extract only the leading twist contributions to the BFKL Green function in
Eq. (3.82) for both l⊥ � l′⊥ and l⊥ � l′⊥.

3.5 Use Eq. (3.82) in Eq. (3.26) to find the total onium–onium scattering cross section due
to a BFKL pomeron exchange (neglecting the light cone wave functions of the onia).
(a) First the integration over l⊥ and l′⊥. You may find formulas (A.16) and (A.19)

handy.
(b) Use the expansion around the saddle point given in (3.84) to perform the remaining

ν-integral using the steepest descent method. You should obtain

σ̂ onium+onium
tot = 16 α2

s CF

Nc

x1⊥x2⊥
√

π

14ζ (3)ᾱsY

× exp

{
(αP − 1)Y − ln2(x1⊥/x2⊥)

14ζ (3) ᾱsY

}
. (3.141)

3.6 Verify explicitly that the BFKL Green function (3.80) satisfies the property (3.120).
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4

Dipole approach to high parton density QCD

We are now ready to present more recent developments in high energy QCD. We will
consider DIS in the rest frame of a proton or a nucleus. In this frame a virtual photon
fluctuates into a quark–antiquark pair, which, in turn, hits the proton or nuclear target.
We argue that quark–antiquark dipoles are convenient degrees of freedom for high energy
scattering in QCD. We will present a simple model of DIS on a nucleus, due to Glauber,
Gribov, and Mueller, in which the qq̄ dipole rescatters multiple times on a nuclear target
consisting of independent nucleons. We then include quantum corrections to this multiple-
rescattering picture: we argue that the initial qq̄ dipole may develop a cascade of gluons
before hitting the target nucleus. In the large-Nc limit the cascade is described by Mueller’s
dipole model. When applied to DIS the dipole cascade resummation leads to the Balitsky–
Kovchegov (BK) nonlinear evolution equation. We describe approximate analytical and
exact numerical solutions of the BK equation and show that it resolves both problems of
BFKL evolution: BK evolution is unitary and has no diffusion into the IR. It generates a
saturation scale Qs that grows with energy, justifying the use of perturbative QCD. We
conclude the chapter by presenting the Bartels–Kwiecinski–Praszalowicz (BKP) evolution
equation for multiple reggeon exchanges, along with the evolution equation for (C-odd)
odderon exchange.

4.1 Dipole picture of DIS

Let us begin by considering DIS in the rest frame of the proton or nucleus. While many
conclusions in this chapter may also apply to proton DIS, in the strict sense our results
would be justified only for DIS on a large nucleus since such a nucleus has a large atomic
number parameter A allowing us to make the approximations we will need below. We will
therefore only talk about DIS on a nuclear target.

Without any loss of generality we can choose a coordinate axis such that the momentum
of the virtual photon is given by

qμ =
(

q+,−Q2

q+ , 0⊥

)
(4.1)

in the (+,−,⊥) light cone notation. The light cone momentum of the virtual photon q+ is
very large (since the (high) photon–nucleus center-of-mass energy is ŝ = mq+), so that its
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124 Dipole approach to high parton density QCD

q

γ∗
x⊥ x⊥

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a qq̄ pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3),

x+ ≈ 2

|q−| = 2q+

Q2
, (4.2)

is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark–
antiquark pair, the typical lifetime of such a qq̄ fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a qq̄ pair (which we will also refer to as a color dipole or
simply a dipole); the qq̄ pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the qq̄ dipole–nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the qq̄ pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x⊥, does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky et al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x⊥ between the quark and antiquark can only
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4.1 Dipole picture of DIS 125

vary by an amount

�x⊥ ≈ R
k⊥
E

(4.3)

where E ∼ q0 denotes the energy of the dipole in the laboratory frame (the target rest
frame), R is the longitudinal size of the target, and k⊥ is the relative transverse momentum
of the qq̄ pair acquired through interaction with the target. In Eq. (4.3) k⊥/E is the relative
transverse velocity of the quark with respect to the antiquark. From Eq. (4.3) we can see
already that the change in the dipole size is suppressed by a power of the energy E and is
therefore small. To quantify this better let us first remember the definition of Bjorken x,
given in (2.2):

x = Q2

2P · q
= Q2

mq+ ≈ Q2

2mE
. (4.4)

Using Eq. (4.4) in Eq. (4.3) along with the uncertainty principle Q ≈ k⊥ ≈ 1/x⊥ yields

�x⊥
x⊥

≈ 2mxR = 4R

lcoh

� 1, (4.5)

where lcoh = 2/(mx) is the coherence length of the dipole fluctuation (see Eq. (2.56)).
We thus see that at small x � 1/(mR), when the dipole interacts with the whole nucleus
coherently in the longitudinal direction, the transverse recoil of the quark and the antiquark
are negligible compared with the size of the dipole. Therefore the transverse size of the
dipole is invariant in high energy interactions, as indicated in Fig. 4.1.

We conclude that in calculating the total DIS cross section, along with other high
energy QCD observables, it is convenient to work in transverse coordinate space. We will
therefore adopt a mixed representation: we will use longitudinal momentum space along
with transverse coordinate space. Light cone perturbation theory (LCPT) is a very useful
tool here again. Using LCPT to calculate the total DIS γ ∗A cross section we can factorize
the diagram in Fig. 4.1 into the square of the light cone wave function �γ ∗→qq̄(�x⊥, z) for
the splitting of a virtual photon into a qq̄ dipole and the total cross section for the scattering
of a dipole on a target nucleus σ

qq̄A
tot (�x⊥, Y ), so that

σ
γ ∗A
tot (x,Q2) =

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2σqq̄A

tot (�x⊥, Y ). (4.6)

Here z = k+/q+, with k+ the light cone momentum of the quark in the qq̄ pair. In gen-
eral the dipole–nucleus cross section will depend on z too; however, in the eikonal and
LLA approximations that we mainly consider below, σ

qq̄A
tot is independent of z. The net

rapidity interval for the dipole–nucleus scattering is given by Y = ln(ŝx2
⊥) ≈ ln 1/x for

x⊥ ∼ 1/Q.
The reader may have other doubts about the factorization (4.6): after all, the LCPT rules

presented in Sec. 1.3 require us to subtract the light cone energy of the incoming state in
the energy denominator from each intermediate state’s energy. Since the light cone energy
of the incoming virtual photon is q− = −Q2/q+, it seems that each intermediate state that
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126 Dipole approach to high parton density QCD

we have absorbed into σ
qq̄A
tot (�x⊥, Y ) should “know” about the photon’s energy. However,

in the rest frame of the nucleus, q− is equal to −Q2/q+ ∼ 1/ŝ and is therefore negligibly
small compared with the typical minus components of momenta involved in dipole–nucleus
interactions. The same would be true for dipole–nucleus scattering: the incoming dipole
state would have a negligibly small light cone energy compared with the energies involved
in the interaction. Therefore, in our eikonal approximation (up to corrections of order 1/ŝ),
we can interchange the negligible light cone energy q− for the light cone energy of the
dipole without changing the answer, thus justifying the factorization of Eq. (4.6). (Note
that in calculating the light cone wave function �γ ∗→qq̄(�x⊥, z) we cannot neglect the light
cone energies of the virtual photon and the qq̄ dipole, since they are the only terms entering
the energy denominator.) Another important assumption is that the light cone energy of the
target is not modified until the interaction with the dipole: one can show that the time scale
of target fluctuations is much shorter than the lifetime of the dipole. Hence the target does
not affect the virtual photon’s wave function, since in constructing the latter the same light
cone energy of the target enters into both the energies of the intermediate states and the
initial-state energy, thus canceling in the energy denominators.

The factorization of Eq. (4.6) is very convenient: it allows us to separate the simple
γ ∗ → qq̄ QED process from the strong interaction dynamics contained in σ

qq̄A
tot (�x⊥, Y ).

Note that the virtual photon may have either transverse or longitudinal polarization.
Requiring that the photon polarization satisfies ε · q = 0 and imposing ε2

T = −1 for trans-
verse polarization and ε2

L = 1 for the longitudinal polarization, we obtain for qμ, Eq. (4.1),
the following polarizations:

ελ
T = (0, 0, �ελ

⊥), (4.7a)

εL =
(

q+

Q
,

Q

q+ , �0⊥

)
, (4.7b)

with �ελ
⊥ as given in Eq. (1.54). The polarization vectors (4.7) form a complete basis in

the space of possible polarizations, so that the numerator of the photon propagator in the
Landau gauge can be decomposed in terms of them as

gμν − qμqν

q2
= −
∑
λ=±

ελ
T μελ∗

T ν + εLμε∗
Lν. (4.8)

Using the polarizations (4.7) along with Eqs. (2.13) and (2.16) one can separate the total
DIS cross section into transverse (T ) and longitudinal (L) components (see Halzen and
Martin 1984):

σ
γ ∗A
T = 4π2αEM

q0
Wμν 1

2

∑
λ=±

ελ
T μελ∗

T ν = 4π2αEM

q0
W1 (4.9a)

σ
γ ∗A
L = 4π2αEM

q0
WμνεLμε∗

Lν = 4π2αEM

q0

[
−W1 +

(
1 + ν2

Q2

)
W2

]
, (4.9b)

with ν as defined in Eq. (2.5) and αEM the fine structure constant. Employing Eqs. (2.18a)
and (2.18b), we can rewrite Eqs. (4.9) in the high energy ν � Q limit as expressions for
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4.1 Dipole picture of DIS 127

q
k

q − k

γ∗

σ

σ

λ
i

j

Fig. 4.2. Light cone wave function for a virtual photon fluctuating into a quark–antiquark
pair (a dipole). The dotted line denotes the intermediate state.

the dimensionless structure functions:

F2(x,Q2) = Q2

4π2αEM

σ
γ ∗A
tot = Q2

4π2αEM

(
σ

γ ∗A
T + σ

γ ∗A
L

)
, (4.10a)

2xF1(x,Q2) = Q2

4π2αEM

σ
γ ∗A
T . (4.10b)

It is useful to also define the longitudinal structure function FL, which measures the violation
of the Callan–Gross relation (2.44):

FL(x,Q2) ≡ F2(x,Q2) − 2xF1(x,Q2) = Q2

4π2αEM

σ
γ ∗A
L . (4.11)

Equations (4.10) and (4.11) allow us to find the DIS structure functions using the transverse
and longitudinal cross sections, which, with the help of Eq. (4.6), can be found from the
dipole–nucleus scattering via

σ
γ ∗A
T,L (x,Q2) =

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

T ,L (�x⊥, z)|2 σ
qq̄A
tot (�x⊥, Y ). (4.12)

We have defined the transverse, �γ ∗→qq̄
T (�x⊥, z), and longitudinal, �γ ∗→qq̄

L (�x⊥, z), light cone
wave functions, which differ by the polarization vector of the incoming virtual photon.

Let us now calculate the light cone wave functions �
γ ∗→qq̄
T ,L (�x⊥, z) for the quark–

antiquark fluctuations of a virtual photon. The diagram is shown in Fig. 4.2, in which the
vertical dotted line denotes the intermediate state. Using the LCPT rules from Secs. 1.3 and
1.4, we write for the wave functions in momentum space (cf. the calculation in Sec. 2.4.2)

�
γ ∗→qq̄
T ,L (�k⊥, z) = eZf

z(1 − z)δij

�k2
⊥ + m2

f + Q2z(1 − z)
ūσ (k)γ · ελ

T ,Lvσ ′(q − k), (4.13)

where σ and σ ′ are the quark and antiquark helicities, i, j are their colors, mf is the mass
of a quark with flavor f , and Zf is the quark’s electric charge in units of the electron charge
e. (Note that qμ is given in Eq. (4.1).) As mentioned above, we define z = k+/q+ as the
fraction of the photon’s light cone momentum carried by the quark.
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128 Dipole approach to high parton density QCD

Starting with the transverse polarization we substitute the polarization vector from
Eq. (4.7a) into Eq. (4.13) and evaluate the Dirac matrix element using Appendix A.1,
obtaining

�
γ ∗→qq̄
T (�k⊥, z) = eZf

√
z(1 − z) δij

× (1 − δσσ ′)�ελ
⊥ · �k⊥(1 − 2z − σλ) + δσσ ′mf (1 + σλ)/

√
2

�k2
⊥ + m2

f + Q2z(1 − z)
. (4.14)

In arriving at Eq. (4.14) we have also used the fact that in two transverse dimensions
�ελ
⊥ × �k⊥ = −iλ�ελ

⊥ · �k⊥ for the �ελ
⊥ from Eq. (1.54).

Since we are interested in using the virtual photon’s wave function in transverse coordi-
nate space in Eq. (4.12), we perform a Fourier transform of Eq. (4.14):

�
γ ∗→qq̄
T ,L (�x⊥, z) =

∫
d2k⊥
(2π )2

ei�k⊥·�x⊥�
γ ∗→qq̄
T ,L (�k⊥, z) (4.15)

and employ Eq. (A.11) along with K ′
0(z) = −K1(z) to obtain

�
γ ∗→qq̄
T (�x⊥, z) = eZf

2π

√
z(1 − z) δij

[
(1 − δσσ ′)(1 − 2z − σλ) iaf

�ελ
⊥ · �x⊥
x⊥

K1(x⊥af )

+ δσσ ′
mf√

2
(1 + σλ)K0(x⊥af )

]
, (4.16)

where

a2
f = Q2z(1 − z) + m2

f . (4.17)

The square of the absolute value of the transverse wave function (4.16), summed over all the
outgoing quantum numbers and averaged over the possible polarizations of the incoming
transverse photon is (Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991) given
by

|�γ ∗→qq̄
T (�x⊥, z)|2 = 2Nc

∑
f

αEMZ2
f

π
z(1 − z)

×
{
a2

f

[
K1(x⊥af )

]2
[z2 + (1 − z)2] + m2

f

[
K0(x⊥af )

]2}
. (4.18)

To calculate the longitudinal wave function �
γ ∗→qq̄
L (�x⊥, z) we repeat the above steps,

now using the longitudinal polarization vector (4.7b) in Eq. (4.13). The transverse momen-
tum space longitudinal wave function is

�
γ ∗→qq̄
L (�k⊥, z) = eZf [z(1 − z)]3/2 δij 2Q(1 − δσσ ′)

�k2
⊥ + m2

f + Q2z(1 − z)
. (4.19)

In arriving at Eq. (4.19) we have neglected a term that would have given us a delta
function, δ2(�x⊥), in the transverse coordinate-space wave function; as we will shortly see,
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4.2 GGM multiple-rescatterings formula 129

zero-transverse-size dipoles do not interact with the nucleus (they have zero scattering cross
section) and so such configurations do not contribute to the DIS structure functions.

Fourier-transforming Eq. (4.19) into transverse coordinate space yields

�
γ ∗→qq̄
L (�x⊥, z) = eZf

2π
[z(1 − z)]3/2 δij 2Q(1 − δσσ ′)K0(x⊥af ), (4.20)

so that the longitudinal wave function squared, again with all summations performed, is
(Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991)

|�γ ∗→qq̄
L (�x⊥, z)|2 = 2Nc

∑
f

αEMZ2
f

π
4Q2z3(1 − z)3

[
K0(x⊥af )

]2
. (4.21)

To obtain the phase-space integral in Eqs. (4.6) or (4.12) we remember that the two-
particle momentum phase space given in Eq. (1.82) is (remembering that in our case the
quarks are not identical) ∫

dz

2z(1 − z)

d2k⊥
(2π )3

. (4.22)

After Fourier-transforming the wave function into transverse coordinate space the integral
becomes ∫

dz

2z(1 − z)

d2x⊥
2π

, (4.23)

in agreement with Eqs. (4.6) and (4.12).
We have now completed the calculation of the QED part of DIS in the dipole picture.

Equations (4.18) and (4.21), when used in Eq. (4.12), give us the transverse and longitudinal
DIS cross sections, which, in turn, when used in Eqs. (4.10) and (4.11) give us the structure
functions. The interesting physics of strong interactions is contained in the dipole–nucleus
scattering cross section σ

qq̄A
tot (�x⊥, Y ): most of this chapter is dedicated to calculating this

quantity.

4.2 Glauber–Gribov–Mueller multiple-rescatterings formula

We begin by employing Eq. (3.119a) to rewrite the total dipole–nucleus scattering cross
section as

σ
qq̄A
tot (�x⊥, Y ) = 2

∫
d2b N (�x⊥, �b⊥, Y ), (4.24)

where N (�x⊥, �b⊥, Y ) is the imaginary part of the forward scattering amplitude for a
dipole of transverse size �x⊥ interacting with the nucleus at impact parameter �b⊥ and
with net rapidity interval Y . Hence to find the cross section σ

qq̄A
tot we need to calculate

N (�x⊥, �b⊥, Y ).
To find N (�x⊥, �b⊥, Y ) let us consider the following (Glauber) model. Assume that the

nucleus is very large and dilute and is made out of A � 1 independent nucleons, where A is
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130 Dipole approach to high parton density QCD

Fig. 4.3. The four diagrams contributing to dipole interaction with a single nucleon at the
lowest nontrivial (two-gluon) order in the high energy approximation and an abbreviated
notation for their sum.

the atomic number of the nucleus.1 Any correlations between the nucleons are suppressed
by powers of the large parameter A: hence our approximation corresponds to summing
the leading powers of A. In evaluating the forward dipole–nucleus scattering amplitude
N (�x⊥, �b⊥, Y ) we will follow the strategy originally outlined by Glauber and by Gribov
(Glauber 1955, Franco and Glauber 1966, Gribov 1969b, Glauber and Matthiae 1970,
Gribov 1970) and implemented in QCD by Mueller (1990).

4.2.1 Scattering on one nucleon

First we consider the case when the dipole interacts with only one nucleon in the nucleus.
Assuming that the interaction is entirely perturbative, we see that the lowest-order contri-
bution to the forward high energy scattering amplitude comes from a two-gluon exchange.
The relevant diagrams are shown in Fig. 4.3. This lowest-order scattering process was
calculated in Sec. 3.2. Employing the results of that section (see Eq. (3.25)) we can write
down the total dipole–nucleon cross section as

σqq̄N ≈ 2πα2
s CF

Nc

x2
⊥ ln

1

x2
⊥�2

. (4.25)

In arriving at Eq. (4.25) we have assumed that the dipole is perturbatively small, x⊥ �
1/�QCD , and that the nucleon can be modeled as another dipole of transverse size 1/� �
x⊥, with � some soft QCD scale of order �QCD . We have also assumed that the nucleus
is sufficiently large that the cross section does not depend on the dipole’s orientation in the
transverse plane, over which we therefore average.

At the same two-gluon order the unintegrated gluon distribution function of the nucleon
can be found using Eq. (3.92) with the lowest-order BFKL Green function (3.59). This
gives

φonium
LO (x, k2

⊥) = αsCF

π

2

k2
⊥

, (4.26)

where we have assumed that k⊥ � �. The factor 2 on the right-hand side of Eq. (4.26)
simply counts the number of quarks in the dipole representing the nucleon. It should be

1 Strictly speaking A is called the mass number of the nucleus; nevertheless, we will follow the standard jargon in the
high energy field and refer to it as the atomic number.
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4.2 GGM multiple-rescatterings formula 131

replaced by Nc if one wanted to model the nucleon more realistically, as consisting of Nc

valence quarks. Using Eq. (3.93) the corresponding lowest-order gluon distribution of an
onium (a nucleon) turns out to be

xGonium
LO (x,Q2

⊥) = αsCF

π
2 ln

Q2

�2
. (4.27)

Comparing Eq. (4.27) and Eq. (4.25), we can rewrite the latter as

σqq̄N ≈ αsπ
2

Nc

x2
⊥xGN

(
x,

1

x2
⊥

)
, (4.28)

where xGN is the gluon distribution in the nucleon (presently modeled as an onium).2

Equation (4.28) has an advantage over Eq. (4.25): it is valid for any nonperturbative gluon
distribution in the nucleon and is therefore more general. We will use these equations
interchangeably, though.

To find the dipole–nucleus scattering cross section at a given impact parameter we
need to average the dipole–nucleon scattering amplitude over all possible positions of the
nucleon inside the nucleus and to sum over the A nucleons in the nucleus, all of which may
participate in the interaction. We have

dσ
qq̄A
LO

d2b
=
∫

db′
3d

2b′
⊥ρA(�b⊥ − �b′

⊥, b′
3)

dσqq̄N

d2b′ , (4.29)

where db′
3d

2b′
⊥ = d3b is the three-dimensional volume element and ρA(�b⊥, b3) is the

nucleon number density, with �b⊥ = (b1, b2). In a simplified model, the nucleus has a
constant nucleon number density ρA = A/V , where V is the volume of the nucleus in its
rest frame. In the general case ρA(�b⊥, b3) is given by the Woods–Saxon parametrization of
the nuclear density (Woods and Saxon 1954).

Equation (4.29) gives the cross section for a dipole at impact parameter �b⊥ scattering
on a nucleon at impact parameter �b⊥ − �b′

⊥ (where �b′
⊥ is its transverse distance from the

dipole), convoluted with the nucleon density ρ, which, in turn, is proportional to the
probability of finding a nucleon at �b⊥ − �b′

⊥ (see Fig. 4.4). To simplify Eq. (4.29) we note
that the perturbative scattering cross section falls off as dσqq̄N/d2b′ ∼ 1/b

′4
⊥ at large impact

parameter, as can be seen for instance from Eq. (3.139) in Exercise 3.3 (after averaging
over the azimuthal orientations of one dipole; this mimics an unpolarized nucleon, without
any preferred direction). At nonperturbatively large impact parameter b′

⊥ � 1/�QCD one
expects an even steeper falloff, dσ qq̄N/d2b′ ∼ exp(−2mπb′

⊥) (cf. Eq. (3.113)). Hence the
cross section dσqq̄N/d2b′ is localized at small impact parameters b′

⊥ � 1/�QCD .
In the large-A approximation that we are employing, one assumes that the nuclear wave

function and hence the density ρA(�b⊥, b3) does not change significantly over distances of
order 1/�QCD , which is small compared with the size of the nucleus, so that the nucleon
has an approximately equal probability of being anywhere within this transverse range.

2 We would like to stress here that in order to conform to the standard notation we write the gluon distribution with
Bjorken x in its argument, but throughout this section the gluon distribution is taken at the lowest (two-gluon) order
and is therefore x-independent.
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132 Dipole approach to high parton density QCD

b⊥

nucleus

nucleon

dipole

b⊥

b⊥ − b⊥

Fig. 4.4. The geometry of dipole–nucleus scattering in the transverse coordinate plane. To
illustrate the notation of Eq. (4.29) the dipole is placed far from the nucleon; in reality
b′

⊥ � 1/�QCD .

Therefore, for large nuclei we can approximate ρA(�b⊥ − �b′
⊥, b′

3) as ρA(�b⊥, b′
3) and recast

Eq. (4.29) by integrating over b′
⊥ as

dσ
qq̄A
LO

d2b
= T (�b⊥)σqq̄N , (4.30)

where we have defined the nuclear profile function T (�b⊥) by

T (�b⊥) ≡
∞∫

−∞
db3ρA(�b⊥, b3). (4.31)

For a spherical nucleus of radius R with constant nucleon number density ρA = A/V one

has T (�b⊥) = 2ρA

√
R2 − �b2

⊥.
Comparing Eq. (4.30) with Eq. (4.24) and employing Eq. (4.28) we obtain

NLO(�x⊥, �b⊥, Y ) = αsπ
2

2Nc

T (�b⊥) x2
⊥xGN

(
x,

1

x2
⊥

)

= πα2
s CF

Nc

T (�b⊥) x2
⊥ ln

1

x⊥�
, (4.32)

where in the last line we have modeled the nucleon by a single quark with gluon distribution

xG(x,Q2
⊥) = αsCF

π
ln

Q2

�2
.

We now have the forward dipole–nucleus scattering amplitude for the case when only
one nucleon in the nucleus interacts with the dipole. This case has a problem akin to that
of linear BFKL evolution: if we increase the dipole size x⊥ in Eq. (4.32), at some point we
get NLO > 1, violating the black-disk limit, which states that

N (�x⊥, �b⊥, Y ) ≤ 1 (4.33)

(see Eq. (B.37) in Appendix B).
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4.2 GGM multiple-rescatterings formula 133

x⊥

Fig. 4.5. Dipole–nucleus scattering in the Glauber–Gribov–Mueller approximation in the
Feynman gauge. The disconnected gluon lines at the top denote the sum over all possible
connections of the gluon lines to the dipole, as depicted in Fig. 4.3.

Let us stress again here that the transverse dipole size x⊥ is preserved in high energy
interactions. This makes the S-matrix diagonal not only in the impact parameter �b⊥, as
we saw in Eqs. (3.119) and also in Appendix B, but also in the dipole size �x⊥. Therefore,
the relations (3.119) between the cross sections and the S-matrix can also be written down
for dipole–nucleus scattering with a fixed dipole size �x⊥. The unitarity conditions (the
optical theorem), which in momentum space are written as complicated convolutions (see
e.g. Eq. (B.19)), become simple products of the amplitudes in (�x⊥, �b⊥)-space (see e.g.
Eq. (B.30)). For this reason we think of color dipoles (or any other objects in the transverse
coordinate representation) as the correct degrees of freedom for high energy scattering.

4.2.2 Scattering on many nucleons

When the probability of interaction with one nucleon becomes large, interactions with
multiple nucleons also becomes likely and should be taken into account. Now we will
see how multiple rescatterings of the dipole on different nucleons cure the problem of
black-disk-limit violation by Eq. (4.32).

Let us consider the case when any number of nucleons can interact, restricting the
interaction with each nucleon to the lowest nontrivial order. For this calculation we will
be working in the standard Feynman perturbation theory using the Lorenz ∂μAμ = 0
(Feynman) gauge. (Once we have separated the DIS cross section into the light cone wave
function squared and the dipole–nucleus cross section, we can calculate the latter using any
technique that is convenient.) We start by stating the diagrammatic answer for the many-
nucleon interaction case: in the Feynman gauge, the dipole–nucleus interaction becomes a
series of successive independent dipole–nucleon rescatterings, as shown in Fig. 4.5. There
each nucleon (denoted by an oval at the bottom, just as in Fig. 4.3) interacts with the dipole
via a two-gluon exchange: the disconnected gluon lines at the top of the diagram denote all
possible connections to the quark and the antiquark lines in the dipole, as defined in Fig. 4.3.

The diagram in Fig. 4.5 implies that in the covariant gauge there is no direct “cross-talk”
between the nucleons and that all the nucleons interact sequentially in the order in which
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l

l l − q

k k − l + q

A B
x+ x+

Fig. 4.6. Examples of diagrams that can be neglected for dipole–nucleus scattering in the
covariant (Feynman) gauge.

l q

p p + l p + l − q p p + l − q

p− q

l q

Fig. 4.7. Diagrammatic illustration that for a color-singlet object such as a nucleon, the
coupling of two gluons to a single quark line is equivalent to the coupling of each gluon
to a quark line that is on mass shell both before and after the quark–gluon interaction. The
solid vertical line in the rightmost graph indicates an effective cut.

the dipole encounters them, i.e., according to their ordering along the x+-axis. The dipole–
nucleon interactions in the covariant gauge of Fig. 4.5 are localized inside the nucleons,
on distance scales much shorter than the nuclear radius. While for a large dilute nucleus
these assertions seem natural, we still need to prove them. To do so, it is convenient to
change the frame slightly by giving the nucleus a slight boost, so that it moves along the
light cone in the minus direction with a large P − momentum. At the same time the boost
preserves the virtual photon’s motion along the plus light cone, with four-momentum as
shown in Eq. (4.1). Thus both the dipole and nucleus in this new frame move along their
respective light cones, as shown in Fig. 4.8. In the calculations below we will assume that
the gluon–nucleon coupling is perturbatively small.

To illustrate why the graphs in Fig. 4.5 dominate the scattering, let us show that the
diagrams in Fig. 4.6, demonstrating “cross-talk” (A) and the violation of x+-ordering (B),
are suppressed and can be neglected. Before we do that, let us carry out a simple exercise
elucidating the nature of the coupling of two gluons to a nucleon. Consider two gluons
coupling to a quark line in a nucleon, as shown in Fig. 4.7. This can be a part of any diagram
in Figs. 4.6 and 4.5. Note that one has to include a crossed diagram, as illustrated in Fig. 4.7.
Since the nucleon is a color singlet, the color factors of the two graphs on the left in Fig. 4.7
are identical (say, owing to a color trace), so that the difference between the two diagrams
is only in the propagators for the internal quark line. Adding the two propagators (using the
momentum labels from Fig. 4.7) and remembering that p− is the largest momentum in the
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t

x3

dipole
nucleus

x+x−

Fig. 4.8. Space–time picture of the dipole–nucleus scattering.

problem, we obtain

i(p/ + l/ + mq)

(p + l)2 − m2
q + iε

+ i(p/ − q/ + mq)

(p − q)2 − m2
q + iε

≈ ip/

(
1

p−l+ + iε
+ 1

−p−q+ + iε

)
= −ip/2πiδ(p−l+). (4.34)

We have used the fact that the outgoing quark is on mass shell, (p + l − q)2 = m2
q , so that

q+ = l+ with eikonal accuracy (see Sec. 3.2 for similar estimates). We conclude that (with
eikonal accuracy) l+ = q+ = 0. The δ-function in Eq. (4.34) puts the internal quark line
in the leftmost diagram of Fig. 4.7 on mass shell. The result (4.34) can be summarized
by replacing the internal quark line by the cut line, as shown in the rightmost graph of
Fig. 4.7: the cut enforces l+ = 0. What is essential to us is that neither gluon carries any
plus momentum.

Now we are ready to evaluate the diagrams in Fig. 4.6. Note that, owing to the large size
of the nucleus we are considering, even after the boost the nucleus is still somewhat spread
out in the x+-direction, as demonstrated in Fig. 4.8, where different nucleons correspond
to different straight lines parallel to the x− light cone. Hence each nucleon in the nucleus
is located at a different x+ coordinate. We thus need to Fourier-transform the diagrams in
Fig. 4.6 into coordinate x+-space by integrating over l−.

Starting with Fig. 4.6A we see that the l−-dependence can be contained only in the
propagator of the gluon carrying momentum l that is exchanged between the nucleons
there. However, as we have just shown when considering the diagrams in Fig. 4.7, l+ = 0
with eikonal accuracy, so that the diagram in Fig. 4.6A is proportional to

∞∫
−∞

dl−
e−il−�x+

l2 + iε
≈

∞∫
−∞

dl−
e−il−�x+

−�l2
⊥

= 0 (4.35)
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l

l − q

k k + l

x+

Fig. 4.9. Forward amplitude for a dipole scattering on two nucleons.

for nonzero light cone separations between the two nucleons, i.e., �x+ �= 0. Hence diagram
A is negligible in the covariant gauge in which we are working.3 Let us stress that in arriving
at the result (4.35) we have restricted ourselves to l− � p−: if we relaxed this constraint
then the integral in Eq. (4.35) would be nonzero, though it would still be suppressed for
large atomic numbers A (Kovchegov 1997).

Similarly, in Fig. 4.6B one has l+ = q+ = 0, so that the l−-dependence can be contained
only in the quark propagator of the (k − l + q)-line. Since the light cone momentum of the
quark k+ is large, we see that the diagram in Fig. 4.6B is proportional to

∞∫
−∞

dl−
e−il−�x+

(k − l + q)2 + iε
≈

∞∫
−∞

dl−
e−il−�x+

k+(k− − l− + q−) − (�k⊥ − �l⊥ + �q⊥)2 + iε
= 0

(4.36)

for �x+ > 0, as the pole of the propagator is in the upper half-plane while the contour
needs to be closed in the lower half-plane. For �x+ < 0 the integral in Eq. (4.36) is not
zero, but then we would obtain zero from the integral over the minus momentum carried
by the other pair of t-channel gluon lines. We thus can neglect diagram B as well.

The arguments used in proving that diagrams A and B in Fig. 4.6 are zero can be gener-
alized to more complicated diagrams in the same general categories. We have succeeded in
demonstrating that in the covariant gauge and in the approximation of two gluon exchanges
per nucleon the dipole–nucleus interaction is given by the graphs in Fig. 4.5. We now need
to resum these diagrams. To do this, we first consider dipole scattering on two nucleons
ordered in x+, as shown in Fig. 4.9. Unlike the diagram in Fig. 4.6B, the graph in Fig. 4.9
has the correct x+-ordering of the nucleons. Instead of giving zero it yields (note that k− is
very small for a quark on a plus light cone)

∞∫
−∞

dl−

2π

ie−il−�x+

(k + l)2 + iε
≈

∞∫
−∞

dl−

2π

ie−il−�x+

k+l− − (�k⊥ + �l⊥)2 + iε
= 1

k+ , (4.37)

3 Note that the diagram in Fig. 4.6A is nonzero in the A− = 0 light cone gauge even in the eikonal approximation.
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l

∂
∂b+

l

s̃ s̃

Fig. 4.10. Diagrammatic representation of Eq. (4.40) resumming all the diagrams
from Fig. 4.5.

where at the end of the calculation we have neglected the phase of the exponential since it is
proportional to �x+/k+ ∼ 1/(k+p−), which is suppressed by the center-of-mass energy.
It is important to note that in picking up the pole in Eq. (4.37) we put the propagator of
the quark carrying momentum k + l on mass shell. Therefore, the diagram factorizes into a
product of two independent dipole–nucleon scatterings; the quark and the antiquark in the
dipole effectively go on shell between the scatterings. (The factor 1/k+ left in Eq. (4.37)
serves to normalize the dipole–nucleon cross section for the nucleon on the right.) The
numerator of the quark propagator can be absorbed into two separate scattering amplitudes
using the property that (neglecting the quark mass) k/ + l/ =∑σ uσ (k + l)ūσ (k + l): the
factor uσ (k + l) is absorbed into one amplitude, while ūσ (k + l) is absorbed into the other.
Comparing this result with the standard normalization factor for the 2 → 2 cross section
at high energy (see Eqs. (B.22) and (B.23)), we conclude that to resum the diagrams in
Fig. 4.5 we simply need to iterate the dipole–nucleus cross section.

Define the forward matrix element of the S-matrix for the dipole–nucleus scattering by
(cf. Eq. (B.34))

S(�x⊥, �b⊥, Y ) = 1 − N (�x⊥, �b⊥, Y ). (4.38)

Suppressing the arguments �b⊥ and Y , we can define the S-matrix (the “propagator”)
s(�x⊥, b+) for a dipole to travel through the nucleus up to a point b+, so that S(�x⊥) = s(�x⊥, L)
with b+ ∈ (0, L), which defines the extent of the nucleus along the x+ axis. Going to
transverse momentum space we have

s̃(�k⊥, b+) =
∫

d2x⊥e−i�k⊥·�x⊥s(�x⊥, b+), (4.39)

with �k⊥ the relative transverse momentum of the quark and the antiquark in the dipole. As
we demonstrated above, all the integrations over the minus momenta in the diagrams in
Fig. 4.5 are done straightforwardly. Hence the b+-evolution of s̃(�k⊥, b+) is also clear: in
one step in b+ the dipole may interact with one nucleon. Denoting s̃(�k⊥, b+) by a circle,
we illustrate this statement in Fig. 4.10.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


138 Dipole approach to high parton density QCD

Summing over all possible connections of the t-channel gluons to the dipole in Fig. 4.10
we obtain the following equation (Mueller (1990), see also Baier et al. (1997)):

∂s̃(�k⊥, b+)

∂b+ = −ρA(�b⊥, b+)

2

∫
d2l⊥
(2π )2

dσ 0
qq→qq

d2l

×
[
2 s̃(�k⊥, b+) − s̃(�k⊥ − �l⊥, b+) − s̃(�k⊥ + �l⊥, b+)

]
, (4.40)

where the minus signs outside the last two terms come from the coupling of one gluon
to the quark and the other to the antiquark. The differential cross section dσ 0

qq→qq/d
2l

is the momentum-space expression for the two-gluon exchange cross section in quark–
quark scattering, as given in Eq. (3.18), and the factor 1/2 is needed to convert it to the
forward amplitude. (Again we are modeling the nucleons as single valence quarks.) The
nucleon density factor ρA(�b⊥, b+) (now, in the boosted-nucleus frame, equal to the number
of nucleons per unit volume element db+d2b⊥) gives the probability of finding a nucleon
at a given location in the nucleus. Again we assume ρA(�b⊥, b+) to be constant on the
perturbatively short transverse distance scales relevant to Eq. (4.40). The overall minus
sign in Eq. (4.40) reflects the fact that we are calculating a variation of the S-matrix that
differs from the variation of the forward amplitude by a sign, as follows from Eq. (4.38).

Fourier-transforming Eq. (4.40) into transverse coordinate space we obtain

∂s(�x⊥, b+)

∂b+ = −ρA(�b⊥, b+)

2
σqq̄Ns(�x⊥, b+), (4.41)

σqq̄N =
∫

d2l⊥
(2π )2

dσ 0
qq→qq

d2l

(
2 − ei�l⊥·�x⊥ − e−i�l⊥·�x⊥

)
, (4.42)

exactly the dipole–nucleus cross section of Eqs. (4.25) and (4.28). (The factor 2 difference
in comparison to Eq. (4.25) is due to the fact that in Eq. (4.25) the nucleon is modeled as a
dipole whereas in our present calculation it is taken to be a single quark for simplicity.)

One can readily see from Eq. (4.41) that in transverse coordinate space Eq. (4.40)
becomes trivial. An important consequence of this triviality is that, for the first time, we see
explicitly that the transverse size of the dipole x⊥ does not change in the interactions with
the nucleons (and the nucleus). This demonstrates the argument presented in Sec. 4.1.

Equation (4.41) has the following simple physical meaning: as the dipole propagates
through the nucleus it may encounter nucleons, with the probability of interaction per
unit path length db+ given by the product of the nucleon density ρA and the interaction
probability σqq̄N from Eq. (4.28), with another factor one-half inserted owing to the optical
theorem (B.23). The initial condition for Eq. (4.41) is given by a freely propagating dipole
without interactions, for which s(�x⊥, b+ = 0) = 1. Solving Eq. (4.41) with this initial
condition yields

s(�x⊥, b+) = exp

⎧⎨
⎩−

b+∫
0

db′+ ρA(�b⊥, b′+)

2
σqq̄N

⎫⎬
⎭ . (4.43)
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4.2 GGM multiple-rescatterings formula 139

Going back to the nuclear rest frame and remembering that S(�x⊥) = s(�x⊥, L), we obtain

S(�x⊥, �b⊥, Y = 0) = exp

{
−σqq̄N

2
T (�b⊥)

}
. (4.44)

Note that σqq̄N does not depend on the energy of the collision (and therefore on its net
rapidity): to underscore this we have put Y = 0 in the argument of the S-matrix in Eq. (4.44).
This will delineate this expression from the energy-dependent version that results from
incorporating small-x evolution into this picture.

Using Eq. (4.44) along with Eq. (4.28) in Eq. (4.38), the imaginary part of the forward
scattering amplitude in the Glauber–Gribov–Mueller (GGM) model (Mueller 1990) is
given by

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−αsπ

2

2Nc

T (�b⊥) x2
⊥xGN

(
x,

1

x2
⊥

)}
. (4.45)

This is the GGM multiple–rescattering formula. Note again that the nucleon’s gluon
distribution function xGN in Eq. (4.45) is taken at the lowest, two-gluon, level and is thus
independent of x, so that the amplitude N in Eq. (4.45) is independent of energy.

Equation (4.45) has a remarkable property: one can see that it implies N ≤ 1 for all (per-
turbative) x⊥. This means that the resulting forward scattering amplitude obeys the black-
disk limit constraint (4.33), correcting the problem of the single rescattering amplitude
from Eq. (4.32). We see that multiple rescatterings unitarize the scattering cross section,
preserving the black-disk limit. The lesson we learn from the Glauber–Gribov–Mueller
model is that to unitarize a cross section it is important to include multiple rescatterings!

Equation (4.45) allows us to determine the parameter corresponding to resummation of
the diagrams like that shown in Fig. 4.5. Using the gluon distribution from Eq. (4.27) in
Eq. (4.45), and noting that for large nuclei the profile function T (�b⊥) scales as A1/3, we
conclude that the resummation parameter of multiple rescatterings is (Kovchegov 1997)

α2
s A

1/3. (4.46)

The physical meaning of the parameter α2
s A

1/3 is rather straightforward: at a given impact
parameter the dipole interacts with ∼ A1/3 nucleons, exchanging two gluons with each.
Since two-gluon exchange is parametrically of order α2

s we obtain α2
s A

1/3 as the resumma-
tion parameter.

4.2.3 Saturation picture from the GGM formula

Multiple nucleon interactions become important in Eq. (4.45) when the dipole size becomes
of order x⊥ ∼ 1/Qs , where the saturation scale Qs is defined by the following implicit
equation (cf. Eq. (3.133)):

Q2
s (�b⊥) = αsπ

2

2Nc

T (�b⊥)xGN (x,Q2
s ). (4.47)

Note that for a cylindrical nucleus, as considered in Sec. 3.4.2, one has T (�b⊥) = A/S⊥
so that, taking into account that the nuclear gluon distribution is xGA = AxGN (which is
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1

N

x

x 2

1/Λ

saturation

<< 1αs

1/Qs

Fig. 4.11. The imaginary part of the forward amplitude of the dipole–nucleus scattering
N plotted as a function of the transverse separation between the quark and the anti-
quark in a dipole x⊥, using Eq. (4.51). (Reprinted from Jalilian-Marian and Kovchegov
(2006), with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

true at the two-gluon level considered here), one can recast Eq. (4.47) in almost the exact
form of Eq. (3.133). The difference Nc/CF between the saturation scales in (4.47) and in
(3.133) is due to the fact that the saturation scale (4.47) we have just found is that for a quark
dipole, whereas the saturation scale in Eq. (3.133) was obtained solely for gluons. If we
were to replace the quark dipole in Fig. 4.5 with a gluon dipole, we would need to modify
the exponent in Eq. (4.45) by the ratio of the adjoint and fundamental Casimir operators
Nc/CF , putting Eq. (4.47) in exact agreement with Eq. (3.133). With this proviso, we see
that, at least at the lowest order considered, Eq. (4.47) gives the same saturation scale as
what follows from the GLR–MQ equation.

Inserting the lowest-order single-quark gluon distribution function,

xG
quark
LO (x,Q2

⊥) = αsCF

π
ln

Q2

�2
, (4.48)

into Eq. (4.45), we can rewrite it as

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−α2

s CF π

Nc

T (�b⊥) x2
⊥ ln

1

x⊥�

}
. (4.49)

Defining the quark saturation scale (note the factor 4 difference compared with Eq. (4.47)
and the absence of a gluon distribution in this definition),

Q2
s (�b⊥) ≡ 4πα2

s CF

Nc

T (�b⊥), (4.50)

we rewrite Eq. (4.49) as

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−x2

⊥Q2
s (�b⊥)

4
ln

1

x⊥�

}
. (4.51)

The dipole amplitude N from Eq. (4.51) is plotted schematically in Fig. 4.11 as a function of
x⊥. One can see that, at small x⊥, i.e., x⊥ � 1/Qs , we have N ∼ x2

⊥ so that the amplitude
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4.3 Mueller’s dipole model 141

is zero for zero dipole size. This result is natural, since in a zero-size dipole the color
charges of the quark and the antiquark cancel each other, leading to the disappearance
of interactions with the target. This effect is known as color transparency (Kopeliovich,
Lapidus, and Zamolodchikov 1981, Nikolaev and Zakharov 1991, Heiselberg et al. 1991,
Blaettel et al. 1993, Frankfurt, Miller, and Strikman 1993).

The amplitude (4.51) is a rising function of x⊥ at small dipole size. However, at large
dipole size x⊥ � 1/Qs , growth stops and the amplitude levels off (saturates) at N = 1.
As mentioned earlier, this regime corresponds to the black-disk limit for dipole–nucleus
scattering: for large dipoles the nucleus appears as a black disk. The transition from N ∼ x2

⊥
to the black disk-like (N = 1) behavior in Fig. 4.11 occurs at around x⊥ ∼ 1/Qs . For dipole
sizes x⊥ � 1/Qs the amplitude N saturates to a constant. This translates into saturation of
the quark distribution functions in the nucleus, since xq + xq̄ ∼ F2 (see Eq. (2.46)) and
the saturation of N implies the saturation of F2, as follows from Eqs. (4.10a), (4.12), and
(4.24). Thus the saturation of N can be identified with parton saturation, justifying the
name saturation scale for Qs , Eq. (4.50).

Note that since T (�b⊥) ∼ A1/3 the saturation scale grows as

Q2
s ∼ A1/3 (4.52)

with atomic number A. If A is large enough, Qs becomes perturbatively large, Qs � �QCD ,
justifying the use of perturbation theory. The scaling in Eq. (4.52) is consistent with
Eq. (3.135), which we obtained from analyzing the GLR equation.

4.3 Mueller’s dipole model

The amplitude N given by the Glauber–Gribov–Mueller formula (4.51) is independent of the
energy of the collision (see also Eq. (4.49)) and therefore cannot be the final answer for the
high energy scattering problem at hand. It turns out that the energy dependence comes into
the dipole–nucleus scattering amplitude through quantum evolution corrections, much as the
two-gluon exchange amplitude in the onium–onium scattering in Sec. 3.2 acquires energy
dependence through the BFKL evolution of Sec. 3.3. To incorporate small-x evolution into
dipole–nucleus scattering we begin by rewriting the evolution in the language of LCPT, in
which it can be completely absorbed into the light cone wave function, with the help of
Mueller’s dipole model (Mueller 1994, 1995, Mueller and Patel 1994).

4.3.1 Dipole wave function and generating functional

Let us consider the light cone wave function of an ultrarelativistic meson consisting of a
heavy quark and antiquark (an onium), with no sea quarks and gluons present before the
small-x evolution, as shown in Fig. 4.12. We can safely apply perturbative QCD to the
onium wave function since here typical transverse distance x⊥ is about 1/mQ, where mQ

is the large mass of the heavy quark; the strong coupling constant is clearly small at such
distances.

We will denote the “bare” onium light cone wave function by �
(0)
σσ ′(�k⊥, z), where �k⊥ is

the relative transverse momentum of the qq̄ pair, z = k+/p+ is the fraction of the light
cone momentum p+ of the whole onium carried by the quark, while σ and σ ′ are the
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p− k

k

p σ

σ

1⊥

0⊥

Fig. 4.12. The onium light cone wave function before small-x evolution.

polarizations of the quark and the antiquark (see Fig. 4.12). The onium is moving in the
light cone plus direction. As usual we suppress the color and flavor indices, assuming that
they will be properly summed over when necessary. As we will shortly see, the transverse
size of the dipole remains invariant during the small-x evolution: therefore we will work in
a mixed representation where we use the transverse coordinates and longitudinal momenta
to describe dipoles. We thus Fourier-transform the onium wave function, using

�
(0)
σσ ′(�x10, z) =

∫
d2k⊥
(2π )2

ei�k⊥·�x10�
(0)
σσ ′(�k⊥, z), (4.53)

where �x10⊥ = �x1⊥ − �x0⊥ is the transverse size of dipole, the quark being located at �x1⊥ and
the antiquark at �x0⊥ (see Fig. 4.12).

As the initial onium state contains only the qq̄ pair its normalization is (cf. Eqs. (1.70)
and (1.82))

1∫
0

dz

z(1 − z)

∫
d2k⊥

2(2π )3

∑
σ,σ ′

∣∣∣�(0)
σσ ′(�k⊥, z)

∣∣∣2 = 1, (4.54)

which, in transverse coordinate space becomes

1∫
0

dz

z(1 − z)

∫
d2x10

4π

∑
σ,σ ′

∣∣∣�(0)
σσ ′(�x10, z)

∣∣∣2 = 1. (4.55)

We are interested in modifications to this wave function under small-x evolution in the
LLA approximation; thus we need to resum the terms containing αs ln 1/x corrections.
Throughout this section we will work in the A+ = 0 light cone gauge. As for the DGLAP
evolution of Sec. 2.4.2, one step of LLA small-x evolution consists of the appearance of a
single gluon in the wave function: the gluon can be emitted either from the quark line or
from the antiquark line, as shown in Fig. 4.13. (Just as in the case of BFKL evolution, quark
loops and the emission of qq̄ pairs are beyond the LLA, contributing subleading corrections
of order α2

s ln 1/x.) The corresponding modification of the onium wave function due to
the gluon emissions in Fig. 4.13 is easier to calculate than in the DGLAP case. We assume
that the light cone momentum k+

2 of the emitted gluon is small, k+
2 � k+

1 , p+ − k+
1 (see
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p− k1 − k2

k1

p

p− k1 − k2

k1

p

k2 k2

σσ

σσ

aa

0⊥

1⊥

2⊥

1⊥

2⊥

0⊥

Fig. 4.13. One step of small-x evolution in the onium wave function. The dotted lines
denote the intermediate states.

Fig. 4.13 for the explanation of the momentum and coordinate labeling). At the same
time we impose no ordering on the transverse momenta of the quarks and the gluon.
The kinematics is different from the DGLAP case (cf. Sec. 2.4.2): here the longitudinal
momenta are ordered while in the DGLAP case the transverse momenta were ordered.
In analogy with Eq. (2.68), we can write down the following expression for the qq̄G

(one-gluon) contribution to the onium light cone wave function in the A+ = 0 gauge at
order g:

�
(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

= gtaθ (k+
2 )

k−
2 + k−

1 + (p − k1 − k2)− − p−

×
∑

σ ′′=±1

[
ūσ (k1)γ · ε∗

λ(k2)uσ ′′(k1 + k2)

k+
1 + k+

2

�
(0)
σ ′′σ ′(�k1⊥ + �k2⊥, z1+z2)

− v̄σ ′′(p − k1)γ · ε∗
λ(k2)vσ ′(p − k1 − k2)

p+ − k+
1

�
(0)
σσ ′′(�k1⊥, z1)

]
. (4.56)

Here a is the gluon color index, σ , σ ′, and σ ′′ are the quark and antiquark polarizations,
and λ is the gluon polarization, while z2 = k+

2 /p+ and z1 = k+
1 /p+.

To simplify Eq. (4.56) we first remember that we have assumed that k+
2 � k+

1 , p+ − k+
1

(that is z2 � z1, 1 − z1) and that all the transverse momenta are comparable. In this kine-
matics the light cone energy of the gluon, k−

2 = k2
2⊥/k+

2 , dominates the energy denominator,
just as in the DGLAP case (cf. Eq. (2.69)), only now this is due to longitudinal momentum
ordering. We can write

1

k−
2 + k−

1 + (p − k1 − k2)− − p− ≈ 1

k−
2

= k+
2

k2
2⊥

. (4.57)

To evaluate the Dirac matrix elements in Eq. (4.56) we use Table A.1 along with Eq. (A.2),
again keeping in mind that k+

2 � k+
1 , p+ − k+

1 . For instance, the first matrix element in the
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144 Dipole approach to high parton density QCD

square brackets of Eq. (4.56) simplifies to

ūσ (k1)γ · ε∗
λ(k2)uσ ′′(k1 + k2) ≈ 1

2
ūσ (k1)γ +uσ ′′(k1 + k2) ε−

λ (k2)∗

= 2δσσ ′′

√
k+

1 (k+
1 + k+

2 )
�ελ∗
⊥ · �k2⊥

k+
2

≈ 2δσσ ′′k+
1

�ελ∗
⊥ · �k2⊥

k+
2

.

(4.58)

Performing a similar approximation for the second matrix element in Eq. (4.56) and insert-
ing the result along with Eqs. (4.57) and (4.58) back into Eq. (4.56) yields

�
(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

≈ 2gtaθ (z2)
�ελ∗
⊥ · �k2⊥
k2

2⊥

[
�

(0)
σσ ′(�k1⊥ + �k2⊥, z1) − �

(0)
σσ ′(�k1⊥, z1)

]
, (4.59)

where we have also neglected z2 in comparison with z1 in the argument of one wave
function.

In the transverse coordinate space representation, Eq. (4.59) has the form

�
(1)
σσ ′(�x10, �x20, z1, z2) =

∫
d2k1⊥d2k2⊥

(2π )4
ei�k1⊥·�x10+i�k2⊥·�x20�

(1)
σσ ′(�k1⊥, �k2⊥, z1, z2)

= i
gta

π
�

(0)
σσ ′(�x10, z1) �ελ∗

⊥ ·
( �x21

x2
21

− �x20

x2
20

)
, (4.60)

where �x20 = �x2⊥ − �x0⊥, �x21 = �x2⊥ − �x1⊥, and xij = |�xij | as defined after Eq. (1.87). The
gluon has transverse coordinate �x2⊥, as illustrated in Fig. 4.13. We have used Eq. (A.10) to
obtain Eq. (4.60) from Eq. (4.59).

Squaring the coordinate-space one-gluon wave function from Eq. (4.60) and summing
over the quark and gluon polarizations and colors yields∑

σ,σ ′,λ,a

∣∣∣�(1)
σσ ′

∣∣∣2 = 4αsCF

π

x2
10

x2
20x

2
21

∑
σ,σ ′

∣∣∣�(0)
σσ ′

∣∣∣2 . (4.61)

To calculate the probability of finding one extra gluon in the onium wave function we have
to integrate Eq. (4.61) over the gluon’s phase space, which, in the z2 � z1, 1 − z1 � 1
approximation, is (cf. Eq. (4.23))4

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

4π
, (4.62)

where z0 is some lower cutoff on the z2-integral, imposed to make the integration finite;
the exact value of z0 depends on the physical process incorporating to the wave function
we are constructing. The order-αs contribution to the probability of finding one gluon in

4 One may ask why, if our calculation is valid for z2 � z1, 1 − z1, we can extend the z2-integral all the way up to z1 or
1 − z1. While indeed our approximation breaks down for z2 close to z1 or 1 − z1, putting z1 or 1 − z1 as the upper
integration limit gives the correct leading-logarithmic contribution.
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Fig. 4.14. Virtual contribution to small-x evolution in the onium wave function. The quark
transverse coordinates in the onium are not changed by the corrections.

the onium wave function is then (Mueller 1994)

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

4π

∑
σ,σ ′,λ,a

∣∣∣�(1)
σσ ′

∣∣∣2 =
min{z1,1−z1}∫

z0

dz2

z2

∫
d2x2

αsCF

π2

x2
10

x2
20x

2
21

∑
σ,σ ′

∣∣∣�(0)
σσ ′

∣∣∣2 .

(4.63)

Note that the modified wave function in Eq. (4.63) contains a power of αs and a logarithmic
integral over z2, which would give us finally ln 1/x. We see that the modification we have
calculated brings in a factor αs ln 1/x. Another feature of Eq. (4.63) is that the �x2⊥-integral
in it contains UV divergences at x20 ≈ 0 and x21 ≈ 0. For now we will regulate these
divergences by a UV cutoff ρ, such that x20, x21 > ρ: in the end no physical quantity
depends on the value of this cutoff.

Before we proceed let us point out that, as for the Glauber–Gribov–Mueller model (see
e.g. Eq. (4.41)), the expression (4.63) completely factorizes transverse coordinate space
into the square of the “bare” onium wave function times the probability of emission of the
extra gluon. The emission of an extra gluon does not change the coordinates of the initial
quark and the antiquark, yet again illustrating our above argument about the convenience of
the transverse coordinate representation. This property also gives Eq. (4.61) a very simple
physical meaning, resulting from the probabilistic interpretation of the light cone wave
functions: the contribution to the onium wave function due to the emission of an extra
gluon is equal to the product of the probability of finding a dipole with size x10 inside the
onium (∼ |� (0)

σσ ′ |2) multiplied by the probability that the dipole emits a gluon at �x2⊥.
The one-gluon corrections to the dipole wave function need not be limited to the “real”

gluon shown in Fig. 4.13; they should also include virtual corrections, where the gluon
is both emitted and absorbed in the onium wave function, again like in the DGLAP case
in Sec. 2.4.2. The virtual diagrams giving the LLA contributions are shown in Fig. 4.14,
where, in accordance with the LCPT rules introduced in Sec. 1.3, the crossed lines denote
instantaneous terms. From the sheer number of graphs in Fig. 4.14 one can see that direct
calculation of all the virtual corrections can be a daunting task (see Chen and Mueller
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Fig. 4.15. Large-Nc limit in the onium wave function (top two panels) and the wave function
squared (bottom panel). The curly brackets in the top panel denote the daughter dipoles
generated by the gluon emission. The right-hand brace in the middle panel denotes the
parent dipole remaining intact after a virtual correction. The thin vertical line in the bottom
panel separates the wave function from its complex conjugate.

(1995) for an outline of the calculation). Instead we will follow Mueller (1994) and use
the unitarity argument presented in Sec. 2.4.2 (see Eq. (2.86)) to write down the following
expression for the order-αs virtual correction to the onium wave function:

�
(0)
σσ ′(�x10, z1)

∣∣∣∣
O(αs )

= −1

2

min{z1,1−z1}∫
z0

dz2

z2

∫
d2x2

αsCF

π2

x2
10

x2
20x

2
21

�
(0)
σσ ′(�x10, z1)

∣∣∣∣
O(α0

s )

= −2αsCF

π
ln

x01

ρ

min{z1,1−z1}∫
z0

dz2

z2
�

(0)
σσ ′(�x10, z1)

∣∣∣∣
O(α0

s )

. (4.64)

The integral over �x2⊥ is carried out in appendix section A.3 with ρ the UV regulator
introduced above.

Having obtained the one-gluon corrections we would now like to derive an equation
resumming the higher-order gluon emissions and virtual gluon corrections that bring powers
of αs ln 1/x into the wave function. (Remember that quark loops do not contribute leading
logarithms of x.) This turns out to be a rather difficult problem. A major simplification
occurs if we consider the onium wave function in the ’t Hooft large-Nc limit (’t Hooft
1974), taking Nc to be very large while keeping αsNc constant. In the large-Nc limit the
single gluon line is replaced by a double line, corresponding to replacing the gluon by a
quark–antiquark pair in the color-octet configuration. This is illustrated in Fig. 4.15. In the
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4.3 Mueller’s dipole model 147

Fig. 4.16. Two steps of small-x evolution in the onium wave function squared (left) and their
large-Nc limits (right). The top panel shows a nonplanar diagram, which is N 2

c -suppressed
compared with the leading-Nc planar diagram shown in the bottom panel.

large-Nc limit it is convenient to talk about color dipoles instead of gluons. The original
onium is a color dipole consisting of a quark at �x1⊥ and an antiquark at �x0⊥. The emission
of a gluon in the onium wave function, taken in the large-Nc limit, corresponds to the
splitting of the original dipole with size x10 into two dipoles with sizes x12 and x20: the
dipole the size x12 consists of the original quark at �x1⊥ and the antiquark part of the gluon
line at �x2⊥, while the quark part of the gluon line at �x2⊥ along with the original antiquark at
�x0⊥ form the dipole with size x20 (see the top and bottom panels of Fig. 4.15). The virtual
gluon corrections leave the original dipole intact, as can be seen in the middle panel of
Fig. 4.15.

Another important feature of the large-Nc limit is that only planar diagrams contribute;
the nonplanar diagrams are suppressed by powers of Nc for fixed αsNc. This means that
different color dipoles generated by gluon emissions do not “talk” to each other: subsequent
emissions happen independently in each dipole. This is illustrated in Fig. 4.16, where in
the top panel we show an example of a diagram where a gluon emitted in one dipole in
the amplitude connects to another dipole in the complex conjugate amplitude. As can be
seen from the upper panel of Fig. 4.16, such a diagram is indeed nonplanar; hence, it is
1/N2

c -suppressed (as can be checked explicitly) and can be neglected in the large-Nc limit.
At the same time, the diagram in the lower panel of Fig. 4.16, while of the same order in
αs ln 1/x, is also planar: in it the gluon from one dipole does not interact with the other
dipole, remaining instead in its own dipole. This second diagram in Fig. 4.16 is of leading
order in Nc and has to be resummed by large-Nc dipole evolution. (Strictly speaking, the
diagram in the lower left panel of Fig. 4.16, when written in double-line notation, also
contains a nonplanar subleading-Nc correction, in which the quark line in the longer gluon
interacts with the quark of the original dipole: this correction is not shown in Fig. 4.16.)

Note that, in order to obtain the leading-ln 1/x contribution to the wave function, the
softer gluons (those with smaller z) have to be emitted later (to the right in our LCPT
diagrams) than the harder gluons, with larger values of z. For instance, let us consider an
onium wave function with two gluon emissions, as shown in Fig. 4.17. Assume further
that the gluon emitted earlier is softer than the gluon emitted later, i.e., that z3 � z2,
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p
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1⊥, z1

2⊥, z2

3⊥, z3

Fig. 4.17. Two gluons emitted in the onium wave function: if one assumes that the gluon
emitted earlier is softer, z3 � z2, then the square of this diagram will not give a leading-
ln 1/x contribution.

where, as usual,

zi = k+
i

p+ . (4.65)

A simple calculation of the wave function in Fig. 4.17, in the z3 � z2 approximation, car-
ried out along the steps outlined above for a single emission would yield a wave function
proportional to z3/z2 as far as the longitudinal momentum dependence is concerned. Squar-
ing this wave function and integrating the result over z2 and z3 with z1 � z2 � z3 � z0

yields an answer proportional to

α2
s

z1∫
z0

dz2

z2

z2∫
z0

dz3

z3

z2
3

z2
2

≈ 1

2
α2

s ln
z1

z0
. (4.66)

We see that we have only one longitudinal logarithm per two powers of the coupling αs :
this is not a leading logarithmic contribution. Hence the square of the diagram in Fig. 4.17
is subleading in ln 1/x and does not contribute to the leading-ln 1/x evolution we are
considering here. It does contribute when one attempts to calculate the NLO corrections to
the evolution we are about to construct (see Chapter 6). Using similar arguments, one can
show that the diagram in Fig. 4.17 does not contribute to the LLA, even when we take its
overlap with the wave function resulting when gluon 3 is emitted after gluon 2. In fact one
can also show that no diagram with inverse time-ordering like that in Fig. 4.17 contributes
in the LLA approximation. We thus come to another important conclusion: to obtain LLA
evolution in the wave function, the gluon emissions with

z2 � z3 � · · · � zn (4.67)

must be ordered in time, with the harder (larger-z) gluons emitted before the softer (small-z)
gluons.

Now the structure of the small-x light cone wave function becomes manifest: in one
step of evolution a gluon is emitted. It can be a real gluon, like those in the top and bottom
panels of Fig. 4.15, which would split the initial (parent) dipole 10 (“one-zero”) into two
new (daughter) dipoles 12 and 20. The subsequent αs ln 1/x evolution is driven by further
gluon emission: this would happen independently (and in parallel) in both daughter dipoles.
An example of two-gluon emission is shown in the second panel of Fig. 4.16. Alternatively,
the emission in the initial dipole can be virtual, as shown in the middle panel of Fig. 4.15;
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Fig. 4.18. Definition of an abbreviated notation for the sum of all large-Nc diagrams
contributing to the real-gluon emission in the square of an onium wave function.

then the initial dipole remains intact, any subsequent evolution occurring within the initial
dipole at later times.

As we can see from Eqs. (4.63) and (4.64), in the mixed representation in which we
are working, each step of the evolution factorizes from the previous one, simplifying
the construction of the gluon wave function. To illustrate this, let us consider two steps
of small-x evolution due to two consecutive real-gluon emissions, including all possible
LLA diagrams. It is convenient to introduce the shorthand diagram notation presented
in Fig. 4.18, where the sum of all four (large-Nc) diagrams corresponding to real-gluon
emission in the onium wave function comprises one diagram, that in the upper left of the
figure. The diagrams in Fig. 4.18 give us the correction to the dipole wave function in
Eq. (4.63). The kernel of this correction can be decomposed as follows:

αsCF

π2

x2
10

x2
20x

2
21

= αsCF

π2

(
1

x2
21

− 2
�x21 · �x20

x2
21x

2
20

+ 1

x2
20

)
, (4.68)

where the first and the last terms on the right-hand side of Eq. (4.68) correspond to the
last two graphs in Fig. 4.18, while the first two (interference) diagrams on the right of
Fig. 4.18 give the second term on the right of Eq. (4.68). The very first diagram in Fig. 4.18
corresponds to the full emission kernel on the left of Eq. (4.68).

Using the notation of Fig. 4.18, the square of the large-Nc onium wave function with two
real gluons in it in the LLA approximation can be represented simply by the two diagrams
depicted in Fig. 4.19, with the gluons ordered in longitudinal momenta such that z2 � z3.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


150 Dipole approach to high parton density QCD
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Fig. 4.19. Two real gluons in the LLA approximation and in the large-Nc limit contributing
to the square of an onium wave function. The length of the lines is driven by light cone
time-ordering.

According to the rules outlined above, the gluon carrying momentum fraction z2 has to be
emitted before the gluon carrying z3, as shown in Fig. 4.19. The emission of gluon 2 splits
the original dipole 10 into two dipoles. The subsequent emission of gluon 3 can occur either
in dipole 12 (Fig. 4.19A) or in dipole 20 (Fig. 4.19B). (Note that gluon 3 is emitted from
gluon 2 via a three-gluon vertex.) Iterating Eq. (4.63) twice, we see that the sum of the graphs
A and B in Fig. 4.19 brings into the onium wave function squared the following factor:

z1∫
z0

dz2

z2

z2∫
z0

dz3

z3

∫
d2x2 d2x3

(
αsCF

π2

)2
x2

10

x2
20x

2
21

(
x2

12

x2
31x

2
32

+ x2
20

x2
32x

2
30

)
. (4.69)

(For simplicity of notation we have put z1 as the upper cutoff of the z2-integration,
since at LLA accuracy one cannot see any significant difference between z1 and 1 − z1.)
Equation (4.69) demonstrates that the small-x evolution in the onium wave function
consists of consecutive emissions ordered in rapidity and light cone time, with the
transverse dynamics included in a factorized way.

To describe the onium wave function formally including αs ln 1/x corrections to all
orders it is convenient to define the dipole generating functional Z(�x10, �b0⊥, Y ; u) by

Z(�x10, �b0⊥, Y ; u)
∑
σσ ′

|�(0)
σσ ′(�x10, z1)|2

∣∣∣∣
O(α0

s )

=
∫

d2r1d
2b1|�[1](�r1⊥, �b1⊥, Y )|2u(�r1⊥, �b1⊥)

+ 1

2!

∫
d2r1d

2b1d
2r2d

2b2|�[2](�r1⊥, �b1⊥, �r2⊥, �b2⊥, Y )|2

× u(�r1⊥, �b1⊥)u(�r2⊥, �b2⊥) + · · ·

=
∞∑

n=1

1

n!

∫
d2r1d

2b1 · · · d2rnd
2bn|�[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2

× u(�r1⊥, �b1⊥) · · · u(�rn⊥, �bn⊥). (4.70)
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We have defined the rapidity variable Y = ln(z1/z0), where now z0 is the smallest momen-
tum fraction carried by a gluon in the wave function. In Eq. (4.70) the light cone wave
functions �[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y ) correspond to the onium state consisting of n

dipoles with sizes �r1⊥, . . . , �rn⊥ whose centers (in the transverse plane) are located at impact
parameters �b1⊥, . . . , �bn⊥ (e.g. �b0⊥ = (1/2)(�x1⊥ + �x0⊥)). The rapidity interval between these
daughter dipoles and the original parent dipole 1 0 is less than or equal to Y , i.e., the wave
functions squared |� [n]|2 are implicitly integrated over dipole rapidities from 0 to Y . Sum-
mation over all appropriate quantum numbers is implied in the square of the wave function
�[n]. Note that �

(0)
σσ ′(�x10, z1) taken at order α0

s is the bare wave function of the onium before
any emissions have taken place. In going from gluons to color dipoles we have changed
the notation for the wave functions: while �(n) denotes a wave function with n real gluons
in it, � [n] is a wave function with n dipoles (note the use of square brackets rather than
parentheses). Since we always have at least one dipole (the original onium), the sum over
n in Eq. (4.70) starts at n = 1.

The dummy functions u(�rn⊥, �bn⊥) are introduced so that one can extract the squares
of different multi-dipole onium wave functions from the generating functional Z,
using

|� [n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2 =
∑
σσ ′

|�(0)
σσ ′(�x10, z1)|2

∣∣∣∣
O(α0

s )

× δn

δu(�r1⊥, �b1⊥)· · ·δu(�rn⊥, �bn⊥)
Z(�x10, �b0⊥, Y ; u)

∣∣∣∣
u=0

,

(4.71)

where δ/δu(�r⊥, �b⊥) is a functional derivative. As usual this derivative is defined such that
(see e.g. Peskin and Schroeder (1995) for details)

δ

δu(�r⊥, �b⊥)
u(�r ′

⊥, �b′
⊥) = δ(2)

(�r⊥ − �r ′
⊥
)
δ(2)
(
�b⊥ − �b′

⊥
)

, (4.72)

which leads to

δ

δu(�r⊥, �b⊥)

∫
d2r ′d2b′f (�r ′

⊥, �b′
⊥) u(�r ′

⊥, �b′
⊥) = f (�r⊥, �b⊥) (4.73)

for an arbitrary function f (�r⊥, �b⊥).
Since |�[n]|2 gives the probability of having n dipoles in the onium wave function in

a given transverse space configuration, and since the sum over probabilities of having any
number of dipoles in all transverse configurations is 1, we conclude that (see Eq. (1.70))

Z(�x10, �b0⊥, Y ; u = 1) = 1. (4.74)

We want to write down an evolution equation for the generating functional Z summing
all powers of αsY . Before we do so, let us set up the initial condition for such an evolution.
When Y = 0 we have no evolution and no gluon emissions (neither real nor virtual). Hence

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


152 Dipole approach to high parton density QCD

Fig. 4.20. An abbreviated notation for the sum of all large-Nc diagrams contributing to the
virtual gluon correction to the onium wave function.
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Fig. 4.21. Diagrammatic representation for the evolution equation of the generating func-
tional Z (denoted by a shaded circle).

|�[n>1](Y = 0)|2 = 0 and

|� [1](�r1⊥, �b1⊥, Y = 0)|2 = δ2

(
�b1⊥ + �r1⊥

2
− �x1⊥

)
δ2

(
�b1⊥ − �r1⊥

2
− �x0⊥

)
, (4.75)

such that

Z(�x10, �b0⊥, Y = 0; u) = u(�x10, �b0⊥). (4.76)

Now that we have the initial conditions for Z-evolution, it is straightforward to write
down an evolution equation for Z. The main principle was stated several pages ago: in one
step of evolution a gluon is emitted in the dipole wave function: the gluon may be real,
splitting the parent dipole into two daughter dipoles, or it may be virtual, leaving the parent
dipole intact. In the former case the subsequent evolution continues independently in the
two daughter dipoles, while in the latter case evolution continues in the parent dipole. This
statement is illustrated diagrammatically in Fig. 4.21, where the generating functional Z

is represented by a shaded circle. The first graph on the right of Fig. 4.21 corresponds
to real-gluon emission, while the remaining two graphs represent the sum of all virtual
corrections, as shown in Fig. 4.20.

Guided by Fig. 4.21, and employing Eqs. (4.63) and (4.64) while replacing CF by Nc/2
in the large-Nc limit, we can write down the following evolution equation for the generating
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functional Z (Mueller 1994, 1995):

∂

∂Y
Z(�x10, �b0⊥, Y ; u)

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
Z

(
�x12, �b0⊥ + �x20

2
, Y ; u

)
Z

(
�x20, �b0⊥ + �x21

2
, Y ; u

)
− Z(�x10, �b0⊥, Y ; u)

]
.

(4.77)

The first term on the right-hand side of Eq. (4.77) corresponds to the first term on the right
of Fig. 4.21, while the last two terms in Fig. 4.21 give rise to the second term on the right
of Eq. (4.77). The minus sign in this second term is due to the minus sign in the virtual
correction in Eq. (4.64).

Equation (4.77) is a nonlinear evolution equation whose initial condition is given in
Eq. (4.76). Solving this evolution equation would allow one to construct the squares of
the multi-dipole onium wave functions using Eq. (4.71). Unfortunately the exact analytical
solution of Eq. (4.77) is not known. So, let us first connect Eq. (4.77) with results that are
already familiar to the reader, such as the BFKL equation.

4.3.2 The BFKL equation in transverse coordinate space

Consider the following functional derivative taken at u = 1:

δZ(�x10, �b0⊥, Y ; u)

δu(�r⊥, �b⊥)

∣∣∣∣
u=1

=
∞∑

n=1

n

n!

∫
d2r2d

2b2 · · · · · · d2rnd
2bn

× |�[n](�r⊥, �b⊥, �r2⊥, �b2⊥, . . . , �rn⊥, �bn⊥, Y )|2∑
σσ ′ |�(0)

σσ ′(�x10, z1)|2
∣∣∣∣
O(α0

s )

. (4.78)

If instead the value of the derivative had been taken at u = 0, the physical meaning of the
above object would have been clear from Eq. (4.71): it would have been the single-dipole
wave function squared, divided by the original onium’s wave function. To understand the
physical meaning of the actual object in Eq. (4.78) we note that the probability of having n

dipoles in the onium wave function (for an onium of given size �x10 and quark momentum
fraction z1) is given by

Pn(Y ) = 1

n!

∫
d2r1d

2b1 · · · d2rnd
2bn

|�[n](�r1⊥, �b1⊥, . . . , �rn⊥, �bn⊥, Y )|2∑
σσ ′ |�(0)

σσ ′(�x10, z1)|2
∣∣∣∣
O(α0

s )

, (4.79)

where the factorial is a symmetry factor removing the multiple counting of identical dipole
configurations, and where n > 0. The condition (4.74) translates into

∑∞
n=1 Pn(Y ) = 1.
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154 Dipole approach to high parton density QCD

The average number of dipoles (at rapidities up to Y ) in the onium wave function is

〈n(Y )〉 =
∞∑

n=1

nPn(Y ). (4.80)

The series (4.80) is very similar to that in Eq. (4.78), except that in Eq. (4.78) we are
keeping the transverse size and impact parameter of one dipole fixed. We have thus arrived
at the physical meaning of the object in Eq. (4.78): it is the number of dipoles of size �r⊥
at impact parameter �b⊥ and with rapidities between 0 and Y located in the onium wave
function. We denote this object by n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ), so that

n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ) = δZ(�x10, �b0⊥, Y ; u)

δu(�r⊥, �b⊥)

∣∣∣∣
u=1

. (4.81)

To construct an equation for n1(�x10, �r⊥, �b⊥ − �b0⊥, Y ) we simply have to differentiate
Eq. (4.77) with respect to u, putting u = 1 at the end using Eq. (4.74). This yields an
equation that we will shortly show to be equivalent to the BFKL equation (Mueller 1994,
Mueller and Patel 1994, Mueller 1995, Nikolaev, Zakharov, and Zoller (1994))5

∂

∂Y
n1(�x10, �r⊥, �b⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

[
n1

(
�x12, �r⊥, �b⊥ − �x20

2
, Y

)

+ n1

(
�x20, �r⊥, �b⊥ − �x21

2
, Y

)
− n1(�x10, �r⊥, �b⊥, Y )

]
. (4.82)

We have relabeled �b⊥ − �b0⊥ simply as �b⊥, which therefore now has the meaning of the
transverse space distance between the centers of the original dipole 10 and the dipole
of interest, of size �r⊥. The initial condition for Eq. (4.82) is obtained by differentiating
Eq. (4.76) with respect to u(�r⊥, �b⊥) and afterwards putting u = 1:

n1(�x10,�r⊥, �b⊥, Y = 0) = δ2(�x10 − �r⊥) δ2
(
�b⊥
)

. (4.83)

The distribution of pairs of dipoles in the onium wave function can be defined as a
second derivative of the generating functional:

n2(�x10, �r1⊥, �b1⊥ − �b0⊥, �r2⊥, �b2⊥ − �b0⊥, Y ) = δ2Z(�x10, �b0⊥, Y ; u)

δu(�r1⊥, �b1⊥)δu(�r2⊥, �b2⊥)

∣∣∣∣
u=1

. (4.84)

Equation (4.84) gives the number of pairs of dipoles with sizes �r1⊥ and �r2⊥ located at
impact parameters �b1⊥ and �b2⊥ and in the rapidity interval [0, Y ]. The equation for n2

is constructed in analogy to that for n1 by the double differentiation of Eq. (4.77) with
respect to u(�r1⊥, �b1⊥) and u(�r2⊥, �b2⊥), putting u = 1 at the end. The main difference

5 Nikolaev and Zakharov (1994) and Nikolaev, Zakharov, and Zoller (1994) were very close to solving these problems.
Nikolaev and Zakharov (1994) rewrote the DLA DGLAP evolution in terms of color dipoles. Nikolaev, Zakharov,
and Zoller (1994) obtained the BFKL equation in the dipole formulation, though several months later than Mueller
(1994). Lipatov (1986) was the first to notice that the BFKL equation has a particularly elegant form in the transverse
coordinate representation but his approach lacked the idea of using color dipoles instead of the transverse coordinates
of the gluons.
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1

0

1

0

⊥

Fig. 4.22. Onium–onium scattering in the BFKL approximation in the dipole model, with
the lower onium 1′0′ at rest.

comes in the initial conditions: the second derivative of Eq. (4.76) with respect to u gives
n2(�x10, �r1⊥, �b1⊥, �r2⊥, �b2⊥, Y = 0) = 0. The equation for n2 is also a linear differential
equation, though it also contains powers of n1. We will not write down this equation
explicitly and instead refer the reader to the papers by Mueller (1995) and Mueller and
Patel (1994). Higher derivatives of the generating functional Z give the number distributions
of dipole triplets, quadruplets, etc. The nth-order derivative of Z with respect to u gives the
distribution of n dipoles in the onium wave function.

While dipole number distributions are interesting quantities in themselves, they also
allow one to calculate scattering cross sections in a physically intuitive way. Consider
onium–onium scattering at high energies, where the small-x evolution is important. This
is the kinematics in which we studied the BFKL evolution in Sec. 3.3. Let us now try to
reproduce the BFKL result in the dipole language. Consider a frame in which one onium
is at rest while the other is incident on it at high energy. The total onium–onium scattering
cross section per unit impact parameter can then be written as a convolution of the number
of dipoles in the incident onium wave function and the scattering cross section of each
dipole on the onium when at rest:

n(�x10, �x1′0′ , �b, Y ) =
∫

d2rd2b′n1(�x10, �r⊥, �b′
⊥ − �b⊥, Y )

dσ̂ onium−onium
tot (�r⊥, �x1′0′ )

d2b′ . (4.85)

Here the two colliding onia have transverse sizes �x10 and �x1′0′ (the latter is at rest), �b
is the impact parameter, Y is the net rapidity interval for the onium–onium scattering,
and dσ̂ onium−onium

tot (�r⊥, �r ′
⊥)/d2b is the cross section for the scattering of two onia with

sizes �r⊥ and �r ′
⊥ mediated by a two-gluon exchange, as calculated in Exercise 3.3 (see

Eq. (3.139)). Equation (4.85) is illustrated in Fig. 4.22, where dipole evolution in the onium
10 creates a dipole of size �r⊥, which then interacts with the onium 1′0′ via a two-gluon
exchange.

Note that the dipole number density n1 counts all dipoles with rapidities between 0 and
Y (with respect to the dipole 10): any of these dipoles (if it has size �r⊥, over which we will
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156 Dipole approach to high parton density QCD

integrate) can interact with the dipole 1′0′. The quantity n1 is, therefore, integrated over
the dipole rapidities. Such an integration is justified at the wave function level because the
Born-level cross section σ̂ onium−onium

tot is energy independent and cannot affect the result of
the integration.

It is important to stress that, while the dipole number distribution n1 in Eq. (4.85) is a
function of αsNc (see Eq. (4.82)) and is thus of order N0

c in the ’t Hooft large-Nc limit,
the two-gluon exchange cross section σ̂ onium−onium

tot is of order α2
s ∼ (αsNc)2/N2

c ∼ 1/N2
c ,

so that the whole onium–onium scattering cross section is Nc-suppressed. This is indeed in
agreement with the well-known result that any interaction cross section is Nc-suppressed
at large Nc (see e.g. Witten (1979)). The essential feature of the interactions in the dipole
model is the factorization into light cone wave function(s) and elementary scattering cross
sections. As the scattering cross sections are always Nc-suppressed, to capture the dominant
contribution to the scattering one has to use the leading-Nc wave functions constructed
above. The factorization presented in Fig. 4.22 is not unique: in a different reference frame,
say the center-of-mass frame, the dipole wave functions of both onia contain small-x
evolution; a dipole from one wave function exchanges two gluons with a dipole in another
wave function (Mueller and Patel 1994). Such a factorization gives the same answer as the
one we will obtain below for Fig. 4.22.

To find the scattering cross section per unit impact parameter,

n(�x10, �x1′0′ , �b⊥, Y ) = dσ̂ onium−onium
tot (�x10, �x1′0′ , Y )

d2b
, (4.86)

one can first solve Eq. (4.82) and then use the solution in Eq. (4.85) along with the cross
section from Eq. (3.139). Alternatively, one may note that the cross section n(�x10, �x1′0′ , �b, Y )
itself satisfies Eq. (4.82):

∂

∂Y
n(�x10, �x1′0′ , �b⊥, Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
n

(
�x12, �x1′0′ , �b⊥ − �x20

2
, Y

)
+ n

(
�x20, �x1′0′ , �b⊥ − �x21

2
, Y

)
− n(�x10, �x1′0′ , �b⊥, Y )

]
(4.87)

with initial condition (cf. Eq. (3.139))

n(�x10, �x1′0′ , �b⊥, Y = 0) = dσ̂ onium−onium
tot (�x10, �x1′0′)

d2b

= 2α2
s CF

Nc

ln2 x11′x00′

x10′x01′
. (4.88)

Equation (4.87) can be solved exactly: the solution is somewhat involved and will be left
for the next section. Instead, we will consider here the simplified case where a cross section
is integrated over all impact parameters �b⊥. In momentum space this corresponds to the
t = 0 case, of zero momentum transfer. On top of that we will average over the directions
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4.3 Mueller’s dipole model 157

of �x1′0′ : the resulting cross section does not depend on the directions of �x10 either, since
there is no preferred direction left in the transverse space. Defining

n(x10, x1′0′ , Y ) =
∫

d2b

2π∫
0

dφ1′0′

2π
n(�x10, �x1′0′ , �b⊥, Y ), (4.89)

we see that this new quantity satisfies

∂

∂Y
n(x10, x1′0′ , Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

× [n (x12, x1′0′ , Y ) + n (x20, x1′0′ , Y ) − n(x10, x1′0′ , Y )] (4.90)

with initial condition (cf. Eq. (3.25))

n(x10, x1′0′ , Y = 0) = 4πα2
s CF

Nc

x2
<

(
ln

x>

x<

+ 1

)
, (4.91)

where x>(<) = max (min){|�x10|, |�x1′0′ |}.
The solution of Eq. (4.90) can be found by noticing that in the angular-averaged case

the eigenfunctions of the integral kernel are simple powers of the dipole size,(
x2

01

)1/2+iν
(4.92)

with eigenvalues

αsNc

π
χ (0, ν), (4.93)

where (cf. Eqs. (3.81), (3.74))

χ (0, ν) = 2ψ(1) − ψ

(
1

2
+ iν

)
− ψ

(
1

2
− iν

)
. (4.94)

To prove this we need to evaluate the following integral:∫
d2x2

x2
10

x2
20x

2
21

[(
x2

12

)1/2+iν + (x2
20

)1/2+iν − (x2
10

)1/2+iν
]
. (4.95)

This can be done by noticing that the integral (4.95) is equivalent to that in Eq. (3.64) with
n = 0. Alternatively, one can use the trick presented in appendix section A.3; in order to
make each term in Eq. (4.95) finite we insert a UV regulator ρ. After that, with the help of
Eqs. (A.18), (A.21), (A.24), and (A.29) one can rewrite Eq. (4.95) as

2π

[
21+2iν

�
(

1
2 + iν

)
�
(

1
2 − iν

)x2
10

∞∫
0

dkk−2iν

(
ln

2

kρ
+ ψ(1)

)
J0(kx10) − x1+2iν

10 ln
x2

10

ρ2

]
. (4.96)

Integrating over k in Eq. (4.96) using Eq. (A.18) yields

2πx1+2iν
10 χ (0, ν), (4.97)

as desired.
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158 Dipole approach to high parton density QCD

We see that, as for to the BFKL equation (3.58), the eigenfunctions of Eq. (4.90)
are powers (though of the transverse dipole size instead of the transverse momentum),
with exactly the same eigenvalues, (4.93) as in that case.6 We conclude that Eq. (4.90) is
equivalent to the BFKL equation!

In fact, the substitution (Levin and Ryskin 1987)

n(x10, x1′0′ , Y ) =
∫

d2k
(

1 − ei�k⊥·�x10

) 1

k2
⊥

f (�k⊥, x1′0′ , Y ) (4.98)

turns Eq. (4.90) into the BFKL equation (3.58) for the function f (Kovchegov and Weigert
2007b). Verification of this statement is left as an exercise for the reader.

Using the eigenfunctions and the eigenvalues of the integral kernel in Eq. (4.90), we can
write down the solution of Eq. (4.90) as

n(x10, x1′0′ , Y ) =
∞∫

−∞
dν Cν(x1′0′)x1+2iν

10 eᾱsχ (0,ν)Y , (4.99)

where the coefficient Cν(x1′0′ ) is fixed by the initial conditions (4.91) as follows:

Cν(x1′0′) = 16 α2
s CF

Nc

1

(1 + 4ν2)2
x1−2iν

1′0′ . (4.100)

The general solution of Eq. (4.90) is then

n(x10, x1′0′ , Y ) = 16α2
s CF

Nc

x10 x1′0′

∞∫
−∞

dν

(
x10

x1′0′

)2iν
eᾱsχ (0,ν)Y

(1 + 4ν2)2
. (4.101)

For x10 ≈ x1′0′ we can use the diffusion approximation from Sec. 3.3.4: expanding χ (0, ν)
around ν = 0 using Eq. (3.84) and integrating over ν we obtain

n(x10, x1′0′ , Y ) = 16α2
s CF

Nc

x10x1′0′

√
π

14ζ (3)ᾱsY
(4.102)

× exp

[
(αP − 1)Y − ln2(x10/x1′0′ )

14ζ (3) ᾱsY

]
.

Readers who performed Exercise 3.5 will recognize Eq. (4.102) as the answer for the
onium–onium scattering cross section obtained there using the standard Feynman diagram
approach. Now we see that a calculation based on LCPT wave functions gives the same
result. Note that the single-dipole distribution n1 is only one component of the onium wave
function. This wave function also contains multi-dipole distributions n2, n3, etc. Hence, as
we will shortly see, the dipole approach, while in a certain limit equivalent to BFKL, in
fact contains more information.

6 We have verified this statement so far only in the case where the angular dependence has been integrated out: we will
consider the general angular-dependent case in the next section.
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4.3.3 The general solution of the coordinate-space BFKL equation∗

Let us now construct the solution of the BFKL equation (4.87) without making any sim-
plifying assumptions. The goal now is to construct the most general eigenfunctions of the
kernel of Eq. (4.87). This kernel operates in the transverse plane: it is convenient to think
of this plane as a complex plane, replacing the two-component vectors �xi⊥ by complex
numbers ρi , namely

ρi = xi,1 + ixi,2; ρ∗
i = xi,1 − ixi,2, (4.103)

where the indices 1, 2 denote two transverse axes. In the same way as in the vector notation
we define ρij = ρi − ρj and ρ∗

ij = ρ∗
i − ρ∗

j , along with the absolute value squared |ρij |2 =
ρijρ

∗
ij and the integration measure d2ρ = dρdρ∗. Using the above complex notation it is

straightforward to check that the kernel of Eq. (4.87), written as∫
d2ρ2

|ρ2
10|

|ρ2
20||ρ2

21|
(4.104)

is conformally invariant: it is clearly invariant under rotations, translations, scale transfor-
mations, and reflections in the complex plane. It is also invariant under the inversion

ρi → 1

ρ∗
i

, ρ∗
i → 1

ρi

. (4.105)

Thus the kernel is invariant under all Möbius transformations

z → az + b

cz + d
(4.106)

for arbitrary complex a, b, c, and d with ad − bc �= 0. When ad − bc = 1 the group
reduces to SL(2, C).

Consider the functions (Lipatov 1986)

En,ν (ρ1a, ρ2a) =
(

ρ12

ρ1aρ2a

)(1+n)/2+iν (
ρ∗

12

ρ∗
1aρ

∗
2a

)(1−n)/2+iν

, (4.107)

where ρa is an arbitrary point in the complex (transverse) plane, with ρia = ρi − ρa as
before; n is integer and ν is real. It is easy to check by direct differentiation that the functions
En,ν are the eigenfunctions of the Casimir operators M2 and M∗2 of the conformal Möbius
group (Lipatov 1986, Lipatov 1989, Bartels, Lipatov, and Vacca 2005):

M2En,ν (ρ1a, ρ2a) ≡ ρ2
12∂1∂2E

n,ν (ρ1a, ρ2a) = −h(h − 1)En,ν (ρ1a, ρ2a) , (4.108a)

M∗2En,ν (ρ1a, ρ2a) ≡ ρ∗2
12∂∗

1 ∂∗
2 En,ν (ρ1a, ρ2a) = −h̄(h̄ − 1)En,ν (ρ1a, ρ2a) , (4.108b)

where ∂i = ∂/∂ρi , ∂∗
i = ∂/∂ρ∗

i , and

h = 1 + n

2
+ iν, h̄ = 1 − n

2
+ iν. (4.109)
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160 Dipole approach to high parton density QCD

The functions En,ν are orthonormal (Lipatov 1986)∫
d2ρ1d

2ρ2

|ρ12|4 En,ν (ρ1a, ρ2a)Em,μ(ρ1b, ρ2b)

= an,νδnmδ(ν − μ)δ2(ρab) + bn,ν |ρab|−2−4iν

(
ρab

ρ∗
ab

)n

δn,−mδ(ν + μ), (4.110)

where

an,ν = π4/2

ν2 + n2/4
= |bn,ν |2

2π2
, (4.111a)

bn,ν = π324iν
�
(−iν + 1

2 (1 + |n|))
�
(
iν + 1

2 (1 + |n|)) �
(
iν + 1

2 |n|)
�
(
1 − iν + 1

2 |n|) . (4.111b)

(Note that En,ν and E−n,−ν are not orthogonal.) The functions En,ν also form a complete
basis (Lipatov 1986), so that

(2π )4δ2(ρ11′ )δ2(ρ22′ ) =
∞∑

n=−∞

∞∫
−∞

dν

∫
d2ρa

16(ν2 + 1
4n2)

|ρ12|2|ρ1′2′ |2

× En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a). (4.112)

The delta functions on the left of Eq. (4.112) should be understood as acting on the space
of well-behaved functions of ρ1, ρ2, ρ1′ , and ρ2′ that go to zero in the limits ρ1 = ρ2 and
ρ1′ = ρ2′ .

Since the kernel of Eq. (4.87) is invariant under Möbius transformations, the functions
En,ν are its eigenfunctions. To see this explicitly we need to find

I (ρ0, ρ1, ρa) ≡
∫

d2ρ2
|ρ2

10|
|ρ2

20||ρ2
21|

[En,ν(ρ1a, ρ2a) + En,ν (ρ2a, ρ0a) − En,ν(ρ1a, ρ0a)].

(4.113)

Performing the inversion transformation and also reflection with respect to ρa , i.e., ρi →
1/ρia , yields

I (1/ρ0, 1/ρ1,∞) =
∫

d2ρ2
|ρ01|2

|ρ02|2|ρ12|2
(
ρh

20ρ
∗h̄
20 + ρh

12ρ
∗h̄
12 − ρh

10ρ
∗h̄
10

)
. (4.114)

The integral now becomes equivalent to that in Eq. (3.64), the answer to which is given by
Eqs. (3.68) and (3.74). Using those results and reversing the ρi → 1/ρia transformation,
we write

I (ρ0, ρ1, ρa) = 2πχ (n, ν)En,ν(ρ1a, ρ0a), (4.115)

with χ (n, ν) given by Eq. (3.81).
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4.3 Mueller’s dipole model 161

Since the En,ν are the eigenfunctions of the dipole kernel and form a complete orthonor-
mal basis, we can write the general solution of Eq. (4.87) as

n(�x10, �x1′0′ , �b⊥, Y ) = n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

=
∞∑

n=−∞

∞∫
−∞

dν

∫
d2ρae

ᾱsχ (n,ν)YCn,νE
n,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a),

(4.116)

with the coefficients Cn,ν fixed by the initial condition (4.88), which in the complex plane
can be written as

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y = 0) = 2α2
s CF

Nc

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ . (4.117)

To find the Cn,ν we need to decompose the (Möbius-invariant) logarithm squared into a
series over the En,ν :

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ∞∑
n=−∞

∞∫
−∞

dν

∫
d2ρaDn,νE

n,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a). (4.118)

The coefficients Dn,ν can be found if we first note that

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = π2

2
|ρ10|2|ρ1′0′ |2 [δ2(ρ11′ )δ2(ρ00′) + δ2(ρ10′)δ2(ρ01′ )

]
.

(4.119)

Using Eq. (4.112) along with the following property of the En,ν functions,

En,ν(ρ1a, ρ2a) = (−1)nEn,ν(ρ2a, ρ1a), (4.120)

yields

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = 1

π2

∑
even n

∞∫
−∞

dν

∫
d2ρa

(
ν2 + 1

4n2
)

× En,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a), (4.121)

where the sum runs over all integer even n. However, using Eqs. (4.108) and (4.118) we get

|ρ10|4∂1∂
∗
1 ∂0∂

∗
0 ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ∞∑
n=−∞

∞∫
−∞

dν

∫
d2ρaDn,νh(h − 1)h̄(h̄ − 1)

× En,ν(ρ1a, ρ0a)En,ν∗(ρ1′a, ρ0′a). (4.122)
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162 Dipole approach to high parton density QCD

Comparing Eqs. (4.122) and (4.121) we can read off Dn,ν , and substituting it back into
Eq. (4.118) we obtain

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = 1

π2

∑
even n

∞∫
−∞

dν

∫
d2ρa

ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]

× En,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a). (4.123)

Equations (4.123) and (4.117), when compared with Eq. (4.116), allow us to write for even
n

Cn,ν = 2α2
s CF

π2Nc

ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
] (4.124)

with Cn,ν = 0 for odd n.
Equations (4.116) and (4.124) give us the most general solution of Eq. (4.87) with initial

condition (4.88) (cf. Lipatov 1986):

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

= 2α2
s CF

π2Nc

∑
even n

∞∫
−∞

dν eᾱsχ (n,ν)Y

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
] ∫ d2ρaE

n,ν(ρ0a, ρ1a)En,ν∗(ρ0′a, ρ1′a).

(4.125)

The integral over ρa in Eq. (4.125) can be carried out analytically (Lipatov 1997,
Navelet and Peschanski 1997), yielding a somewhat simplified expression in terms of
hypergeometric functions:

n(ρ1, ρ0; ρ1′ , ρ0′ ; Y )

= α2
s CF

π4Nc

∑
even n

∞∫
−∞

dν eᾱsχ (n,ν)Y ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]

×
[
bn,−νw

hw∗h̄F (h, h; 2h; w)F (h̄, h̄; 2h̄; w∗)

+ bn,νw
1−hw∗1−h̄F (1 − h, 1 − h; 2(1 − h); w)F (1 − h̄, 1 − h̄; 2(1 − h̄); w∗)

]
,

(4.126)

where

w = ρ01ρ0′1′

ρ00′ρ11′
, (4.127)
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so that

ln2

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ = ln2 |1 − w|. (4.128)

4.4 The Balitsky–Kovchegov equation

We now return to the DIS process in the dipole picture of Sec. 4.1. As follows from
Eqs. (4.12) and (4.24), in order to find the DIS structure function all one needs is to
find the imaginary part of the dipole–nucleus forward scattering amplitude N (�x⊥, �b⊥, Y ).
In Sec. 4.2 we constructed such an amplitude in the Glauber–Gribov–Mueller multiple
rescattering approximation. The resulting forward amplitude has no energy dependence,
as one can see from Eq. (4.49), and therefore cannot be a realistic description of the
high energy asymptotics of dipole–nucleus scattering. At the same time, the approach of
Sec. 4.2 is valid only when the small-x evolution emissions are not important, that is, only
for αsY � 1. At higher energies, corresponding to rapidities Y satisfying αsY � 1, small-x
evolution becomes important and can no longer be neglected.

We see that we need to resum the LLA corrections to the dipole–nucleus scattering
amplitude (4.49). As usual we are interested in quantum evolution corrections that resum
the powers of αs ln 1/x ∼ αsY .7 Just as in Sec. 4.2 we will be working in the rest frame
of the nucleus, but this time we choose to work in the light cone gauge of the projectile
dipole, A+ = 0, if it is moving in the light cone plus direction. One can show by explicit
calculation that for the multiple rescatterings in Fig. 4.5 this gauge is equivalent to the
covariant gauge (∂μAμ = 0, see Sec. 3.3.1); therefore, our discussion in Sec. 4.2 remains
valid in this new gauge. As in Sec. 4.2 we will be working either in the nucleus rest frame
or in the frame in which the dipole is moving in the light cone plus direction while the
target nucleus is moving in the minus direction.

We need to identify radiative corrections that bring in powers of αsY . As we saw in
Sec. 4.2, multiple rescatterings bring in only powers of αs not enhanced by factors of Y (but
enhanced by powers of A; the resummation parameter was α2

s A
1/3). Therefore, additional

t-channel gluon exchanges with new nucleons would not generate any powers of Y but
would bring in only extra factors of αs . These are not the corrections we are trying to
resum now. Other possible corrections in the light cone gauge of the projectile dipole are
modifications of the dipole wave function. The incoming dipole may have some gluons
(and “sea” quarks) present in its wave function. For instance, the dipole may emit a gluon
before interacting with the target; then the whole system of quark, antiquark, and gluon
would rescatter in the nucleus, as shown in the upper panel of Fig. 4.23. The dipole may
emit two gluons, which would then interact with the nucleus, along with the original qq̄

pair, as shown in the lower panel of Fig. 4.23. In principle there could be many extra
gluon emissions, as well as the generation of extra qq̄ pairs in the incoming dipole’s wave
function. As we will shortly see, these gluonic fluctuations from Fig. 4.23 actually do bring

7 Quantum evolution is defined as the variation of a physical quantity, with Q2 and/or x, resulting from quantum
emissions and absorptions.
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164 Dipole approach to high parton density QCD

x+
coh

2R

Fig. 4.23. Quantum evolution corrections to dipole–nucleus scattering due to one-gluon
(upper panel) and two-gluon (lower panel) emissions. The lower panel also shows the
coherence time scale for gluon emission x+

coh and the nuclear size 2R. At high energy
x+

coh � 2R: the figure does not fully reflect this scale difference.

the factors of αs enhanced by powers of rapidity Y , i.e., they do generate leading logarithmic
corrections. Just as with the BFKL evolution, fluctuations leading to the formation of qq̄

pairs actually enter at the subleading logarithmic level, bringing in powers of α2
s Y , and are

not important for the leading logarithmic approximation used in this chapter.
Several times above (see the discussion around Eqs. (2.156), (3.126), and (4.2)), we

have used the fact that owing to the uncertainty principle, for an incoming dipole moving
in the light cone plus direction a gluon with momentum kμ in its wave function would have
coherence length

x+
coh ≈ k+

k2
⊥

(4.129)

along the x+-axis. Note straight away that t-channel gluon exchanges between the dipole
and the nucleons in the nucleus, in the Glauber–Gribov–Mueller approximation of Sec. 4.2,
have k+ = 0 with eikonal accuracy (i.e., up to corrections suppressed by powers of the
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l l − q

p p + l

x+

k

p + l − k

Fig. 4.24. A diagram with a gluon emission between the dipole interactions with two
nucleons.

energy). Thus these t-channel gluons have x+
coh = 0 and are instantaneous in the x+ “time”

direction in our eikonal picture. These are the instantaneous or Coulomb gluons. The
instantaneous nature of these gluons explains why the dipole rescatters on the nucleons
sequentially: as the nucleons are assumed to be separated in x+, the dipole interacts with
a nucleon as it crosses the latter’s x+-range, with interactions that are out of order, like
that in Fig. 4.6B, not allowed by causality. The nucleons span the whole nucleus; thus the
x+-time interval filled with the instantaneous interactions of Fig. 4.5 is of the order of the
nuclear radius R in the nuclear rest frame.

Consider now the gluon modifications to the incoming dipole’s wave function shown
in Fig. 4.23. If a gluon’s k+ is large enough, as is the case at high energy, the coherence
lengths of these gluons would be much larger than the nuclear radius, x+

coh � R, so that
each gluon would coherently rescatter on the nucleons in the nucleus, just like the original
dipole in Fig. 4.5. This is indeed what is shown in Fig. 4.23.

Note that gluons are emitted by the incoming dipole only before the multiple rescattering
interaction (and absorbed back, after the interaction, into the forward amplitude). Emissions
during the interaction are suppressed by the inverse powers of the center-of-mass energy
of the scattering system. This can be checked via an explicit calculation in the covariant
Feynman perturbation theory. Imagine a diagram with the gluon emitted or absorbed
between the rescatterings, as shown in Fig. 4.24. As in our analysis of the graph in Fig. 4.9
above, we concentrate on the contribution of quark propagators to the l−-integral. We see
that the diagram is proportional to

∞∫
−∞

dl−

2π

e−il−�x+

[(p + l)2 + iε][(p + l − k)2 + iε]

≈
∞∫

−∞

dl−

2π

e−il−�x+

[p+l−− ⊥2 + iε][(p+ − k+)(k− + l−)− ⊥′2 + iε]
(4.130)
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166 Dipole approach to high parton density QCD

Fig. 4.25. Forward amplitude for dipole–nucleus scattering including small-x evolution:
the incoming dipole develops a cascade of daughter dipoles, each of which interacts with
the nucleus independently.

where ⊥ and ⊥′ denote the appropriate transverse momenta, whose exact values are not
important to us here. We have used the fact that l+ = 0 and assumed for simplicity that
p− = 0. We also changed the frame to that where the nucleus is moving along the negative
light cone. Closing the integration contour in the lower half-plane we obtain

−i

p+(p+ − k+)

1

k− + ⊥2/p+ − ⊥′2/(p+ − k+)

[
e
−i ⊥2

p+ �x+ − e
−i
(
−k−+ ⊥′2

p+−k+
)
�x+]

≈ −i

p+2k−
(

1 − eik−�x+) ∼ −1

p+2p′− = −1

p+s
, (4.131)

where we have used the fact that p+ � k+ and, more importantly, �x+ ∼ 1/p′− with p′−

the large light cone momentum of a nucleon in the nucleus (such that s = p+p′− is the
dipole–nucleon center-of-mass energy squared). This allowed us to expand the exponential
in the second line of Eq. (4.131). Comparing with the rescatterings without gluon emission
given in Eq. (4.37) (identifying k+ in (4.37) with p+ here), we see that gluon emission
between rescatterings brings in suppression by a power of the energy squared s and can
thus be neglected.

Alternatively we can consider this calculation in light cone perturbation theory. In this
case, the emission of a gluon is allowed and is equally probable at any point throughout the
coherence length of the parent dipole x

qq̄+
coh = p+/p2

⊥, with p the momentum of the dipole
and p+ very large. The probability of emission of a gluon inside the nucleus (in the nuclear
rest frame) is then proportional to R/x

qq̄+
coh ∼ 1/p+ ∼ 1/s; i.e., again, just as in Eq. (4.131)

it is suppressed by a power of the center-of-mass energy squared s compared with emission
outside the nucleus and can be neglected in the eikonal approximation considered here.

Our goal, therefore, is to resum the cascade of long-lived gluons that the dipole in
Fig. 4.23 develops before interacting with the nucleus and then to convolute this cascade
with the interaction amplitudes of the gluons with the nucleus. To resum the cascade we
will assume the large-Nc limit and use Mueller’s dipole model, presented in Sec. 4.3. In
the large-Nc limit the gluon cascade translates into a dipole cascade, examples of which
are shown in Figs. 4.19 and 4.22. As we have seen above, in the LLA gluon emissions do
not change the transverse coordinates of the quark and antiquark lines in the parent dipole.
Therefore, the color dipoles have the same transverse coordinates throughout the whole
process: once they are created their transverse coordinates do not change. Resummation
of the dipole cascade reduces to the set of diagrams represented in Fig. 4.25, which is
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4.4 The BK equation 167

a generalization of Fig. 4.5 to the case of quantum evolution corrections. The incoming
dipole develops a cascade of daughter dipoles through evolution according to Mueller
dipole model.

The evolved system of dipoles interacts with the nucleus. The interaction is brief and
does not change the transverse coordinates of the dipoles. In the large-Nc limit no dipole
interacts with any other dipole during the evolution that generates all the dipoles. For a
large nucleus the daughter dipole–nucleus interaction was calculated above in the GGM
approximation and is given by Eq. (4.51). That result resums powers of α2

s A
1/3. Analyzing

the diagrams for the interaction of several dipoles with the nucleus we see that the GGM
interaction of, say, two dipoles with a single nucleon is suppressed by extra powers of αs

not enhanced by A1/3 and is therefore subleading and can be neglected. The interaction of
two dipoles with two nucleons in the large-Nc limit is dominated by diagrams where each
dipole interacts with only one nucleon (assuming both dipoles interact). In general one can
argue that, in the large-Nc limit and at the leading order in A (or, equivalently, resumming
powers of α2

s A
1/3), the interaction of any number of dipoles with the nucleus is dominated

by the independent interactions of each dipole with a different set of nucleons in the nucleus
through multiple rescatterings of the type in Fig. 4.5. This is depicted in Fig. 4.25: when
the dipole wave function hits the nucleus, each dipole present in the wave function may
interact with different nucleons in the nucleus by the exchange of pairs of gluons. (It
can be shown that only some dipoles thus interact.) Therefore, the dipoles are completely
mutually noninteracting: they do not exchange gluons in the process of evolution, since
those corrections would be suppressed by powers of Nc, and they interact with different
nucleons in the nucleus; the last statement is correct at leading order in A (Kovchegov
1999).

Summation of the dipole cascade of Fig. 4.25 now becomes straightforward. Instead
of calculating the forward dipole–nucleus scattering amplitude N (�x⊥, �b⊥, Y ) we start with
the S-matrix S(�x⊥, �b⊥, Y ), which is related to N via Eq. (4.38). We write it here again for
completeness:

S(�x⊥, �b⊥, Y ) = 1 − N (�x⊥, �b⊥, Y ). (4.132)

As follows from the above discussion, S(�x10, �b0⊥, Y ) can be written as a convolution of the
dipole cascade and the dipole interactions with the target, as shown in Fig. 4.25. Namely, it is
a sum of the probability of finding one daughter dipole in the parent dipole, convoluted with
the S-matrix for dipole–nucleus scattering in the GGM approximation, and the probability
of finding two dipoles, convoluted with their multiple rescattering interactions with the
nucleus, etc. We write (Kovchegov 1999)

S(�x10, �b⊥, Y ) =
∞∑

k=1

1

k!

∫
d2r1d

2b1 · · · d2rkd
2bk

× δkZ(�x10, �b⊥, Y ; u)

δu(�r1⊥, �b1⊥) · · · δu(�rk⊥, �bk⊥)

∣∣∣∣
u=0

s0(�r1⊥, �b1⊥) · · · s0(�rk⊥, �bk⊥).

(4.133)
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∂
∂Y
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Fig. 4.26. Diagrammatic representation for the evolution equation of the S-matrix for
dipole–nucleus scattering, denoted by a shaded circle. The vertical dashed lines denote the
interaction with the target.

Here

δkZ(�x10, �b⊥, Y ; u)

δu(�r1⊥, �b1⊥) · · · δu(�rk⊥, �bk⊥)

∣∣∣∣
u=0

(4.134)

gives the probability of finding exactly k daughter dipoles in the parent dipole wave function
(cf. Eq. (4.71)), and

s0(�r⊥, �b⊥) ≡ S(�r⊥, �b⊥, Y = 0) = exp

{
−x2

⊥Q2
s0(�b⊥)

4
ln

1

x⊥�

}
, (4.135)

as follows from Eqs. (4.51) and (4.132).
Summing the series in Eq. (4.133) yields (see Eq. (4.70))

S(�x10, �b⊥, Y ) = Z
(
�x10, �b⊥, Y ; u = s0

)
(4.136)

(Kovchegov 1999). This relation shows that both the dipole–nucleus S-matrix and the
generating functional Z obey the same nonlinear evolution equation. The initial condition
for Z in (4.76) is replaced by Eq. (4.135).

We see that the evolution of S(�x⊥, �b⊥, Y ) is the same as the evolution of the generation
functional Z in Sec. 4.3: it is illustrated in Fig. 4.26 (cf. Fig. 4.21). The dipole cascade and
its interaction with the target are denoted by a shaded circle. In one step of the evolution
in energy (or rapidity) a soft gluon is emitted in the dipole. If the gluon is real then the
original dipole is split into two dipoles, as shown at top right of Fig. 4.26; these dipoles
proceed to evolve and interact (or not) independently with the target (the S-matrix includes
the noninteraction term, the “1” in Eq. (4.132)). Virtual corrections, given by the two lower
diagrams in Fig. 4.26, lead only to the parent dipole’s subsequent evolution and interaction
with the target. We obtain an evolution equation for the S-matrix (Balitsky 1996, Kovchegov
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1999):

∂

∂Y
S(�x10, �b⊥, Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
S

(
�x12, �b⊥ + �x20

2
, Y

)
S

(
�x20, �b⊥ + �x21

2
, Y

)
− S(�x10, �b⊥, Y )

]
. (4.137)

The initial condition for this evolution equation is given by S(�x10, �b⊥, Y = 0) in Eq. (4.135).
As usual �b⊥ = (�x1⊥ + �x0⊥)/2.

Using Eq. (4.132) in Eq. (4.137) we derive an evolution equation for the imaginary part
of the forward dipole–nucleus scattering amplitude N (Balitsky 1996, Kovchegov 1999):

∂

∂Y
N (�x10, �b⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N

(
�x12, �b⊥ + �x20

2
, Y

)
+ N

(
�x20, �b⊥ + �x21

2
, Y

)
− N (�x10, �b⊥, Y )

− N

(
�x12, �b⊥ + �x20

2
, Y

)
N

(
�x20, �b⊥ + �x21

2
, Y

)]
. (4.138)

This is the Balitsky–Kovchegov (BK) evolution equation. The initial condition for the BK
evolution is given by Eq. (4.51):

N (�x⊥, �b⊥, Y = 0) = 1 − exp

{
−x2

⊥Q2
s0(�b⊥)

4
ln

1

x⊥�

}
, (4.139)

where we have replaced Q2
s (�b⊥) from Eq. (4.51) by Q2

s0(�b⊥) to underscore that this is
the saturation scale in the initial condition for the evolution. (As we will see shortly,
the saturation scale is modified by the nonlinear BK evolution equation: in particular it
becomes dependent on the rapidity Y .) Equation (4.138) resums all powers of the multiple
rescattering parameter α2

s A
1/3, along with the leading logarithms of energy in the large-Nc

limit given by powers of αsNcY .
Below we will sometimes use a more compact notation for the dipole–nucleus amplitude,

N (�x1⊥, �x0⊥, Y ) ≡ N (�x10, �b⊥, Y ). (4.140)

Using this notation, we can rewrite Eq. (4.138) as

∂

∂Y
N (�x1⊥, �x0⊥, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N (�x1⊥, �x2⊥, Y ) + N (�x2⊥, �x0⊥, Y ) − N (�x1⊥, �x0⊥, Y )

− N (�x1⊥, �x2⊥, Y ) N (�x2⊥, �x0⊥, Y )

]
. (4.141)
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Fig. 4.27. Diagrammatic representation of the BK evolution equation for the forward
dipole–nucleus scattering amplitude N , denoted by a shaded circle. Only one virtual term
is shown, for brevity.

The BK equation is represented diagrammatically in Fig. 4.27. Balitsky–Kovchegov
evolution has a simple physical meaning. At fixed rapidity a colorless dipole with size x10

decays into two dipoles with sizes x12 and x20. Either one dipole proceeds to evolve and
interact with the target while the other dipole remains a spectator (the first two, linear,
terms after the equals sign in Fig. 4.27) or both dipoles evolve and interact with the target
(the nonlinear term in Fig. 4.27). The minus sign in front of the nonlinear term reflects
the fact that taking into account two independent interactions overestimates the result.
The nonlinear term corresponds to the shadowing corrections in the GGM approach: for
instance, expanding Eq. (4.45) in powers of interactions with the nucleons we see that the
quadratic term enters with a minus sign. The reason for that minus sign is the same as
the reason for the minus sign in the last term of Eq. (4.138).

Equation (4.138) was originally derived by Balitsky (1996) in the framework of the
effective theory of high energy interactions and, independently, by one of the present
authors (Kovchegov 1999) using the formalism of Mueller’s dipole model (Mueller 1994,
1995). It was rederived by Braun (2000a) using the large-Nc limit of the expression for
the triple pomeron vertex from Bartels and Wusthoff (1995) in a resummation of the fan
diagrams in Fig. 3.23.

Comparing the linear part of the BK equation (the first three terms on the right of
Eq. (4.138)) with Eq. (4.87), we see that the linear terms in the BK equation give the
coordinate-space BFKL equation. As already mentioned, the nonlinear term can be obtained
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4.4 The BK equation 171

from the triple-pomeron vertex in the large-Nc limit (Braun 2000a). Hence Eq. (4.138) has
the overall structure of the GLR equation and corresponds to fan diagram resummation in
the conventional Feynman perturbation theory. It is natural to expect that the BK evolution
leads to the same physical effects as the GLR equation: for a given fixed dipole size, the
dipole amplitude N would start out growing with rapidity owing to BFKL evolution (see
Eq. (4.102)); the nonlinear term would become important at higher rapidity and lead to
saturation and slowdown of the energy growth. In the next section we will see that this is
indeed the case.

In solving the BK equation (4.138) one often (but not always) assumes that the variation
in the amplitude N (�x10, �b⊥, Y ) with the impact parameter �b⊥ is small when �b⊥ varies over
distance scales comparable with the dipole size |�x10|. This is indeed true for scattering on a
very large nucleus far away from its edges. This assumption allows one to neglect the shifts
in the impact parameter on the right-hand side of Eq. (4.138). Moreover, assuming that the
nucleus is isotropic we may neglect the angular dependence of �x10. We thus may replace
N (�x10, �b⊥, Y ) approximately by N (x10, Y ) in Eq. (4.138), obtaining

∂

∂Y
N (x10, Y ) = αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

×
[
N (x12, Y ) + N (x20, Y ) − N (x10, Y ) − N (x12, Y ) N (x20, Y )

]
.

(4.142)

Performing the Fourier transformation

N (x⊥, Y ) = x2
⊥

∫
d2k

2π
ei�k⊥·�x⊥Ñ (k⊥, Y ), (4.143)

we write (Kovchegov 2000)

∂Ñ(k⊥, Y )

∂Y
= ᾱsχ

[
0,

i

2

(
1 + ∂

∂ ln k⊥

)]
Ñ (k⊥, Y ) − ᾱsÑ

2(k⊥, Y ). (4.144)

This equation is useful for obtaining approximate solutions for the BK evolution that we
will present below. Also, note that making the identification

φ(x, k2
⊥) = NcS⊥

αsπ2
Ñ (k⊥, Y = ln 1/x) (4.145)

in Eq. (4.144) reduces it to the GLR equation (3.128). This is indeed remarkable: however,
there exists no physical justification for the Fourier transformation (4.143). At the lowest,
two-gluon-exchange, order the relation between the dipole amplitude N and the uninte-
grated gluon distribution φ should be of the form of Eq. (4.98) (with f there proportional
to φ). In the region where multiple rescatterings and quantum evolution are important, the
exact relation between N and φ is not clear.
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172 Dipole approach to high parton density QCD

4.5 Solution of the Balitsky–Kovchegov equation

To date there is no exact analytical solution of the BK equation. Below we will present
several approximate analytical solutions, along with some numerical results. One of the
main conclusions can be derived right away, without doing any work, if we notice that
N = 1 is the fixed point of BK evolution: for N = 1, corresponding to the black-disk limit,
the right-hand side of Eq. (4.138) vanishes and the growth of N with rapidity stops. Hence
the BK equation does not violate the black-disk limit.

4.5.1 Solution outside the saturation region; extended geometric scaling

Let us begin analyzing BK evolution when the forward amplitude is small, N � 1. In
the multiple rescatterings (GGM) approximation (see Eq. (4.139)) we know that for small
dipoles with x⊥ � 1/Qs0 the amplitude N is also small, and saturation and unitarization
effects are not very important yet. The fact that the forward amplitude N goes to zero as
x⊥ → 0 is based on a fundamental physical principle of color transparency, which is valid
beyond the multiple-rescattering approximation. This allows us to conclude that N � 1 for
small dipole sizes x⊥ even when small-x evolution is included. For N � 1 we can linearize
the BK equation; as we observed earlier, this gives us the coordinate-space BFKL equation.
With the approximation used in Eq. (4.142) we can write

∂N(x10, Y )

∂Y
= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[
N (x12, Y ) + N (x20, Y ) − N (x10, Y )

]
. (4.146)

This is exactly Eq. (4.90), whose solution we can write as (cf. Eq. (4.101))

N (x⊥, Y ) =
∞∫

−∞
dν Cν exp{ᾱsχ (0, ν)Y + (1 + 2iν) ln(x⊥Qs0)} , (4.147)

where we use Qs0 as the typical transverse scale characterizing the target nucleus. In the
�b⊥-independent approximation that we are employing, Qs0 is not a function of �b⊥. As
usual, Cν is a constant fixed by the initial conditions. Just as in the case of BFKL evolution,
the integral (4.147) can be evaluated either in the DLA or in the diffusion approximation
depending on the kinematics of the problem.

Double logarithmic approximation

Consider the case of very small dipole size, x⊥Qs0 � 1, such that transverse logarithms
like ln(x⊥Qs0) become important, leading to a new resummation parameter αsY ln(x⊥Qs0).
This is the DLA we considered before. Approximating χ (0, ν) as follows,

χ (0, ν) ≈ 2

1 − 2iν
, (4.148)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


4.5 Solution of the BK equation 173

we find a saddle point at

ν∗
DLA ≈ − i

2

(
1 −
√

2ᾱsY

ln 1/(x⊥Qs0)

)
. (4.149)

Using Eq. (4.148) in Eq. (4.147) and performing the integration over ν in the saddle point
approximation yields

N (x⊥, Y )

∣∣∣∣
x⊥Qs0�1

= (x⊥Qs0)2Cν∗
DLA

√
π

2
(2ᾱsY )1/4 ln−3/4 1

x⊥Qs0

× exp
{

2
√

2ᾱsY ln 1/(x⊥Qs0)
}

. (4.150)

We see that, as for the GGM multiple-rescatterings case (see Eq. (4.139)), the amplitude
N (x⊥, Y ) in the DLA regime grows quadratically with the dipole size x⊥, though this rise
receives a correction owing to the exponential in Eq. (4.150). On top of that, as is typical
for the DLA case, the amplitude also grows with rapidity Y .

Extended geometric scaling region

Now let us study the region where the dipole size is still small, but not much smaller than
the inverse saturation scale: x⊥Qs0 � 1. In this region, evolution is still linear and one
would still expect Eq. (4.147) to give us the solution. We begin by evaluating the ν-integral
in Eq. (4.147) in the saddle-point approximation. The location of the saddle point νsp is
determined by the standard condition

ᾱsχ
′(0, νsp)Y + 2i ln x⊥Qs0 = 0, (4.151)

which gives the saddle point νsp as a function of x⊥ and Y : νsp = νsp(x⊥, Y ). (The prime
in Eq. (4.151) indicates a derivative with respect to ν, χ ′(0, ν) = ∂χ (0, ν)/∂ν.) Crudely
approximating the ν-integral in Eq. (4.147) by the value of the integrand at ν = νsp, we
obtain

N (x⊥, Y ) ∝ (x⊥Qs0)1+2iνsp eᾱsχ (0,νsp)Y . (4.152)

The amplitude given by Eq. (4.152) grows with energy and with the dipole size x⊥.
When it becomes of order 1, say N ≈ 1/2, the approximation in which this solution is
derived breaks down and one has to go back to solving the nonlinear BK equation (4.142).
Let us estimate where this breakdown of the linear regime occurs. We want to find a line
in the (x⊥, Y )-plane along which N is an order 1 constant: this will give us the saturation
scale.

The saturation scale Qs(Y ) (which now is a function of rapidity) is therefore defined by
the condition

N (x⊥ = 1/Qs(Y ), Y ) = const, (4.153)

where the constant is of order 1. Using Eq. (4.152) in Eq. (4.153) yields

ᾱsχ (0, ν0)Y + (1 + 2iν0) ln(Qs0/Qs(Y )) = 0, (4.154)
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174 Dipole approach to high parton density QCD

where ν0 ≡ νsp(x⊥ = 1/Qs(Y ), Y ). Taking the saddle point condition (4.151) along the
saturation line we get

ᾱsχ
′(0, ν0)Y + 2i ln(Qs0/Qs(Y )) = 0. (4.155)

Solving Eqs. (4.154) and (4.155) yields (Gribov, Levin, and Ryskin 1983, Iancu, Itakura,
and McLerran 2002, Mueller and Triantafyllopoulos 2002)

Qs(Y ) = Qs0 exp

{
ᾱs

χ (0, ν0)

1 + 2iν0
Y

}
(4.156)

with

χ ′(0, ν0)

χ (0, ν0)
= 2i

1 + 2iν0
. (4.157)

It follows from Eq. (4.157), which one can solve numerically using Eq. (3.81), that ν0 is
simply a number (Gribov, Levin, and Ryskin 1983),

ν0 ≈ −0.1275i. (4.158)

Using this value of ν0 in Eq. (4.156) we get

Qs(Y ) ≈ Qs0 e2.44ᾱsY . (4.159)

We have obtained a very important result: as follows from Eqs. (4.156) and (4.159), the
saturation scale grows as an exponential of the rapidity. Since Y = ln 1/x this is indeed
consistent with the power-of-1/x growth in Eq. (3.135) obtained on general physical
grounds in discussing GLR evolution. We now have the same qualitative result, with the
exact exponent of the growth now specified by the slightly more detailed calculation that
we have performed. Note that since Qs0 ∼ A1/6 (see Eq. (4.52)), we have Qs(Y ) ∼ A1/6

as well. This result can be understood as follows: the initial conditions for BK evolution
(4.139) contain only one dimensionful scale Qs0 (we neglect the logarithm as a slowly
varying function). The BK equation is conformally invariant; hence the scales resulting
from this evolution, such as Qs(Y ), should all be proportional to Qs0 and have the same A-
scaling (see e.g. Kharzeev, Levin, and McLerran (2003)). It is also important to stress that the
small-x evolution does not preserve the GGM formula (4.45) by simply including x- and A-
dependence in the lowest-order nuclear gluon distribution, defined by xGA = AxGN ; this
would lead to a different scaling of Qs(Y ) with A. In fact evolution corrections completely
destroy the GGM form of N .

The region with momentum Q < Qs(Y ) (corresponding to x⊥ > 1/Qs(Y )), where the
nonlinear term in the BK equation becomes important, is the saturation region.

Eliminating the rapidity dependence from Eq. (4.152), to absorb all the Y -dependence
into Qs(Y ), yields with the help of Eq. (4.156)

N (x⊥, Y ) ∝ (x⊥Qs0)1+2iνsp

(
Qs(Y )

Qs0

)(1+2iν0)χ (0,νsp)/χ (0,ν0)

. (4.160)

With the accuracy of our crude version of the saddle point approximation, we write νsp ≈ ν0

in the vicinity of the saturation scale. Substituting this into Eq. (4.160) we obtain (Iancu,
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Itakura, and McLerran 2002, Mueller and Triantafyllopoulos 2002)

N (x⊥, Y ) ∝ [x⊥Qs(Y )]1+2iν0 . (4.161)

The dipole amplitude still grows with both x⊥ and Y , just as in the DLA regime.
However, the growth with x⊥ is slower than the quadratic DLA scaling of Eq. (4.150).
Conversely, the growth in N with rapidity appears to be stronger in Eq. (4.161) than in the
DLA case (4.150).

We have another important result in Eq. (4.161): the dipole scattering amplitude
N (x⊥, Y ), which, in general, can be a function of two independent variables x⊥ and Y , is
here a function of a single variable, x⊥Qs(Y ). This result is known as geometric scaling.
Geometric scaling has been demonstrated (and the term coined) in an analysis of the HERA
DIS data by Stasto, Golec-Biernat, and Kwiecinski (2001) (see also Kwiecinski and Stasto
2002) presenting one of the strongest arguments for the observation of saturation phenom-
ena at HERA (see Fig. 9.1). Theoretically it was first observed as a property of GLR-type
equations by Bartels and Levin (1992). For the BK equation, geometric scaling was first
demonstrated deep inside the saturation region by Levin and Tuchin (2000): this result will
be derived below. As we will see shortly, the expression (4.161) that we have obtained is
valid outside the saturation region, but not too far from the saturation boundary, i.e., for
x⊥Qs(Y ) � 1. The fact that geometric scaling is valid outside the saturation region was
first observed by Iancu, Itakura, and McLerran (2002). This scaling phenomenon outside
the saturation region is referred to as extended geometric scaling.

Note that the (absolute) value of ν0 found in Eq. (4.158) is not very large. In fact, one
can check explicitly that χ (0, ν0) is still well described by Eq. (3.84), which was used in the
diffusion approximation presented in Sec. 3.3.4. The result (4.161) is valid as long as νsp is
not too far from ν0 (cf. (4.160)). If we decrease the dipole size x⊥ then we would eventually
end up in the DLA region, where the saddle point is close to ν = −i/2 (cf. Eq. (4.149)).
Clearly Eq. (4.150) cannot be written as a function of a single variable x⊥Qs(Y ) and thus
violates geometric scaling. We conclude that the extended geometric scaling of Eq. (4.161)
is valid only as long as χ (0, νsp) is described better by the diffusion formula (3.84) than
by the DLA approximation (4.148). By equating the two approximations we see that the
transition occurs near ν

geom
sp = −0.22i, which, owing to Eq. (4.151), corresponds to

ln
1

x
geom
⊥ Qs0

≈ 5.75 ᾱsY, (4.162)

so that the border (upper limit) of the extended geometric scaling region is defined by the
scale kgeom = 1/x

geom
⊥ given by (cf. Iancu, Itakura, and McLerran (2002))

kgeom = Qs0e
5.75 ᾱsY = Qs(Y )

(
Qs(Y )

Qs0

)1.35

. (4.163)

Therefore, the extended geometric scaling is valid up to

k⊥ = 1

x⊥
≤ kgeom. (4.164)
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176 Dipole approach to high parton density QCD

Since kgeom � Qs(Y ), the region of extended geometric scaling is parametrically broad and
can be quite large at large Y . For k⊥ > kgeom the solution maps back onto the DLA regime
of Eq. (4.150).

Our current analytical knowledge of the saturation scale at high energy extends well
beyond the approximation derived in Eq. (4.156). In fact we know that

Qs(Y ) = Qs0 exp

{
ᾱs

χ (0, ν0)

1 + 2iν0
Y − 3

2(1 + 2iν0)
ln ᾱsY + const

− 6

(1 + 2iν0)2

√
2π

−ᾱsχ ′′(0, ν0)Y
+ O

(
1

Y

)}
. (4.165)

One can show that the expression in the exponent of Eq. (4.165) is universal, in the sense that
it is independent of the initial conditions for BK evolution with the exception of the constant
term, which may depend on the initial conditions. As mentioned above, the first term in this
expression was derived by Gribov, Levin, and Ryskin (1983) when analyzing GLR evolution
and by Iancu, Itakura, and McLerran (2002) for the BK equation. The second term in the
exponent of Eq. (4.165) was found by Mueller and Triantafyllopoulos (2002) and by Munier
and Peschanski (2004a). The derivation of Mueller and Triantafyllopoulos (2002) is close
to that presented above: however, they obtained the correct value of the second term on
the right of Eq. (4.165) by modeling the saturation boundary as an absorptive barrier in
the (x⊥, Y )-plane. The derivation of Munier and Peschanski (2004a) employed a traveling
wave solution of the BK equation. The third nontrivial (O(1/

√
Y )) term in the exponent

was also calculated by Munier and Peschanski (2004b). The traveling wave approach is
very close in spirit and in letter to the method of characteristics used to solve differential
equations: we will present both solutions below. For a comprehensive up-to-date summary
of the results on the high energy behavior of the saturation scale we recommend a recent
paper by Beuf (2010).

4.5.2 Solution inside the saturation region; geometric scaling

Let us now analyze the behavior of the solution of Eq. (4.138) deep inside the saturation
region, where nonlinear effects are very important. Deep inside the saturation region,
when the dipole size x⊥ becomes large, x⊥ � 1/Qs(Y ) (but we still have x⊥ � 1/�QCD),
the quasi-classical GGM amplitude from Eq. (4.51) approaches 1. As mentioned at the
beginning of this section, analyzing Eq. (4.138) we can easily see that N = 1 is also a
stationary solution of that equation. Therefore we conclude that, for large dipole sizes, BK
evolution would not change the amplitude

N (�x⊥, �b⊥, Y ) = 1, x⊥ � 1/Qs(Y ), (4.166)

which has reached the black-disk limit (BDL) (cf. Eq. (4.33)) and will remain there. Now
let us determine the asymptotic approach to the black-disk limit (4.166). To do this we
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employ Eq. (4.137). As follows from Eq. (4.132), the S-matrix is small near the BDL,
where N ≈ 1. Keeping only terms linear in S in Eq. (4.137) yields

∂S(�x10, �b⊥, Y )

∂Y
= −αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

S(�x10, �b⊥, Y ), (4.167)

where the integral over dipole sizes goes over x02, x12 > 1/Qs(Y ). To perform the integral
we replace the ultraviolet (UV) cutoff ρ in Eq. (A.20) (see also Eq. (4.64)) with 1/Qs(Y )
and use Eq. (A.29) to obtain

∂S(�x10, �b⊥, Y )

∂Y
= −2ᾱs ln [x10Qs(Y )] S(�x10, �b⊥, Y ). (4.168)

Defining the scaling variable

ξ ≡ ln
[
x2

⊥Q2
s (Y )
]

(4.169)

with (cf. Eq. (4.156))

2χ (0, ν0)

1 + 2iν0
ᾱs ≡ ∂ξ

∂Y
= ∂ ln

[
x2

⊥Q2
s (Y )
]

∂Y
, (4.170)

we can rewrite Eq. (4.168) as

∂S

∂ξ
= − 1 + 2iν0

2χ (0, ν0)
ξS. (4.171)

The solution of Eq. (4.171) can be written straightforwardly as (Levin and Tuchin 2000)

S(ξ ) = S0 exp

{
− 1 + 2iν0

2χ (0, ν0)
ξ 2

}
(4.172)

with S0 < 1 a constant. The corresponding dipole amplitude N is given by

N (ξ )

∣∣∣∣
x⊥�1/Qs (Y )

= 1 − S0 exp

{
− 1 + 2iν0

2χ (0, ν0)
ξ 2

}
(4.173)

Equation (4.173) is known as the Levin–Tuchin formula (Levin and Tuchin 2000).
Note that the S-matrix and the amplitude N for dipole–nucleus scattering given by

Eqs. (4.172) and (4.173) are functions of a single variable ξ , or, more precisely, of the
combination x⊥Qs(Y ). This is indeed the geometric scaling found above: while before we
obtained the scaling outside the saturation region, now we see that geometric scaling is also
valid inside the saturation region.

Equations (4.173), (4.161), and (4.150) give us a good idea of the amplitude N (x⊥, Y )
given by the solution of the BK equation as a function of rapidity Y and dipole size x⊥.
We see that N (x⊥, Y ) grows with x⊥ but at very large x⊥ saturates to 1: thus the black-
disk limit is not violated. Hence, at the qualitative level the overall shape of N (x⊥, Y )
given by the GGM formula and shown in Fig. 4.11 is preserved. The amplitude N (x⊥, Y )
also grows with rapidity Y though at larger x⊥ the growth slows down, eventually stop-
ping at the black-disk limit. The saturation scale increases with rapidity; this means that
the GGM curve from Fig. 4.11 starts moving to the left on that plot. We will illustrate
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178 Dipole approach to high parton density QCD

these conclusions with explicit plots when we discuss the numerical solution of BK
evolution.

4.5.3 Semiclassical solution

We now present another powerful approach to solving the BK equation, which allows us to
reproduce the results obtained above while providing new insight.

Defining (cf. Eq. (3.74))

χ (γ ) ≡ 2ψ(1) − ψ(γ ) − ψ(1 − γ ), (4.174)

with γ related to ν via Eq. (3.79), we rewrite Eq. (4.144) as

∂Y Ñ (ρ, Y ) = ᾱsχ
(−∂ρ

)
Ñ (ρ, Y ) − ᾱsÑ

2(ρ, Y ), (4.175)

where ∂Y = ∂/∂Y and

ρ = ln
k2
⊥

Q2
s0

. (4.176)

Let us now look for the solution of Eq. (4.175) using a semiclassical approximation. We
write

Ñ (ρ, Y ) = e�(ρ,Y ) (4.177)

and assume that �(ρ, Y ) is a slowly varying function of its arguments, such that �ρY �
�ρ�Y , �ρρ � �2

ρ , �YY � �2
Y , with similar relations for the higher-order derivatives: the

nth-order derivative is always much smaller than the nth power of the first derivative. (Here
�ρ = ∂�/∂ρ, �Y = ∂�/∂Y , etc.)

Substituting Eq. (4.177) into Eq. (4.175) and employing the semiclassical approxima-
tions just outlined yields

∂Y � = ᾱsχ
(−∂ρ�

)− ᾱse
�. (4.178)

We will study Eq. (4.178) using the method of characteristics (see e.g. Courant and
Hilbert 1953), following Gribov, Levin, and Ryskin (1983), Collins and Kwiecinski (1990),
Bartels, Schuler, and Blumlein (1991), and Levin and Tuchin (2001). Defining partial
derivatives

−γ ≡ �ρ, ω ≡ �Y , (4.179)

we can rewrite Eq. (4.178) as

F ≡ ω − ᾱsχ (γ ) + ᾱse
� = 0. (4.180)
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4.5 Solution of the BK equation 179

The characteristics of Eq. (4.178) can then be found by solving the following set of ordinary
differential equations:

dρ

dt
= F−γ = ᾱs

dχ (γ )

dγ
, (4.181a)

dY

dt
= Fω = 1, (4.181b)

dγ

dt
= −Fρ − (−γ )F� = ᾱsγ e�, (4.181c)

dω

dt
= −FY − ωF� = −ᾱsωe�, (4.181d)

d�

dt
= (−γ )F−γ + ωFω = −ᾱsγ

dχ (γ )

dγ
+ ω. (4.181e)

Equation (4.181b) gives Y = t . In addition we can use Eq. (4.180) to eliminate ω from
Eqs. (4.181). The remaining equations are

dρ

dY
= ᾱs

dχ (γ )

dγ
, (4.182a)

dγ

dY
= ᾱsγ e� (4.182b)

d�

dY
= ᾱs

[
χ (γ ) − γ

dχ (γ )

dγ
− e�

]
. (4.182c)

These equations are still difficult to solve in the general case. One may construct approx-
imations of χ (γ ) and solve the resulting equations exactly (see Levin and Tuchin (2001)).
Instead of following this path we will keep χ (γ ) exact and will again explore the linear
regime. If Ñ = e� � 1 then we can recast Eq. (4.182c) as

d�

dY
≈ ᾱs

[
χ (γ ) − γ

dχ (γ )

dγ

]
. (4.183)

We see that there exists a critical characteristic trajectory of constant � (and hence Ñ ),
defined by d�/dY = 0, which leads to the following equation for γ = γcr (Gribov, Levin,
and Ryskin 1983):

χ (γcr ) = γcr

dχ (γcr )

dγcr

. (4.184)

This is exactly equivalent to Eq. (4.157). Equation (4.184) gives γcr ≈ 0.6275, which is
consistent with Eq. (4.158) (see Eq. (3.79)). The critical line in the (ρ, Y )-plane follows
from Eq. (4.182a):

dρs

dY
= ᾱs

χ (γcr )

γcr

. (4.185)

Since we have defined the critical line as a line of constant Ñ , the definition is analogous
to that of Eq. (4.153) and therefore defines the saturation scale. Solving Eq. (4.185) with
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180 Dipole approach to high parton density QCD

the initial condition ρs(Y = 0) = 0 yields

ρs(Y ) = ᾱs

χ (γcr )

γcr

Y, (4.186)

which is equivalent to Eq. (4.156) if we write ρs(Y ) = ln Q2
s (Y )/Q2

s0.
Note that one can verify the e� � 1 approximation made in arriving at Eq. (4.183):

substituting γ = γcr back into Eq. (4.182c) and using the relation (4.184) one can solve the
resulting equation to show that the value of � along the critical trajectory (�cr ) is indeed
large and negative, �cr ≈ − ln ᾱsY .

Finally, near the critical (saturation) line we can expand (for fixed Y ) as follows:

� ≈ �cr + �ρs
(ρ − ρs) = �cr − γcr (ρ − ρs). (4.187)

We have also used Eq. (4.179) in arriving at Eq. (4.187). Note that �cr ≈ − ln ᾱsY is
independent of ρ and is a slowly varying function of Y : therefore, it carries little dynamical
information and can be treated as a constant in our approximation. Employing Eq. (4.186)
to define Q2

s (Y ) = Q2
s0e

ρs , we obtain

Ñ (ρ, Y ) = e� ∝ e−γcr (ρ−ρs ) =
(

Q2
s (Y )

k2
⊥

)γcr

, (4.188)

which again is in perfect agreement with Eq. (4.161) (if we replace x⊥ with 1/k⊥ in the
latter). Thus we have rederived the extended geometric scaling behavior of the dipole–
nucleus scattering amplitude, this time working in momentum space.

It is interesting to notice that the critical line has a very transparent physical meaning.
The solution for �, given by Eq. (4.187), can be written as

� ≈ �cr − γcrρ + ωcrY, (4.189)

with ωcr = ᾱsχ (γcr ). This is similar to the phase of a traveling wave packet moving along
the ρ-axis with time Y , having wave number γcr and frequency ωcr . (The profile of the
wave packet would be determined by a prefactor to Eq. (4.188), which is not given by
our approximate solution.) Such a wave packet has two characteristic velocities: the phase
velocity vph (the velocity of a line with constant phase �) and the group velocity vgr (the
velocity of the maximum of the packet). Using Eq. (4.180) but dropping the e� term, we
can easily calculate these two velocities, obtaining

vgr = ∂ω

∂γ
= ᾱs

dχ (γ )

dγ
, (4.190)

vph = ω

γ
= ᾱs

χ (γ )

γ
. (4.191)

One can see that the critical line corresponds to the unique trajectory on which vgr = vph

(Gribov, Levin, and Ryskin 1983, Munier and Peschanski 2004a).
The characteristics trajectories of BK evolution are shown in Fig. 4.28. They cannot

cross each other, and the critical trajectory plays the role of a divider between two groups
of trajectories, as shown in Fig. 4.28. This figure illustrates the special and essential role of
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Fig. 4.28. The characteristics for Eq. (4.178) plotted in the (ρ, Y )-plane.

the critical (saturation) trajectory as a divider between pQCD (DGLAP) physics, possibly
modified by small corrections due to the interactions of partons, and the saturation domain.
The parton interactions are responsible for the characteristic phenomena in the latter region,
in particular for the saturation of the parton density. The trajectories to the right of the critical
line are very close to the trajectories of the linear (BFKL) evolution equation except in the
region close to the critical line, when the effect of the critical (saturation) trajectory becomes
important. This is illustrated by the “separating trajectory” also shown in Fig. 4.28, which
separates the characteristics which are not affected by the saturation region, located to the
right of that line, from those located to the left of the line. The unaffected characteristics
are those of the DLA DGLAP. The trajectories to the left of the separating trajectory but
to the right of the critical trajectory do not resemble the trajectories of the linear equation,
and their behavior indicates that the linearized semiclassical approach is not applicable in
this region.

4.5.4 Traveling wave solution

There is another elegant method of reproducing (and improving upon) the above results
for geometric scaling and the critical anomalous dimension. We start with Eq. (4.175) and
expand its kernel around γcr , defined in Eq. (4.184):

χ (−∂ρ) = χ (γcr ) + (−∂ρ − γcr )χ ′(γcr ) + 1
2 (−∂ρ − γcr )2χ ′′(γcr ) + · · · (4.192)

Truncating the expansion at the quadratic level of course limits the applicability of the
approach we are about to develop. Certainly this approximation would not work in the
DLA region. Equation (4.175) becomes

∂Y Ñ (ρ, Y ) = ᾱs

[
χ (γcr ) − Ñ (ρ, Y )

]
Ñ (ρ, Y ) − ᾱsχ

′(γcr )
(
∂ρ + γcr

)
Ñ (ρ, Y )

+ 1
2 ᾱsχ

′′(γcr )(∂ρ + γcr )2Ñ (ρ, Y ). (4.193)
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182 Dipole approach to high parton density QCD

Redefining the variables and the unknown function Ñ (Munier and Peschanski 2003),

t ≡ 1
2 ᾱsχ

′′(γcr )γ 2
crY, (4.194a)

x ≡ γcr ρ + ᾱs

[
χ ′′(γcr )γ 2

cr − χ (γcr )
]
Y, (4.194b)

u(t, x) ≡ 2

χ ′′(γcr )γ 2
cr

Ñ (ρ, Y ), (4.194c)

and employing Eq. (4.184) brings Eq. (4.193) into the form

∂tu(t, x) = ∂2
xu(t, x) + u(t, x)[1 − u(t, x)]. (4.195)

This equation was first studied by Fisher (1937) and by Kolmogorov, Petrovsky, and
Piskunov (1937) and is referred to in the mathematical community as the F–KPP equation.
(For a review see van Saarloos (2003).)

The initial condition for Eq. (4.195) can be constructed by first finding the initial
condition for Eq. (4.144). Inverting Eq. (4.143) we write

Ñ (k⊥, Y ) =
∫

d2x⊥
2π

e−i�k⊥·�x⊥ N (x⊥, Y )

x2
⊥

. (4.196)

Dropping the b-dependence in Eq. (4.139) and using the result in Eq. (4.196) we obtain

Ñ (k⊥, Y = 0) =
∫

d2x⊥
2π

e−i�k⊥·�x⊥ 1

x2
⊥

[
1 − exp

{
−x2

⊥Q2
s0

4
ln

1

x⊥�

}]
. (4.197)

While the exact analytic integration in Eq. (4.197) does not lead to a compact answer, we
can find the asymptotics of the initial conditions from it. At large k⊥ (small x⊥), expanding
the exponential in Eq. (4.197) to the first nontrivial order and integrating using Eq. (A.9)
yields

Ñ (k⊥, Y = 0)

∣∣∣∣
k⊥/Qs0�1

≈ Q2
s0

4k2
⊥

. (4.198)

At small k⊥ (large x⊥), dropping the exponential and integrating over x⊥ with 1/Qs0 as the
IR cutoff we get

Ñ (k⊥, Y = 0)

∣∣∣∣
k⊥/Qs0�1

≈ ln
Qs0

kT

. (4.199)

For u(t = 0, x) these initial conditions imply

u(t = 0, x) ∞

⎧⎪⎪⎨
⎪⎪⎩

1
4e−x/γcr , x → +∞,

− x

2γcr

, x → −∞.

(4.200)

It was proven that the F–KPP equation admits traveling wave solutions at late times t

if the initial condition u(0, x) decreases monotonically from 1 to 0 as x varies from −∞
to +∞, falling off exponentially with x as x → +∞ (Bramson 1983). While the initial
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4.5 Solution of the BK equation 183

condition giving u(0, x) in Eq. (4.200) violates this condition at x → −∞, following
Munier and Peschanski (2003) we assume that the high energy asymptotics of the solution
outside the saturation region will not change significantly if we simply “freeze” u(0, x)
at u = 1 inside the saturation region. According to the theory of the F–KPP equation the
asymptotic traveling wave solution depends on the speed of the exponential falloff e−x/γcr

at x → +∞ in the initial condition for the equation: for 1/γcr ≈ 1.5936 > 1 the traveling
wave solution is

u(t, x)

∣∣∣∣
t→∞

∼ f
(
x − 2t + 3

2 ln t + O(1)
)
, (4.201)

for some function f . We see that u(t, x) and, owing to Eq. (4.194), Ñ (ρ, Y ) are functions
of a single variable,

x − 2t + 3
2 ln t = γcr ln

k2
⊥

Qs(Y )2
+ const, (4.202)

where

Qs(Y )2 = Q2
s0 exp

{
ᾱs

χ (γcr )

γcr

Y − 3

2γcr

ln ᾱsY

}
. (4.203)

This is indeed geometric scaling. The saturation scale in Eq. (4.203) is identical to that in
Eq. (4.165) up to the first two terms in the exponent.

Dropping the nonlinear term in Eq. (4.195) we see that u(t, x) = e−x+2t is clearly a
solution of the resulting linearized equation, giving (Munier and Peschanski 2004a)

Ñ (ρ, Y ) ∝
(

Q2
s (Y )

k2
⊥

)γcr

, (4.204)

in agreement with Eqs. (4.161) and (4.188).
Owing to the approximations we have made, in expanding χ (γ ) in order to arrive at

Eq. (4.193) and in neglecting the fact that Eq. (4.200) violates the condition stated by
Bramson (1983) for the existence of a traveling wave solution, we can conclude that the
reduction of the BK equation to the F–KPP equation is valid only for k⊥ values in the vicinity
of the saturation scale. In particular, Eq. (4.193) does not give the solution (4.173) deep
inside the saturation region. Interestingly, the traveling wave (geometric scaling) pattern
itself appears to be more universal than the F–KPP reduction: for instance, Eq. (4.173)
also has a traveling wave form. The traveling wave structure is also preserved in other
models of the dipole BFKL kernel. For example, if we simplify the kernel of Eq. (4.138)
by resumming only the transverse logarithms (such as ln x2

⊥Q2
s (y) and ln x2

⊥�2
QCD), thus

taking into account only the leading twist contributions to the full BFKL kernel, the BK
equation can be reduced to a wave equation (Levin and Tuchin 2000, 2001) for which one
also has a traveling wave solution (Polyanin and Zaitsev 2004, formula 3.4.1).

The existence of traveling wave solutions indicates that, at very high energy, Ñ (ρ, Y )
behaves like a wave with a fixed coordinate (ρ) profile, which travels with increasing Y

toward larger values of ρ without a change in profile. This is an important physical result
from the traveling wave approach.
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Fig. 4.29. Dipole amplitude N (x⊥, Y ) plotted as a function of x⊥; the curves right to left
correspond to increasing values of αsY , as shown in the legend. (We thank Javier Albacete
for providing us with this figure.)

4.5.5 Numerical solutions

There are a number of numerical solutions of the BK equation. We are not going to give a
comprehensive overview of these solutions here but will merely show some results.

A numerical solution of the BK equation (4.142) without impact parameter dependence,
giving the amplitude N (x⊥, Y ) as a function of x⊥, is shown in Fig. 4.29 for several values of
the rescaled rapidity αsY . The initial condition is specified at Y = 0 by a slight modification
of the GGM formula (4.51),

N (x⊥, Y ) = 1 − exp

{
−x2

⊥Q2
s0

4
ln

(
1

x⊥�
+ e

)}
(4.205)

with Qs0 = 1 GeV and � = 0.2 GeV, and is represented by the dashed line in Fig. 4.29.
(Since the exponent of Eq. (4.51) is written in the x⊥� � 1 approximation, e has been
added in Eq. (4.205) to keep N positive for x⊥� > 1.)

We see from Fig. 4.29 that the nonlinear small-x evolution pushes the dipole amplitude
N (x⊥, Y ) towards lower values of x⊥ as Y increases. This is indeed in agreement with our
analytical results: as Qs(Y ) grows with rapidity, 1/Qs(Y ) decreases, moving the curve to
the left along the x⊥-axis. The growth in the saturation scale with rapidity Y is shown in
Fig. 4.30. Here, the saturation scale is defined by requiring that N (x⊥ = 1/Qs(Y ), Y ) =
1/2; it is plotted in Fig. 4.30 as a function of αsY . Again we see qualitative agreement with
the above analytical results: the saturation scale grows with rapidity. At large Y we see
that ln Qs(Y ) grows linearly with αsY , in agreement with Eq. (4.165); the slope of about
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Fig. 4.30. The saturation scale Qs(Y ) given by a numerical solution of the BK evolution
equation, plotted as a function of the rescaled rapidity αsY . (We thank Javier Albacete for
providing us with this figure.)

2.1 is close to the analytical estimate, 2.44Nc/π = 2.33, in Eq. (4.159). (Note that for a
more detailed comparison of Fig. 4.30 with the analytical results one also needs to take into
account the logarithmic correction in the exponent of Eq. (4.165).)

The numerical solutions also exhibit the property of geometric scaling. This is demon-
strated in Fig. 4.31, which shows the curves from Fig. 4.29 plotted as functions of the
scaling variable

τ = x⊥Qs(Y ), (4.206)

for the same set of αsY values as in Fig. 4.29. One can see the onset of the geometric scaling
behavior both inside and outside the saturation region: as the rapidity Y increases, all the
curves approach a universal scaling curve. (Indeed, at very large transverse momenta or
very small x⊥ the geometric scaling in Fig. 4.31 would be violated owing to the onset of
the DLA DGLAP asymptotics; this is not shown in the figure because of its limited range
in x⊥Qs(Y ).)

For another quantitative comparison of the analytic results and the numerical solutions
we show in Fig. 4.32 a plot of the coordinate-space dipole amplitude N (x⊥, Y ) as a function
of the scaling variable τ over a broader range in τ , both for fixed-coupling (the dashed
line) and running-coupling (the solid line) BK evolution (Albacete and Kovchegov 2007b).
(The running-coupling BK evolution is given by the BK equation with running-coupling
corrections included (rcBK). We will discuss rcBK in Chapter 6 (see Eq. (6.9) with kernels
given either by Eq. (6.12) or Eq. (6.14)).) In the fixed-coupling case, comparing the power
of 0.6 in Fig. 4.32 with Eq. (4.161) or Eq. (4.188) we see that it is consistent with the
theoretical prediction of 0.6275 from, say, Eq. (4.184).
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Fig. 4.31. The dipole amplitude N (x⊥, Y ) as a function of the scaling variable τ = x⊥Qs(Y );
the curves (in clockwise order in relation to the crossing point) correspond to the same values
of αsY as in Fig. 4.29. (We thank Javier Albacete for providing us with this figure.) A color
version of this figure is available online at www.cambridge.org/9780521112574.
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Fig. 4.32. Asymptotic solutions (Y = 40) of the evolution equation for running coupling
(solid line) and fixed coupling with αs = 0.2 (dashed line). A fit to a power-law function
aτ 2γ in the region τ ∈ [10−6, 10−2] yields γ ≈ 0.85 for the running-coupling solution and
γ ≈ 0.6 for the fixed-coupling solution. (Reprinted with permission from Albacete and
Kovchegov (2007b). Copyright 2007 by the American Physical Society.) A color version
of this figure is available online at www.cambridge.org/9780521112574.
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Fig. 4.33. A contour plot of the numerical solutions (∼k⊥Ñ (�k⊥, Y )) of the BFKL and
BK evolution equations in momentum space, as functions of the transverse momen-
tum k⊥ and the rescaled rapidity αsY = αs ln 1/x. (We thank Anna Stasto for pro-
viding us with this figure.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

In Sec. 3.3.6 we discussed the two main problems of BFKL evolution unitarity violation
and diffusion into the IR. From Fig. 4.29, along with the analytical calculations presented
above in Sec. 4.5.2, we see that for the BK solution one always has N ≤ 1, so that we
can conclude that BK evolution does not violate the black-disk limit hence resolving this
issue of the BFKL evolution. We see that a resolution of BDL violation still occurs in the
perturbative domain, owing to the large value of saturation scale Qs(Y ) there.

To answer the question regarding diffusion into the IR, represented by the Bartels cigar
of Fig. 3.19, we will present one more result, from the numerical solution of the fixed-
coupling BK equation of Golec-Biernat, Motyka, and Stasto (2002). Figure 4.33 depicts
the lines of constant value for the numerical solution for k⊥Ñ (k⊥, Y ) of the BFKL and BK
equations in momentum space. Namely, Fig. 4.33 contains contour plots of k⊥Ñ (k⊥, Y ) as
a function of transverse momentum k⊥ and rapidity Y = ln 1/x. To illustrate the point, the
initial conditions for both the BFKL and BK equations were chosen to be delta functions in
the transverse momenta, δ(k⊥ − k0⊥) with k0⊥ = 1 GeV. One can see that the solutions
of the BFKL equation (the dotted lines in Fig. 4.33) spread out as the rapidity increases.
This is the diffusion discussed in Sec. 3.3.6, which is dangerous because it generates
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Fig. 4.34. Our understanding of high energy QCD interactions plotted in the plane of
rapidity Y = ln 1/x and ln Q2. (Reprinted from Jalilian-Marian and Kovchegov (2006),
with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

nonperturbative low-k⊥ gluons, for which our small-coupling treatment would not apply.
Figure 4.33 shows that nonlinear BK evolution (shown by the solid lines in Fig. 4.33) avoids
this problem. The nonlinear term in Eq. (4.138) leads to two main effects: (i) it drives the
constant-value lines of the solution towards higher momenta, which is consistent with the
increase in the saturation scale in Eq. (4.156), and (ii) it virtually eliminates the spread
of the solution: as one can see from Fig. 4.33 the width of the k⊥-distribution of the BK
solution is roughly independent of rapidity. This solves the IR diffusion problem of the
BFKL equation.

4.5.6 Map of high energy QCD

We summarize the results obtained in this Chapter in Fig. 4.34. This is a “map of high
energy QCD”, which may be compared with Fig. 4.28 and Fig. 3.22. Figure 4.34 represents
the action of the evolution equations we have discussed, plotted in the (Q2, Y = ln 1/x)-
plane. The region with Q2 � �2

QCD is nonperturbative: there αs is large and so we cannot
use perturbation theory. The DGLAP evolution applies at large Q2 and not very small x,
as indicated by the horizontal arrows denoting evolution in Q2. The BFKL equation is
responsible for the evolution in x: it is represented by the short vertical arrows. At small
enough x the linear BFKL evolution breaks down and nonlinear saturation effects set in.
The transition to the saturation region is denoted by the saturation line Q = Qs(Y ) (cf. the
critical line in Fig. 4.28), and the saturation region is located above this line. The gener-
alization of the BFKL evolution in x to include the saturation physics is accomplished by
BK evolution in the large-Nc limit. Outside the large-Nc limit the nonlinear small-x evo-
lution is described by the Jalilian–Marian–Iancu–McLerran–Weigert–Leonidov–Kovner
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4.6 The BKP equation∗ 189

Fig. 4.35. Diagrams contributing to the BKP evolution. The vertical gluon lines are
reggeized gluons, while the large solid circles denote Lipatov vertices.

(JIMWLK) evolution equation, which is a functional evolution equation to be presented in
the next chapter (Jalilian-Marian et al. 1997b, 1999a, b, Iancu, Leonidov, and McLerran
2001a, b, Weigert 2002, Ferreiro et al. 2002). Both the BK and JIMWLK evolutions are
shown by long vertical arrows. As shown above, geometric scaling works inside the satura-
tion region. We have also indicated the lower boundary of the extended geometric scaling
region by kgeom from Eq. (4.163).

The saturation region is also called the the color glass condensate, as indicated in
Fig. 4.34: this term will be explained below. It is important to stress once more that
all the nonlinear dynamics driving the saturation phenomena takes place for Qs � Q �
�QCD , i.e., in the perturbative region where the strong coupling constant is small and our
perturbative calculations are justified.

4.6 The Bartels–Kwiecinski–Praszalowicz equation∗

One may wonder whether the dipole evolution presented above should receive some poten-
tially important subleading-Nc corrections. The problem is easier to address when formu-
lated in terms of the standard BFKL approach. The BFKL equation of Sec. 3.3 gives the
evolution for two reggeized gluons in the t-channel. Now imagine the case of an arbitrary
number of t-channel reggeized gluons. Their small-x evolution is shown in Fig. 4.35.

To write down an evolution equation for n-reggeized gluon exchange, as in the
BFKL case one has to define the Green function of the exchange, G(�k1⊥, . . . ,
�kn⊥; �k′

1⊥, . . . , �k′
n⊥; Y ), corresponding to a “rectangle” like that in Fig. 3.5, with n gluon

legs attached to it from above and n more attached from below, as shown on the left of
Fig. 4.36. Moreover, we only account for the discontinuities (the imaginary parts) of the
Green function between all consecutive t-channel gluon exchanges, as shown by the cuts
in Fig. 4.36. The scattering amplitude without such cuts can be reconstructed from the
BKP Green function by the repeated use of dispersion relations, as in the case of gluon
reggeization considered in Sec. 3.3.5.
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Fig. 4.36. Diagrammatic representation of the BKP evolution equation for the 2n-point
Green function. All momenta flow up in the diagrams and the vertical straight lines denote
cuts.

One can write down an evolution equation for this Green function by applying the
BFKL kernel to any pair of the reggeized gluons shown in Fig. 4.36. One obtains the
Bartels–Kwiecinski–Praszalowicz (BKP) equation,

∂Y G(�k1⊥, . . . , �kn⊥; �k′
1⊥, . . . , �k′

n⊥; Y )

=
n∑

i=1

ωG(�ki⊥)G(�k1⊥, . . . , �kn⊥; �k′
1⊥, . . . , �k′

n⊥; Y ) + λcolor

∑
i<j

∫
d2lid

2lj

× K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥)G(�k1⊥, . . . , �li⊥, . . . , �lj⊥, . . . , �kn⊥; �k′

1⊥, . . . , �k′
n⊥; Y ),

(4.207)

where K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥) is the nonforward BFKL kernel, given by (cf. Eq. (3.103))

K
ij
NF (�ki⊥, �kj⊥; �li⊥, �lj⊥) = αsNc

2π2
δ(2)(�ki⊥ + �kj⊥ − �li⊥ − �lj⊥)

×
[

k2
i⊥

l2
i⊥(�ki⊥ − �li⊥)

+ k2
j⊥

l2
j⊥(�ki⊥ − �li⊥)

− (�ki⊥ + �kj⊥)2

l2
i⊥l2

j⊥

]
.

(4.208)

The coefficient λcolor depends on the color-SU(3) representation of the two gluons that
interact, namely

λsinglet = 1, λ8S
= λ8A

= 1
2 , λ10 = λ10 = 0, λ27 = − 1

3 (4.209)

where 8S, 8A, 10, 10, 27 denote the representations of the SU(3) color group (the sub-
scripts S,A denote the symmetric and antisymmetric representations). For n = 2 in the
color-singlet case Eq. (4.207) reduces to the BFKL equation (3.58) and in the color-octet
case Eq. (4.207) becomes the equation (3.102) leading to the bootstrap equation (3.107).

The general proof of Eq. (4.207) can be found in the papers of Bartels (1980) and
Kwiecinski and Praszalowicz (1980) (see also Jaroszewicz 1980). A review of this approach
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Table 4.1. The intercepts of
multi-reggeized gluon states as found in
Korchemsky, Kotanski, and Manashov
(2002)

Number of reggeized gluons Intercept

n = 2 2.77ᾱs

n = 4 0.67ᾱs

n = 6 0.39ᾱs

was given by Lipatov (1999). (See also the papers of Korchemsky, Kotanski, and Manashov
(2004) and Lipatov (2009) and references therein for recent developments.)

The contribution of multi-reggeized gluon states to the onium–onium scattering cross
section is Nc-suppressed compared with that of single-BFKL-pomeron exchange. To see
this suppression for a four-reggeized gluon state (with all four gluons in a net color-singlet
state) one has to first subtract from it the color configurations corresponding to single- and
double-BFKL-ladder exchanges (which are included in the four-gluon evolution, owing to
the bootstrap property of Sec. 3.3.5), along with the three-reggeized gluon configurations.
The remaining quantity would contribute to the onium–onium cross section at order 1/N4

c

(for αsNc fixed); this is suppressed in comparison with single-BFKL-ladder exchange,
which is of order 1/N2

c , (4.102), and is comparable with double-BFKL-pomeron exchange,
also of order 1/N4

c . The dipole model presented above does not contain such contributions:
in fact one has to augment the dipole model with color quadrupoles to reproduce the
evolution of the four-gluon BKP state (Chen and Mueller 1995).

While the coupling of the four-gluon BKP state, and of the states with higher numbers of
gluons, to the onia is N2

c -suppressed, their evolution (4.207) clearly contains a leading-Nc

contribution.8 One may, therefore, be concerned that the solutions of Eq. (4.207) could lead
to these multi-reggeized gluon states giving contributions to the cross section that grow
with rapidity faster than the multi-BFKL-pomeron exchanges at the same order in N2

c -
suppression and thus become order-1 corrections to the dipole model (or even dominating
the cross section). For instance, the four-gluon state, after all subtractions, might grow with
energy faster than the two-BFKL-pomeron exchange contribution. Such worries have been
put to rest by an explicit solution of the large-Nc version of the BKP equation, performed by
Korchemsky, Kotanski, and Manashov (2002), whose results (for even n) are summarized
in Table 4.1. One can see, for instance, that the intercept of the n = 4 state, equal to 0.67ᾱs ,
is significantly smaller than the effective intercept due to two BFKL ladder exchanges,
which is 2(αP − 1) = 8ᾱs ln 2 ≈ 5.55ᾱs and can be safely neglected. More importantly, it
follows from Table 4.1 that the higher-n states actually have intercepts that decrease with n,
thus becoming progressively less important than the n-pomeron contribution with intercept
n(αP − 1), growing linearly with n. States with odd n are also unimportant for the total

8 For a general SU(Nc) group the decomposition of Nc ⊗ Nc contains another representation, denoted R7, with λR7 =
1/Nc . The evolution of two gluons in this representation, along with that in representation 27 (λ27 = −1/Nc) is
Nc-suppressed. (See Kovner and Lublinsky (2007) for a detailed presentation of group factors.)
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192 Dipole approach to high parton density QCD

cross section: their intercepts are less than or equal to zero. In the next section we will work
out the case of an odderon, which corresponds to three gluons in the t-channel.

4.7 The odderon∗

Consider a scattering amplitude mediated by a t-channel exchange of a C-odd object, all of
whose other quantum numbers are those of a pomeron (or QCD vacuum). Such a process is
important phenomenologically for the exclusive production of some C-odd vector mesons,
such as pions, J/ψ , ηC , etc. The exchanged object with vacuum quantum numbers except
for C = −1 is called the odderon (by analogy with the definition of the pomeron in Sec. 3.2).
Its existence in QCD was first suggested by Lukaszuk and Nicolescu (1973).

Let us determine the odderon contribution to onium–onium scattering. We start by con-
sidering the general scattering amplitude for an onium on a target. The charge conjugation
operation interchanges the quark and the antiquark:

C : �x1⊥ ↔ �x0⊥, z ↔ 1 − z, (4.210)

where as usual the quark in the onium is located at �x1⊥ while the antiquark is at �x0⊥, and z

is the longitudinal momentum fraction carried by the quark. In the GGM or LLA approxi-
mations the z-dependence can be neglected: we will discard it here. The odderon-exchange
amplitude, by definition, corresponds to an elastic amplitude that is anti-symmetric under
the operation (4.210):

O(�x1⊥, �x0⊥, Y ) = −O(�x0⊥, �x1⊥, Y ). (4.211)

We can relate the elastic odderon amplitude O to the S-matrix S(�x1⊥, �x0⊥, Y ) (in the
notation of Eq. (4.140)) by

O(�x1⊥, �x0⊥, Y ) = 1

2i

[
S(�x1⊥, �x0⊥, Y ) − S(�x0⊥, �x1⊥, Y )

]
. (4.212)

In the eikonal and LLA approximations we have S(�x0⊥, �x1⊥) = S†(�x1⊥, �x0⊥), so that

O(�x1⊥, �x0⊥, Y ) = 1

2i

[
S(�x1⊥, �x0⊥, Y ) − S†(�x1⊥, �x0⊥, Y )

]
= Im S(�x1⊥, �x0⊥, Y ) (4.213)

(Hatta et al. 2005a). We see that the odderon amplitude is equal to the imaginary part of the
S-matrix and hence, to the real part of the T -matrix. We can thus generalize Eq. (4.132) to

S(�x1⊥, �x0⊥, Y ) = 1 − N (�x1⊥, �x0⊥, Y ) + iO(�x1⊥, �x0⊥, Y ). (4.214)

Now let us return to onium–onium scattering. The lowest-order C-odd onium–onium
scattering amplitude is given by the three-gluon exchange diagrams depicted in Fig. 4.37.
The gluons in Fig. 4.37 couple only to the quarks and antiquarks in the onia: contributions
with gluons coupling to each other are either C-even or zero, by color algebra considerations.
In general, three gluons can be either in the f abc or dabc color configuration, where dabc =
2Tr[ta{tb, tc}] is an absolutely symmetric object, the braces denoting an anticommutator.
We are interested in the part of the diagram in Fig. 4.37 (in the eikonal approximation)
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Fig. 4.37. The lowest order odderon exchange diagram in onium–onium scattering. As usual,
the disconnected gluon lines imply sums over all couplings to the quark and antiquark lines.

1

0

1
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Fig. 4.38. Odderon evolution in the large-Nc approximation: a dipole cascade convoluted
with triple-gluon exchange.

contributing to the odderon onium–onium amplitude O(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥, Y ). One can
show, using Eq. (4.212), that only the dabc configuration contributes to O. By analogy with
Eq. (4.117) we write, switching to the complex-variable notation of Sec. 4.3.3,

O(ρ1, ρ0; ρ1′ , ρ0′ ; Y = 0) = c0 α3
s ln3

∣∣∣∣ρ11′ρ00′

ρ10′ρ01′

∣∣∣∣ (4.215)

with c0 some constant (dependent on Nc), whose exact value is not important for us.
Clearly the exchange in Eq. (4.215) is C-odd, as it changes sign under either the 1 ↔ 0 or
the 1′ ↔ 0′ interchange.

Equation (4.215) can be used as the initial condition of the LLA small-x evolution in the
large-Nc limit, which we would like to construct for the odderon amplitude O(�x1⊥, �x0⊥, Y ).
Above, in constructing the dipole model cascade we did not make any assumptions about
the C-parity of the scattering amplitude: hence the dipole evolution should apply to the
odderon case. Working in the rest frame of one of the colliding onia we present the
odderon evolution in Fig. 4.38, constructed by analogy with Fig. 4.22. The incoming
onium develops a dipole cascade, with one dipole exchanging three t-channel gluons
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194 Dipole approach to high parton density QCD

with the lower onium at rest. Note that the triple-gluon exchange of Fig. 4.37 can only
couple to a single dipole in the onium wave function, since a single gluon cannot couple
to a color dipole in an elastic process. Hence the evolution for the odderon amplitude
should be described by the same dipole BFKL equation, with different initial condition
(4.215).

By analogy with Eq. (4.87) we write (Kovchegov, Szymanowski, and Wallon (2004))

∂YO(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y )

= αsNc

2π2

∫
d2x2

x2
10

x2
20x

2
21

× [O(�x1⊥, �x2⊥; �x ′
1⊥, �x ′

0⊥; Y ) + O(�x2⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y ) − O(�x1⊥, �x0⊥; �x ′
1⊥, �x ′

0⊥; Y )
]
.

(4.216)

This is the linear evolution equation for the odderon amplitude; Eq. (4.215) provides its
initial conditions. While Eq. (4.216) is derived here in the large-Nc limit it is also valid for
any Nc, as shown by Hatta et al. (2005a).

Since Eq. (4.216) is simply the BFKL equation, we know how to find its solution.
Decomposing the initial condition (4.215) over the eigenfunctions of the Möbius group,
we write

O(ρ1, ρ2; ρ1′ , ρ2′ ; Y = 0)

= c0 α3
s

6

π2

∑
odd n

∞∫
−∞

dν

∫
d2ρa

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]χ (n, ν)En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a)

(4.217)

and, using Eq. (4.115), we obtain the general solution of Eq. (4.216) for the odderon
amplitude:

O(ρ1, ρ2; ρ1′ , ρ2′ ; Y )

= c0 α3
s

6

π2

∑
odd n

∞∫
−∞

dν

∫
d2ρa eᾱsχ (n,ν)Y

× ν2 + 1
4n2[

ν2 + 1
4 (n + 1)2

] [
ν2 + 1

4 (n − 1)2
]χ (n, ν)En,ν(ρ1a, ρ2a)En,ν∗(ρ1′a, ρ2′a).

(4.218)

Owing to the property (4.120) of the functions En,ν this amplitude is indeed C-odd. Note
that the solution (4.125) of the BFKL equation for the forward amplitude is C-even as
it contains a sum over even n, while the odderon solution (4.218) has a sum over odd n

and is therefore C-odd. We see from Eq. (4.216) that in dipole language the odderon and
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Further reading 195

the pomeron evolutions are given by the same dipole BFKL equation; the different initial
conditions project out different contributions.

The solution (4.218), constructed in this form by Kovchegov, Szymanowski, and Wallon
(2004), is analogous to that found in momentum space earlier by Bartels, Lipatov, and
Vacca (2000), which is known as the BLV solution. The latter was obtained by solving
the BKP equation (4.207) for three gluons in the dabc color state. We can now find the
intercept of the three-gluon BKP dabc-state. The leading high energy asymptotics of the
BFKL solution (4.125) is given by the n = 0 term in the series, since it carries the largest
intercept. In the case of Eq. (4.218) the n = 0 term is no longer included in the sum, and the
largest intercept comes from the n = ±1 terms, giving, in the saddle-point approximation
around ν = 0 (Bartels, Lipatov, and Vacca 2000),

αodd − 1 = ᾱsχ (n = ±1, ν = 0) = 0. (4.219)

We see that the odderon amplitude does not grow with energy, even when small-x evolution
is included! This is an interesting result, which may be the reason for the lack of experimental
observation of the odderon.

The odderon amplitude also receives saturation corrections due to nonlinear evolution.
Consider dipole–nucleus scattering. The nonlinear evolution equation for the C-odd ampli-
tude O(�x1⊥, �x0⊥, Y ) in the large-Nc approximation can be found by inserting Eq. (4.214)
into Eq. (4.137) and taking the imaginary part of the resulting expression, keeping in mind
that both N and O are real quantities. This gives (Kovchegov, Szymanowski, and Wallon
2004, Hatta et al. 2005a)

∂YO(�x1⊥, �x0⊥, Y ) = αsNc

2π2

∫
d2x2

x2
01

x2
20x

2
21

× [O(�x1⊥, �x2⊥, Y ) + O(�x2⊥, �x0⊥, Y ) − O(�x1⊥, �x0⊥, Y )
]

− αsNc

2π2

∫
d2x2

x2
01

x2
20x

2
21

× [O(�x1⊥, �x2⊥, Y )N (�x2⊥, �x0⊥, Y ) + N (�x1⊥, �x2⊥, Y )O(�x2⊥, �x0⊥, Y )
]
.

(4.220)

We conclude that saturation simply suppresses the odderon amplitude O further, by making
it decrease with energy. This can be readily seen from Eq. (4.220) by, for instance, substitut-
ing N = 1 in it for x20, x21 > 1/Qs(Y ), corresponding to the saturated total dipole–nucleus
cross section. One would then get the S-matrix version of the Levin–Tuchin formula,
Eq. (4.172), but now for the odderon amplitude O, indicating that it falls off steeply with
increasing energy or rapidity in the presence of saturation.

Further reading

More details on some aspects of the GGM multiple-rescattering formula and on BK evo-
lution, with its solution, can be found in the reviews by Iancu and Venugopalan (2003),
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196 Dipole approach to high parton density QCD

Weigert (2005), and Jalilian-Marian and Kovchegov (2006). Further information on the
semiclassical approximation for the solution of the BK equation can be found in Levin
and Tuchin (2000, 2001) (see also Diaz Saez and Levin (2011) and references therein).
A comprehensive summary of the current status and achievements of the traveling wave
approach can be found in Beuf (2010). The most recent status of the saturation bound-
ary approaches to solving the BK equation at higher orders is discussed in Avsar et
al. (2011) and references therein. The consequences of the conformal symmetry of the
fixed-coupling BK evolution for its solution have been recently explored by Gubser
(2011).

The solution of the BKP equation, especially for the odderon case, has been widely
discussed, and we consider that the review and paper of Lipatov (1999, 2009) together
with the paper of Korchemsky, Kotanski, and Manashov (2004) can bring the reader to the
current understanding of this problem. A comprehensive review of the theory of odderon
evolution and the status of experimental searches for the odderon was given by Ewerz
(2003).

Exercises

4.1 By summing all possible connections of the t-channel gluons to the dipole in
Fig. 4.10, derive Eq. (4.40) explicitly.

4.2∗∗ Find the virtual correction to the onium wave function in Eq. (4.64) by an explicit
calculation of diagrams. One may directly sum the LCPT diagrams in Fig. 4.14 (Chen
and Mueller 1995). Alternatively, one may start with a momentum-space expression
for each distinct contributing Feynman diagram, Fourier-transform it into coordinate
space in x−, regulate the x−-integrals, and integrate over the x−-coordinates of the
quark–gluon vertices from −∞ to 0. Fourier-transforming the obtained expression
into transverse coordinate space should yield (4.64).

4.3 Follow the steps outlined in the text to find the eigenvalues of the kernel of Eq. (4.90).
Namely, starting with Eq. (4.95) reduce it to Eq. (4.97).

4.4 Starting with Eq. (4.90) use the substitution (4.98) to obtain the BFKL equation
(3.58) for the function f . You may find Eqs. (A.9) and (A.10) handy.

4.5 (a) Solve the following zero-transverse-dimensional equation for the generating
functional Z(Y, u) (cf. Eq. (4.77)):

∂Y Z = αs(Z
2 − Z) (4.221)

with initial condition Z(Y = 0, u) = 0. Using Eq. (4.81) find the number of
dipoles in this “wave function”.

(b) Perform a similar exercise for a toy model of the BK equation (4.138): solve

∂Y N = αsN − αsN
2, (4.222)
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Exercises 197

with N (Y = 0) = N0 � 1 as the initial condition; N0 > 0 is a constant. Show
that N (Y ) → 1 as Y → ∞.

4.6 Suppose that the dipole–nucleus scattering amplitude in the linear regime outside
the saturation region is given by the following approximation of the DLA formula
(4.150) (for x⊥Qs0 � 1)

N (x⊥, Y ) = (x⊥Qs0)2 exp
{

2
√

ᾱsY ln[1/(x⊥Qs0)2]
}

. (4.223)

(a) Find the energy-dependent saturation scale Qs(Y ) by requiring that

N (x⊥ = 1/Qs(Y ), Y ) = 1. (4.224)

(b) Show that for 1/Qs(Y ) � x⊥ � 1/kgeom,with kgeom = Q2
s (y)/Qs0, (cf.

Eq. (4.163)), Eq. (4.223) can be rewritten as

N (x⊥, Y ) ≈ x⊥Qs(Y ), (4.225)

i.e., as a function of a single variable x⊥Qs(Y ) instead of the two variables x⊥
and Y (cf. Eq. (4.161)). This is a simplified derivation of the extended geometric
scaling (Iancu, Itakura, and McLerran 2002).

4.7∗ Derive Eq. (4.217) with O(ρ1, ρ2; ρ1′ , ρ2′ ; Y = 0) as given in Eq. (4.215).

4.8 Determine the high energy asymptotics of the F2 structure function (and σ
γ ∗A
tot ). At

very small x we have Qs � Q. Argue that in such a case the x⊥-integral in (4.12) is
dominated by 1/Qs � x⊥ � 1/Q. Approximating the dipole–nucleus interaction
by a black disk of radius R, so that N (x⊥, b⊥, Y ) ≈ θ (R − b⊥), and expanding the
Bessel functions in Eqs. (4.18) and (4.21), show using Eq. (4.10a) that

F2 ∼ σ
γ ∗A
tot ∼ R2 ln ŝ ∼ ln3 ŝ; (4.226)

the last conclusion results from the substitution R = R0 + a ln ŝ, reflecting the dif-
fusion of the black-disk radius (3.115). Equation (4.226) sets an upper limit on σ

γ ∗A
tot

known as the Gribov bound (Gribov 1970).
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5

Classical gluon fields and the color glass condensate

In the previous chapter we developed a two-step approach to DIS: one first sums the mul-
tiple rescatterings, leading to the GGM formula resumming powers of α2

s A
1/3, and then

one includes the small-x evolution effects, which enter via s-channel gluon emissions and
absorptions, by resumming powers of αsY . Here we generalize this two-step approach,
making it applicable to other high energy scattering processes. We show that the GGM
approximation is equivalent to treating the gluon field in the nucleus classically, according
to the prescription of the McLerran–Venugopalan (MV) model. Quantum evolution cor-
rections to the MV model come in through the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (JIMWLK) evolution equation, which, in particular, provides an all-Nc

generalization of the dipole approach. The color glass condensate (CGC) is introduced.

5.1 Strong classical gluon fields: the McLerran–Venugopalan model

5.1.1 The key idea of the approach

Let us consider a large ultrarelativistic nucleus in the infinite-momentum frame. The nucleus
is taken as being described by the Glauber model of Sec. 4.2. We are interested in the small-
x tail of the gluon wave function in the nucleus. As follows from Eq. (2.56), in the rest
frame of the nucleus the small-x gluons have a coherence length of order

lcoh ∼ 1

mNx
, (5.1)

where mN is the mass of a nucleon. If the Bjorken-x variable is sufficiently small then the
coherence length may become very large, much larger than the size of the nucleus. Such
small-x gluons would be produced by the whole nucleus coherently in the longitudinal
direction. An example of this interaction is shown in the left-hand panel of Fig. 5.1. There
the small-x gluon (denoted by the wavy line) interacts coherently with several Lorentz-
contracted nucleons. Indeed the nucleons, and the nucleus as a whole, are color-neutral and
one might think that a coherent gluon would simply not “see” them. However, the gluon
is coherent only in the longitudinal direction: in the transverse direction it is localized on
the scale x⊥ ∼ 1/kT , with kT ≡ k⊥ the transverse momentum of the gluon. If kT � �QCD,
which is a necessary condition for using gluon degrees of freedom, the transverse extent of
the gluon is much smaller than the sizes of the nucleons. Because of this the gluon interacts

198

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


5.1 Strong classical gluon fields: the MV model 199

~ A    nucleons
1/3

S

Fig. 5.1. Left-hand panel: a small-x gluon sees the whole nucleus coherently in the longitudi-
nal direction and interacts with several different nucleons in it. Right-hand panel: the effec-
tive color charge seen by the gluon in the IMF as a result of a random walk in color space.
(Reprinted from Jalilian-Marian and Kovchegov (2006), with permission from Elsevier.) A
color version of this figure is available online at www.cambridge.org/9780521112574.

with only part of each nucleon in the transverse direction, as shown in the left-hand panel
of Fig. 5.1. The color charge in the segment of a nucleon that the gluon is traversing does
not have to be zero: the gluon may run into, say, a single valence quark. As a result of such
interactions, the gluon “feels” some effective color charge in all the nucleons’ segments that
it traverses. In our Glauber approximation we assume that all the nucleons are independent,
so that interactions with parts of different nucleons are similar to a random walk in color
space. If each individual nucleon’s segment has a typical color charge g, then, owing to
the random walk nature of the process, the total color charge seen by the gluon at a fixed
impact parameter is g

√
n, where n ∼ A1/3 is the number of nucleons at a fixed transverse

coordinate of the gluon.
In the infinite-momentum frame, owing to Lorentz contraction all the nucleons appear

to be squeezed into a thin “pancake” of Lorentz-contracted nucleus, as shown at the right
in Fig. 5.1. One may then define the effective color charge density seen by a gluon in
the transverse plane of the nucleus (McLerran and Venugopalan 1994a, b, c). The typical
magnitude of these color charge density fluctuations is given by the color charge squared
divided by the transverse area of the nucleus, (g

√
n)2/S⊥ = g2n/S⊥. The number of color

charge sources in the whole nucleus is proportional to the number of nucleons in the
nucleus, n ∼ A. The typical color charge density fluctuations are, therefore, characterized
by the momentum scale

μ2 ∼ g2A

S⊥
∼ �2

QCDA1/3. (5.2)

It is important to notice that the momentum scale in Eq. (5.2) grows with A as A1/3,
similarly to the saturation scale in the GGM model (4.50) (see also (4.52)). The important
conclusion we can draw from Eq. (5.2) is that for sufficiently large nuclei their small-x
wave functions are characterized by a hard momentum scale μ that is much larger than
�QCD. It is likely that the large scale μ determines the running of the strong-coupling
constant, αs = αs(μ2), allowing for a small-coupling αs description of the process. Field
theories with small coupling are usually dominated by classical fields, with the quantum
corrections suppressed by extra powers of the small coupling constant αs . Therefore the
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200 Classical gluon fields and the color glass condensate

dominant small-x gluon field of a large nucleus is classical and given by the solution
of the classical Yang–Mills equations of motion. This is the essential key idea of the
McLerran–Venugopalan model (McLerran and Venugopalan (1994a, b, c).

Another way to reach this conclusion about the dominance of the classical fields is to
argue that the gluon density in the transverse plane is (see Eq. (3.131))

ρglue = xGA

S⊥
. (5.3)

For a dilute nucleus xGA = AxGN ∼ A, so that ρglue ∼ A1/3 and is therefore large for
a nucleus with A � 1, resulting in the high occupation number of gluons. Such a high
occupation number implies the dominance of the classical physics: hence the gluon field
should be classical (McLerran and Venugopalan 1994a). Moreover, ρglue has the dimensions
of mass squared, giving us a new momentum scale μ2 ∼ ρglue, which is consistent with
that in Eq. (5.2). The strongest gluon field possible in the QCD Lagrangian (1.1) at small
coupling g is of order some momentum scale times 1/g, as can be inferred by equating
the linear and nonlinear terms in the field strength tensor (1.4). Hence the resulting strong
gluon field should be of order Aμ ∼ 1/g (cf. Eq. (3.137)), which is characteristic of classical
gluon fields (e.g. instanton fields).

We see that the MV model is based on the observation that the larger-x partons (such
as the valence quarks in the nucleons) in a large nucleus serve as classical sources for the
smaller-x gluons. We now are going to find this classical gluon field.

5.1.2 Classical gluon field of a single nucleus

According to the prescription of the MV model, we need to solve the classical Yang–Mills
equations

DμFμν = J ν, (5.4)

with an ultrarelativistic nucleus providing the source current J ν , so that in the infinite-
momentum frame

J ν = δν+ρ(x−, �x⊥), (5.5)

where ρ(x−, �x⊥) is the color charge density.1 The adjoint covariant derivative is defined by

DμFμν ≡ ∂μFμν − ig
[
Aμ, Fμν

]
(5.6)

in the standard convention.
The classical gluon field of a nucleus is easier to find in the covariant ∂μAμ = 0 gauge.

To do this we will assume, for simplicity, that all the relevant large-x color charge in
the nucleus is carried by the valence quarks. Furthermore, we will specifically choose to
consider a nucleus with “mesonic” nucleons made out of qq̄ pairs instead of three valence

1 Unlike in the previous chapter, where the nucleus was either at rest or moving along the x− light cone, in this chapter
we take the nucleus to be moving along the x+ light cone direction, in order for the notation to agree with the majority
of the literature on the subjects discussed here. A simple + ↔ − substitution relates the results of the two chapters.
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5.1 Strong classical gluon fields: the MV model 201

"NUCLEON"

QUARK

ANTIQUARK

Fig. 5.2. The model for a nucleus where the “nucleons” are quark–antiquark pairs.
(Reprinted with permission from Kovchegov (1996). Copyright 1996 by the American
Physical Society.)

quarks (Kovchegov 1996). (This latter assumption merely simplifies the calculations; the
conclusions are easy to generalize to the case of real nuclei.) Our model of the nucleus is
depicted in Fig. 5.2. Considering the nucleus to be moving ultrarelativistically in the light
cone plus direction, we label “valence” quark and antiquark coordinates by �xi⊥, x−

i and
�x ′
i⊥, x ′−

i in accordance with their position along the x−-axis, so that

x−
1 , x ′−

1 < x−
2 , x ′−

2 < · · · < x−
A , x ′−

A . (5.7)

In the recoilless eikonal approximation considered here, neither coordinate in a quark-
antiquark pair changes due to the emission of gluon fields.

In our theoretical nucleus a nucleon consists of a qq̄ pair, where the quark and antiquark
move as free particles inside the nucleon but are not able to leave the nucleon due to
confinement. Similarly, in the Glauber model of the nucleus the nucleons can be anywhere
within the nucleus with equal probability. As we will see shortly, in the IMF and in the
covariant ∂μAμ = 0 gauge the gluon field of, say, quark i located at x−

i is proportional to
δ(x− − x−

i ). Since the quarks (and anti-quarks) in the model have different x−
i -coordinates,

the fields of the individual quarks (anti-quarks) cannot overlap and we can construct the
gluon field of the nucleus as a sum of the fields of the quarks and anti-quarks. We first will
find this sum in the covariant gauge, and after that we will transform the total field to the
A+ = 0 light cone gauge, which is more convenient for calculating the gluon distribution
function.

Starting from a nucleus at rest in the covariant gauge, we write the color charge density
as

ρcov(�x) =
N2

c −1∑
a=1

taρa
cov(�x), (5.8)

with

ρa
cov(�x) = g

A∑
i=1

(tai )[δ3(�x − �xi) − δ3(�x − �x ′
i)] (5.9)
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202 Classical gluon fields and the color glass condensate

where �xi is the location of the quark in the ith nucleon, �x ′
i is the location of the antiquark,

and the (tai ) are SU(Nc) generators acting in the color space of the ith nucleon. The subscript
cov denotes the covariant ∂μAμ = 0 gauge.

Boosting into the IMF we obtain

ρa
cov(x−, �x⊥) = 2g

A∑
i=1

(tai )[δ(x− − x−
i )δ2(�x⊥ − �xi⊥) − δ(x− − x ′−

i )δ2(�x⊥ − �x ′
i⊥)],

(5.10)

where now ρcov(x−, �x⊥) is the plus component of the current Jμ, in accordance with
Eq. (5.5). As one can readily verify, the solution of the Yang–Mills equations (5.4) with the
source given in (5.5), (5.10) is

A+
cov = − g

π

N2
c −1∑

a=1

A∑
i=1

ta(tai )
[
δ(x− − x−

i ) ln(|�x⊥ − �xi⊥|�)−δ(x− − x ′−
i ) ln(|�x⊥−�x ′

i⊥|�)
]
,

A−
cov = 0, �A⊥

cov = 0, (5.11)

where � is some infrared cutoff. The only nonzero component of the field strength in the
covariant gauge is then

F⊥+
cov = g

π

N2
c −1∑

a=1

A∑
i=1

ta(tai )

[
δ(x− − x−

i )
�x⊥ − �xi⊥

|�x⊥ − �xi⊥|2 − δ(x− − x ′−
i )

�x⊥ − �x ′
i⊥

|�x⊥ − �x ′
i⊥|2
]
. (5.12)

The gluon field in Eq. (5.11) is itself a solution of the classical Yang–Mills equa-
tions. However, as we mentioned before, the field in the A+ = 0 light cone gauge is
needed to find the gluon distribution resulting from classical physics. We have to gauge-
transform the field from Eq. (5.11) into the light cone gauge. The field in the new
gauge is

ALC
μ = SAcov

μ S−1 − i

g
(∂μS)S−1. (5.13)

Requiring the new gauge to be the light cone gauge, A+
LC = 0, we solve for S to obtain2

S(x−, �x⊥) = P exp

⎧⎨
⎩ ig

2

−∞∫
x−

dx ′−A+
cov(x ′−, �x⊥)

⎫⎬
⎭ , (5.14)

where, as usual, the symbol P denotes path-ordering of the operators in the integral. The
matrix of the gauge transformation is given by a Wilson line (Wilson 1974) along the x−

light cone. (The choice of the contour of the Wilson line in Eq. (5.14) is not unique: the
freedom to choose the contour is directly related to the residual gauge freedom within the

2 The factor 1/2 in Eq. (5.14) is due to our definition of the light cone components in Sec. 1.3.
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5.1 Strong classical gluon fields: the MV model 203

A+ = 0 gauge.) The gluon field in the A+ = 0 light cone gauge is

�A⊥
LC(x−, �x⊥) = 1

2

x−∫
−∞

dx ′−F+⊥
LC (x ′−, �x⊥)

= 1

2

x−∫
−∞

dx ′−S(x ′−, �x⊥)F+⊥
cov (x ′−, �x⊥)S−1(x ′−, �x⊥), (5.15)

with A−
LC = 0. Since the fields do not depend on x+ we have suppressed x+ in all the

arguments.
Substituting Eq. (5.12) into Eq. (5.15) we obtain the classical gluon field for an ultrarel-

ativistic nucleus in its light cone gauge (Kovchegov 1996, Jalilian-Marian et al. 1997a):

�ALC
⊥ (x−, �x⊥) = g

2π

N2
c −1∑

a=1

A∑
i=1

(tai )

[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 θ (x− − x−

i )

− S(x ′−
i , �x⊥)taS−1(x ′−

i , �x⊥)
�x⊥ − �x ′

i⊥
|�x⊥ − �x ′

i⊥|2 θ (x− − x ′−
i )

]
.

(5.16)

An explicit expression for S(x−, �x⊥) can be obtained by substituting the covariant-gauge
field (5.11) into Eq. (5.14) and integrating over the delta-functions. This yields

S(x−, �x⊥) =
A∏

i=1

exp

⎧⎨
⎩ ig2

2π

N2
c −1∑

a=1

ta(tai ) ln
|�x⊥ − �xi⊥|
|�x⊥ − �x ′

i⊥|θ (x− − x−
i )

⎫⎬
⎭ , (5.17)

where the terms in the product are ordered from left to right with increasing index i. In
arriving at Eq. (5.17) we have coarse-grained our treatment of the nucleus, assuming that
the coordinate x− is either larger or smaller than the position of the nucleon on the light
cone, taken now to be approximately equal to x−

i . Hence we do not have situations where
only one quark in a nucleon contributes to S(x−, �x⊥). Individual nucleon contributions
are suppressed by powers of A, hence neglecting one of them is justified in our Glauber,
A � 1, approximation for the nucleus.

The calculation of the Wilson line (5.14), which led to Eq. (5.17), also allows us to
determine the region of applicability of the classical approximation used in the MV model.
Note that the covariant-gauge field (5.11) is of order g; hence, in terms of the Feynman
diagrams it corresponds to the emission of a gluon by the valence (anti)quarks (see also
Exercise 5.1). The Wilson line (5.14) is then given by gluon exchanges between valence
quarks and the path of the Wilson line, as shown in Fig. 5.3A. In fact the product in
Eq. (5.17) consists of one-gluon exchanges in the exponents, each term corresponding to
a given nucleon. It seems that if we expand the exponentials in the product (5.17) we can
have as many gluon exchanges with each nucleon as we like. Formally, this is indeed the
case: nonetheless, we claim that, to keep the classical approximation under control we
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204 Classical gluon fields and the color glass condensate

A B

Fig. 5.3. Diagrams contributing to the Wilson line (5.14) in the validity domain of the
classical approximation (A) and beyond (B).

Fig. 5.4. Diagrammatic representation of the non-Abelian Weizsäcker–Williams field of a
nucleus. The cross denotes the location xμ where the field is measured.

cannot exceed more than two gluons per nucleon, as shown in Fig. 5.3A (which means
expanding each exponential in Eq. (5.17) up to order g4). Indeed, one would be tempted
to go beyond this limit and include a three-gluon exchange diagram by expanding the
exponentials to order g6, as depicted on the left of Fig. 5.3B. However, at order g6, in
calculating the Wilson line in the full perturbative QCD theory we should also include the
diagram on the right of Fig. 5.3B. Such a diagram contains a gluon self-energy correction
and is essentially nonclassical, as it cannot be evaluated by classical methods. Therefore we
would lose control over the diagram calculation if we tried to use classical methods at order
g6. Hence the classical approximation is only valid in QCD as long as we do not exceed
the two-gluon per nucleon limit (Kovchegov 1997). This conclusion is similar to what we
saw in the GGM approximation: the resulting resummation parameter for the classical MV
approach is again α2

s A
1/3, just as in the GGM case (4.46). Even the diagram in Fig. 5.3A is

similar to the GGM diagram in Fig. 4.5. We see that the GGM formula can be thought of
as having been obtained in the classical approximation.

Equation (5.16) gives the solution of the classical equations of motion for a given
configuration of valence quarks (and antiquarks in our model) inside the nucleons and
of nucleons inside the nucleus. We will refer to the field in Eq. (5.16) as the non-
Abelian Weizsäcker–Williams field, since this is a non-Abelian analogue of the well-
known Weizsäcker–Williams field in electrodynamics. A diagram corresponding to the
non-Abelian Weizsäcker–Williams field of a nucleus is shown in Fig. 5.4 (Kovchegov
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5.1 Strong classical gluon fields: the MV model 205

1997). Diagrams corresponding to the classical gluon field are tree level, in accordance
with the conventional understanding of classical dynamics. (The apparent loop in Fig. 5.4
is not a quantum loop, as, together with a diagram in which the gluon couplings to the
quark line are interchanged, it contributes as if the intermediate quark line were on mass
shell (cf. Fig. 4.7) and thus is equivalent to two independent quark–gluon interactions.)

The classical gluon field (5.16) in the MV model can alternatively be found using a
description of the valence quark distribution in the nucleus by a continuous light cone
color charge density ρLC(x−, �x⊥) related to the covariant-gauge density (5.10) by a gauge
rotation:

ρLC(x−, �x⊥) = S(x−, �x⊥)ρcov(x−, �x⊥)S−1(x−, �x⊥) (5.18)

(McLerran and Venugopalan 1994a, b, c, Jalilian-Marian et al. 1997a). In such a description
one does not have to specify a model for the point valence charges, such as that in Fig. 5.2,
though the dilute nucleus approximation is employed.

In the point-charge approach presented above, in order to calculate a physically observ-
able quantity one has to average over all possible positions of quarks and anti-quarks in
the nucleons and of nucleons in the nucleus, which, in this classical approximation, would
correspond to averaging over many scattering events. In the continuous density approach
this would correspond to integrating the observable over all charge densities ρLC(x−, �x⊥)
with some weight functional W [ρLC]. The weight functional for a group of independent
valence quarks has to be Gaussian, so that the integral would be of the form (McLerran and
Venugopalan 1994a, Jalilian-Marian et al. 1997a)

∫
DρLCW [ρLC] ≡

∫
DρLC exp

⎧⎨
⎩−
∫

d2x⊥

∞∫
−∞

dx− tr
[
ρ2

LC(x−, �x⊥)
]

μ2(x−, �x⊥)

⎫⎬
⎭ . (5.19)

Here μ2(x−, �x⊥) is some function of the coordinates: it is a measure of the color-charge
fluctuations and is a generalization of μ from Eq. (5.2). (The Gaussian form of Eq. (5.19)
can be verified explicitly and μ2(x−, �x⊥) can be found in the point-charge approach pre-
sented above: this was done in Kovchegov (1997).) The expectation value of some density-
dependent operator Ôρ would then be given by

〈Ôρ〉 =
∫ DρLCÔρW [ρLC]∫ DρLCW [ρLC]

. (5.20)

5.1.3 Classical gluon distribution

Using Eq. (5.16) we can derive a formula for the distribution of gluons in the nucleus.
First we need to derive an expression for the gluon distribution as a function of the
gluon field operator. Working in the A+ = 0 light cone gauge, we expand the gluon field
operator in terms of creation and annihilation operators in the form (see e.g. Lepage and
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206 Classical gluon fields and the color glass condensate

Brodsky 1980)

�Aa
LC⊥(x+ = 0, x−, �x⊥) =

∫
k+>0

d2k⊥dk+

(2π )32k+
∑
λ=±1

{
âa

λ(�k⊥, k+)�ελ
⊥e−ik·x + â

a†
λ (�k⊥, k+)�ελ∗

⊥ eik·x
}

,

(5.21)

where

[âa
λ(�k⊥, k+), âb†

λ′ (�k′
⊥, k′+)] = 2k+(2π )3δ(k+ − k′+)δ2(�k⊥ − �k′

⊥)δλλ′δab. (5.22)

Using these creation and annihilation operators we can write the number of gluons with
transverse momentum k⊥ and light cone momentum k+ (per unit transverse momen-
tum squared dk2

⊥ and per unit rapidity dk+/k+) as the Weizsäcker–Williams distribution
function,

φWW
(
x, k2

⊥
) = π

2(2π )3

∑
λ=±1

N2
c −1∑

a=1

〈A|âa†
λ (�k⊥, k+)âa

λ(�k⊥, k+)|A〉, (5.23)

where |A〉 is a state of the nucleus and, as usual, x = k+/p+ with p+ the large light cone
momentum of the nucleons in the nucleus. We have implicitly assumed that the gluon
distribution does not depend on the direction of the gluon transverse momentum and have
replaced d2k⊥ by πdk2

⊥. The quantity φWW (x, k2
⊥) is the unintegrated gluon distribution

of the nucleus (cf. Eq. (3.92)). The standard (integrated) gluon distribution is related to
φWW

(
x, k2

⊥
)

by Eq. (3.93).

Solving Eq. (5.21) for âa
λ and â

a†
λ and using the result in Eq. (5.23) yields

φWW
(
x, k2

⊥
) = (k+)2

8π2

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

∞∫
−∞

dx−dy−e−ik+(x−−y−)/2

×
〈
A

∣∣∣∣tr [ �ALC
⊥ (0, x−, �x⊥) · �ALC

⊥ (0, y−, �y⊥)
] ∣∣∣∣A
〉
. (5.24)

To perform the Fourier transformations over x− and y− note that the non-Abelian WW
field of Eq. (5.16) is essentially a theta function in x−, i.e., θ (x−), since the x−-extent of
the ultrarelativistic nucleus moving in the x+-direction is negligibly small. Writing

�ALC
⊥ (0, x−, �x⊥) ≈ θ (x−) �ALC

⊥ (0, x− = +∞, �x⊥) ≡ θ (x−) �ALC
⊥ (�x⊥), (5.25)

we reduce Eq. (5.24) to

φWW
(
x, k2

⊥
) = 1

2π2

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

〈
tr
[

�ALC
⊥ (�x⊥) · �ALC

⊥ (�y⊥)
]〉

, (5.26)

where, for brevity, we denote the averaging in the state |A〉 simply by angle brackets.
For the classical gluon field (5.16), averaging in the state |A〉 implies averaging over the
positions of the valence quarks in the nucleons and of the nucleons in the nucleus, along
with averaging over the quark colors. For the field found as a function of the charge density
ρLC(x−, �x⊥), the averaging is the same as that defined in Eq. (5.20). One can also show
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5.1 Strong classical gluon fields: the MV model 207

that the definition of the unintegrated gluon distribution (5.26), after integration over �k⊥,
can be recast into a form consistent with the standard definition of the integrated gluon
distribution, which can be found in Sterman (1993).

Substituting the classical gluon field (5.16) into the expression for the unintegrated gluon
distribution (5.26) we obtain

φWW
(
x, k2

⊥
) = αs

2π3

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

A∑
i,j=1

×
〈
(tai )(tbj ) tr

[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)S(x−

j , �y⊥)tbS−1(x−
j , �y⊥)

]

× �x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xj⊥

|�y⊥ − �xj⊥|2 + a.c.

〉
, (5.27)

where summation over repeated color indices is implied and a.c., the antiquark contribu-
tions, stands for three more terms, involving antiquarks.

In the spirit of the Glauber large-nucleus approximation, we assume that the contribution
of the ith nucleon is not contained in S(x−

i , �x⊥) (the same for the j th nucleon in S(x−
j , �y⊥)):

this means that averaging over the color space of the quarks in the ith and the j th nucleons
can be carried out separately, giving (1/Nc)tri[(tai )] = 0 and (1/Nc)trj [(tbj )] = 0 unless
i = j , in which case we get (1/Nc)tri[(tai )(tbi )] = [1/(2Nc)]δab. This simplifies Eq. (5.27)
to

φWW
(
x, k2

⊥
) = αs

4π3Nc

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

A∑
i=1

× 〈tr [S(x−
i , �x⊥)taS−1(x−

i , �x⊥)S(x−
i , �y⊥)taS−1(x−

i , �y⊥)
] 〉

×
[∫

d2xi

T (�xi⊥)

A

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 + a.c.

]
. (5.28)

We have now written out the averaging over �xi⊥ explicitly, but neglecting the difference
between the location of a nucleon and the location of a quark in the nucleon. We have
also neglected the difference between x−

i and x ′−
i in the arguments of S, since, as we have

assumed, the ith nucleon does not contribute to S. The nuclear profile function T (�b⊥) was
defined in Eq. (4.31): the ratio T (�b⊥)/A is the transverse-plane probability density for
finding a nucleon at impact parameter �b⊥.

To simplify Eq. (5.28) further we will use the following group theory identity, which we
will formulate in general terms for future use. Define a fundamental Wilson line along an
arbitrary (not necessarily closed) contour C by

V ≡ P exp

⎧⎨
⎩ig
∫
C

dx · A

⎫⎬
⎭ , (5.29)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


208 Classical gluon fields and the color glass condensate

where, as usual, Aμ =∑a taAa
μ and the ta are the SU(Nc) generators in the fundamental

representation. Similarly, define the adjoint Wilson line along the same contour C by

U ≡ P exp

⎛
⎝ig

∫
C

dx · A
⎞
⎠ (5.30)

where now Aμ =∑a T aAa
μ with (T a)bc = −if abc the SU(Nc) generators in the adjoint

representation. As can be verified explicitly, the following identity relates these two Wilson
lines:

Uabt
b = V †taV . (5.31)

This relation also leads to another useful formula:

Uab = 2tr
[
tbV †taV

]
. (5.32)

Note also that, since the adjoint SU(Nc) generators T a are purely imaginary,

Uab = U ∗
ab = U

†
ba. (5.33)

Using Eq. (5.31) with V = S−1 = S† we write

S(x−
i , �x⊥)taS−1(x−

i , �x⊥) = U
†
ab(x−

i , �x⊥)tb (5.34)

where (cf. Eqs. (5.14) and (5.17))

U (x−, �x⊥) = P exp

⎧⎨
⎩ ig

2

−∞∫
x−

dx ′−A+
cov(x ′−, �x⊥)

⎫⎬
⎭

=
A∏

i=1

exp

{
ig2

2π
T a(tai ) ln

|�x⊥ − �xi⊥|
|�x⊥ − �x ′

i⊥|θ (x− − x−
i )

}
. (5.35)

We now can rewrite the term in the second line of Eq. (5.28) as

〈
tr
[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)S(x−

i , �y⊥)taS−1(x−
i , �y⊥)

] 〉 = 1

2

〈
Tr
[
U†(x−

i , �x⊥)U (x−
i , �y⊥)

] 〉
(5.36)

where the trace Tr is over the adjoint indices.
Employing Eq. (5.35) and expanding the contribution of the (i − 1)th nucleon up

to order g4, in accordance with the two-gluons-per-nucleon limitation of the classical
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5.1 Strong classical gluon fields: the MV model 209

approach, we get

Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

]
= Tr

{
U (x−

i−1, �y⊥)

[
1 + ig2

2π
T c(t ci−1) ln

|�y⊥ − �xi−1⊥||�x⊥ − �x ′
i−1⊥|

|�y⊥ − �x ′
i−1⊥||�x⊥ − �xi−1⊥|

− g4

2(2π )2
T cT d (t ci−1)(tdi−1) ln2 |�y⊥ − �xi−1⊥||�x⊥ − �x ′

i−1⊥|
|�y⊥ − �x ′

i−1⊥||�x⊥ − �xi−1⊥| + O(g6)

]
U †(x−

i−1, �x⊥)

}
.

(5.37)

Averaging over the color space of the (i − 1)th nucleon we obtain

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

] 〉 = 〈Tr
[
U (x−

i−1, �y⊥)U †(x−
i−1, �x⊥)

] 〉
×
[

1 − α2
s

〈
ln2 |�y⊥ − �xi−1⊥|

|�y⊥ − �x ′
i−1⊥|

|�x⊥ − �x ′
i−1⊥|

|�x⊥ − �xi−1⊥|
〉 ]

. (5.38)

The logarithm in the second line of Eq. (5.38) looks like that arising from the two-gluon-
exchange high energy interaction of an onium �x⊥, �y⊥ with an onium �xi−1⊥, �x ′

i−1⊥, as can
be seen from comparing Eq. (5.38) with Eq. (3.139). Indeed this is natural, since the result
arises from the expansion of up to two gluons per nucleon shown in Fig. 5.3 (except that
here we have two adjoint Wilson lines instead of the single fundamental Wilson line in
Fig. 5.3). The result of averaging this term over the impact parameter and over angular
orientations of the nucleon can be obtained by comparing Eq. (3.139) with its averaged
version (3.25). We are assuming that our nucleus is very large; hence, averaging over all
impact parameter values up to infinity is applicable here.

We now assume that �x⊥ and �y⊥ are perturbatively close to each other, so that |�x⊥ − �y⊥| �
1/�QCD and is much smaller than the nucleon size. In the nucleus, when averaging the
logarithm-squared term in Eq. (5.38) we also have to multiply the transverse integral by the
probability density for finding the nucleon at �b⊥, i.e., by T (�b⊥)/A (cf. Eq. (5.28)). In our
coarse-grained picture of the nucleus we will assume that both coordinates are located at
the same impact parameter �b⊥ = (�x⊥ + �y⊥)/2 as far as the nuclear profile function T (�b⊥)
is concerned. Then we can rewrite Eq. (5.38) as

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

] 〉 = 〈Tr
[
U (x−

i−1, �y⊥)U †(x−
i−1, �x⊥)

] 〉
×
[

1 − 2πα2
s

T (�b⊥)

A
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�
]
, (5.39)

where we have neglected the term 1 in comparison with the logarithm in Eq. (3.25),
since |�x⊥ − �y⊥| � 1/�. As usual � ∼ �QCD is an IR cutoff, with 1/� approximately the
nucleon size. Equation (5.39) has the contribution of the (i − 1)th nucleon factorized from
the rest of the expression.
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210 Classical gluon fields and the color glass condensate

Iterating the above steps for all the other nucleons we end up with

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

]〉
= (N2

c − 1)

[
1 − Q2

sG(�b⊥)

4A
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�

]i−1

≈ (N2
c − 1) exp

{
− i − 1

A

Q2
sG(�b⊥)

4
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�

}
, (5.40)

where in the last step we have used the fact that A � 1. The gluon saturation scale,

Q2
sG(�b⊥) = 8πα2

s T (�b⊥), (5.41)

can be obtained from the quark saturation scale Eq. (4.50) if one replaces CF by Nc in
the latter and multiplies the result by 2. This factor 2 is due to the fact that in arriving
at Eq. (4.50) we modeled each nucleon by a quark, while now nucleons are modeled as
quarkonia.

Before we continue, let us pause to stress the importance of the result obtained in
Eq. (5.40).

On Wilson lines and the S-matrix

Equation (5.40), which is necessary for our calculation of the WW gluon distribution, is in
fact a very important result in itself. As the nucleons are ordered along the x−-axis we can
make the replacement

i − 1

A
→ x−

i

L
, (5.42)

with L the net x−-extent of the nucleus as defined in Sec. 4.2 (up to a + ↔ − interchange).
The exponent in Eq. (5.40) then becomes equivalent to Eq. (4.43) if in the latter we note
that ρA is independent of the longitudinal coordinate (inside the nucleus), use σqq̄N from
Eq. (4.25), replace CF by Nc in Eq. (4.43), and interchange the + and − coordinates in
order to work in the same coordinate frame. The only real difference, CF versus Nc, is due
to quark degrees of freedom versus gluon degrees of freedom. We see that, in the covariant
gauge, the S-matrix of a dipole scattering on a nucleus is equivalent to the correlator
of the two Wilson lines. Namely, U (x−, �y⊥) describes a gluon propagating from x− to
−∞ along the x−-axis with the transverse coordinate fixed at �y⊥. Similarly, U †(x−, �x⊥)
describes a gluon at �x⊥ propagating along the x−-axis from −∞ to x−. The fact that the
transverse coordinates of the gluons are invariant is the same property of eikonal scattering
as we saw in the GGM and dipole models. (In the classical field correlator (5.28), no
actual gluon propagates: it just so happens that the correlator is related to an average
of two adjoint Wilson lines, which, in turn, is equivalent to a gluon dipole scattering
matrix.)
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x+ = 0 ⊥

x−

nucleus/hadron

fast quark

x+ = 0 ⊥

x−

nucleus/hadron

fast gluon

A

B

Fig. 5.5. The Wilson lines for (A) a fast quark and (B) a fast gluon scattering in the field of
the target nucleus.

Generalizing this conclusion, we see that the propagator of an eikonal quark moving
along the light cone x−-axis can be replaced by the Wilson line

V�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−A+(x+ = 0, x−, �x⊥)

⎫⎬
⎭ (5.43)

and the propagator of the eikonal antiquark can be replaced by the conjugate Wilson line
V

†
�x⊥ . The propagator of an eikonal gluon moving along the light cone x−-axis can be

replaced by the adjoint Wilson line

U�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−A+(x+ = 0, x−, �x⊥)

⎫⎬
⎭ . (5.44)

The Wilson lines defined in Eqs. (5.43) and (5.44) are illustrated schematically in
Figs. 5.5A and B, respectively, as propagators of the eikonal quark and gluon moving along
the x−-axis and interacting with the gluon field of the nucleus.

The Wilson line correlator (5.40) and the correspondence between such a correlator and
the S-matrix were derived in the ∂μAμ = 0 covariant gauge: the same results are true in
the light cone gauge of the projectile, A− = 0. For the light cone gauge of the nucleus,
A+ = 0, the Wilson line correlator has to be augmented by gauge links at x− = ±∞,
making it a closed gauge-invariant Wilson loop: the links do not contribute in the A− = 0
and ∂μAμ = 0 gauges but are important in the A+ = 0 gauge.

The S-matrix for a quark dipole scattering on a nuclear target, defined in Eq. (4.38)
(in the notation of Eq. (4.140) and/or Eq. (4.214)) can be rewritten in terms of the
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212 Classical gluon fields and the color glass condensate

Wilson lines as

S(�x1⊥, �x0⊥, Y ) = 1

Nc

〈
tr
[
V�x1⊥V

†
�x0⊥

]〉
, (5.45)

with the factor of 1/Nc inserted to average over the colors of the quarks (up to the + ↔ −
convention difference). Similarly, for a gluon dipole the S-matrix is

SG(�x1⊥, �x0⊥, Y ) = 1

N2
c − 1

〈
Tr
[
U�x1⊥U

†
�x0⊥

]〉
. (5.46)

As we have just observed, using the result (5.40) in Eq. (5.46) would lead to the gluon
S-matrix in the GGM model. We see that, for high energy scattering in the covariant and
A− = 0 gauges, diagrammatic calculations are equivalent to calculations of Wilson lines.
Below we will see that Wilson lines can be conveniently used to construct S-matrices for
the scattering of other objects, more complicated than a dipole, on a nuclear target.

With the help of Eqs. (5.40) and (5.36) we can rewrite the WW gluon distribution (5.28)
as

φWW
(
x, k2

⊥
) = αsCF

4π3

∫
d2b⊥d2r⊥ei�k⊥·�r⊥

A∑
i=1

exp

{
− i − 1

A

r2
⊥Q2

sG(�b⊥)

4
ln

1

r⊥�

}

× T (�b⊥)

A

[∫
d2xi

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 + a.c.

]
, (5.47)

where

�r⊥ = �x⊥ − �y⊥, �b⊥ = �x⊥ + �y⊥
2

, (5.48)

and we have assumed that for a large nucleus T (�xi⊥) ≈ T (�b⊥). The integration over �xi⊥
in Eq. (5.47) can now be carried out using the Fourier decomposition from Eq. (A.10) and
employing Eq. (A.9) and is left as an exercise for the reader. It yields∫

d2xi

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 = 2π ln
1

|�x⊥ − �y⊥|�. (5.49)

The antiquark contribution in Eq. (5.47) contains a term depending simply on x ′
i⊥, which

simply doubles the contribution in Eq. (5.49), while the terms depending on both xi⊥ and
x ′

i⊥ simply modify the IR cutoff in Eq. (5.49) by a multiplicative constant that we can
neglect. In the end the contents of the square brackets in the last line of Eq. (5.47) give us
only twice the contribution in Eq. (5.49).

Summing over the index i in Eq. (5.47) and remembering yet again that A � 1 we at
last obtain the non-Abelian WW gluon distribution for a large nucleus (Jalilian-Marian
et al. 1997a)

φWW
(
x, k2

⊥
) = CF

2π3αs

∫
d2b⊥d2r⊥ei�k⊥·�r⊥ 1

r2
⊥

NG(�r⊥, �b⊥, Y = 0), (5.50)
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5.1 Strong classical gluon fields: the MV model 213

Fig. 5.6. Diagrammatic representation of the non-Abelian Weizsäcker–Williams distribution
function φWW from Eq. (5.50).

where, by analogy with Eq. (4.51), we have defined the forward amplitude for a gluon
dipole scattering on a nucleus

NG(�r⊥, �b⊥, Y = 0) = 1 − exp

{
− r2

⊥Q2
sG(�b⊥)

4
ln

1

r⊥�

}
. (5.51)

As expected,

NG(�r⊥, �b⊥, Y ) = 1 − SG(�r⊥, �b⊥, Y ); (5.52)

the gluon S-matrix SG was defined in Eq. (5.46).
The result in Eqs. (5.50) and (5.51) is insensitive to the details of the nuclear model and

can be obtained using a continuous color-charge density description (Jalilian-Marian et al.
1997a). To put it in line with the GGM result for the saturation scale (4.50), we note that
for a model in which nucleons are replaced by single valence quarks we have

Q2
sG(�b⊥) = 4πα2

s T (�b⊥). (5.53)

The only difference between (5.53) and (4.50) is the Casimir operator replacement CF →
Nc associated with going from the quark to the gluon degrees of freedom.

Equation (5.50) is the central result of the McLerran–Venugopalan model for a single
nucleus. It is represented diagrammatically in Fig. 5.6 in analogy with the gluon distribution
in Fig. 2.12. Let us now describe its main properties. While exact analytic integration over
r⊥ in Eq. (5.50) appears to be a rather unwieldy task, we can still study the limiting cases
of large and small k⊥ analytically.

For k⊥ � QsG we expand the exponential in Eq. (5.51) to the lowest nontrivial order
and integrate over r⊥, obtaining

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ CF

4π2αs

1

k2
⊥

∫
d2b⊥Q2

sG(�b⊥). (5.54)

For a nucleus with “nucleons” each consisting of a single valence quark we use Eq. (5.53)
along with Eq. (4.31) to derive

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ A
αsCF

π

1

k2
⊥

. (5.55)
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214 Classical gluon fields and the color glass condensate

This result is consistent with Eq. (4.26) and with both Eqs. (4.48) and (4.27) if we remember
that the unintegrated gluon distribution is connected to the standard integrated one, xG, via
Eq. (3.93). Equation (5.55) demonstrates that at large k⊥ the gluon distribution φWW

(
x, k2

⊥
)

maps onto the standard leading-order perturbative gluon distribution. Equation (5.55) also
shows that outside the saturation region, where nonlinear multiple-rescatterings effects
are not important, the gluon distribution of A nucleons is equal to A times the gluon
distributions of individual nucleons.

The leading-order perturbative distribution has a problem: it scales as 1/k2
⊥, so that at

low k⊥ it will diverge, leading to an infinite number of gluons. Moreover, the corresponding
integrated gluon distribution xG, obtained by integrating φWW over k2

⊥, is also IR divergent;
thus, in the absence of a cutoff, the net number of gluons would still be infinite.

The full distribution φWW in Eq. (5.50) is actually free of such a problem, as can be seen
by studying the opposite limit, deep inside the saturation region, where k⊥ � QsG. There
we see that r⊥ ∼ 1/k⊥ � 1/QsG, so that we can neglect the exponential in Eq. (5.51).
Putting NG = 1 in Eq. (5.50) and integrating over r⊥ > 1/QsG yields

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ CF

αsπ2

∫
d2b⊥ ln

Q2
sG(�b⊥)

k2
⊥

. (5.56)

We see that the power-law divergence of Eq. (5.55) is softened down to a logarithmic
divergence. While some IR divergence still remains, when Eq. (5.56) is integrated over k⊥
the number of gluons xG is now finite. We conclude that the effect of saturation in the MV
model is to soften the IR divergence, resulting in a finite net number of gluons.

Note also that in Eq. (5.56), deep inside the saturation region, φWW ∼ 1/αs . Remember-
ing the relation between the unintegrated gluon distribution and the classical gluon fields
in Eq. (5.26) we see that

ALC
μ ∼ 1

g
, (5.57)

as expected for classical gluon fields. This is as strong as a gluon field can be at weak
coupling g: we see that the occupation numbers of the classical gluons in the nuclear wave
function are very high, on the one hand justifying the classical approximation while on the
other hand demonstrating an interesting phenomenon, that the virtual gluons in the small-x
wave function form a very dense system.

The unintegrated gluon distribution φWW multiplied by the two-dimensional phase-
space factor k⊥ is plotted schematically in Fig. 5.7 as a function of transverse momentum
kT = k⊥. (In the plot we have assumed for simplicity that the nucleus is a cylinder with its
axis along the z-axis, so that QsG does not depend on �b⊥ and the �b⊥-integral in Eq. (5.50)
can be carried out simply by multiplying the integrand by the transverse area.) The quantity
kT φWW is the number of gluons with a given kT (as opposed to φWW (x, k2

T ), which counts
the gluons with a given k2

T ). The dashed curve in Fig. 5.7 represents the leading-order result
(5.55) with kT φWW ∼ 1/kT , which indeed is IR divergent. The solid curve represents the
full result: one can see from Eq. (5.56) that kT φWW in fact goes to zero as kT → 0. The
distribution kT φWW peaks around the saturation scale, which means that most gluons in
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~ 1/k
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WW

Fig. 5.7. Phase-space distribution of gluons in transverse momentum space. (Reprinted from
Jalilian-Marian and Kovchegov (2006), with permission from Elsevier.) A color version of
this figure is available online at www.cambridge.org/9780521112574.

the WW wave functions have kT ≈ QsG, and the wave function is indeed describable by
perturbative small-coupling methods.

5.2 The Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner evolution equation

5.2.1 The color glass condensate (CGC)

Let us now find the quantum corrections to the classical MV model due to nonlinear small-x
evolution in the LLA. Small-x evolution can be included either in the wave function of a
projectile, as in Chapter 4, or in the wave function of the target. The Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution equation, which we
will derive here, accomplishes the latter. It generalizes the Gaussian weight functional
W [ρLC] from Eq. (5.19) to a rapidity-dependent functional WY [ρLC], which is no longer
of Gaussian form and instead has to be determined from the JIMWLK functional equation
for evolution in the rapidity Y . The averaging prescription (5.20) still holds, generating
rapidity dependence for the expectation values of operators:

〈Ôρ〉Y =
∫ DρLCÔρWY [ρLC]∫ DρLCWY [ρLC]

. (5.58)

The original JIMWLK equation was derived by including quantum corrections in the
classical MV wave function of a large nucleus (Jalilian-Marian et al. 1997b, 1999a, b,
Iancu et al. 2001a, b). The main principle of the JIMWLK derivation comes from the
MV model: one has to separate the partons into those with large x and those with small
x; the large-x partons serve as classical sources for the small-x partons. As we build up
small-x evolution and go to lower x by making steps in rapidity Y → Y + dY , the gluons
at rapidity Y become large-x gluons, and are incorporated into a source of classical fields.
Clearly, as we have already seen in Mueller’s dipole model, the larger-x gluons have a
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216 Classical gluon fields and the color glass condensate

much longer wavelength and lifetime than the smaller-x gluons: it is natural, then, that the
larger-x gluons appear to the smaller-x gluons as “frozen” sources moving along light cone
straight lines. Hence JIMWLK evolution consists of the successive emission of classical
gluon fields, which in turn become the sources of further gluon fields, etc.

The small-x wave function of the ultrarelativistic nucleus given by the MV model with
JIMWLK evolution is referred to as the color glass condensate (Iancu, Leonidov, and
McLerran 2001a, b), abbreviated as CGC. The word “color” refers to the (adjoint) gluon
colors; the word “condensate” refers to the high occupation number of those gluons, leading
to the strongest possible gluon field, like that in Eq. (5.57): while the small-x gluons do
not form a condensate in, say, the Bose–Einstein sense, one can draw a loose analogy
based on the high occupation numbers in both cases. Another loose analogy can be drawn
between the small-x evolution, as a sequence of classical gluon emissions from stationary
sources, and spin glasses, which also have a separation of degrees of freedom according to
a multitude of time scales; this is the origin of the word “glass” in CGC.

Here we will rederive the JIMWLK equation following Mueller (2001). The main idea
for deriving the JIMWLK equation suggested by Mueller is to treat the small increase in
energy (or rapidity) in two different, but equivalent, ways. In the first, one incorporates the
modifications due to the increase in energy into the nuclear wave function (the CGC), which
will then change (evolve); this was done in the original JIMWLK derivation. In the second,
which we have already seen in Mueller’s dipole model, this energy increase is incorporated
into the projectile wave function. Then the projectile will emit one gluon per step of LLA
evolution, and such an emission can be treated perturbatively in a rather simple manner.
Equating these two ways of including high energy corrections, one obtains the JIMWLK
evolution equation for the CGC nuclear wave function.

5.2.2 Derivation of JIMWLK evolution

Just as in the rest of this chapter we will work in the frame where the nucleus is moving
along the x+-axis while the projectile is moving along the x−-axis. We will use the A− = 0
light cone gauge of the projectile. One can show that for the nucleus this gauge is equivalent
to the covariant gauge: clearly the field (5.11) both solves the Yang–Mills equations (5.4)
and satisfies the A− = 0 gauge condition. To make our notation more compact, we define

α(x−, �x⊥) ≡ A+(x+ = 0, x−, �x⊥), (5.59)

with A+ the fundamental-representation gluon field in the A− = 0 gauge. The Yang–Mills
equations give

�α(x−, �x⊥) = ρ(x−, �x⊥), (5.60)

where ρ is also taken in the A− = 0 gauge and � = ∂μ∂μ. We see that the two functions
α(x−, �x⊥) and ρ(x−, �x⊥) are straightforwardly connected, with the latter also related to
ρLC (see Eq. (5.18)): therefore we can replace the integration over ρLC in Eq. (5.58) by
integration over α. Defining a weight functional WY [α] we can rewrite the averaged values
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of operators as (cf. (5.58))

〈Ôα〉Y =
∫

DαÔαWY [α]. (5.61)

where we agree that the normalization of WY [α] is such that∫
DαWY [α] = 1. (5.62)

Indeed, the functional WY [α] is formally different from WY [ρLC], though the two are of
course related: we use the same letter W for both only to simplify the notation. Since in
this section we will be working solely with the field α(x−, �x⊥) this recycling of symbols
should not cause confusion.

Our goal is to construct an evolution equation for WY [α]. Our strategy is first to derive
an evolution equation for the expectation value of some (arbitrary chosen) test operator Ôα ,
obtaining on the one hand

∂Y 〈Ôα〉Y = 〈Kα ⊗ Ôα〉Y =
∫

D α (Kα ⊗ Ôα)WY [α], (5.63)

where Kα is the kernel of the equation and may be a function of the field α(x−, �x⊥); the
symbol ⊗ denotes its action. The rightmost expression in Eq. (5.63) was obtained using
the definition of averaging in Eq. (5.61). On the other hand, differentiating Eq. (5.61) with
respect to Y we get

∂Y 〈Ôα〉Y =
∫

DαÔα∂Y WY [α]. (5.64)

Equating the right-hand sides of Eqs. (5.63) and (5.64), and arranging for the kernel in
Eq. (5.63) to act on WY [α] (by employing integration by parts), we arrive at an evolution
equation for WY [α].

To construct the test operator we define the Wilson lines in accordance with Eqs. (5.43)
and (5.44). The fundamental Wilson line is defined by

V�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−taαa(x−, �x⊥)

⎫⎬
⎭ , (5.65)

while the adjoint Wilson line is

U�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−T aαa(x−, �x⊥)

⎫⎬
⎭ . (5.66)

Following Mueller (2001) we choose the trial operator to be

Ô�x1⊥,�x0⊥ = V�x1⊥ ⊗ V
†
�x0⊥ . (5.67)

This is almost the dipole S-matrix of Eq. (5.45): the operator Ô�x1⊥,�x0⊥ consists of the quark
propagator (Wilson line) V�x1⊥ at �x1⊥ and the antiquark propagator V

†
�x0⊥ at �x0⊥. What is
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x− = 0

x−

Σ
n = 0

∞

1 2 n

Fig. 5.8. Abbreviated notation for the GGM multiple-rescatterings interaction of a projectile
with a nuclear target.

missing is the trace and the average over colors: the symbol ⊗ in Eq. (5.67) underscores
the fact that the color indices of V and V † are fixed (and not summed over):

V�x1⊥ ⊗ V
†
�x0⊥ = (V�x1⊥

)
ij

(
V

†
�x0⊥

)
kl

. (5.68)

We want to derive an evolution equation for Ô�x1⊥,�x0⊥ . Its construction is analogous to
that of the BK equation. The evolution is given by the long-lived s-channel gluons, which
interact with the target over a relatively short period of time. To represent it diagrammatically
we first define an abbreviated notation, in Fig. 5.8. As discussed in Sec. 4.4, the lifetime
of the s-channel gluons, which in our coordinates is x−

coh = k−/k2
⊥, is much longer than

the duration of the GGM multiple-rescatterings interaction of the gluon system with the
nucleus, which is of order 1/p+, with p+ the large light cone momentum of the nucleons.
This should be clear from Fig. 4.23. We now employ this result to define the abbreviated
notation in Fig. 5.8. Since the GGM multiple rescatterings occur over a relatively short time
(compared with the time needed for the development of quantum evolution), we can, for the
purpose of the evolution calculations, include them all in one “instantaneous” interaction
at x− = 0, denoted by the vertical dashed line on the right in Fig. 5.8. Interactions with the
target are summed over for any gluon or quark line crossing the dashed line. We also include
the no-interaction contribution in the sum (the n = 0 term in Fig. 5.8). Note that below we
will sometimes use this dashed-line notation to include successive evolution emissions as
well: owing to the ordering of the s-channel gluons in k− (in the LLA), the lifetimes of the
smaller-k− gluons are shorter and hence they may also appear as instantaneous events to
the larger-k− gluons, which are emitted much earlier and absorbed much later.

Using the notation introduced in Fig. 5.8 we can draw diagrams generating one step of
the evolution of the operator in Eq. (5.67), as shown in Figs. 5.9 and 5.10. Note again that
the dashed line denotes the interaction with the target for any propagator line that it crosses.
Hence diagrams A, B, H, and K in Figs. 5.9 and 5.10 are real, in the sense that in them
the gluon interacts with the target, while the rest of the diagrams are virtual corrections.
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A
B C D

1

0

2

x−

c c

c
d

E F

−∞ 0 +∞

Fig. 5.9. One step of a small-x evolution for the operator V�x1⊥ ⊗ V
†
�x0⊥ with the s-channel

gluon interacting both with the quark and the antiquark Wilson lines.

J K L

G H I

1

0

2

x−

Fig. 5.10. One step of a small-x evolution for the operator V�x1⊥ ⊗ V
†
�x0⊥ ; here an s-channel

gluon is emitted and absorbed solely by either the quark or the antiquark Wilson lines.

The diagrams are grouped into those where the gluon is emitted by the quark and absorbed
by the antiquark or vice versa (Fig. 5.9), and those where the gluon is both emitted and
absorbed only by the quark or only by the antiquark (Fig. 5.10).

We start by analyzing diagrams E and F in Fig. 5.9. The gluon in these graphs does
not interact with the target: hence it has the same color throughout its propagation. The
contribution of these diagrams can be obtained using LCPT methods, similarly to how we
performed the calculations for Mueller’s dipole model. We get

E + F = αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

t cV�x1⊥ ⊗ V
†
�x0⊥ t c. (5.69)

The minus sign due to the coupling to the antiquark, is canceled by the minus sign arising
because the graph is virtual (cf. Eq. (4.64)). The main difference between this result and
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220 Classical gluon fields and the color glass condensate

that for dipole evolution is that now our operator is not a dipole, it is V�x1⊥ ⊗ V
†
�x0⊥ without a

color trace: this is why our color matrices t c generated by gluon emission do not multiply
each other and are present explicitly in Eq. (5.69). The placing of the t c comes from the x−

ordering of gluon emission and absorption, taking into account that quark–gluon vertices
must be at x− > 0 since the gluon exchange happens after the quarks scatter at the nucleus.
We also have an integral over the rapidity Y = p′−/k− in Eq. (5.69), with p′− the large
light cone momentum of the quark–antiquark system.

Next let us study diagram A in Fig. 5.9. Its contribution is a little more involved, and
can be written as

A = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

Udc
�x2⊥V�x1⊥ t c ⊗ V

†
�x0⊥ td . (5.70)

The expression in Eq. (5.70) consists of the same emission kernel as in Eq. (5.69) and can
be obtained using LCPT. The main difference between (5.70) and (5.69) is due to the fact
that in diagram A the gluon interacts with the target: this is described by the adjoint Wilson
line Udc

�x2⊥ . The gluon colors at the times of emission and absorption do not have to be the
same in this diagram and are labeled c and d , bringing in the color factors t c and td . Finally,
diagram A is “real” (that is, it contains a gluon interacting with the target, of Fig. 4.13) and
hence is different by a minus sign from diagrams E and F.

For reasons that will soon become apparent we would like to cast Eq. (5.70) into the
form of Eq. (5.69). To do so, we use Eq. (5.31) with Eq. (5.33) to write

V taV † = U
†
abt

b, (5.71)

so that

V�x1⊥ t c = U
†ca
�x1⊥ taV�x1⊥ . (5.72)

This, along with Eq. (5.33), allows us to rewrite Eq. (5.70) as

A = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x1⊥U

†
�x2⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.73)

where the subscript or superscript positions of the color indices a, b are chosen for conve-
nience only; however, the ordering of the indices is important.

The rest of the calculation is now clear: using Eqs. (5.31), (5.71), and (5.33) we can
write down expressions for the remaining diagrams in Fig. 5.9:

B = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x2⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.74a)

C + D = αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x1⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb. (5.74b)
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The sum of all the graphs in Fig. 5.9 is

A + B + C + D + E + F

= αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

×
[
1 − U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x0⊥ + U�x1⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.75)

where 1ab = δab.
Now we turn our attention to the diagrams in Fig. 5.10. Using the same group-theoretical

identities, (5.31), (5.71), and (5.33), we obtain

G + H + I = αs

π2

∫
d2x2

x2
21

dY
[
U�x1⊥U

†
�x2⊥ − 1

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥ , (5.76a)

J + K + L = αs

π2

∫
d2x2

x2
20

dY
[
U�x2⊥U

†
�x0⊥ − 1

]
ab

V�x1⊥ ⊗ V
†
�x0⊥ tbta. (5.76b)

To cast our results into a more compact form suitable for deriving JIMWLK evolution
we need to introduce the derivative with respect to the function αa(x−, �x⊥), with α = taαa .
We note that

δ

δαa(y−, �y⊥)
V�x⊥ = ig

2
δ2 (�x⊥ − �y⊥) U

†ab

�y⊥ [∞, y−]tbV�x⊥ (5.77)

where

U�y⊥[∞, y−] = P exp

⎧⎪⎨
⎪⎩

ig

2

∞∫
y−

dx−T aαa(x−, �y⊥)

⎫⎪⎬
⎪⎭ , (5.78)

so that U�y⊥ = U�y⊥ [∞,−∞]. The Wilson lines in our setup are only nontrivial because of
interactions with the target at x− = 0, as shown in Fig. 5.8 in the GGM approximation.
As already mentioned, the same is true for successive small-x evolution, which generates
gluons with much shorter lifetimes than those of the gluon that we are considering at this
evolution step. Hence, if y− > 0 then U�y⊥ [∞, y−] = 1 and

δ

δαa(y−, �y⊥)
V�x⊥ = ig

2
δ2 (�x⊥ − �y⊥) taV�x⊥ , y− > 0. (5.79)

Taking the hermitian conjugate of this result we obtain

δ

δαa(y−, �y⊥)
V

†
�x⊥ = − ig

2
δ2 (�x⊥ − �y⊥) V

†
�x⊥ ta, y− > 0. (5.80)

Using Eqs. (5.79) and (5.80) we can rewrite Eq. (5.75) as

A + · · · + F = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

δ2
(
V�x1⊥ ⊗ V

†
�x0⊥

)
δαa(x−, �x⊥)δαb(y−, �y⊥)

, (5.81)
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with

ηab
�x1⊥ �x0⊥ = 4

g2π2

∫
d2x2

�x21 · �x20

x2
21x

2
20

[
1 − U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x0⊥ + U�x1⊥U

†
�x0⊥

]ab

(5.82)

for x−, y− > 0. Note that one of the two functional derivatives on the right-hand side of
Eq. (5.81) acts on V and the other acts on V †. Naively one might expect that to obtain
diagrams G through L one has to generalize Eq. (5.81) by allowing that both derivatives
can act on V or that both can act on V †. This is almost correct. However, performing a
detailed calculation one gets

αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

[
δ2V�x1⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]
⊗ V

†
�x0⊥

= αs

π2

∫
d2x2

x2
21

dY
[

1
2U�x1⊥U

†
�x2⊥ + 1

2U�x2⊥U
†
�x1⊥ − 1

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥ , (5.83)

which is different from Eq. (5.76a) by

αs

2π2

∫
d2x2

x2
21

dY
[
U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x1⊥

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥

= − αs

2π2

∫
d2x2

x2
21

dYTr
[
T aU�x1⊥U

†
�x2⊥

]
taV�x1⊥ ⊗ V

†
�x0⊥ , (5.84)

where we have used Eq. (5.33) along with the definition of the adjoint generators T a .
Defining

νa
�x1⊥ = i

gπ2

∫
d2x2

x2
21

Tr
[
T aU�x1⊥U

†
�x2⊥

]
, (5.85)

we can write the contribution of diagrams G, H, and I in Eq. (5.76a) as

G + H + I = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

[
δ2V�x1⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]
⊗ V

†
�x0⊥

+ αs

∫
d2x⊥ dYνa

�x⊥

[
δV�x1⊥

δαa(x−, �x⊥)

]
⊗ V

†
�x0⊥ . (5.86)

Similarly, diagrams J, K, and L from Eq. (5.76b) give

J + K + L = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥V�x1⊥ ⊗
[

δ2V
†
�x0⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]

+ αs

∫
d2x⊥ dYνa

�x⊥V�x1⊥ ⊗
[

δV
†
�x0⊥

δαa(x−, �x⊥)

]
, (5.87)

with x−, y− > 0 throughout.
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5.2 The JIMWLK evolution equation 223

Combining Eqs. (5.81), (5.86), and (5.87) we derive an evolution equation for the
operator (5.67) in the LLA:

∂Y 〈Ô�x1⊥,�x0⊥〉Y = αs

2

∫
d2x⊥d2y⊥

〈
ηab

�x⊥ �y⊥
δ2Ô�x1⊥,�x0⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

〉
Y

+ αs

∫
d2x⊥

〈
νa

�x⊥

δÔ�x1⊥,�x0⊥

δαa(x−, �x⊥)

〉
Y

, (5.88)

where ηab
�x1⊥ �x0⊥ and νa

�x1⊥ are given by Eqs. (5.82) and (5.85) respectively.

We have obtained Eq. (5.63) in an explicit form for the test operator Ô�x1⊥,�x0⊥ . Using
Eq. (5.64) and integrating by parts, we can recast Eq. (5.88) as∫

DαÔ�x1⊥,�x0⊥∂Y WY [α]

=
∫

DαÔ�x1⊥,�x0⊥

{
αs

2

∫
d2x⊥d2y⊥

δ2

δαa(x−, �x⊥)δαb(y−, �y⊥)

(
ηab

�x⊥ �y⊥WY [α]
)

− αs

∫
d2x⊥

δ

δαa(x−, �x⊥)

(
νa

�x⊥WY [α]
) }

. (5.89)

Equation (5.89) is valid for any operator Ô�x1⊥,�x0⊥ with arbitrary transverse positions �x1⊥, �x0⊥
and for any quark colors. Following the above steps, one may derive the same equation
for an operator constructed from two adjoint Wilson lines. This derivation can be repeated
for an operator constructed from an arbitrary number of fundamental and adjoint Wilson
lines, resulting again in Eq. (5.89). We see that the equation is valid for a broad class of
test operators. We can therefore equate the integrands on both sides of (5.89) to obtain the
Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution equa-
tion (Jalilian-Marian et al. 1997b, 1999a, b, Iancu, Leonidov, and McLerran 2001a, b,
Weigert 2002, Ferreiro et al. 2002):

∂Y WY [α] =αs

2

∫
d2x⊥d2y⊥

δ2

δαa(x−, �x⊥)δαb(y−, �y⊥)

(
ηab

�x⊥ �y⊥WY [α]
)

− αs

∫
d2x⊥

δ

δαa(x−, �x⊥)

(
νa

�x⊥WY [α]
)
. (5.90)

This is a differential equation for the weight functional WY [α], the Gaussian form of the
functional (5.19) serving as its initial condition. This equation resums all powers of αsY ,
and the Gaussian initial condition resums all classical physic effects (powers of α2

s A
1/3).

(As before we have x−, y− > 0.)
Owing to its complexity, no analytic solution of the JIMWLK equation exists. Its solution

has been obtained only numerically, using lattice gauge theory methods (Rummukainen
and Weigert 2004).

Returning to operators Ô constructed from the fundamental and/or adjoint Wilson lines
(5.65) and (5.66), we see that the JIMWLK evolution for the expectation value of any such
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224 Classical gluon fields and the color glass condensate

operator reduces to Eq. (5.88):

∂Y 〈Ô〉Y = αs

2

∫
d2x⊥d2y⊥

〈
ηab

�x⊥ �y⊥
δ2Ô

δαa(x−, �x⊥)δαb(y−, �y⊥)

〉
Y

+ αs

∫
d2x⊥

〈
νa

�x⊥
δÔ

δαa(x−, �x⊥)

〉
Y

. (5.91)

The diagrammatic representation of the JIMWLK operator evolution (5.91) is again given
by diagrams of the types shown in Figs. 5.9 and 5.10, with s-channel gluon emissions from
all the Wilson lines involved; thus we see that the JIMWLK evolution is driven by the same
physics as the dipole BK evolution but provides an all-Nc generalization of the large-Nc

BK equation. We will show how to obtain BK from JIMWLK in the next section.
Equation (5.91) can be recast in a more compact form if one notices that

1

2

δ

δαa(x−, �x⊥)
ηab

�x⊥ �y⊥ = δ2(�x⊥ − �y⊥)νb
�x⊥ , (5.92)

which reduces Eq. (5.91) to the Fokker–Planck form (Weigert 2002)

∂Y 〈Ô〉Y = αs

2

∫
d2x⊥d2y⊥

〈
δ

δαa(x−, �x⊥)
ηab

�x⊥ �y⊥
δ

δαb(y−, �y⊥)
Ô

〉
Y

. (5.93)

The JIMWLK equation for operators, in the form (5.91) or (5.93), allows one to construct the
usual integro-differential evolution equation for any operator consisting of Wilson lines.
This is a great strength of the JIMWLK approach: one can construct small-x evolution
equations, bypassing diagrammatic analysis, and simply differentiate the operators with
respect to αa .

5.2.3 Obtaining BK from JIMWLK and the Balitsky hierarchy

In this section we are going to show that the Balitsky–Kovchegov equation is obtained
by the CGC (JIMWLK) approach in the limit of a large number of colors (Nc � 1). As
demonstrated above (see Eq. (5.45)), the S-matrix for dipole–nucleus scattering is closely
related to the operator Ô�x1⊥,�x0⊥ of Eq. (5.67). Define the S-matrix operator

Ŝ�x1⊥,�x0⊥ = 1

Nc

tr
[
V�x1⊥V

†
�x0⊥

]
(5.94)

with V defined in Eq. (5.65). The S-matrix (5.45) is then given by

S(�x1⊥, �x0⊥, Y ) = 〈Ŝ�x1⊥,�x0⊥〉Y . (5.95)

Substituting the operator (5.94) into Eq. (5.91) involves a considerable amount of algebra,
which can be navigated by employing Eqs. (5.31) and (5.71), along with the Fierz identities

(ta)ij (ta)kl = 1

2

(
δilδjk − 1

Nc

δij δkl

)
, (5.96)
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which imply that

tr
[
taM1t

aM2
] = 1

2
tr M1 tr M2 − 1

2Nc

tr[M1M2] , (5.97a)

tr
[
taM1

]
tr
[
taM2

] = 1

2
tr[M1M2] − 1

2Nc

tr M1tr M2, (5.97b)

for any Nc × Nc matrices M1,M2. In the end one obtains

∂Y

〈
Ŝ�x1⊥,�x0⊥

〉
Y

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[〈
Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥

〉
Y

− 〈Ŝ�x1⊥,�x0⊥
〉
Y

]
, (5.98)

which looks very similar to the BK equation (4.137). The difference is in the first (nonlinear)
term on the right-hand side of Eq. (5.98): to transform Eq. (5.98) into Eq. (4.137) one has
to make the replacement〈

Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥
〉
Y

−→ 〈Ŝ�x1⊥,�x2⊥
〉
Y

〈
Ŝ�x2⊥,�x0⊥

〉
Y
. (5.99)

Such a replacement is only justified in the large-Nc limit: clearly each Ŝ is a single-trace
operator and corresponds to a quark loop (a dipole). Cross talk between the loops (dipoles)
corresponds to nonplanar diagrams and, therefore, is Nc-suppressed at large Nc. Hence, for
large-Nc, Eq. (5.98) reduces to the BK equation (4.137) (Weigert 2002, Kovner, Milhano,
and Weigert 2000).

Since in the linearized regime the BK equation reduces to the BFKL equation, we can
also conclude that BFKL evolution is obtained from JIMWLK in the linear regime outside
the saturation region.

Outside the large-Nc limit Eq. (5.98) is not a closed equation, i.e., its right-hand side
contains a quantity 〈Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥〉Y and we do not know how to express this in terms of
〈Ŝ�x1⊥,�x0⊥〉Y . This quantity 〈Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥〉Y is a new four-Wilson-line operator, for which
one has to write down a separate evolution equation, again using Eq. (5.91). This evolution
equation in turn contains on its right-hand side an operator with six fundamental Wilson
lines, which would require its own evolution equation, etc. The result of applying the
JIMWLK evolution (5.91) to all these operators would be an infinite set of evolution equa-
tions, in each of which the evolution of the n-Wilson-line operator would be driven by an
(n + 2)-Wilson-line operator. This infinite system of equations is called the Balitsky hier-
archy (Balitsky 1996, 1999a, b). The large-Nc limit truncates the Balitsky hierarchy at the
lowest order, making Eq. (5.98) a closed (BK) equation. Other, perhaps less parametrically
justified, truncations have been proposed (see Weigert 2005). While, just as for JIMWLK,
no analytical solution of the Balitsky hierarchy of equations exists, numerical studies of
JIMWLK in principle allow one to determine the evolution of these multi-Wilson-line
operators with rapidity.

An interesting question concerns the importance of the 1/Nc corrections to BK evolu-
tion. Their size can be found by comparing the expectation value of the S-matrix oper-
ator 〈Ŝ�x1⊥,�x0⊥〉Y obtained from the numerical solution of the full JIMWLK equation with
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Fig. 5.11. The gluon field due to one ultrarelativistic quark.

that for the S-matrix resulting from solving the BK equation for the same initial condi-
tions. We know that for gluon-driven dynamics the 1/Nc corrections are usually of order
1/N2

c ≈ 11%. However, saturation effects tend to play an important role in suppressing
the 1/Nc corrections. It has been shown by explicit numerical solution of JIMWLK that
the corrections to 〈Ŝ�x1⊥,�x0⊥〉Y as compared with those for the BK case are actually close to
0.1% (Rummukainen and Weigert 2004, Kovchegov et al. 2009), which is two orders of
magnitude smaller than the naive estimate above.

We wish to finish this chapter with a general remark: the color glass condensate gives us a
beautiful example of how one can develop an effective theory starting from only a handful
of physical assumptions. This theory is rather complex but it leads to new fundamental
insights about our microscopic theory, QCD, in high energy scattering.

Further reading

In our presentation in this chapter we have tried to give the simplest possible derivations
of the main results of the CGC formalism. We hope that the reader who wants to learn
more on this subject will be able to read the original papers after reading this chapter.
Many aspects of both CGC physics and the relevant derivations have been discussed in
the reviews by McLerran (2005, 2008, 2009b), Iancu and Venugopalan (2003), Weigert
(2005), Jalilian-Marian and Kovchegov (2006), and Gelis et al. (2010). In these reviews the
theoretical topics are discussed together with practical applications and some challenges for
further thinking are given. The relationship between JIMWLK evolution written in terms
of derivatives with respect to the field α as opposed to the originally used color charge
density ρ was explored by Kovner and Milhano (2000). For extended versions of the CGC
formalism we recommend four papers of Kovner and Lublinsky (2005a–d) and the paper
of Hatta et al. (2006).

Exercises

5.1 (a) Construct diagrammatically the gluon field of a single ultrarelativistic quark in
the ∂μAμ = 0 covariant gauge, which contributed to Eq. (5.11). Begin with the
diagram in Fig. 5.11, where the gluon line is off mass shell. Show that the field in
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Exercises 227

momentum space is3

Aa
μ(k) = −ig(tai )

−igμν

k2 + iε
ūσ (p − k)γ νuσ ′(p)(2π )δ

(
(p − k)2

)
, (5.100)

where the delta function insures that the outgoing quark is on mass shell (the quark
is assumed to be massless). Simplify Eq. (5.100) using the fact that p+ is very
large and employing Table A.1.

(b) Fourier-transform the result of part (a) into coordinate space using

Aa
μ(x) =

∫
d4k

(2π )4
e−ik·(x−xi )Aa

μ(k). (5.101)

You should obtain (suppressing the quark polarization indices)

Aa+
cov = − g

π
(tai )δ(x− − x−

i ) ln (|�x⊥ − �xi⊥|�) (5.102)

as the only nonzero field component. (You may find Eq. (A.9) useful.)
(c) Repeat the calculation from parts (a) and (b) in the A+ = 0 light cone gauge.

5.2 Prove Eq. (5.31).

5.3 Using Eqs. (A.10) and (A.9) prove Eq. (5.49).

5.4 Neglecting the logarithm in the exponent of Eq. (5.51), integrate Eq. (5.50) over �r⊥
exactly to obtain an approximate expression for the unintegrated WW gluon distribution
φWW . Simplify the answer further by assuming that the nucleus is a cylinder oriented
along the z-axis, so that QsG(�b⊥) = QsGθ (R − b) and the �b⊥-integration is trivial.
Plot the expression obtained for kT φWW as a function of kT /QsG and compare the
curve with Fig. 5.7.

5.5 Prove Eq. (5.92) by direct differentiation.

5.6 Substitute Eq. (5.94) into Eq. (5.91) and take the functional derivatives to show explic-
itly that one arrives at Eq. (5.98).

3 The extra minus sign is due to the fact that the current in Eq. (5.4) is given by J a
μ = −gψ̄γμtaψ , which can be seen by

comparing it with the QCD Lagrangian (1.1).
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6

Corrections to nonlinear evolution equations

In this chapter we describe developments at the very forefront of research on nonlinear
evolution equations. We first outline the calculation of running-coupling corrections to the
BFKL, BK, and JIMWLK evolution equations. Such corrections slow down the growth of
the saturation scale with energy, putting the predictions of saturation physics more in line
with the experimental data. We then discuss the next-to-leading order (NLO) corrections
to the BFKL and BK evolutions, which resum the subleading logarithms of energy, i.e.,
powers of α2

s Y . The NLO BFKL corrections are rather large numerically; we present a
proposal for resumming these large corrections to all orders that results in a reduction in
their net effect on the LO calculation. Owing to the highly technical nature of many of
the results presented, in most topics considered in this chapter we will merely outline the
main points of the derivation. Interested readers can find the calculational details in the
references supplied.

6.1 Why we need higher-order corrections

There are several reasons to study higher-order corrections to the BFKL, BK, and JIMWLK
evolution equations presented in the previous chapters. Some reasons are theoretical, some
are phenomenological, and some are both.

On the phenomenological side, the LO BFKL approach encounters a very simple prob-
lem. The BFKL pomeron intercept given by Eq. (3.86) is

αP − 1 ≈ 2.77ᾱs , (6.1)

which, for a phenomenologically reasonable value of the strong coupling αs, say 0.3, gives
αP − 1 ≈ 0.79, which is too large to describe any existing data in DIS, proton–proton, or
nuclear collisions. One would therefore hope that higher-order corrections would lower this
result, pushing the theory closer to the data.

On the more theoretical side we note that the BFKL, BK, and JIMWLK equations were
derived in earlier chapters for fixed coupling constant. A question arises concerning the
value of the coupling constant that should be used; this is important, since the validity of
the whole saturation approach depends on whether the coupling is small. Theoretically we
cannot answer this question from fixed-coupling calculations; one has to perform higher-
order calculations to fix the scale of the running-coupling constant. This question about the
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6.2 Running-coupling corrections to the BFKL, BK, and JIMWLK evolutions 229

scale of the coupling also has phenomenological importance, since one has to know which
values of the coupling to use in comparing the small-x evolution with experiment.

The BK equation derived earlier contains powers of αsNcY resummed through large-Nc

LLA evolution along with powers of α2
s A

1/3 resummed by the GGM initial conditions.
Generalizing BK to JIMWLK relaxes the large-Nc approximation: the JIMWLK equation
resums powers of αsY and α2

s A
1/3. Both the LO BK and LO JIMWLK evolutions are

valid as long as the NLO corrections are small, i.e., for α2
s Y � 1, which means Y �

1/α2
s . Therefore, the problem of calculating the NLO correction to the BFKL, BK, and

JIMWLK kernels is very important for understanding the region of applicability of the
high density QCD theory in the form that has been developed above and for further
extension of this region. Corrections to the initial conditions for the evolution equations
(for instance, terms containing powers of α4

s A
1/3) are also important, both theoretically

and phenomenologically; however, attempts to calculate those have not reached the level
required for coherent presentation in a book and will not be described here.

From a purely theoretical standpoint it is also important to understand whether the
expansion in logarithms of 1/x is stable, that is, whether one can calculate corrections to
the LO result and whether such corrections are finite (after all the standard field-theoretical
divergences have been taken into consideration). Again, this question is, in the end, related
to the first, purely phenomenological, one: what are the size and the sign of the NLO
corrections?

The presentation below attempts to answer many of the above questions.

6.2 Running-coupling corrections to the BFKL, BK, and
JIMWLK evolutions

We begin by calculating the scale of the running-coupling constant in the BFKL, BK,
and JIMWLK evolution equations. The running-coupling corrections to small-x evolution
are calculated following the Brodsky–Lepage–Mackenzie (BLM) scale-setting procedure
(Brodsky, Lepage, and Mackenzie 1983). Working in the setting we used for the derivation
of the JIMWLK and BK evolutions, below we will first resum the contributions of all
quark-loop corrections to the LLA kernel. Each quark-loop correction brings in a power of
αμNf , with Nf the number of quark flavors (see Sec. 1.5) and αμ = αs(μ2) the physical
coupling at some arbitrary renormalization scale μ. Inspired by Abelian gauge theories,
Brodsky, Lepage, and Mackenzie (1983) argued that the powers of αμNf come mainly
from the powers of the one-loop QCD beta function, that is, from the powers of αμβ2,
where β2 is given in Eq. (1.89). Following the BLM prescription, we will then complete
Nf to the full coefficient of the one-loop beta function by means of the replacement

Nf → −6πβ2 (6.2)

in the expression obtained by including quark-loop corrections in the BK and JIMWLK
kernels. After this, the powers of αμβ2 should combine to give the physical running coupling
αs(Q2) defined in Eq. (1.88) at the various momentum scales Q that would follow from
this calculation.
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Fig. 6.1. Diagrams with quark-loop corrections to the BK and JIMWLK evolution kernels.
The iteration of quark-loop insertions to all orders is implied in each graph on the right.

The original BLM prescription did not address the diagrams with gluon–gluon interac-
tions. Here we will assume that the prescription is still valid for diagrams with triple-gluon
vertices. This statement has not been rigorously proven, though in small-x physics it was
explicitly verified in the NLO BK calculation by Balitsky and Chirilli (2008). A com-
plementary way of thinking about a running-coupling calculation is by defining it as a
resummation of αsNf -corrections to the LO BFKL, BK, and JIMWLK kernels, the com-
pletion of Nf to the full beta function using (6.2) being an intelligent guess at the size of
the gluon contribution, explicitly confirmed at NLO.

6.2.1 An outline of the running-coupling calculation

The main types of diagrams containing quark-loop corrections to the LO BK and JIMWLK
evolution kernels are shown in Fig. 6.1 using the notation of Figs. 5.8, 5.9, and 5.10. The
vertical dashed line again denotes the interaction with the target (or the subsequent evolution
along with the interaction with the target). On the left of Fig. 6.1 we show one virtual (A)
and one real (B) diagram contributing to one step of the LO BK or JIMWLK evolutions (cf.
Fig. 5.9). All other real and virtual diagrams in the evolution kernel generated by connecting
the gluon line to the quark and antiquark lines in all possible ways (see Figs. 5.9 and 5.10)
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6.2 Running-coupling corrections to the BFKL, BK, and JIMWLK evolutions 231

should be included in the calculation; they are not shown explicitly. For LCPT diagrams,
instantaneous terms like those shown in Fig. 4.14 need to be included as well.

The running-coupling corrections for the BK and JIMWLK kernels are obtained by
inserting all-order quark bubbles into the gluon propagator in all possible ways. On the
right of Fig. 6.1 we show the quark-loop-corrected diagrams corresponding to the fixed-
coupling graphs on the left. The virtual correction (in the upper-left panel, labeled A) gives
rise only to one class of diagrams, with quark loops iterated on the gluon propagator to all
orders, shown in panel C. Working in momentum space, it is clear that the quark bubbles
in this case form a geometric series, which is resummed to give

αs(q
2
⊥) = αμ

1 + αμβ2 ln(q2
⊥/μ2)

, (6.3)

where we have used the replacement (6.2) to complete Nf to the full beta function, and
the factor αμ in the numerator comes from the coupling of the gluon to the parent dipole.
We see how physical running coupling emerges for the virtual diagrams. The coupling runs
with the transverse momentum of the gluon line q⊥; this can be found by calculating the
diagram in panel C of Fig. 6.1 in, say, LCPT (Kovchegov and Weigert 2007a).

The real-emission diagram B generates two classes of quark-loop corrections, as shown
in the lower two panels on the right of Fig. 6.1, labeled D and E. The first class of corrections,
shown in panel D, corresponds to the case when it is the gluon that interacts with the target.
This is to be compared to the other class of corrections, where the gluon fluctuates into a
qq̄ pair, which is still in the wave function at the time it enters the nucleus, so that now
the quark and antiquark in the pair interact with the nucleons, as depicted in panel E of
Fig. 6.1.

The momenta of the gluon line to the left and to the right of the interaction with the
target are different in general: we label them q and q ′ respectively, as shown in panel
B of Fig. 6.1. Note that the running-coupling corrections to the interaction of the gluon
(and now qq̄) cascade with the target factorize from the running-coupling corrections to
the small-x evolution and are included separately (Balitsky 2007, Kovchegov and Weigert
2007b). Concentrating on the evolution, we see that the quark bubbles in the diagrams like
that in panel D of Fig. 6.1 give us two separate geometric series, one to the left and one to
the right of the interaction with the target. We thus get

αμ[
1 + αμβ2 ln(q2

⊥/μ2)
] [

1 + αμβ2 ln(q ′ 2
⊥ /μ2)

] = αs(q2
⊥) αs(q ′ 2

⊥ )

αμ

, (6.4)

where again we have used Eq. (6.2) to complete Nf to the full beta function and the factor
αμ stems from the coupling of the gluon to the dipole. We can see a problem with Eq. (6.4):
using Eq. (1.88) we cannot rewrite it as a product of powers of the running coupling only,
as we did in Eq. (6.3). One factor αμ would still remain, as shown on the right of Eq. (6.4).
Hence diagrams in the class represented by panel D cannot be expressed in terms of the
running couplings only.

To resolve the issue we have to include the diagram in panel E as well. At first glance,
the diagrams in this class, just as in the panel D class, would seem to have two geometric
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232 Corrections to nonlinear evolution equations

series but now with a factor of α2
μ in the numerator; the extra coupling arises from the

coupling of gluons to the quark bubble that interacts with the target (which is slightly larger
than the other bubbles in panel E). This would give

α2
μ[

1 + αμβ2 ln(q2
⊥/μ2)

] [
1 + αμβ2 ln(q ′ 2

⊥ /μ2)
] = αs(q

2
⊥) αs(q

′ 2
⊥ ). (6.5)

However, this cannot be the complete answer. For one thing, it seems absurd that one
power of the fixed coupling, corresponding to the gluon emission and absorption, has been
replaced by two powers of the running coupling, making the evolution kernel contribution
of order α2

s . Analyzing the matter further, one realizes that the quark loop that interacts with
the target also brings in a factor Nf that should be completed to β2 and, more importantly,
that the integration over momentum in the loop leads to a UV divergence, i.e., generates
a ln μ2 term. Keeping this logarithmically divergent term, we write the contribution of
diagram E in Fig. 6.1 to the running of the coupling as

α2
μβ2 ln(Q2/μ2)[

1 + αμβ2 ln(q2
⊥/μ2)

] [
1 + αμβ2 ln(q ′ 2

⊥ /μ2)
] ; (6.6)

the scale Q is determined by an explicit calculation. Adding Eqs. (6.4) and (6.6) we see
that diagrams D and E combine to give

αμ

[
1 + αμβ2 ln(Q2/μ2)

][
1 + αμβ2 ln(q2

⊥/μ2)
] [

1 + αμβ2 ln(q ′ 2
⊥ /μ2)

] = αs(q2
⊥) αs(q ′ 2

⊥ )

αs(Q2)
. (6.7)

We see that now the answer for the real graphs is expressible in term of factors of the
running coupling only. Note the unexpected structure of the result (6.7): in the BK and
JIMWLK evolution kernels, one factor of the fixed coupling αs in the LO evolution kernel
is replaced by three running couplings, two in the numerator and one in the denominator,

αμ −→ αs(q2
⊥) αs(q ′ 2

⊥ )

αs(Q2)
, (6.8)

so that the answer is still order αs . This structure is sometimes referred to as a triumvirate
of couplings. It was first postulated for the running-coupling corrections to the BFKL
evolution by Braun (1995) and Levin (1995). It was explicitly derived for the BFKL, BK,
and JIMWLK evolution equations by Balitsky (2007) and by Kovchegov and Weigert
(2007a).

The detailed calculation of the scale Q with explicit demonstrations that q⊥ and q ′
⊥

set the scales for the other two couplings in (6.7), along with the Fourier transform of the
answer into transverse coordinate space, are too technically involved to be presented here
in any detail. We refer the interested reader to the papers Balitsky (2007), Kovchegov and
Weigert (2007a, b), and Gardi et al. (2007). We simply quote here the final answer for the
running-coupling BK equation.
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6.2 Running-coupling corrections to the BFKL, BK, and JIMWLK evolutions 233

Writing the BK evolution equation (4.137) as

∂Y S(�x1⊥, �x0⊥, Y ) =
∫

d2x2 K(�x1⊥, �x0⊥, �x2⊥)

× [S(�x1⊥, �x2⊥, Y ) S(�x2⊥, �x0⊥, Y ) − S(�x1⊥, �x0⊥, Y )
]
, (6.9)

we note that the LO dipole kernel is

KLO(�x1⊥, �x0⊥, �x2⊥) = αsNc

2π2

x2
10

x2
20x

2
21

. (6.10)

The form of the running-coupling kernel depends on how one extracts the scale Q shown
in Eqs. (6.6)–(6.8); while ln μ2 in ln(Q2/μ2) is identified unambiguously, it is less clear
how to define uniquely the scale Q2. The problem originates in the fact that the contribution
to the evolution kernel coming from diagram E in Fig. 6.1 cannot even be cast into the
form (6.9). In the large-Nc limit this diagram has two dipoles interacting with the target:
the dipole 13, consisting of the original quark and antiquark of the qq̄ pair fluctuation of
the gluon, and the dipole 40, consisting of the quark in the pair and the antiquark in the
parent dipole (the coordinates are defined in Fig. 6.1E). The two dipoles do not have a
common transverse coordinate, therefore their contribution is not of the form (6.9) and
actually includes integrals over both �x3⊥ and �x4⊥, with the kernel dependent on four points
in the transverse plane, �x1⊥, �x0⊥, �x3⊥, �x4⊥. The UV divergence that we need stems from
the region between �x3⊥ and �x4⊥, and can be extracted either by integrating over �x3⊥ while
keeping �x4⊥ fixed (the Balitsky (2007) prescription) or by integrating over �x3⊥ and �x4⊥
keeping the gluon position �x2⊥ (see Fig. 6.1E) fixed (the Kovchegov and Weigert (2007a)
prescription). The gluon position is related to �x3⊥ and �x4⊥ via the following expression (cf.
Eq. (1.87) along with the discussion after it, as well as Fig. 1.4):

�x2⊥ = z3 �x3⊥ + (1 − z3)�x4⊥ (6.11)

with z3 the fraction of the gluon’s light cone momentum carried by quark 3. (Indeed, other
extractions of the UV divergence are also possible but calculations have been done only for
the two cases mentioned.)

The kernel of the running-coupling BK evolution (rcBK) in the Balitsky prescription is
(Balitsky 2007)

KBal
rc (�x1⊥, �x0⊥, �x2⊥) = Nc αs(x2

10)

2π2

[
x2

10

x2
20 x2

21

+ 1

x2
20

(
αs(x2

20)

αs(x2
21)

− 1

)

+ 1

x2
21

(
αs(x2

21)

αs(x2
20)

− 1

)]
, (6.12)

where we have used the abbreviated notation

αs(x
2
⊥) = αs

(
4e−5/3−2γE

x2
⊥

)
(6.13)

and the coupling on the right is defined by Eq. (1.88) in the MS renormalization scheme.
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234 Corrections to nonlinear evolution equations

In the Kovchegov–Weigert prescription the rcBK kernel is (Kovchegov and Weigert
2007a)

KKW
rc (�x1⊥, �x0⊥, �x2⊥)

= Nc

2π2

[
αs(x

2
20)

1

x2
20

− 2
αs(x2

20) αs(x2
21)

αs(R2)

�x20 · �x21

x2
20 x2

21

+ αs(x
2
21)

1

x2
21

]
, (6.14)

with the scale R2 given by

R2 = x20 x21

(
x21

x20

)�

, (6.15)

where

� = x2
20 + x2

21

x2
20 − x2

21

− 2
x2

20 x2
21

�x20 · �x21

1

x2
20 − x2

21

.

The two prescriptions (6.12) and (6.15) neglect different contributions of the diagram in
Fig. 6.1E; as was shown by Albacete and Kovchegov (2007b), when the neglected terms
are put back in, the two calculations agree with each other. It was also shown by an explicit
numerical evaluation that the Balitsky prescription, when used in the BK evolution, gives
a result that is closer to the full answer obtained by using the full diagram in Fig. 6.1E
in the kernel of the small-x evolution (Albacete and Kovchegov 2007b). This is probably
related to the fact that in the Balitsky prescription one obtains the linear (BFKL) part of the
equation exactly: it gives the contribution correctly when only one dipole in Fig. 6.1E (either
13 or 40) interacts with the target. In Sec. 4.5.1 we saw that a good approximation to the
solution of the fixed-coupling BK equation can be constructed by solving the linear BFKL
equation with a saturation boundary in the IR (Gribov, Levin, and Ryskin 1983, Mueller
and Triantafyllopoulos 2002). Most probably the same is true in the running-coupling case
(see Gribov, Levin, and Ryskin (1983), Section 2.3.2), justifying the fact that the Balitsky
prescription gives the full answer more accurately.

The evolution kernel of the running-coupling JIMWLK (rcJIMWLK) equation has been
calculated only using the Kovchegov–Weigert prescription and can be found in Kovchegov
and Weigert (2007a).

Once one has the running-coupling corrections to the nonlinear evolution equations, it is
possible to obtain the running-coupling version of the BFKL equation. We first define the
unintegrated gluon distribution φ(k⊥, Y ), using the dipole amplitude N, by (cf. Eqs. (3.92),
(4.98)) ∫

d2b N (�x⊥, �b⊥, Y ) = 2π

Nc

∫
d2k⊥

(
1 − ei�k⊥·�x⊥

) αs(k2
⊥)

k2
⊥

φ(k⊥, Y ) (6.16)

(Levin and Ryskin 1987). This connection between φ and N follows from the two-gluon
exchange depicted in Fig. 6.2 (in the notation of Fig. 4.3), and, while its validity in the
nonlinear saturation regime may be questioned, it is valid in the linear regime in which we
want to apply it.
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Fig. 6.2. The lowest-order diagram contributing to the relation between the dipole amplitude
N and the unintegrated gluon distribution φ.

Using Eq. (6.16) in Eq. (6.9) with the kernel given by Balitsky prescription Eq. (6.12)
(for which, in momentum space, Q2 = k2

⊥), linearizing the result, and Fourier-transforming
it into momentum space, one obtains the running-coupling BFKL (rcBFKL) equation for
the unintegrated gluon distribution (Kovchegov and Weigert 2007b):

∂Y φ(k⊥, Y ) = Nc

π2

∫
d2q

(�k⊥ − �q⊥)2

×
⎡
⎣αs

(
(�k⊥ − �q⊥)2

)
φ(q⊥, Y ) − k2

⊥
2q2

⊥

αs

(
q2

⊥
)
αs

(
(�k⊥ − �q⊥)2

)
αs

(
k2
⊥
) φ(k⊥, Y )

⎤
⎦ .

(6.17)

This equation was originally conjectured by Braun (1995) and Levin (1995) by requiring
that the bootstrap property of BFKL is preserved after running-coupling corrections are
included. Equation (6.17) can be compared with the fixed-coupling BFKL evolution of
Eq. (3.94). One sees that, for the real term (the first term on the right-hand side of Eq. (6.17)),
the coupling constant runs with the momentum in the rung (the s-channel gluon) of the
BFKL ladder while in the virtual term (the second term on the right) a triumvirate structure
arises for the three momenta involved in the color-octet gluon reggeization diagrams (see
e.g. Fig. 3.11).

6.2.2 Impact of running coupling on small-x evolution

The effects of the running-coupling corrections on the small-x evolution can be summarized
as follows.

(i) They slow down the evolution, by reducing the growth rates of the amplitude N (x⊥, Y )
and of the saturation scale Qs(Y ) with energy or rapidity.

(ii) They preserve geometric scaling in the vicinity of the saturation scale (x⊥ ∼ 1/Qs(Y ))
while changing the profile of the dipole amplitude N (x⊥, Y ) as a function of x⊥Qs(Y ).

(iii) They make the saturation scale Qs independent of the atomic number A at very
small x, thus eliminating the nuclear enhancement that we saw in the GGM model
(Eq. (4.52)) and in the fixed-coupling small-x evolution (Eq. (4.156)).

These properties can be derived from a numerical solution of the rcBK equation or
by analytical methods. The numerical solution of the rcBK equation with the kernel from
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0.00001 0.0001 0.001 0.01 0.1 1 10

0

0.2

0.4

0.6

0.8

1

fixed coupling
running coupling

Y = 0, 3, 6, 9, 12

N(x⊥,Y )

x⊥ (GeV-1) 

Fig. 6.3. The dipole amplitude N (x⊥, Y ) as a function of the dipole size x⊥, plotted for
several rapidities Y generated by fixed-coupling BK evolution with αs = 0.4 (solid lines)
and by running-coupling evolution (dashed lines) for the same initial condition (thick
dashed line). (We thank Javier Albacete for providing us with this figure.) A color version
of this figure is available online at www.cambridge.org/9780521112574.)

Eq. (6.12) (and with the strong coupling “frozen” in the IR at αs = 1) is shown in Fig. 6.3 by
the dashed lines. It may be compared with the fixed-coupling BK evolution with αs = 0.4
(the solid lines) for the same initial condition from Eq. (4.205). The figure depicts the
dipole scattering amplitude N plotted as a function of the dipole size x⊥ for several
different rapidities. It is clear that the fixed-coupling evolution, shown by the solid lines, is
faster than the running-coupling evolution, shown by the dashed lines: the fixed-coupling
curves grow faster with rapidity and the saturation scale corresponding to the fixed-coupling
curves is clearly larger than that for the running coupling. Thus Fig. 6.3 illustrates property
(i) in the above list.

Property (ii) is partially demonstrated in Fig. 4.32, where one can see that the two
geometric scaling functions, for running and for fixed coupling, are in fact different in
shape. Property (iii) is derived analytically below along with properties (i) and (ii).

Many qualitative and some quantitative features of the solution for rcBK evolution
can be obtained analytically using an approximation in which a simple running of the
coupling with the parent-dipole size, αs(x2

10), is used in the kernel (6.10) instead of the
more complicated exact results seen in Eqs. (6.12) and (6.14). In an impact-parameter-
independent approximation we can write the BK equation, by analogy with Eq. (4.175),
as

∂Y Ñ (ρ, Y ) = ᾱs(ρ)χ (−∂ρ)Ñ(ρ, Y ) − ᾱsÑ
2(ρ, Y ), (6.18)
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where now

ρ = ln
k2
⊥

�2
QCD

(6.19)

and

ᾱs(ρ) = αs(ρ)Nc

π
= Nc

πβ2ρ
= Nc

πβ2 ln(k2
⊥/�2

QCD)
. (6.20)

Let us analyze Eq. (6.18) using the semiclassical approximation of Sec. 4.5.3. Writing
Ñ = e� and neglecting the derivatives of � of second order and higher, we rewrite Eq. (6.18)
as (cf. Eq. (4.178))

∂Y � = ᾱs(ρ)χ (−∂ρ�) − ᾱse
�. (6.21)

Defining −γ ≡ �ρ and ω ≡ �Y we get

F ≡ ω − ᾱs(ρ)χ (γ ) + ᾱs(ρ)e� = 0. (6.22)

The equations for the characteristics are:

dρ

dt
= F−γ = ᾱs(ρ)

dχ (γ )

dγ
, (6.23a)

dY

dt
= Fω = 1, (6.23b)

dγ

dt
= −Fρ − (−γ )F� = dᾱs(ρ)

dρ
χ (γ ) +

[
ᾱs(ρ)γ − dᾱs(ρ)

dρ

]
e�, (6.23c)

dω

dt
= −FY − ωF� = −ᾱs(ρ) ω e�, (6.23d)

d�

dt
= (−γ )F−γ + ωFω = −ᾱs(ρ)γ

dχ (γ )

dγ
+ ω. (6.23e)

Again, Y = t results from Eq. (6.23b). Eliminating ω using Eq. (6.22) and noticing that
dᾱs(ρ)/dρ = −ᾱs(ρ)/ρ yields

dρ

dY
= ᾱs(ρ)

dχ (γ )

dγ
, (6.24a)

dγ

dY
= − ᾱs(ρ)

ρ
χ (γ ) + ᾱs(ρ)

(
γ + 1

ρ

)
e�, (6.24b)

d�

dY
= ᾱs(ρ)

[
χ (γ ) − γ

dχ (γ )

dγ
− e�

]
. (6.24c)

Working in the linearized regime, we can neglect e� in Eq. (6.24c) and obtain the critical
trajectory along which � ≈ const, with the critical value of the anomalous dimension γ
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specified by

χ (γcr ) = γcr

dχ (γcr )

dγcr

, (6.25)

so that γcr ≈ 0.6275, just as in the fixed-coupling case.
Solving Eq. (6.24a) along the critical (saturation) trajectory yields

ρ2
s (Y ) = ρ2

0 + 2Nc

πβ2

χ (γcr )

γcr

Y, (6.26)

where we have imposed the initial condition

ρs(Y = 0) = ln
Q2

s0

�2
QCD

≡ ρ0. (6.27)

Since ρs(Y ) = ln(Q2
s (Y )/�2

QCD), we obtain the saturation scale in the running-coupling
case (Gribov, Levin, and Ryskin 1983):

Q2
s (Y ) = �2

QCD exp

{√
2Nc

πβ2

χ (γcr )

γcr

Y + ln2 Q2
s0

�2
QCD

}
. (6.28)

Comparing this result with the fixed-coupling saturation scale in Eq. (4.156) we see that
the saturation scale in the running-coupling case grows more slowly with rapidity Y ,
confirming property (i) above stating that the running-coupling corrections slow down
small-x evolution. This property of the running-coupling solution is very important: as the
reader may remember, the fixed-coupling BFKL intercept (6.1) is too large to describe
any data. The slower growth of the running-coupling solution makes phenomenological
applications of rcBK and rcJIMWLK much more successful.

Equation (6.28) has another important property: at very large rapidity we can neglect the
rapidity-independent logarithm squared under the square root, since it eventually becomes
small compared with the term linear in Y . This gives

Q2
s (Y ) ≈ �2

QCD exp

{√
2 Nc

πβ2

χ (γcr )

γcr

Y

}
. (6.29)

We see that all the Qs0-dependence has disappeared. Since the dependence of the saturation
scale on the atomic number A comes in only through Q2

s0 ∼ A1/3, we conclude that at very
large rapidity the running-coupling saturation scale becomes independent of A (Levin
and Ryskin 1987, Mueller 2003). This demonstrates property (iii) above. Therefore, at
extremely high energies the parton densities in the proton and in the nucleus will be the
same. While this conclusion may be somewhat disappointing, note that our analysis applies
to asymptotic energies: for the energies available in modern experiments the nuclei still
provide a strong enhancement of the saturation scale.
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A more careful evaluation of the high energy asymptotics of the saturation scale in the
running-coupling case yields

Q2
s (Y ) = �2

QCD exp

{√
2 Nc

πβ2

χ (γcr )

γcr

Y + 3

4
ξ1

[
Nc

2πβ2

χ ′′(γcr )

γcrχ (γcr )
Y

]1/6

+ const + O
(
Y−1/6

) }
, (6.30)

where ξ1 ≈ −2.338 is the first zero of the Airy function Ai(ξ ). The first term in the
exponent of Eq. (6.30) was calculated by Gribov, Levin, and Ryskin (1983) (see also Iancu,
Itakura, and McLerran (2002) and Mueller and Triantafyllopoulos (2002)), while the second
term was found by Mueller and Triantafyllopoulos (2002) and by Munier and Peschanski
(2004a). All the terms shown explicitly in Eq. (6.30) are universal (except for the constant):
they do not depend on the initial conditions for the evolution. Several new higher-order
universal terms in the expansion (6.30) were found recently by Beuf (2010).

For the constant γ = γcr to be a solution of Eq. (6.24b) we need to require that the
right-hand side of this equation is zero, which gives

e�cr = χ (γcr )

ρs(Y )γcr + 1
≈ χ (γcr )

ρs(Y )γcr

. (6.31)

This is indeed a small quantity at high energy, when ρs(Y ) is large, justifying the linearized
approximation used in deriving the above results. Since ρs(Y ) ∼ √

Y we see that e�cr is a
slowly varying function of Y , validating our treatment of it as a constant.

Finally, just as we did to obtain Eq. (4.187), we can expand � near the saturation
trajectory keeping Y fixed, to get

� ≈ �cr + �ρs
(ρ − ρs) = �cr − γcr (ρ − ρs) (6.32)

so that

Ñ (ρ, Y ) = e� ∝ e−γcr (ρ−ρs ) =
(

Q2
s (Y )

k2
⊥

)γcr

, (6.33)

where now Q2
s (Y ) is given by Eq. (6.28). We see that the geometric scaling property of the

solution persists when running-coupling corrections are included. This affirms part of the
claim in property (ii) above. The anomalous dimension γcr obtained in the semiclassical
approximation for the running-coupling coupling case is the same as for the fixed-coupling
evolution: hence the dependence of Ñ on k⊥ in Eq. (6.33) is the same as in Eq. (4.188). This
appears to contradict the difference in k⊥-dependence of the running- and fixed-coupling
BK evolution observed in the numerical simulation in Fig. 4.32. (This discrepancy was
first observed by Albacete et al. (2005).) We believe that the accuracy of the semiclassical
approximation is insufficient to detect this difference. Presumably more precise analytical
solution techniques are needed to explain the difference.
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240 Corrections to nonlinear evolution equations

6.2.3 Nonperturbative effects and renormalons∗

Nonperturbative effects in the framework of perturbative QCD stem from the asymptotic
nature of the perturbation series ∑

n

Cnα
n
s (6.34)

and from the fact that the coefficients Cn of this series increase as n! for large n. To date
there are three known sources of this n! behavior of the perturbation-series coefficients in
QCD: infrared (IR) and ultraviolet (UV) renormalons and instantons (see the review ’t Hooft
(1979) and the paper Mueller (1992)). A running QCD coupling generates renormalons.
Since we now know how to include a running coupling in the BFKL, BK, and JIMWLK
equations, we should be able to find the renormalon contribution to small-x evolution
and estimate the contribution of nonperturbative QCD to small-x physics. Clearly the
nonperturbative contribution stems from the IR renormalons, since the long distances (low
momenta) corresponding to this case determine the nonperturbative corrections. Therefore
we will concentrate on the IR renormalons in this section.

Since it is in line with the goal of this chapter to keep the calculations simple, let
us illustrate the role of IR renormalons in saturation physics by the following toy-model
example. We start with the relation between the dipole amplitude N and the unintegrated
gluon distribution φ in Eq. (6.16). Assume that it is valid in the saturation region, where one
can show that φ ∝ k2

⊥/Q2
s . Then the contribution of dipole amplitude in the saturation region

with k⊥ < Qs to the dipole amplitude outside the saturation region, i.e., for x⊥ � 1/Qs ,
is proportional to

Q2
s∫
d2k⊥
k2
⊥

(
1 − ei�k⊥·�x⊥

)
αs(k

2
⊥)

k2
⊥

Q2
s

. (6.35)

In the k⊥ < Qs , x⊥ � 1/Qs regime we have k⊥ x⊥ � 1, and the exponential in Eq. (6.35)
can be expanded to yield after angular integration

x2
⊥

Q2
s

Q2
s∫

0

dk2
⊥ k2

⊥αs(k
2
⊥), (6.36)

where, for simplicity, we ignore overall constants.
Writing

αs(k
2
⊥) = αμ

1 + αμβ2 ln(k2
⊥/μ2)

, (6.37)

we substitute this into Eq. (6.36) and expand in powers of αμ, obtaining

x2
⊥

Q2
s

αμ

∞∑
n=0

(−αμβ2)n
Q2

s∫
0

dk2
⊥k2

⊥ lnn k2
⊥

μ2
. (6.38)
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Defining ζ = ln(μ2/k2
⊥) we rewrite Eq. (6.38) as

x2
⊥

Q2
s

μ4αμ

∞∑
n=0

(αμβ2)n
∞∫

ln(μ2/Q2
s )

dζζ ne−2ζ . (6.39)

For large enough n, the integral in Eq. (6.39) is dominated by ζ ≈ n/2, so that its lower
limit becomes irrelevant and can be set equal to zero. After that the ζ -integration can be
easily performed, yielding

x2
⊥

2Q2
s

μ4αμ

∞∑
n�1

(
αμβ2

2

)n

n!, (6.40)

which is a divergent perturbation series with coefficients proportional to n!. This is the
effect of the IR QCD renormalons. If we define the applicability of the perturbation theory
by the order n at which the (n + 1)th term in the series is comparable with the nth term,
we can conclude that perturbation theory breaks down for n ≈ n0 = 2/(αμβ2). Thus the
series (6.40) but terminating at n = n0 would be perturbation theory’s best guess at the
exact answer.

We can also try to evaluate the series in Eq. (6.40) using the Borel resummation proce-
dure. Namely, we rewrite the series as

x2
⊥

2Q2
s

μ4

∞∫
0

dbe−b/αμ

∞∑
n�1

(
β2b

2

)n

, (6.41)

where b is a dummy integration variable. Assuming that the series starts at n = 0, we resum
it to obtain

− 2

β2

x2
⊥

2Q2
s

μ4

∞∫
0

dbe−b/αμ
1

b − 2/β2
. (6.42)

The pole at b = 2/β2 is known as the IR renormalon pole in the complex-b Borel plane. The
b-integral in Eq. (6.42) is divergent because of this renormalon pole along the integration
contour: the series is not Borel-summable. While different ±iε regularizations of the
pole can be proposed, it is not clear which such regularization would be correct. Instead
the consensus in the community is that the difference between the various regularization
prescriptions gives us an estimate of the uncertainty due to the renormalon singularity.
Therefore, to evaluate the size of this uncertainty we simply need to take the residue of the
renormalon pole, which gives

∼ x2
⊥

Q2
s

μ4e−2/(αμβ2) = x2
⊥

Q2
s

�4
QCD. (6.43)

The fact that the result is proportional to �4
QCD indicates the nonperturbative origin of

the uncertainty. The physical meaning of this phenomenon is well known (see Mueller
(1985) and Zakharov (1992)). Indeed, the typical value of the momentum in the integral in
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Eq. (6.38) is

k2
⊥ ∼ μ2e−n/2 (6.44)

and, regardless of the value of the renormalization scale μ, at sufficiently large n this
momentum will become very small, so small that we would not be able to use perturbative
QCD in our calculations (k⊥ ≈ �QCD). Of course we cannot trust our calculation for the low
momenta of Eq. (6.44): instead we consider this equation as an indication that perturbation
theory is breaking down and we should examine nonperturbative contributions to the
observable.

The uncertainty (6.43) of our perturbative estimate should be compared with the per-
turbative estimate itself. If we forget the contribution of the Landau pole at k⊥ = �QCD in
Eq. (6.36) (since, effectively, we have estimated the size of that contribution in Eq. (6.43)),
the rest of the integral is clearly dominated by the upper limit of integration, giving an
answer proportional to

∼x2
⊥Q2

s αs(Q
2
s ). (6.45)

Comparing Eq. (6.43) with Eq. (6.45) we see that the relative contribution of the nonper-
turbative IR renormalon corrections is of order

�4
QCD

Q4
s

� 1. (6.46)

We conclude that saturation effects tend to suppress the renormalon contribution. Equa-
tion (6.46) is analogous to the conclusion by Mueller (1985) and Zakharov (1992) that the
renormalon contribution in e+e− annihilation is of order �4

QCD/Q4, i.e., it is a higher-twist
effect. In our case IR renormalons are also higher twist and, importantly, they are not
enhanced by powers of A1/3 or powers of 1/x and are therefore subleading compared with
the perturbative saturation effects.

The qualitative conclusions of our toy model presented above are substantiated by more
detailed calculations. The interested reader is referred to the papers by Levin (1995) and
by Gardi et al. (2007) for much more detailed analytical and numerical investigations on
the subject.

6.3 The next-to-leading order BFKL and BK equations

The NLO (order-α2
s ) corrections to the kernels of the BFKL and BK equations are now

known. The NLO BFKL kernel was found by Fadin and Lipatov (1998) and Ciafaloni and
Camici (1998), while the NLO BK equation was constructed by Balitsky and Chirilli (2008).
Here we will briefly outline the calculational strategy and the main physical conclusions
stemming from these calculations.
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A B C

Fig. 6.4. Examples of diagrams contributing next-to-leading order corrections to the BFKL
kernel. The bold lines denote reggeized gluons, and the circles denote regular QCD vertices.
The vertical solid straight lines represent cuts.

6.3.1 Short summary of NLO calculations

It took almost a decade from the first papers on the subject (Fadin and Lipatov 1989,
Ciafaloni 1988) to the last (Fadin and Lipatov 1998, Ciafaloni and Camici 1998) to solve
the problem of finding the NLO BFKL kernel. As discussed above, the LO BFKL is a
sum of ladder diagrams with Lipatov effective vertices and with reggeized gluons in the
t-channel. The NLO corrections to this ladder include the running-coupling corrections
to the vertices in the ladder (see for example Fig. 6.4C) and also processes involving
the emission of two gluons with comparable rapidities in a single rung (see Fig. 6.4A).
One also needs to calculate the quark–antiquark pair production (see Fig. 6.4B) and to
find the reggeized gluon trajectory in the NLO approximation. (Of course one also has to
prove that we can still use the reggeized gluon in the NLO approximation: this turns out
to be the case.) The relative simplicity of the LO BFKL equation originates in part from
the fact that in the LLA one can easily separate the longitudinal and transverse degrees of
freedom. In the NLO approximation one has to take into account the fact that the limits of
integration over longitudinal momenta depend also on the transverse momenta. The large
number of extra diagrams, a tiny subset of which is shown in Fig. 6.4, along with the more
sophisticated diagram evaluation required in a beyond-LLA approximation, are the two
main reasons why it took so long to find the NLO BFKL kernel.

The exact NLO BFKL kernel is too cumbersome to be presented here. It can be found
in the papers of Fadin and Lipatov (1998) and Ciafaloni and Camici (1998). The results
of these calculations yielded some new features and new questions. The NLO corrections
to the LO BFKL intercept turned out to be negative. Such negative corrections had been
expected, since the LO BFKL intercept given in Eq. (6.1) is too large: this is why the LO
BFKL evolution overestimates the rise of the DIS structure functions with energy as well
as the size of the Bjorken scaling violation dF2/d ln Q2 in comparison with the HERA
experimental data. However, the size of the negative NLO corrections turned out to be too
large. The BFKL pomeron intercept in the saddle point approximation for the LO and NLO
orders is equal to (cf. the LO BFKL intercept in Eq. (3.86))

αP − 1 ≈ 4 ᾱs ln 2 (1 − 6.7ᾱs) . (6.47)
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A B C

Fig. 6.5. Examples of diagrams contributing NLO corrections to the BK and JIMWLK
kernels.

Equation (6.47) leads to a negative intercept for ᾱs > 1/6.7 ≈ 0.15, which means that the
NLO BFKL pomeron leads to structure functions that fall off with energy at all virtualities
up to Q2 ≈ 103 GeV2. This result points toward an instability of the NLO BFKL pomeron,
and this is confirmed by the oscillatory behavior of the resulting NLO gluon density. (The
reader is also referred to Ross (1998), where it is shown that, in the cross section mediated
by NLO BFKL pomeron exchange in the diffusion approximation, the logarithm squared
term in the exponent (see Eq. (3.85)) enters with a plus sign, indicating an instability of the
solution due to the enhancement of transverse momentum fluctuations.)

The NLO BFKL kernel appears to lead to a number of serious questions, which may
be resolved by the calculation of the higher-order corrections. Unfortunately, owing to the
apparent complexity of the NNLO calculations, it looks unreasonable to expect the result
soon. Fortunately, it turns out that the most numerically essential contribution in the NLO
BFKL kernel comes from collinear singularities, which are resummed by the DGLAP
evolution. The resummation of collinear corrections to the BFKL kernel appears to cure
the instability of the NLO BFKL pomeron, as we will discuss in the next section.

It is also possible that some problems of NLO BFKL would be cured by a consideration
of saturation effects. To check this, one has to study the nonlinear BK and JIMWLK
evolution equations at NLO. The NLO BK equation was calculated by Balitsky and Chirilli
(2008) (see also Balitsky and Belitsky (2002) for a calculation of part of the kernel). A
small subset of the diagrams that one has to calculate in order to find the NLO BK kernel is
shown in Fig. 6.5. In one step of NLO evolution one has to emit two s-channel gluons with
comparable rapidities. The diagrams can be classified by the number of gluons interacting
with the target: there may be zero, one, or two gluons, as shown in Figs. 6.5C, B, A
respectively. Indeed, one should also include one-loop quark corrections, illustrated by the
lowest-order (one-loop) case of the diagrams in Fig. 6.1. Note that, in the large-Nc limit,
diagrams of the type shown in Fig. 6.5A imply that the parent dipole will split into three
daughter dipoles, resulting in an evolution equation which is cubic in N (or S) (Balitsky
and Belitsky 2002). Hence the quadratic structure of the LO BK evolution does not survive
at higher orders.

As in the BFKL case, the calculation of the NLO BK evolution is too technically involved
to be presented here; we refer the reader to the paper by Balitsky and Chirilli (2008) for
details. In the linearized limit, the NLO BK evolution indeed reduces to the NLO BFKL
evolution. Unfortunately, at this time the physical implications of NLO BK evolution are
not completely understood.
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6.3.2 Renormalization-group-improved NLO approach∗

Let us now present a strategy to cure the problems of the NLO BFKL kernel by performing
the resummation of collinear singularities to all orders. This procedure was suggested in
the works of Salam (1998, 1999) and Ciafaloni, Colferai, and Salam (1999a). The key
idea is based on the observation that the large NLO corrections to the BFKL kernel stem
mostly from collinearly enhanced physical contributions. At the same time we know that
the collinear singularities can be resummed with the help of the renormalization group
(RG) and have been taken into account in the DGLAP evolution. The idea of finding a
combined description that includes the BFKL anomalous dimension with the anomalous
dimension of the DGLAP evolution equation has a history ranging from the first attempt by
Gribov, Levin, and Ryskin, where the DGLAP anomalous dimension was simply added to
the BFKL anomalous dimension, to the Catani, Ciafaloni, Fiorani and Marchesini (CCFM)
evolution equation, in which a correct treatment of the coherence effect in the collinear
kinematics was introduced. In the renormalization-group-improved NLO approach this
problem was solved, and we will follow the paper of Ciafaloni, Colferai, and Salam (1999a)
in our discussion of the theoretical approach. We will also present the next-to-leading-order
resummed BFKL kernel in the simple form given in the paper of Khoze et al. (2004) to
illustrate the numerical importance of the corrections that were introduced.

The starting point is the expression for the azimuthally symmetric Green function of
the BFKL pomeron in the double Mellin representation, namely (cf. Eqs. (3.78) and (3.80)
with n = 0)

G (k, k0, Y ) = 1

k2

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

(
s

kk0

)ω

eγ ξ 1

ω − κ (γ, ω)
, (6.48)

where k and k0 with k > k0 are the transverse momentum scales at the ends of the ladder,
with ξ = ln(k2/k2

0), and the integration contour over ω in Eq. (6.48) lies to the right of
all the singularities of the integrand. We have also replaced the rapidity Y by ln(s/(kk0)).
For the LO BFKL the function κ (γ, ω) reduces to κLO (γ, ω) = ᾱsχ (γ ), with the latter
given by Eq. (4.174). In the LO case, integrating over ω in Eq. (6.48) yields Eq. (3.80) with
n = 0.

It is clear from Eq. (6.48) that the traditional DGLAP moment-space representation (see
Sec. 2.4.5) can be achieved after the integration over γ by closing the contour to pick up
the singularity at γ = γ (ᾱs , ω), which is the solution of the equation

ω = κ(γ, ω) . (6.49)

The result of the calculation of the NLO BFKL equation allows one to write

κ(γ, ω) = ᾱsχ (γ ) + ᾱ2
s χ1(γ, ω) + · · · , (6.50)

where the exact form of the NLO correction χ1(γ, ω) is unimportant for our purposes. We
only need to know that an inspection of the explicit form of χ1(γ, ω) shows that numerically
large contributions stem from the regions γ → 0 and γ → 1, where χ1(γ, ω) ∝ 1/γ 2 and
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246 Corrections to nonlinear evolution equations

1/(1 − γ )2 respectively. These are the regions of γ where the DGLAP equation governs the
energy and transverse momentum evolution of the parton densities, which will be utilized
shortly.

Another large contribution originates from the dependence of the QCD coupling on the
transverse momenta. This contribution can be incorporated in the framework of the RG
approach if we first integrate over γ in Eq. (6.48); then, solving Eq. (6.49) to find the pole
at γ (ᾱs, ω) and, for k > k0, making the replacement

γ (ᾱs(ξ ), ω) ξ −→
ξ∫

0

dξ ′γ
(
ᾱs(ξ

′), ω
)

(6.51)

in the exponent of Eq. (6.48) would give us the answer as a single integral over ω with the
running-coupling corrections included.

Our aim is to find a function κ (γ, ω) that describes both the LO and NLO BFKL
kernels and DGLAP evolution for k2 > k2

0 (or k2
0 > k2). A comparison of Eq. (6.48) with

the DGLAP equation shows that since the latter is written in terms of the distribution
functions, the definition of Bjorken x (and consequently of the rapidity Y = ln 1/x) in the
DGLAP picture is given by x = k2/s for k2 � k2

0 and by x = k2
0/s for k2 � k2

0; these
expressions are different from those for an up–down symmetric (for a vertically drawn
ladder) variable x = e−Y = (k0k)/s used in Eq. (6.48). Indeed, in the LLA small-x evolution
such differences were outside the approximation’s control and were not important: now they
are crucial for matching NLO BFKL onto DGLAP evolution. Changing the momentum
scale in the definition of rapidity and Bjorken x leads to the shift γ → γ ± ω/2:

G (k, k0, Y ) = 1

k2

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

( s

k2

)ω
e(γ+ω/2)ξ 1

ω − κ(γ, ω)

= 1

k2
0

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

(
s

k2
0

)ω

e(1−γ+ω/2)ξ0
1

ω − κ(γ, ω)
, (6.52)

where we have defined ξ0 = ln(k2
0/k2) to replace ξ in the case k0 > k. We see that one

effect of DGLAP evolution would be to replace γ by γ + ω/2 near the singularity γ = 0
and γ by γ − ω/2 near the singularity γ = 1.

The LO BFKL kernel has singularities for all integer values of γ , corresponding to
different powers of k2/k2

0 in the Green function G, that is, to different twists. Singling out
the leading-twist singularities at γ = 0 and γ = 1 we write the LO BFKL kernel as a sum
of the leading-twist contribution and the higher-twist terms:

χ (γ ) = 1

γ
+ 1

1 − γ
+ χHT (γ ) (6.53)

where the higher-twist part is given by

χHT (γ ) = 2ψ(1) − ψ(1 + γ ) − ψ(2 − γ ). (6.54)
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6.3 The NLO BFKL and BK equations 247

The two terms of the leading-twist part of χ (γ ) describe two different branches of the
leading-twist evolution: the 1/γ term corresponds to a DGLAP evolution from low k0 to
high k with ordering in the transverse momenta of emitted partons k0 � k1⊥ � · · · �
ki⊥ � · · · � k, while the 1/(1 − γ ) term leads to an evolution from low k to high k0 with
the opposite ordering, k � · · · � ki⊥ � · · · � k1⊥ � k0. The higher-twist contributions
play a significant role in the LO BFKL evolution: for example, they change the leading-twist
value of the pomeron intercept from [1/γ + 1/(1 − γ )]γ=1/2 = 4 to χ (γ = 1/2) = 4 ln 2 ≈
2.8. However, the DGLAP evolution or, in other words, the anomalous dimensions of the
operators giving rise to the higher-twist contributions are entirely unknown. Fortunately,
on scrutinizing the NLO BFKL kernel one can see that the large problematic contribution
does not come from these higher-twist terms and so we can concentrate on the leading-twist
terms alone.

The next step is to replace the residue 1 in the first term in Eq. (6.53) by the full DGLAP
gluon–gluon anomalous dimension γGG(ω) from Eq. (2.121d), in order to incorporate the
DGLAP effects at finite ω:

ᾱs

γ
−→ ᾱs

2Nc

ωγGG(ω)

γ
. (6.55)

Performing the same replacement for the term 1/(1 − γ ) in Eq. (6.53) and using the shifts
in γ incorporated into Eq. (6.52), we obtain the RG-improved BFKL kernel (Ciafaloni,
Colferai, and Salam 1999a):

κRG (γ, ω) = ᾱs

2Nc

[
ωγGG(ω)

γ + ω/2
+ ωγGG(ω)

1 − γ + ω/2

]
+ ᾱsχ

HT (γ ) + · · · , (6.56)

where the ellipsis stand for order-α2
s terms that are nonsingular at γ = 0 and γ = 1. The

expansion of Eq. (6.56) in powers of ω would give us the correct collinear singularities
(1/γ 2 and 1/(1 − γ )2 terms) at the NLO at order ω, while higher orders in ω capture the
collinear singularities of the higher-order BFKL kernels.

The kernel in Eq. (6.56) contains the full LO and NLO BFKL kernels, with the leading-
twist parts of the LO BFKL kernel enhanced by DGLAP evolution, which resums all the
leading (transverse) logarithmic collinear singularities to all orders.

To impose energy conservation one has to make sure that the kernel (6.56) vanishes
at ω = 1 (see Exercise 2.3). This can be achieved in a crude way by simply multiplying
χHT (γ ) and other terms in Eq. (6.56) that are a priori nonvanishing at ω = 1 by 1 − ω

(Ellis, Kunszt, and Levin 1994). The expression that results from this procedure, after the
terms denoted by the ellipses in Eq. (6.56) have been discarded,

κRG(γ, ω) = ᾱs

2Nc

[
ωγGG(ω)

γ + ω/2
+ ωγGG(ω)

1 − γ + ω/2

]
+ (1 − ω) ᾱsχ

HT (γ ), (6.57)

was used by Khoze et al. (2004), who showed that Eq. (6.57) describes the full RG-
resummed NLO BFKL kernel (6.56) within 7% accuracy. The most interesting aspect of the
result is that even such a simple modification of the NLO BFKL kernel leads to a stable result
for the Green function, and for the resulting amplitudes and cross sections, and considerably
reduces the value of the NLO corrections. The kernel (6.56) has a minimum at γ = 1/2, at
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248 Corrections to nonlinear evolution equations

which the value of the BFKL pomeron intercept is about 0.25 for ᾱs = 0.15. The diffusion
logarithm squared term (similar to Eq. (3.85)) again has a negative coefficient, so that the
instability of transverse momentum fluctuations is now avoided. In the region γ < 1/2
the NLO kernel (6.57) is very close to the DGLAP kernel. For a detailed comparison of
the modified BFKL kernel with the experimental data as well as with other approaches we
recommend the paper Ciafaloni (2005).

We have demonstrated that our knowledge of DGLAP evolution allows us to understand
the sources of the large NLO contributions to the BFKL equation and allows us to formulate
a more stable approach to higher-order corrections for small-x evolution.

The effect of the NLO corrections on the value of the saturation scale was considered by
Gotsman et al. (2005); not unexpectedly, their conclusion was that the NLO corrections,
while lowering the value of the BFKL intercept, also slow down the growth in the saturation
scale with energy, leading to lower values of the saturation scale than those given by the
fixed-coupling evolution.

Further reading

The first attempts to include the running QCD coupling in the BFKL equation by resumming
powers of αsNf were made by Braun (1995) and Levin (1995) and were based on the
bootstrap equation (see Sec. 3.3.5) at next-to-leading order, obtaining the triumvirate of
running couplings for the first time. Their original conjecture was proved at NLO by Fadin
and Fiore (1998). The direct calculations in the BK/JIMWLK formalism discussed above
were performed by Balitsky (2007) and by Kovchegov and Weigert (2007a).

For more information on the nonperturbative corrections to BFKL, BK, and JIMWLK
evolution coming from the IR renormalons, we refer the reader to Gardi et al. (2007) and
Levin (1995). Some aspects of the nonperturbative effects due to instantons in the CGC
were studied by Kharzeev, Kovchegov, and Levin (2002). The possibility that the BFKL
pomeron could reach the nonperturbative region of small momenta through “tunneling”
was suggested by Ciafaloni et al. (2003b). Whether the nonlinear evolution can withstand
this type of nonperturbative correction and remain perturbative is still an open question.

The NLO BFKL kernel has been calculated by two groups: Fadin, Lipatov, and their
collaborators and Camici, Ciafaloni, and their collaborators. All references for these works
can be found in the papers with the final results: Fadin and Lipatov (1998) and Ciafaloni
and Camici (1998). The NLO BK equation was found by Balitsky and Chirilli (2008).

In our presentation of the RG-improved BFKL kernel we described the key ideas pro-
posed by Salam (1998, 1999) and by Ciafaloni, Colferai, and Salam (1999a). We dis-
cussed the simplest possible example of a resummed kernel, that from the paper of Khoze
et al. (2004). More recent developments in this area can be found in the papers by Ciafaloni
et al. (2003a) and by Altarelli, Ball, and Forte (2006). We need to remember that we have no
information on the anomalous dimensions of the higher-twist contributions and, therefore,
the NLO corrections to the part of the BFKL kernel that is responsible for the higher-
twist corrections cannot be improved on the basis of the existing renormalization group.
This problem is not for further reading but rather for further research. Alternatives to the
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RG-improved BFKL kernel can be found in the papers by Brodsky et al. (1999) and by
Schmidt (1999). For a description of the experimental DIS data in the NLO BFKL approx-
imation we refer the reader to the papers White and Thorne (2007), Ciafaloni (2005), and
Peschanski, Royon, and Schoeffel (2005). The effect of the NLO BFKL kernel on the
saturation scale was studied by Khoze et al. (2004). The impact of NLO corrections on the
solution of the BK equation was studied by Gotsman et al. (2004). The large contribution
of the NLO correction to the saturation scale possibly calls for a generalization of the
nonlinear equation and could be a good subject for further investigations.

Exercises

6.1 Using Eq. (6.56) (dropping the ellipses) with the gluon–gluon splitting function γGG

given by Eq. (2.121d), calculate the correction to the intercept of the BFKL pomeron,
as follows.
(a) Solve

ω = κRG(γ, ω) (6.58)

for ω by assuming that ω = O(ᾱs) and expanding the right-hand side to the
quadratic order in ω.

(b) Find the saddle point of the resulting expression for ω(γ ); the value of ω(γ ) at the
saddle point yields the new BFKL pomeron intercept.

(c) Find the Green function (6.48) in the diffusion approximation using the results
of parts (a) and (b). Show that the diffusion term is negative and, therefore, the
solution is stable.

6.2 Consider the analogue of the series from Eq. (6.40) in QED:

∞∑
n=0

(
−αEM

6π

)n
n!. (6.59)

Resum the series using the Borel resummation procedure outlined in Sec. 6.2.3. Com-
ment on the analyticity of the function of αEM that is obtained.
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7

Diffraction at high energy

The observables discussed in this book so far have been limited to total cross sections
and the related structure functions. To calculate these quantities one does not need to
impose any constraints on the final state. We now present a small-x calculation of a more
exclusive quantity, the cross section for diffractive dissociation, where one requires that
the final state has at least one rapidity gap, i.e., a region of rapidity where no particles
are produced. We again tackle the problem using the two-step formalism of Chapters 4
and 5: we first calculate the cross sections for quasi-elastic processes using the classical
MV/GGM approximation and then include small-x evolution corrections in the resulting
expression. For diffractive dissociation where the produced hadrons have large invariant
mass, we develop a nonlinear evolution equation that describes the process.

7.1 General concepts

7.1.1 Diffraction in optics

Diffraction is a typical process in which we can see the wave nature of particles. When
thinking of diffraction one usually pictures the diffraction of light, when a plane wave is
incident on an aperture or an obstacle (see Fig. 7.1) and forms a diffraction pattern on the
screen behind. The diffraction pattern consists of a bright spot in the middle and a series of
maxima and minima of light intensity around it, as shown schematically in Fig. 7.1. The
positions of these maxima and minima depend on the size R of the obstacle or aperture
(the target), the distance d between the target and the screen (the detector), and the light
wavelength λ. Depending on the values of these three parameters one usually distinguishes
three types of diffraction, as follows.

(i) Fraunhofer diffraction, when R2/(λ d) � 1, which corresponds to the scattering at
very small angles;

(ii) Fresnel diffraction, when R2/(λ d) ≈ 1, which corresponds to the scattering at small
(but not very small) angles;

(iii) geometrical optics, when R2/(λ d) � 1 and we recover the light-ray picture.

Keeping λ and R fixed, one can see that when the screen is close to the obstacle or aperture
(i.e., at small d) we have geometrical optics. As we move the screen further away from the
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plane
wave

obstacle
or aperture

(detector)
screen

diffraction
pattern

(size = R)

k

distance d

Fig. 7.1. The diffraction pattern for the scattering of light.

− b

k b z

z = d

z = 0
R

θ

Fig. 7.2. The diffraction of a plane wave with momentum (wave vector) k by a circular
aperture of radius R in a plane screen at z = 0. We observe the diffraction pattern on another
plane screen at z = d.

target we go through a region of Fresnel diffraction, and, far away from the target, we enter
the region of Fraunhofer diffraction. As our goal here is to build an optical analogy to the
high energy scattering of particles, when the detector is far from the target (compared with
the particle size and wavelength), we see that we need to study Fraunhofer diffraction.

To be more specific, consider diffraction on a circular aperture in an infinite plane screen,
with the detector also an infinite plane screen, as shown in Fig. 7.2. We are interested in
the shape of the diffraction pattern on the screen. Our calculation is going to be rather
brief, as we assume that the reader is familiar with the theory of diffraction in optics.
For a more detailed theoretical discussion of the diffraction of light we refer the reader
to the book of Jackson (1998) (Sections 10.5–10.11). For simplicity we also imagine that
instead of electromagnetic light we have some massless scalar field φ(t, �r). The plane
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252 Diffraction at high energy

wave is incident along the z-axis and is described by φinc(t, �r) = e−iωt+ikzφ0, where ω

is the frequency and k = 2π/λ is the wave number. According to the Huygens–Fresnel
principle, the field at the detector screen located at z = d, is given by the sum of the
spherical waves exp(ik|�r − �b|)/(4π |�r − �b|) coming from every point in the aperture. Here
�r − �b is the distance vector connecting point �b in the aperture and point �r on the screen
(see Fig. 7.2). For d � λ the field at the screen (the scattered field) can be written in terms
of a generalized Kirchhoff integral as

φsc(�r ) = k

2πi

∫
aperture

d2b⊥
eik|�r−�b|

|�r − �b|
(�r − �b)z
|�r − �b| φinc

(
�b⊥, z = 0

)
, (7.1)

where the integral is over the two-dimensional surface of the aperture located at z = 0 and
φsc(t, �r) = e−iωtφsc(�r).

For Fraunhofer diffraction we can expand the exponent of Eq. (7.1) to give |�r − �b| =
r − b sin θ + O(b2/r), where θ is the angle between �r and the z-axis, r = |�r|, and b = |�b|.
Using this expansion along with (�r − �b)z/|�r − �b| ≈ 1 we can rewrite the Kirchhoff integral
of Eq. (7.1) in the form

φsc (�r) = k

2πi

eikr

r

∫
aperture

d2b⊥e−ikb sin θφ0

= k

2πi

eikr

r

∫
aperture

d2b⊥e−i �q·�bφ0 = eikr

r
f (�q) , (7.2)

where �q = �k′ − �k is the recoil momentum (wave vector) and �k′ is the wave vector of the
scattered spherical wave with magnitude equal to k and direction parallel to �r . Note that
�b = (�b⊥, z = 0). The function f (�q) is defined as

f (�q) = k

2πi

∫
aperture

d2b⊥e−i �q·�bφ0 (7.3)

and corresponds to the scattering amplitude.
The (time-averaged) energy densities in the incident and scattered waves are given by

Iinc = ω2|φinc|2
2

= ω2φ2
0

2
and Isc = ω2|φsc|2

2
= ω2φ2

0

2

|f (�q) |2
r2

. (7.4)

Defining the differential scattering cross section as the ratio of the outgoing energy in an
infinitesimal solid angle d� and the flux of energy in the incoming wave we obtain

dσ = Iscr
2d�

Iinc

= |f (�q)|2d�. (7.5)

For the circular aperture of radius R in Fig. 7.2 we have

f (�q) = k

2πi

∫
d2b⊥e−i �q·�b θ (R − b) = −ik

R∫
0

dbbJ0(bq) = −i
kR

q
J1 (qR) , (7.6)
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where q = |�q| and b = |�b⊥|. Using this result in Eq. (7.5) and writing d� = 2πd cos θ

with sin θ ≈ θ ≈ q/k leads to the cross section

dσ

dt
= πR2 J 2

1

(√|t |R)
|t | , (7.7)

where we have introduced the Mandelstam variable t = −�q 2 in direct analogy with the
scattering of particles.

From Eq. (7.7) one can see that the differential cross section has a series of minima
(zeroes) at R

√|t | = Rq = Rk sin θ = x1n, where x1n are the zeroes of J1(z), and a series
of maxima between the minima. These minima and maxima give the diffraction pattern
shown in Fig. 7.1. In t-space the positions of the minima and maxima are determined solely
by the target size R.

Diffraction in the context of optics, as discussed here, demonstrates that the diffraction
is a direct consequence of the wave nature of light and has the characteristic structure
of a differential cross section dσ/dt as a function of t , with minima and maxima whose
positions depend only on the inverse size of the target.

Certainly this introduction to the subject of light diffraction is rather short, and the
analogy between optics and particle scattering is much richer and more instructive than has
been demonstrated here. For the interested reader we recommend the book of Barone and
Predazzi (2002), which presents the fascinating history of diffraction in optics along with
discussions of optical diffraction in a framework that corresponds to particle scattering.

7.1.2 Elastic scattering and inelastic diffraction

Now we return to high energy scattering in QCD. Let us begin by considering the scattering
of a projectile such as a color dipole on a nuclear target. The elastic, inelastic, and total
scattering cross sections for the process can be found using Eqs. (3.119) if one knows the
S-matrix for the process in impact parameter space. Equation (3.119b) can be rewritten as

dσel

d2b
=
∣∣∣1 − S(s, �b⊥)

∣∣∣2 =
∣∣∣T (s, �b⊥)

∣∣∣2 , (7.8)

where T is the T -matrix. Going into momentum space we obtain

T (s, �b⊥) =
∫

d2q

(2π )2
ei �q⊥·�b⊥ T̃ (s, �q⊥) (7.9)

and, noticing that t = −q2
⊥, one can readily derive that

dσel

dt
= 1

4π

∣∣T̃ (s, �q⊥)
∣∣2 = 1

4π

∣∣∣∣
∫

d2be−i �q⊥·�b⊥T (s, �b⊥)

∣∣∣∣2 . (7.10)

Now consider the scattering on a target that is circular with radius R in the impact
parameter plane. Moreover, assume that the black-disk limit has been reached for all impact
parameters inside the target, i.e., for all b⊥ < R. By analogy with the dipole scattering
studied earlier, we see that in this limit T (s, �b⊥) = iN (s, �b⊥) = iθ (R − b⊥), where N is
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Fig. 7.3. The main types of diffraction. The double wavy lines denote pomeron exchange.

the generalization of the imaginary part of the dipole forward scattering amplitude to the
case of an arbitrary projectile. Using this in Eq. (7.10) we obtain

dσel

dt
= πR2 J 2

1

(√|t |R)
|t | , (7.11)

in complete agreement with Eq. (7.7). We see that elastic scattering on a black disk in high
energy physics is mathematically identical to the diffraction of light.

Indeed, in arriving at Eq. (7.7) we considered scattering on an aperture while here we
have analyzed scattering on a disk, which is a different object but of a complementary shape
(that is, the disk and the plane with the aperture together form a complete plane). However,
Babinet’s principle in optics tells us that diffraction patterns for recoil momentum q �= 0
are identical for the obstacle and its complement: hence the optical diffraction pattern (7.7)
is the same for a black disk of radius R, as can be verified by an explicit calculation.

The term “diffraction” in high energy scattering and the first theoretical ideas on the sub-
ject were introduced in the early 1950s by Landau, Pomeranchuk, Feinberg, Ahiezer, Ter-
Mikaelyan, and Sitenko (see the review by Feinberg and Pomeranchuk (1956)). These ideas
were crystallized and put into an elegant theoretical framework by Good and Walker (1960).

At high energy the term diffraction covers a much broader range than the elastic processes
considered so far in this chapter. An event is considered diffractive if it contains a rapidity
gap. A rapidity gap is an interval in rapidity (usually at least a few units wide) over which
no particles are produced. Clearly, in elastic collisions no new particles are produced in the
rapidity interval between the target and the projectile; in this case the rapidity gap covers
the whole interval in rapidity.

Scattering amplitudes for the main types of diffractive event are shown in Fig. 7.3
for hadron–hadron scattering. The elastic process we have discussed above is presented
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Fig. 7.4. Single diffractive dissociation in DIS: (A) a general representation of the process
and (B) an explanation of the kinematic variables. The double wavy lines represent pomeron
exchange, while the single wavy line denotes a virtual photon.

in panel A. The double wavy line denotes the exchange of a color-singlet object (the
pomeron). Panels B through D represent various cases of inelastic diffraction, where one or
both hadrons break up in the collision, that still lead to a rapidity gap or gaps. Panel B shows
the process of single diffractive dissociation, where one hadron breaks up into several other
hadrons denoted by X while the other stays intact. A single rapidity gap is generated in this
process. One also distinguishes low- and high-mass diffraction, depending on whether the
invariant mass MX of the produced particles X is small or large. Processes with a single
rapidity gap in which both hadrons dissociate, as shown in panel C of Fig. 7.3, are referred
to as double diffractive dissociation. Finally, one may have more than one rapidity gap
in the event: an example of a process with two rapidity gaps is shown in panel D, where
hadrons are produced at mid-rapidity and are flanked by a rapidity gap on either side. Such
processes are called central diffraction. If a single particle is produced at mid-rapidity then
the process is referred to as central exclusive diffraction.

While diffraction in hadronic scattering represents an interesting and often challenging
problem in itself, here we will concentrate on diffractive dissociation in DIS.

7.2 Diffractive dissociation in DIS

Consider single diffractive dissociation in DIS. This is a process in which a virtual photon
interacts with the target, producing a number of hadrons and jets in the final state (denoted
by X) but leaving the target intact and generating a rapidity gap. The process is illustrated
in Fig. 7.4A. The particles X with net invariant mass MX produced as a result of the
target’s breakup do not fill the whole rapidity interval; they leave a rapidity gap between the
target and the “slowest” produced particle. This rapidity gap is of order �Ygap = ln[(ŝ +
Q2)/(M2

X + Q2)], where ŝ is the center-of-mass energy squared of the virtual photon–target
collision (see Eq. (2.5)). (The net rapidity interval for ŝ � Q2 is Y = ln(ŝ/Q2), while the
produced hadrons fill in the rapidity range �Yfilled = Y − �Ygap = ln[(M2

X + Q2)/Q2].)
No particles are produced in the rapidity gap; the existence of such a rapidity gap is indeed
the characteristic signature of diffractive processes.
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256 Diffraction at high energy

Diffractive dissociation in DIS is usually described in terms of the kinematic variables
xP and β, which originate in pomeron phenomenology and are explained by Fig. 7.4B.
Treating the pomeron as an effective “parton” one may describe it as carrying a fraction
xP of the incoming proton’s light cone momentum. Neglecting the mass of the proton and
working in the IMF with the proton moving in the light cone plus direction, we see that the
pomeron will carry momentum xP P μ, with P μ given by Eq. (2.26) with m = 0. Requiring
that (xP P + q)2 = M2

X (see Fig. 7.4B) and remembering that ŝ = (P + q)2, we obtain

xP = Q2 + M2
X

Q2 + ŝ
. (7.12)

The variable β is defined as the fraction of the pomeron’s light cone momentum carried by
the quark that is struck by the virtual photon; thus (see Fig. 7.4B again)

β = xBj

xP

= Q2

Q2 + M2
X

. (7.13)

Below we will distinguish low- and high-mass diffraction in DIS. When the invariant
mass of the produced hadrons, MX, is low, MX � Q, which is usually the case when
few hadrons are produced, we see that β ≈ 1 and xP ≈ xBj , so that �Ygap = ln 1/xP ≈
ln 1/xBj = Y ; the rapidity gap covers much of the net rapidity interval, as expected. When
the mass MX is large, MX � Q, we have β � 1 and xP ≈ M2

X/ŝ ≈ e−�Ygap ; the rapidity
gap may still be large but the rapidity interval filled by the produced hadrons is large as well.

A particularly interesting aspect of diffraction is that the typical momentum transfer
appears to be of order |t | ∼ 1/R2, as follows from Eq. (7.11). The momentum is of order
the inverse size of the target, which is in the nonperturbative QCD region (This is why t

was neglected in the derivation of Eqs. (7.12) and (7.13).). It would seem, on the one hand,
that diffraction is a non-perturbative process and cannot be studied within the perturbative
QCD framework. On the other hand, a main postulate of the saturation or CGC approach
is that saturation effects generate the saturation scale Qs(Y ); this screens the IR physics,
making the cross sections and other observables perturbative. On top of that, in DIS one has
a hard scale Q2, which may also be perturbatively large. We see that diffraction becomes a
cross-check of the saturation approach, the main question being whether saturation physics
makes diffraction a perturbative process.

7.2.1 Low-mass diffraction

To describe low-mass diffraction in DIS at high energies it is natural to start with the dipole
picture of DIS presented in Sec. 4.1. Again we have a separation of scales: a virtual photon
will decay into a qq̄ pair long before hitting the target and the qq̄ dipole interacts with the
target in due course. The dipole–target interaction can be either inelastic or elastic. In Chap-
ter 4 we showed that the total DIS cross section can be written as (see Eqs. (4.6) and (4.24))

σ
γ ∗A
tot =

∫
d2x⊥
2π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2 N (�x⊥, �b⊥, Y ). (7.14)
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Fig. 7.5. The quasi-elastic DIS amplitude that leads to Eq. (7.17).

Omitting the part of the expression related to the virtual photon wave function, we obtain
for the dipole–nucleus total cross section

σ
qq̄A
tot (�x⊥, Y ) = 2

∫
d2b N (�x⊥, �b⊥, Y ) = 2

∫
d2b
[
1 − S(�x⊥, �b⊥, Y )

]
. (7.15)

We see that this is exactly Eq. (3.119a) (as S is real). By analogy with Eq. (3.119b) the
elastic dipole–nucleus cross section is then

σ
qq̄A
el (�x⊥, Y ) =

∫
d2b
[
1 − S(�x⊥, �b⊥, Y )

]2
=
∫

d2b N2(�x⊥, �b⊥, Y ). (7.16)

The corresponding quasi-elastic DIS cross section is obtained by convoluting (7.16) with
the square of the virtual photon’s wave function:1

σ
γ ∗A
el =

∫
d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2N2(�x⊥, �b⊥, Y ). (7.17)

Equation (7.17) was derived in the quasi-classical GGM/MV approximation, that is, with N

given by Eq. (4.51), by Buchmuller, Gehrmann, and Hebecker (1997) (see also Buchmuller,
McDermott, and Hebecker (1999)) and by Kovchegov and McLerran (1999). However, one
can see that our derivation assumes only the decomposition of the interaction into the
virtual photon’s wave function and the amplitude N , with the latter independent of the light
cone momentum fraction z. This assumption is also true in the LLA: hence the elastic DIS
cross section (7.17) is also valid in the case when the LLA quantum evolution is included.
Therefore Eq. (7.17) is true whether N is found from the BK equation (4.138) in the large-
Nc limit or from the JIMWLK equation for the dipole S-matrix (5.98) when the large-Nc

limit is relaxed.
The quasi-elastic DIS process corresponding to Eq. (7.17) is illustrated in Fig. 7.5. Here

the virtual photon splits into a qq̄ pair, after which the pair interacts with the target nucleus

1 Note that the high energy γ ∗A cross section at order αEM cannot be elastic, since we do not have a photon in the final
state (see Fig. 7.5): we will refer to this process as quasi-elastic, to distinguish it from high-mass diffraction.
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258 Diffraction at high energy

elastically, as denoted by the oval labeled N . In the LLA approximation this means that
before the interaction the dipole develops a gluon cascade, as in, say, Fig. 4.23; this cascade
interacts with the target by GGM coulomb–gluon exchange and after the interaction is
reabsorbed into the dipole, so that in the final state one finds only the original qq̄ pair along
with the intact nucleus. One may expect that such a process would be very rare, since it
would appear highly unlikely that the gluon cascade would recombine back into the original
dipole. An amazing property of elastic scattering and diffraction is that it demonstrates that
such an intuition is incorrect when it comes to cross sections. Indeed, in the saturation
regime, when the black-disk limit is reached and N = 1, we see from Eqs. (7.15) and
(7.16) that

σ
qq̄A
el

σ
qq̄A
tot

=
∫

d2bN2

2
∫

d2bN
−→ 1

2
. (7.18)

Elastic dipole–nucleus scattering constitutes half the total cross section in very high energy
collisions!

Note that in Fig. 7.5 we have two quarks in the final state: they are likely to fragment
into one or several hadrons, leading to a low-MX diffractive final state.

Using Eqs. (7.14) and Eq. (7.17) we can compare the main properties of the total
and diffractive (quasi-elastic) DIS cross sections, looking for their common and different
features. The large-Q2 behavior is particularly instructive. Analyzing the virtual-photon
wave functions squared in Eqs. (4.18) and (4.21) we see that, since the modified Bessel
functions K1 and K0 fall off exponentially at large values of the argument, at large Q2 the
main contribution to the z-integral in both Eqs. (7.14) and (7.17) comes from the region
af x⊥ ≤ 1 with af given by Eq. (4.17). Neglecting for simplicity the quark masses mf we see
that this implies

√
z(1 − z) ≤ 1/(Qx⊥), and, since z(1 − z) < 1/4, we either have z � 1 or

1 − z � 1 if Qx⊥ � 2. Either the quark or the antiquark carries most of the virtual photon’s
light cone momentum. This configuration is known as the aligned-jet configuration and is
the basis for the aligned-jet model (Bjorken and Kogut 1973, Nikolaev and Zakharov 1975,
Frankfurt and Strikman 1988) since, in the case when the produced quark and antiquark
in, say, Fig. 7.5, fragment into jets, one jet is aligned with the momentum of the virtual
photon.

Concentrating on the z � 1 region (and multiplying the expression by 2 to account for
the 1 − z � 1 region), we can integrate over z explicitly with the help of Eqs. (4.18) and
(4.21) to obtain (note that N is z-independent)

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

T (�x⊥, z)|2 ≈ 4Nc

∑
f

αEMZ2
f

π
Q2

∞∫
0

dz z
[
K1(x⊥Q

√
z)
]2

= 16Nc

3

∑
f

αEMZ2
f

π

1

Q2x4
⊥

(7.19)
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and

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄

L (�x⊥, z)|2 ≈ 16Nc

∑
f

αEMZ2
f

π
Q2

∞∫
0

dz z2 [K0(x⊥Q
√

z)
]2

= 512

15
Nc

∑
f

αEMZ2
f

π

1

Q4x6
⊥

. (7.20)

One can show that for N ∼ x2
⊥ at small x⊥, which is true in the GGM (4.51) and DLA

(4.150) approximations, the longitudinal contribution (7.20) is more suppressed at high Q2

than the transverse contribution, both for σ
γ ∗A
tot and σ

γ ∗A
el ; therefore, we can neglect it in the

large-Q2 limit.
Noting that Qx⊥ � 2 and using Eq. (7.19) in Eqs. (7.14) and (7.17) yields, after inte-

gration over the angles of �x⊥,

σ
γ ∗A
tot ≈ 4NcαEM

3πQ2

∑
f

Z2
f

∞∫
4/Q2

dx2
⊥

x4
⊥

∫
d2b⊥2N (x⊥, �b⊥, Y ), (7.21a)

σ
γ ∗A
el ≈ 4NcαEM

3πQ2

∑
f

Z2
f

∞∫
4/Q2

dx2
⊥

x4
⊥

∫
d2b⊥N2(x⊥, �b⊥, Y ), (7.21b)

where we have assumed that N is independent of the direction of �x⊥.
To evaluate the integrals in Eqs. (7.21) we use the explicit leading-twist expression for

the dipole amplitude N from Eq. (4.32), which is valid for x⊥ � 1/Qs , obtaining

σ
γ ∗A
tot ≈ 4αsαEMπ

3NcQ2

∑
f

Z2
f

1/Q2
s∫

4/Q2

dx2
⊥

x2
⊥

xGA

(
x,

1

x2
⊥

)
, (7.22a)

σ
γ ∗A
el ≈ α2

s αEMπ3

3N3
c Q2

∑
f

Z2
f

1/Q2
s∫

4/Q2

dx2
⊥

[
xGA

(
x,

1

x2
⊥

)]2

, (7.22b)

where we have used the fact that
∫

d2bT (�b⊥) = A and, in the spirit of the GGM approxi-
mation, replaced AxGN with the nuclear gluon distribution xGA.

Assuming that xGA is a slowly varying function of x⊥, we can see from Eqs. (7.22) that
the total cross section depends on the upper limit of the x⊥-integral logarithmically, while
the quasi-elastic cross section depends on it quadratically. In the absence of saturation
effects the integrals would have to be cut off by the nonperturbative physics in the IR,
that is, we should replace Qs by �QCD: in such a case both cross sections would be
nonperturbative, the elastic one being more so than the total. We see that saturation effects
make both cross sections perturbative, even for t = 0 in the diffractive case, yet again
justifying the perturbative QCD approximation.
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q

γ∗
x⊥

N

ρ, ω, φ, J/ψ, . . .

b⊥

Fig. 7.6. Exclusive vector meson production amplitude in DIS.

We can make another crude approximation leading to a physical insight if we notice that
in the GGM model the saturation scale squared Q2

s is proportional to the gluon distribution
function, as follows from Eq. (4.47). Assuming that xGA is a slowly varying function of
x⊥, we integrate over x⊥ in Eqs. (7.22) to obtain2

σ
γ ∗A
tot ∝ xGA(x,Q2

s ) ln
Q2

4Q2
s

, (7.23a)

σ
γ ∗A
el ∝ 1

Q2
s

[
xGA

(
x,Q2

s

)]2 ∝ xGA

(
x,Q2

s

)
, (7.23b)

so that, neglecting logarithms, which are outside the precision of our approximation, the
ratio σ

γ ∗A
el /σ

γ ∗A
tot is approximately independent of Bjorken x (Kovchegov and McLerran

1999). This appears to be in approximate agreement with the data collected at HERA (see
Fig. 9.2 along with Abramowicz and Dainton (1996), H1 collaboration (1997), and ZEUS
collaboration (1999)).

Another important low-mass diffractive DIS process to consider is exclusive vector
meson production. It is related to the quasi-elastic scattering of Eq. (7.17): in exclusive
vector meson production the outgoing quark and antiquark recombine into a single vector
meson. One still has a rapidity gap with the target intact in the final state. This is illustrated
in Fig. 7.6. More precisely the reaction is

γ ∗ + p → V (ρ, ω, φ, J/�, . . .) + p (7.24)

for DIS on a proton; V denotes a vector meson.
The cross section of this reaction can be easily calculated using LCPT; one simply needs

to find the overlap of the qq̄ state with the (complex conjugate) light cone wave function
of the vector meson �V . To see this, let us calculate the diagram in Fig. 7.6 in LCPT. The
additional contributions, not present in Eq. (7.17), come from the qq̄ → V process: this is
exactly the reverse of what is described by the vector meson’s light cone wave function.

2 Note that, while in Eq. (4.45) xGN does not depend on x, Eq. (4.32) is still valid in the DLA region even after small-x
evolution is included (cf. Eq. (4.150)), with xG depending on x.
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7.2 Diffractive dissociation in DIS 261

The cross section for exclusive vector meson production is equal to (see Ryskin (1993)
for the J/� production case and Brodsky et al. (1994) for the general case of vector meson
production)

σγ ∗+A→V +A

=
∫

d2b⊥

∣∣∣∣
∫

d2x⊥
4π

1∫
0

dz

z(1 − z)
�γ ∗→qq̄(�x⊥, z) N (�x⊥, �b⊥, Y )�V (�x⊥, z)∗

∣∣∣∣2. (7.25)

Note that now the dipole transverse sizes in the amplitude and in the complex conjugate
amplitude are different, and are integrated over separately.

In general the wave function �V is nonperturbative. In practice the main contribution of
the x⊥-integral in Eq. (7.25) comes from short distances, owing to the large values of Q2

and Q2
s there; thus we can approximate �V (�x⊥, z) by �V (0, z) (the wave function at the

origin). For vector mesons �V (0, z) is known from their decay into an electron–positron
pair, V → e+e−.

One can also show that the typical transverse distances in this process are of order 1/Qs

and so the process is, therefore, perturbative. However, the diffractive minima and maxima
in the corresponding t-distribution are determined by the size of the target. To see this, we
write (analogously to the transition from Eq. (7.8) to Eq. (7.10))

dσγ ∗+A→V +A

dt
= 1

4π

∣∣∣∣
∫

d2be−i �q⊥·�b⊥T qq̄A(ŝ, �b⊥)

∣∣∣∣2 , (7.26)

where now the T -matrix element is given by

T qq̄A(ŝ, �b⊥) = i

∫
d2x⊥
4π

1∫
0

dz

z(1 − z)
�γ ∗→qq̄(�x⊥, z) N (�x⊥, �b⊥, Y )�V (�x⊥, z)∗, (7.27)

with Y = ln ŝx2
⊥. We see that the �b⊥-dependence of the T -matrix in Eq. (7.27) is given by

that of N , which in turn is largely determined by the geometry of the target. Hence the
positions of the diffractive maxima and minima of vector meson production are proportional
to 1/R, with R the nuclear radius. In addition, the size of the target (or, more precisely, the
size of the interaction region) increases with energy; however, this increase depends mostly
on nonperturbative corrections as we will discuss later.

As suggested by Munier, Stasto, and Mueller (2001), we can use Eq. (7.26) to extract the
�b⊥-dependence of the T -matrix (and, consequently, the S-matrix) from the experimental
data, since we can invert it to write

T qq̄A(ŝ, �b⊥) = i

2π3/2

∫
d2qei �q⊥·�b⊥

√
dσγ ∗+A→V +A

dt
. (7.28)

This relation relies on the assumption that the T -matrix is purely imaginary at high energies
(and hence the S-matrix is real). This assumption is certainly correct for small t , in the
LLA, but at large values of t the real part of the T -matrix may not be small. In spite of this
uncertainty, Eq. (7.28) shows that we can observe the T -matrix at fixed b, which, in turn,
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q

γ∗

N
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rapidity
gap

0

Y

Y0

Fig. 7.7. An example of a diagram contributing to high-mass diffraction in DIS. The vertical
axis on the right measures the rapidities of the particles.

can be calculated in the saturation approach. Note that the nonperturbative light cone wave
function �V enters Eq. (7.27). Above we suggested a rough approximation in which the
vector meson wave function was replaced by its value at the origin. For mesons consisting
of heavy quarks, such as J/�, or even for the ϒ-meson, consisting of a bb̄-pair, one may
hope to improve on that approximation by using perturbative QCD to calculate the wave
functions.

7.2.2 Nonlinear evolution equation for high-mass diffraction

So far we have considered only low-mass diffractive processes, when the gluon cascade
developed by the dipole before the interaction with the nucleus is reabsorbed back into
the dipole after the interaction, so that we only have the original qq̄ dipole in the final
state (along with the target), as shown in Fig. 7.5. The quark and the antiquark in the
pair cannot be far from each other in rapidity, since the quark emission at small x, unlike
that for gluons, is not enhanced by a logarithm of x: this is why we neglected the quark
contribution to small-x evolution in the LLA. Therefore, since the invariant mass of the
produced particles is related to the rapidity interval that they fill by M2

X = Q2(e�Yf illed − 1),
we see that elastic qq̄ pair production mainly leads to low-mass diffraction. If one wants to
produce a high-mass state with a rapidity gap, one has to augment the picture of Fig. 7.5 by
allowing some “fast” gluons to survive in the final state, as shown in Fig. 7.7. The process
is now more complicated than that in Fig. 7.5. While the incoming dipole still develops a
dipole cascade, not all the gluons in the cascade recombine back by the time the system
reaches the final state: only gluons with rapidities between 0 and Y0 recombine back, so
that a rapidity gap �Ygap = Y0 − 0 = Y0 is formed and the target nucleus remains intact,
as illustrated in Fig. 7.7. Gluons with rapidities y > Y0 do not need to recombine back
and thus can become “produced” gluons, as shown in Fig. 7.7. In fact some gluons with
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7.2 Diffractive dissociation in DIS 263

y > Y0 may even be emitted after the GGM interaction with the target, as we will see
shortly.

First let us define the observable we would like to calculate. Considering dipole–nucleus
scattering, we denote by ND(�x⊥, �b⊥, Y, Y0) the cross section per unit impact parameter for
diffractive dissociation with a single rapidity gap stretching from 0 (the target) to some
rapidity greater than or equal to Y0. The corresponding single diffractive cross section with
rapidity gap greater than or equal to Y0 in the dipole–nucleus scattering is

σ
qq̄A
diff =

∫
d2b ND(�x⊥, �b⊥, Y, Y0). (7.29)

If we want to find the diffraction cross section for a given fixed rapidity gap Y0 we simply
have to differentiate ND with respect to Y0, obtaining

M2
X

dσ
qq̄A
diff

dM2
X

= −
∫

d2b
∂ND(�x⊥, �b⊥, Y, Y0)

∂Y0
, (7.30)

where the minus sign is due to the fact that Y0 = �Ygap ≈ ln ŝ/M2
X for ŝ,M2

X � Q2, so
that dY0 = −dM2

X/M2
X for fixed ŝ.

By analogy with Eq. (7.17) we can use Eq. (7.29) to write down the following expression
for the single diffractive cross section in DIS:

σ
γ ∗A
diff =

∫
d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2ND(�x⊥, �b⊥, Y, Y0). (7.31)

The differential cross section is

M2
X

dσ
γ ∗A
diff

dM2
X

= −
∫

d2x⊥
4π

d2b⊥

1∫
0

dz

z(1 − z)
|�γ ∗→qq̄(�x⊥, z)|2 ∂ND(�x⊥, �b⊥, Y, Y0)

∂Y0
.

(7.32)

Sometimes we will use the notation ND(�x1⊥, �x0⊥, Y, Y0) for the diffractive cross section
ND of a dipole with the quark at �x1⊥ and the antiquark at �x0⊥; this is similar to the notation
used in the forward dipole amplitude (see e.g. Eq. (4.141)).

We will assume that Y , Y0, and Y − Y0 are all large, so that αsY ∼ 1, αsY0 ∼ 1 and
αs(Y − Y0) ∼ 1 are all important and one has to devise a small-x resummation procedure
to calculate ND in the LLA by resumming all these parameters. We want to derive a
(nonlinear) evolution equation for ND (Kovchegov and Levin 2000). We will work in the
frame where the nucleus is moving in the light cone plus direction, while the incoming
dipole is moving along the minus axis. We will also employ the A− = 0 light cone gauge
of the (dipole) projectile.

We first observe that when Y0 = Y the rapidity gap becomes equal to the whole rapidity
interval, and we have returned to the case of elastic dipole–nucleus scattering considered
in Sec. 7.2.1. The elastic dipole–nucleus cross section is given in Eq. (7.16), which we can
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total
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x− = 0
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x− = −∞ x− = 0 x− = x = +∞ x = 0 x = −∞
x− x

Fig. 7.8. Small-x evolution of the total cross section (upper panel) and the cross section for
diffractive dissociation (lower panel).

use to write

ND(�x⊥, �b⊥, Y = Y0, Y0) = N2(�x⊥, �b⊥, Y0). (7.33)

Again in the LLA, N is given by the solution of the BK/JIMWLK equations. We will use
Eq. (7.33) as the initial condition for the evolution equation that we will construct below.

From the point of view of the space–time picture, the process of diffractive production
is quite different from the total cross section considered above. In calculating the total
cross section we needed to find the forward scattering amplitude. For a dipole moving
along the x−-axis, this means that we had to follow its evolution from x− = −∞ to the
time of the GGM-type interactions at x− = 0 and then again from x− = 0 to the final
state at x− = +∞, which, for the forward amplitude, is identical to the initial state. There
are two main differences in the diffractive case (and, as we will see later, for the inclusive
production cross sections as well). First, the final state at x− = +∞ is no longer identical
to the initial state. Second, we cannot use the optical theorem to find the diffractive cross
section: instead we have to square the scattering amplitude. This means that we have to
follow the evolution of the dipole and its gluon cascade from x− = −∞ to x− = +∞ both
in the amplitude and in the complex conjugate amplitude.

We illustrate the differences between the calculations of the total and diffractive cross
sections in Fig. 7.8. Using the notation of Fig. 5.8 we denote by a vertical dashed line the
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x− = −∞ x− = 0 x− = x = +∞ x = 0 x = −∞
x− x

Fig. 7.9. Diagrammatic representation of the elastic scattering in Eq. (7.33).

GGM interactions with the target (along with the subsequent small-x evolution) for all the
particles that cross the dashed line. The interactions with the target (and the subsequent
evolution) are instantaneous compared with the lifetimes of the s-channel gluons and
quarks. The forward scattering amplitude in the upper panel of Fig. 7.8 is used to obtain
the total dipole–nucleus cross section. There is a single light cone time, which varies from
x− = −∞ to x− = +∞, with the GGM interaction at x− = 0. The lower panel shows the
scattering amplitude squared: the time varies from x− = −∞ to x− = +∞ in the amplitude
and in the complex conjugate amplitude (the light cone time in the latter is denoted by x ′−

to distinguish it from the time in the amplitude). The vertical solid line in the lower panel
of Fig. 7.8 denotes a cut; gluons may be emitted in the amplitude and then, crossing the
cut, be absorbed into the complex conjugate amplitude. Such gluons exist in the final state
and so are “produced”. (Indeed, they fragment into hadrons in the final state: here we are
using perturbative slang, in which the term “produced” implies eventual convolution with
the fragmentation functions, according to the standard perturbative QCD prescription.) The
gluons could be also emitted and then reabsorbed in the (complex conjugate) amplitude:
such gluons are not “produced” and may contribute to the formation of the rapidity gap in
which we are interested. Readers familiar with finite-temperature field theory may draw
an analogy between the two light cone times x− and x ′− and the time contour in the
Schwinger–Keldysh formalism.

To illustrate further this two-time formalism we show a diagram contributing to the
elastic dipole–target scattering given by Eq. (7.33) in Fig. 7.9. No gluon in Fig. 7.9 is
“produced” since none crosses the cut. Instead, the evolution and the interaction with the
target happen separately and independently in the amplitude and in the complex conjugate
amplitude, each giving a factor N generated by the BK/JIMWLK evolution. (The interaction
with the target has been assumed to be elastic in all the diagrams in this subsection; we
have to use the forward, i.e., elastic dipole amplitude in the GGM approximation from
Eq. (4.139) as the initial condition for the evolution for N on each side of the cut.)

An interesting question arises about the connection between the two-time amplitude-
squared approach and the forward amplitude in the upper panel of Fig. 7.8. After all, we
do not have to use the optical theorem to find the total cross section: we can simply square
the sum of all the possible scattering amplitudes. This type of calculation would follow
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Fig. 7.10. Classes of diagrams with final-state interactions that cancel. The dotted vertical
lines denote the intermediate states discussed in the text.

the logic of the lower panel in Fig. 7.8 and would include many more diagrams than the
forward scattering amplitude in the upper panel of the same figure. Yet the answer for the
total cross section should be the same regardless of the calculational strategy. One would
like to see explicitly how a summation over all possible emissions and absorptions in the
lower panel of Fig. 7.8 (without any constraints on the final state such as rapidity gaps)
would lead to the diagram in the upper panel of Fig. 7.8. Understanding this question would
give us a new insight into how the optical theorem works.

The answer to this puzzle is that all the emissions and absorptions for times after the
interaction with the target, x− > 0 and x ′− > 0, simply cancel. This cancellation of the
final-state interactions was first proven by Chen and Mueller (1995) using a diagrammatic
approach. We present the canceling diagrams in the large-Nc language of the dipole model
in Fig. 7.10 using the notation introduced in Figs. 4.18 and 4.20. The cancellations are of
two types. Type-A cancellations, shown in the first line of Fig. 7.10, involve a gluon that
is emitted and absorbed in the final state, i.e., at x− > 0, x ′− > 0. Type-B cancellations,
shown in the second line of Fig. 7.10, involve a gluon that is emitted at x− < 0 but is
absorbed either at x− > 0 or at x ′− > 0. (Cancellations in diagrams that are the complex
conjugates of those of type B take place as well but are not shown, for brevity.)

The proof of the cancellations in Fig. 7.10 can be performed diagrammatically, following
the original derivation of Chen and Mueller (1995). This is based on the fact that, for
instance, the only difference between the two diagrams of type B is the sign of the LCPT
energy denominators of the intermediate states denoted by the dotted vertical lines. When
constructing an energy denominator the rules of LCPT require us to subtract the energy
of the incoming state. However, since the energy of the whole process is conserved, the
energy of the incoming state is equal to the energy of the outgoing state and we can equally
well subtract the latter from the energy denominators. Since for x− > 0 the energy of the
target does not change any more, as the interactions with the target are over, we only need
to consider the s-channel gluons. The intermediate state in the diagram on the left in row
B in Fig. 7.10 then brings in a denominator with the energies of the quark and antiquark
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7.2 Diffractive dissociation in DIS 267

minus the energy of the same qq̄ pair and a gluon in the final state. Since in the LLA the
energies of the quark and antiquark change little, we get

1

p−
1 + p−

0 − p−
1 + p−

0 − k−
2

= − 1

k−
2

, (7.34)

where p−
1 , p−

0 are the quark energies while k−
2 is the gluon light cone energy. Similarly, the

intermediate state denoted by the dotted line on the right in row B gives

1

p−
1 + p−

0 + k−
2 − p−

1 + p−
0

= 1

k−
2

, (7.35)

exactly equal to Eq. (7.34) in magnitude but opposite in sign. Since, as we have already
mentioned, the remainders of the type-B diagrams are identical, we obtain the cancellation
illustrated in Fig. 7.10B.

Similar sign changes in the energy denominators apply in the type-A case along with
symmetry factors; the result is that the second and the third graphs are equal to minus
one-half the first graph. (Note that a complete analysis of the diagrams of type A should
include instantaneous terms like those shown in Fig. 4.14.)

One may also use the language of Chapter 5 to argue for the cancellation. Define
the fundamental Wilson line over an arbitrary interval [x−

1 , x−
2 ] along the x−-axis (see

Eq. (5.78)) by

V�y⊥ [x−
2 , x−

1 ] = P exp

⎧⎪⎨
⎪⎩

ig

2

x−
2∫

x−
1

dx−taAa+(x+ = 0, x−, �y⊥)

⎫⎪⎬
⎪⎭ (7.36)

where the gluon field A+ is either the classical field of the target or an effective field
taking into account the small-x evolution corrections. The contribution of the final-state
part (x− ∈ [0,+∞]) of a dipole–nucleus scattering diagram is then given by

V�x1⊥ [+∞, 0] ⊗ V
†
�x0⊥ [+∞, 0], (7.37)

where, as usual, the quark is at �x1⊥ and the antiquark is at �x0⊥, as shown in Fig. 7.10B.
Squaring the amplitude we get

V�x1⊥ [+∞, 0]V †
�x1⊥ [+∞, 0] ⊗ V

†
�x0⊥[+∞, 0]V�x0⊥ [+∞, 0] = 1 ⊗ 1. (7.38)

All the interactions cancel and we end up with a noninteraction unit contribution. This
cancellation is akin to the unitarity argument presented in Sec. 2.4.2, which was also used
for construction of the dipole wave function in Sec. 4.3.

The cancellation of interactions at x− > 0, x ′− > 0 and the identification of the x ′− < 0
part of the diagram in the lower panel of Fig. 7.8 with the x− > 0 part of the upper
panel reduces the amplitude squared to twice the imaginary part of the forward amplitude
(according to the Cutkosky rules), in agreement with the optical theorem.

We are now ready to construct an evolution equation for the diffractive cross section
ND(�x1⊥, �x0⊥, Y, Y0). As we have seen before, with regard to the derivation of BK evolution,
it is a little easier to construct the equation for the S-matrix than for the T -matrix. The
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268 Diffraction at high energy

SD

c.c. NDN

Fig. 7.11. Diagrammatic representation of the definition of SD in Eq. (7.39). Here the
dashed lines simply denote the times x− = 0 or x ′− = 0. Interactions with the target are
included only when these lines cross the shaded circles.

cross section ND by definition contains the interaction with the target both in the amplitude
and in the complex conjugate amplitude. We can complete it to an S-matrix-like object SD

by adding terms where there is no interaction either in the amplitude or in the complex
conjugate amplitude (which gives −N (�x1⊥, �x0⊥, Y ) for each) and also terms where there is
no interaction on either side of the cut (which gives 1). We thus define

SD(�x1⊥, �x0⊥, Y, Y0) = 1 − 2N (�x1⊥, �x0⊥, Y ) + ND(�x1⊥, �x0⊥, Y, Y0). (7.39)

The quantity SD includes both the interacting and the noninteracting contributions to the
left and to the right of the cut with the constraint that in the final state there is always a
rapidity gap greater than or equal to Y0. The definition (7.39) of SD is illustrated in Fig. 7.11.

When Y = Y0, using Eq. (7.33) we have

SD(�x1⊥, �x0⊥, Y = Y0, Y0) = S2(�x1⊥, �x0⊥, Y0) (7.40)

with S given by the BK/JIMWLK equations. We now want to derive the Y evolution for SD

for Y > Y0, with the initial condition at Y = Y0 given by Eq. (7.40). Suppose that in one
step of the evolution we emit a gluon with rapidity y > Y0. Since there are no final-state
restrictions on gluons with y > Y0 the gluon may or may not cross the cut and be present
in the final state. (The rapidity gap is greater than or equal to Y0; if the y > Y0 gluon is not
present in the final state this would simply extend the gap to rapidity y, which is still included
in the definition of SD .) A gluon with y > Y0 may be emitted and absorbed at x− ≶ 0 and
x ′− ≶ 0. However, owing to the cancellations in Fig. 7.10, all emissions or absorptions at
x− > 0, x ′− > 0 cancel out, and we are left with the normal dipole evolution of the forward
amplitude that we used in deriving the BK evolution equation, with all the emissions and
absorptions taking place at x− < 0, x ′− < 0. We conclude that the evolution for SD is
equivalent to that of the S-matrix, which in the large-Nc limit is given by Eq. (4.137) and
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ND∂
∂Y

ND

ND

22
ND

2
N

ND

ND

N N

N

Fig. 7.12. A graphic form of the equation for the cross section of diffractive production.
The dashed-line notation is the same as in Fig. 7.11.

illustrated in Fig. 4.26. Thus we can write

∂Y SD(�x1⊥, �x0⊥, Y, Y0)

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[
SD(�x1⊥, �x2⊥, Y, Y0)SD(�x2⊥, �x0⊥, Y, Y0) − SD(�x1⊥, �x0⊥, Y, Y0)

]
.

(7.41)

Substituting Eq. (7.39) into Eq. (7.41) we readily obtain (Kovchegov and Levin 2000)

∂Y ND(�x1⊥, �x0⊥, Y, Y0)

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

×
[
ND(�x1⊥, �x2⊥, Y, Y0) + ND(�x2⊥, �x0⊥, Y, Y0) − ND(�x1⊥, �x0⊥, Y, Y0)

+ ND(�x1⊥, �x2⊥, Y, Y0)ND(�x2⊥, �x0⊥, Y, Y0)

− 2N (�x1⊥, �x2⊥, Y )ND(�x2⊥, �x0⊥, Y, Y0)

− 2ND(�x1⊥, �x2⊥, Y, Y0)N (�x2⊥, �x0⊥, Y ) + 2N (�x1⊥, �x2⊥, Y )N (�x2⊥, �x0⊥, Y )

]
.

(7.42)

This is a nonlinear evolution equation with the initial condition specified at Y = Y0 in
Eq. (7.33). To solve it one has first to solve the BK equation (4.138) to find the dipole
amplitude N , which is then used in Eq. (7.42) to find ND . Owing to the apparent complexity
of both Eq. (7.42) and the BK equation, no analytic solution of Eq. (7.42) exists.

Equation (7.42) is illustrated diagrammatically (and, perhaps, somewhat schem-
atically) in Fig. 7.12. We can see that in the nonlinear terms the factors 2 arise from
adding diagrams that are mirror-reflected with respect to the cut diagrams shown. The
coefficients in front of the nonlinear terms on the right-hand side of Eq. (7.42) turn out to be
in agreement with the Abramovsky–Gribov–Kancheli (AGK) cutting rules (Abramovsky,
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270 Diffraction at high energy

Gribov, and Kancheli 1973), as was shown by Kovchegov and Levin (2000). The AGK
cutting rules originate from the pomeron theory of high energy strong interactions but
appear to work (almost always) in QCD in the LLA. The interested reader is referred to the
original paper by Abramovsky, Gribov, and Kancheli (1973) and to a more recent paper by
Bartels and Ryskin (1997).

A numerical solution of Eq. (7.42) was performed by Levin and Lublinsky (2001, 2002a).
It was shown that the diffractive cross section resulting from Eq. (7.42) has a geometric
scaling behavior and that the saturation scale for these processes has the same dependence
on energy and atomic number A as the saturation scale for the total cross section. It was also
predicted that the ratio σdiff/σtot has only a mild energy dependence and M2

X-dependence,
in agreement with an estimate from Eqs. (7.23) and, more importantly, with the HERA data
(see Abramowicz and Dainton (1996), H1 collaboration (1997), and ZEUS collaboration
(1999)).

Further reading

For further reading on diffraction we recommend the books by Barone and Predazzi (2002),
Donnachie, Dosch, and Landshoff (2005), and Forshaw and Ross (1997). In these books
a wide spectrum of different problems is discussed, from the wave nature of diffrac-
tive scattering to the practical phenomenology based on the reggeon approach. Several
reviews of diffraction in DIS cover the topics that have been discussed here in more detail:
Wusthoff and Martin (1999) (perturbative QCD), Hebecker (2000) (perturbative QCD and
beyond, including the semiclassical approach to diffraction), and Weigert (2005) (the CGC
approach to diffractive processes). We also recommend the review by Boreskov, Kaidalov,
and Kancheli (2006), which gives an outline of diffractive processes using pomeron phe-
nomenology, as well as the paper by Bartels and Kowalski (2001), where the space–time
picture of diffractive processes is explored.

Low-mass diffraction with the production of a qq̄-pair and a qq̄G state was discussed
originally by Buchmuller, Gehrmann, and Hebecker (1997), Buchmuller, McDermott, and
Hebecker (1999), and Kovchegov and McLerran (1999). We also recommend the papers
by Munier and Shoshi (2004), Marquet (2005), and Golec-Biernat and Marquet (2005),
Kopeliovich, Potashnikova, and Schmidt (2007), and Golec-Biernat and Luszczak (2009).
In them one can find comparisons of the theory with the experimental data on diffraction.

For exclusive vector meson production in DIS we recommend the papers by Ryskin
(1993) and Brodsky et al. (1994), along with the more recent paper of Marquet, Peschanski,
and Soyez (2007).

As we have shown, high-mass diffraction is intimately related to the BFKL pomeron
interaction, and the calculation of this process has been a main subject of interest in the
community over several decades, starting from the Gribov, Levin, and Ryskin (1983) paper
(see also Levin and Wusthoff (1994)).

High-mass diffraction in perturbative QCD was studied in the following papers: Levin
and Wusthoff (1994), Bartels and Wusthoff (1995), Braun and Vacca (1997), Bartels, Braun,
and Vacca (2005), and Bartels and Kutak (2008). Using a dipole approach, high-mass
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Exercises 271

diffraction has been considered in papers by Bialas, Navelet, and Peschanski (1998, 1999),
Korchemsky (1999), and Navelet and Peschanski (2001). Equation (7.42) has been rederived
using methods different from those of Kovchegov and Levin (2000) in the following papers:
Kovner and Wiedemann (2001) (using the eikonal approach), Hentschinski, Weigert, and
Schafer (2006) (in the JIMWLK approach, generalizing Eq. (7.42) beyond the large-Nc

limit), Kovner, Lublinsky, and Weigert (2006), and Hatta et al. (2006) (using general CGC
concepts).

Exercises

7.1 Pick any diagram with a specific quark–gluon couplings in the type-B class from
Fig. 7.10 and show explicitly that the cancellation does happen, as shown in the figure.

7.2 (a) Solve the following zero-transverse-dimensional equation for SD(Y, Y0):

∂Y SD(Y, Y0) = αs[S
D(Y, Y0)]2 − αsS

D(Y, Y0) (7.43)

with the initial condition SD(Y = Y0, Y0) = [1 − N (Y0)]2 (see Eq. (7.40)) with
N (Y ) as found in Exercise 4.5(b).

(b) Using the result of part (a) find the diffractive cross section

M2
X

dσdiff

dM2
X

= −∂ND(Y, Y0)

∂Y0
= −∂SD(Y, Y0)

∂Y0
. (7.44)

Plot it as a function of Y0. You should get a function of Y0 that peaks at a large Y0

value that is close to Y : this maximum in the diffractive cross section is a direct
manifestation of the saturation/CGC dynamics.
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8

Particle production in high energy QCD

We now turn to the question of particle production in the saturation framework. We will
work out explicitly the case of inclusive gluon production in high energy collisions. Again
the calculation follows the two-step formalism we have seen before: we first find the
gluon production in the quasi-classical approximation and then include quantum small-x
evolution effects in the result. The methods that we present can be applied to the calculation
of other particle production observables as well.

8.1 Gluon production at the lowest order

Consider gluon production in onium–onium collisions, studied in Chapter 3. The lowest-
order gluon production takes place at order α3

s in the amplitude squared (order g3 in the
amplitude). The corresponding Feynman diagrams for high energy gluon production in
quark–quark scattering are shown on the right-hand side of the equation in Fig. 3.6: in the
case of onium–onium scattering one should also include a contribution where the antiquark
line replaces either one or both quark lines. For quark–quark scattering the gluon production
cross section can be obtained from Eq. (3.39): noticing that dy = dk+/k+ we write for the
differential cross section

dσ

d2kT dy
= 2α3

s CF

π2

1

k2
T

∫
d2q⊥

1

q2
⊥(�k⊥ − �q⊥)2

. (8.1)

Using the lowest-order unintegrated gluon distribution of a quark (cf. Eqs. (4.26) and
(5.55)),

φLO(k2
T ) = αsCF

π

1

k2
T

, (8.2)

one can rewrite Eq. (8.1) in the following form:

dσ

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥φLO(q2

T ) φLO

(
(�k⊥ − �q⊥)2

)
. (8.3)

We see that the gluon production cross section consists of factorized contributions of the
unintegrated gluon distributions φLO for each quark, convoluted with a qT -integral (Gribov,
Levin, and Ryskin 1983, Catani, Ciafaloni, and Hautmann 1991, Collins and Ellis 1991).

272
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8.1 Gluon production at the lowest order 273

φ(q2
T )

φ((k⊥ − ⊥)2)

q⊥

k⊥ − ⊥

Fig. 8.1. Diagrammatic representation of kT -factorization in Eq. (8.3). The vertical solid
straight line denotes the final-state cut.

Such a factorization containing an integral over transverse momenta is known as a
kT -factorization as opposed to the more standard collinear factorization in perturbative
QCD, in which there is no transverse momentum integral (Collins, Soper, and Sterman
1985a, b, 1988a, b).1

To obtain the gluon production cross section at order α3
s in the case of onium–onium

scattering one has to sum over all possible diagrams of the type shown in Fig. 3.6, including
the antiquark contributions both in the amplitude and in the complex conjugate amplitude
(cf. Fig. 3.7). Eventually we see that Eq. (8.3) remains the answer for gluon production in
the case of onium–onium scattering also, but with the unintegrated gluon distribution of
an onium given by Eq. (3.92) instead of Eq. (8.2) and with the Green function G given by
Eq. (3.59), so that

φonium
LO (k2

T ) = αsCF

π

1

k2
T

∫
d2x⊥

1∫
0

dz |�(�x⊥, z)|2
(

2 − e−i�k⊥·�x⊥ − ei�k⊥·�x⊥
)

, (8.4)

where �(�x⊥, z) is the bare onium wave function.
Equation (8.3) is illustrated in Fig. 8.1, where the shaded ovals denote the unintegrated

distributions of the two onia and the solid circles denote Lipatov vertices. We see that, at
this lowest order, the gluon production is given by factorized diagrams like that shown in
Fig. 8.1, leading to the kT -factorization expression (8.3).

Equation (8.1) can be integrated over �q⊥ explicitly, with the help of the integral performed
in appendix section A.3. This yields (cf. Gunion and Bertsch 1982)2

dσ

d2kT dy
= 8α3

s CF

π

1

k4
T

ln
kT

�
, (8.5)

with � an IR cutoff as usual. There is a problem with Eq. (8.5): if we integrate both sides
over �k⊥ to obtain the integrated cross section dσ/dy we would get dσ/dy ∼ (1/�2) ln �.

1 A proper discussion of particle production in the collinear factorization framework is beyond the scope of this book.
Instead we refer the reader to the textbook by Sterman (1993) and the monograph by Collins (2011) and the references
therein.

2 In the framework of the MV model, Eq. (8.5) was derived by Kovner, McLerran, and Weigert (1995a, b) and by
Kovchegov and Rischke (1997).
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274 Particle production in high energy QCD

Thus the integrated cross section depends on the nonperturbative IR cutoff in a power-
law way, indicating that one probably should not calculate dσ/dy using a perturbative
approach.

A similar problem remains for the net gluon multiplicity, which is defined by

dN

d2kT dy
= 1

σinel

dσ

d2kT dy
(8.6)

with σinel the total inelastic scattering cross section. At the lowest-order, two-gluon-
exchange, level, we have σinel ∼ 1/�2. Combining this with dσ/dy ∼ (1/�2) ln � we
see that the gluon–gluon multiplicity scales as dN/dy ∼ ln �, i.e., it is also IR-cutoff-
dependent, though the dependence is logarithmic and so is much softer than that for
dσ/dy.

These IR problems in dσ/dy and dN/dy are remedied by saturation physics, which again
enables the use of the perturbative approximation. Above we have seen several examples
of how saturation effects screen the IR region, making observables much less dependent
on nonperturbative physics; we will now see how this happens for the inclusive gluon
production.

8.2 Gluon production in DIS and pA collisions

8.2.1 Quasi-classical gluon production

Let us now try to generalize the leading-order gluon production cross section we have just
obtained to the case of gluon production in DIS on a nucleus. Our observable is the single-
particle inclusive gluon production: we want to measure a gluon in the final state without any
constraints on what else can be present in the final state. (Because of the lack of final-state
constraints this observable is referred to as “inclusive”, as opposed to exclusive processes
such as diffraction.) We will be working in the quasi-classical MV/GGM approximation.
Just as for the total DIS cross section we can factor out the light cone wave function for
a virtual photon splitting into a qq̄ pair and consider only the dipole–nucleus scattering.
According to the MV model, the gluon production in DIS should be obtained by finding
the classical gluon field solution of the Yang–Mills equations (5.4) with the source current
now given by the nucleus and the qq̄ dipole. One may also consider gluon production
in proton–nucleus (pA) collisions: in this case the source current is given by the nucleus
and the proton. The difference between a nucleus and a proton in the saturation picture
is that the proton’s saturation scale Qs1 is much smaller than the nuclear saturation scale
Qs2, i.e., Qs1 � Qs2. Therefore, when one is considering gluon production with transverse
momentum kT � Qs1 and making no assumption about the relation between kT and Qs2,
one can neglect multiple interactions with the proton and other saturation effects in the
proton wave function while keeping multiple rescatterings to all orders in the nucleus. As
we saw in Chapter 5 the classical MV treatment resums the parameter α2

s A
1/3 resulting

from two-gluon exchanges with each nucleon and in this way is equivalent to the GGM
approach. We conclude that, working either in the light cone gauge of the dipole (proton),
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8.2 Gluon production in DIS and pA collisions 275

Fig. 8.2. Diagrams contributing to the gluon production amplitude in quark–nucleus
collisions. The cross denotes the measured gluon.

or in the covariant gauge, when resumming the diagrams for gluon production we have to
include all the multiple two-gluon rescatterings on the nucleons in the nucleus.

For simplicity we begin by calculating gluon production in quark–nucleus scattering.
We work in a frame in which the nucleus is moving along the x+-direction while the
quark is moving along the x−-direction. The calculation is simpler in the A− = 0 gauge,
which we will be using. This gauge is equivalent to the ∂μAμ = 0 covariant gauge for the
nucleus. The LCPT diagrams contributing to gluon production in quark–nucleus collisions
in the A− = 0 gauge are shown in Fig. 8.2. Analogously to the case of small-x evolution
considered above, the gluon’s minus component of momentum is much smaller than that
of the incoming quark. Gluon emission may take place either before or after the interaction
with the target (cf. Fig. 4.24 and the accompanying explanation of why emissions during
the interaction are suppressed by a power of s). Interactions with the nucleons in the target
may be both elastic and inelastic.

Just as before, calculation of the diagrams is easier to carry out in transverse coordinate
space. However, in the end we need to find the differential production cross section in
momentum space. To connect the momentum-space cross section to transverse coordinate
space let us go back to the lowest-order gluon production from the previous section. The
lowest-order term in Eq. (8.1) is given by (see Sec. 3.3.1)

dσ

d2kT dy
= 1

2(2π )3

∫
d2q

(2π )2

1

4s2
〈|Mqq→qqG(�k⊥, �q⊥)|2〉 (8.7)

where the scattering amplitude Mqq→qqG is given in Eq. (3.35) and s is the center-of-mass
energy squared of the collision. Defining a rescaled amplitude by (cf. Eq. (B.22))

A(�k⊥, �q⊥) = Mqq→qqG(�k⊥, �q⊥)

2s
, (8.8)

we can rewrite Eq. (8.7) as

dσ

d2kT dy
= 1

2(2π )3

∫
d2q

(2π )2
〈|A(�k⊥, �q⊥)|2〉. (8.9)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


276 Particle production in high energy QCD

k − q

q

p1

p2 p2 − q

p1 − k + q

k

1⊥

2⊥

3⊥

Fig. 8.3. Gluon production at the lowest order with the transverse coordinates shown
explicitly.

To Fourier-transform the amplitude A(�k⊥, �q⊥) into transverse coordinate space we use

A(�x23, �x13) =
∫

d2k⊥
(2π )2

d2q⊥
(2π )2

ei�k⊥·�x21+i �q⊥·�x13A(�k⊥, �q⊥), (8.10)

where as usual �xij = �xi⊥ − �xj⊥. Equation (8.10) is illustrated in Fig. 8.3 for one of
the lowest-order diagrams from Fig. 3.6. Remember that in eikonal interactions the trans-
verse coordinates of the particles remain unchanged: hence the colliding quarks have
transverse coordinates �x1⊥ and �x3⊥ both before and after the interaction. Also note that the
amplitude Mqq→qqG and with it A(�k⊥, �q⊥) already have momentum conservation imposed
on them: this leads to translational invariance in coordinate space, making the coordinate-
space amplitude A(�x23, �x13) in Eq. (8.10) a function of the differences between the transverse
vectors only.

Inverting Eq. (8.10) we get

A(�k⊥, �q⊥) =
∫

d2x2d
2x0e

−i �x2⊥·�k⊥−i �x1⊥·(�q⊥−�k⊥)A(�x23, �x13). (8.11)

Using this in Eq. (8.9) and integrating over �q⊥ we obtain

dσ

d2kT dy
= 1

2(2π )3

∫
d2x2d

2x2′d2x1e
−i�k⊥·�x22′ 〈A(�x23, �x13)A∗(�x2′3, �x13)〉, (8.12)

where �x2⊥ and �x2′⊥ are the transverse coordinates of the gluon in the amplitude and in the
complex conjugate amplitude respectively. We see that the reason that the two coordinates
are different is that we are keeping the transverse momentum of the gluon �k⊥ fixed: if
we integrated Eq. (8.12) over �k⊥ this would make �x2⊥ and �x2′⊥ equal. One can think of
the difference between �x2⊥ and �x2′⊥ as due to the uncertainty principle: if we know the
momentum �k⊥ exactly, we cannot have precise knowledge of the transverse position of the
gluon. Note that since we do not keep the transverse momenta of the two quarks in the final
state fixed and, rather, allow them to be arbitrary (that is, we integrate over all their values),
the transverse coordinates of the quarks are the same in the amplitude and in the complex
conjugate amplitude.
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x− = 0

x−

Σ
n = 0

∞

1 2 n

Fig. 8.4. An extension of the notation of Fig. 5.8 to include inelastic interactions between
the projectile and the nucleons in the target nucleus.

Note that for a nuclear target with the quark at �x3⊥ part of a nucleon in the nucleus, the
angle brackets in Eq. (8.12) would imply an average over all positions of the nucleon,∫

d2x3T (�x3⊥), (8.13)

where T (�x3⊥) is the nuclear profile function defined in Eq. (4.31).
Equation (8.12), while derived for the lowest-order gluon production, is applicable

for gluon production in any process involving the eikonal scattering of a quark (or any
other projectile, such as an onium or a proton) on a target nucleus, including multiple
rescatterings and small-x evolution. In deriving Eq. (8.12) we had to rescale the scattering
amplitude in Eq. (8.8): however, it is possible to see that in the GGM multiple rescattering
case each additional nucleon enters with the same normalization factor, so that the net
scattering amplitude (4.51) is energy independent. In addition, in eikonal scattering and
LLA small-x evolution the transverse coordinates of the gluons and quarks do not change,
which implies that the transverse vectors �x2⊥, �x2′⊥, and �x1⊥ in Eq. (8.12) will not change if
we allow the quark and the gluon to multiply rescatter and branch out into more gluons in
the LLA approximation. We conclude that Eq. (8.12) is the required relation between the
momentum-space cross section and the coordinate-space scattering amplitude.

Squares of the diagrams in Fig. 8.2 giving the production cross section are shown in
Fig. 8.5 using the slight extension defined in Fig. 8.4 of the notation from Fig. 5.8 for
the interaction of the projectile with the target: now the vertical dashed line includes both
elastic and inelastic interactions with the target. Beyond the diagrams, the notation in
Fig. 5.8 includes the averaging of Wilson lines over the target fields while the notation of
Fig. 8.4 does not. The graphs shown in Fig. 8.5 represent the amplitude squared, with two
time axes, one in the amplitude and one in the complex conjugate amplitude, just as in the
case of diffraction considered above.

Figure 8.5 demonstrates all the main cases one has to consider. If x−
em is the light cone

time of the gluon emission in the amplitude while x ′−
em is that in the complex conjugate

amplitude (see diagram C in Fig. 8.5), we have four cases represented in Fig. 8.5, as follows.
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BA

x− = 0 x = 0+∞

1⊥

x−em xem

+∞ +∞

+∞

0 0 0 0

0 0
2⊥ 2 ⊥

DC

a bc b
a

1⊥

2 ⊥

Fig. 8.5. Diagrams contributing to gluon production in quark–nucleus collisions. The cross
denotes the measured gluon.

(A) x−
em < 0, x ′−

em < 0: the gluon is emitted before the interaction with the target both in
the amplitude and in the complex conjugate amplitude.

(B) x−
em > 0, x ′−

em < 0: the gluon is emitted after the interaction with the target in the
amplitude but before the interaction with the target in the complex conjugate amplitude.

(C) x−
em < 0, x ′−

em > 0: the gluon is emitted before the interaction with the target in the
amplitude but after the interaction with the target in the complex conjugate amplitude.

(D) x−
em > 0, x ′−

em > 0: the gluon is emitted after the interaction with the target both in the
amplitude and in the complex conjugate amplitude.

We need to find the amplitude squared in transverse coordinate space to use in Eq. (8.12).
To do this we have to calculate the diagrams in Fig. 8.5. The transverse coordinates of the
quark (�x1⊥) together with the coordinates �x2⊥ and �x2′⊥ of the gluon to the left and to the
right of the final state cut are shown in panel A of Fig. 8.5. The calculation is easier to
carry out using LCPT, in which the process factorizes into the light cone wave function for
a quark splitting into a quark and a gluon and the amplitude for the interaction with the
target.

The soft gluon emission brings in a factor (cf. Eq. (4.60))

i
gta

π

�ελ∗
⊥ · �x21

x2
21

(8.14)

in the amplitude and the same (but conjugate) factor with the index 2 replaced by 2′ in the
complex conjugate amplitude, along with a → b (the gluon colors allocation is given in
Fig. 8.5A). In Eq. (8.14), λ is the polarization of the gluon, which remains unchanged in
the eikonal interaction with the target and is therefore the same on both sides of the cut.
Emissions with either x−

em > 0 or x ′−
em > 0 lead to an extra minus sign compared with the

early-time emissions: this can be deduced from panels A and B of Fig. 8.5. There the vertical
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dashed lines denote the intermediate states in the amplitudes A and B used in calculating
the quark splitting corresponding to Eq. (8.14). In panel B the intermediate state contains
only a quark (with the rest of the target, not shown): in building up the energy denominator
for this state we have to take the light cone energy of the quark (and the outgoing target)
and subtract the light cone energy of the incoming state, or, equivalently, the energy of the
outgoing state. We thus obtain the light cone energy of the intermediate-state quark minus
the energies of the outgoing quark and gluon. This is the negative of the energy denominator
for the intermediate state highlighted by the dotted line in panel A of Fig. 8.5. We see that
the late-time emissions bring in an extra minus sign. This conclusion is similar to that
regarding the sign difference used in deriving the cancellations in panel B of Fig. 7.10 (see
Eqs. (7.34) and (7.35)). To summarize, diagrams B and C in Fig. 8.5 have an extra minus
sign compared with diagrams A and D in the same figure.

We now need to calculate the interactions with the target in each panel of Fig. 8.5. This
is easiest to do using the language of Wilson lines defined in Eqs. (5.43) and (5.44). The
interaction with the target in Fig. 8.5A (along with the color factors resulting from the gluon
emission) gives 〈

1

Nc

tr
[
tbV

†
�x1⊥V�x1⊥ ta

]
Ubc

�x2′⊥
Uca

�x2⊥

〉
= CF SG(�x2⊥, �x2′⊥, y), (8.15)

where we have used Eq. (5.33) and definition (5.46) to simplify the expression. As in the
case of the calculation in Sec. 3.3.1 we assume that the target nucleus has rapidity 0 while
the produced gluon along with the quark that emits it have rapidity y. Note that the quark’s
interaction with the target cancels out in diagram A: the quark becomes a “spectator” and
the interaction is given by the gluon dipole S-matrix.

The contribution of Fig. 8.5B is obtained similarly, yielding, with the help of Eq. (5.31),〈
1

Nc

tr
[
taV

†
�x1⊥ tbV�x1⊥

]
Uba

�x2′⊥

〉
= CF SG(�x1⊥, �x2′⊥, y). (8.16)

By analogy diagram C brings in

CF SG(�x2⊥, �x1⊥, y) (8.17)

and diagram D contributes only a factor CF .
Combining the emission contribution (8.14) with the interaction terms we have just

found, and using it all in Eq. (8.12) while keeping in mind that diagrams B and C have an
extra minus sign, we obtain, after summation over the gluon polarizations (Kovchegov and
Mueller 1998a):

dσ qA

d2kT dy
= 1

(2π )2

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

π2

�x21 · �x2′1

x2
21x

2
2′1

× [SG(�x2⊥, �x2′⊥, y) − SG(�x1⊥, �x2′⊥, y) − SG(�x2⊥, �x1⊥, y) + 1
]
. (8.18)

This result was independently confirmed by Kopeliovich, Tarasov, and Schafer (1999) and
by Dumitru and McLerran (2002). Equation (8.18) can also be rewritten in terms of the
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imaginary part of the gluon dipole–nucleus forward scattering amplitude,

NG(�x1⊥, �x0⊥, Y ) = 1 − SG(�x1⊥, �x0⊥, Y ), (8.19)

as follows:

dσqA

d2kT dy
= 1

(2π )2

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

π2

�x21 · �x2′1

x2
21x

2
2′1

× [NG(�x1⊥, �x2′⊥, y) + NG(�x2⊥, �x1⊥, y) − NG(�x2⊥, �x2′⊥, y)
]
. (8.20)

While our derivation of Eq. (8.20) was quite general, in the MV/GGM quasi-classical
approximation one should use the amplitude NG given by Eq. (5.51) in Eq. (8.20). In that
approximation for NG, Eq. (8.20) would give us the gluon production in quark–nucleus
scattering in the quasi-classical MV/GGM approximation.

It is interesting to note that Eq. (8.20) can be rewritten in the kT -factorized form seen
in Eq. (8.3). To see this we integrate over �x2⊥ in the first term in the square brackets of
Eq. (8.20), over �x2′⊥ in the second term in the same brackets, and over �x1⊥ in the third term,
with the help of Eqs. (A.10) and (A.12). This yields, after some coordinate relabeling,

dσ qA

d2kT dy
= αsCF

2π3

∫
d2x2 d2x2′e−i�k⊥·�x22′

(
2i

�k⊥
k2
⊥

· �x22′

x2
22′

− ln
1

x22′�

)

× NG(�x2⊥, �x2′⊥, y) (8.21)

with � again an IR cutoff. Using the fact that NG(�x2⊥ = �x2′⊥, �x2′⊥, Y ) = 0 (a zero-size
dipole does not interact), we can rewrite Eq. (8.21) as

dσqA

d2kT dy
= αsCF

2π3

1

k2
T

∫
d2x2 d2x2′NG(�x2⊥, �x2′⊥, y)∇2

�x2⊥

(
e−i�k⊥·�x22′ ln

1

x22′�

)
, (8.22)

where ∇2
�x⊥ = ∂2

x1 + ∂2
x2 is the two-dimensional Laplace operator.

Let us write Eq. (8.22) in a projectile–target-symmetric way. The expression already
contains the dipole–nucleus scattering amplitude NG. Let us include the dipole–projectile
scattering amplitude in it as well. Since our projectile is a single quark, we will construct
the scattering amplitude of a gluon dipole on a quark in the quasi-classical approximation
by expanding Eq. (5.51) to the lowest nontrivial order and using Q2

sG(�b⊥) = 4πα2
s Tq(�b⊥)

with the “nuclear profile function” of a single quark, normalized such that∫
d2b⊥Tq(�b⊥) = 1. (8.23)

(The factor 2 difference between the value of Q2
sG that we are using now and that in

Eq. (5.41) arises because the saturation scale in Eq. (5.41) is due to scattering on an onium
“nucleon” while now we are dealing with a single-quark “nucleon”.) We obtain for the
dipole–quark scattering amplitude n

q
G at the two-gluon exchange level, integrated over all
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B⊥

b⊥

nucleus

proton

gluon

Fig. 8.6. Gluon production in proton(quark)–nucleus collisions as seen in the transverse
plane. To make the figure clearer, the gluon has been placed far from the proton; this is,
however, a highly improbable configuration.

impact parameters �b⊥,∫
d2b⊥ n

q
G(�x⊥, �b⊥, Y = 0) = πα2

s x
2
⊥ ln

1

x⊥�
, (8.24)

where �x⊥ is the dipole’s transverse size and �b⊥ is the location of its center-of-mass.
Neglecting constants under the logarithms (which were neglected in arriving at Eq. (8.24)

anyway), we write

∇2
�x⊥

(
x2

⊥ ln
1

x⊥�

)
= 4 ln

1

x⊥�
. (8.25)

Using this formula together with Eq. (8.24) in Eq. (8.22) yields, after integration by parts
in the latter,

dσqA

d2kT dy
= CF

αsπ (2π )3

1

k2
T

∫
d2B⊥d2b⊥d2x⊥

[
∇2

�x⊥n
q
G(�x⊥, �B⊥ − �b⊥, 0)

]
× e−i�k⊥·�x⊥

[
∇2

�x⊥NG(�x⊥, �b⊥, y)
]
, (8.26)

where �x⊥ = �x22′ and we have modified the notation as follows:

NG(�x2⊥, �x2′⊥, Y ) → NG(�x⊥, �b⊥, Y ). (8.27)

Now �B⊥ and �b⊥ are the impact parameters of the proton and the produced gluon respectively,
measured with respect to the center of the nucleus, as shown in Fig. 8.6.

Equation (8.26) describes gluon production in quark–nucleus scattering. However, it can
be generalized to the onium–nucleus (DIS) and proton–nucleus (pA) cases if n

q
G in it is

replaced by the dipole scattering amplitude on the onium (see Eq. (3.139)) or on a proton,
labeled nG. (The proton can be modeled as three valence quarks in a color-singlet state
or as any other number of partons moving along the light cone.) Proving this statement
for the onium–nucleus scattering is left as an exercise for the reader (see Exercise 8.2).
We can conclude that Eq. (8.26) with NG taken at y = 0 and n

q
G replaced by nG describes
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282 Particle production in high energy QCD

quasi-classical gluon production in onium–nucleus (DIS) and pA collisions. We will refer
to it as quasi-classical gluon production in the pA collision context.

Defining the unintegrated gluon distribution for the nucleus (in the quasi-classical
MV/GGM approximation) as

φA(k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥NG

(
�x⊥, �b⊥, 0

)
(8.28)

and that for the proton as

φp(k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥nG(�x⊥, �b⊥, 0), (8.29)

transforms Eq. (8.26) into a kT -factorized form of Eq. (8.3) (Kovchegov and Tuchin 2002):

dσpA

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φp(q2

T ) φA

(
(�k⊥ − �q⊥)2

)
, (8.30)

where now we use the superscript pA to signify the broader validity range of the derived
cross section. (Again we have put y = 0 in the argument of NG in Eq. (8.28) to reduce
Eq. (8.26) to the purely quasi-classical case.)

Equation (8.30) may come as a surprise: remember that kT -factorization usually results
from factorizing the diagrams into the form shown in Fig. 8.1, separating them into distribu-
tion functions with a Lipatov vertex (squared) in the middle. The diagrams in Fig. 8.5 which
led to Eq. (8.30) have no such factorization, since they include direct interactions between
the target nucleus and the projectile quark, violating the factorization picture expected from
Fig. 8.1. One may hope that perhaps in a different gauge the relevant diagrams would
factorize, yielding the picture of Fig. 8.1; to date, however, no such gauge has been found
and the physical origin of the kT -factorization in Eq. (8.30) remains a mystery.

Notice that to achieve the factorized expression (8.30) we had to define the unintegrated
gluon distributions (8.28) and (8.29). These definitions are different from the WW distri-
bution of Eq. (5.50) and are more in line with Eq. (6.16) with the quark dipole replaced
by the gluon one. (All the distributions agree at the lowest order of Eq. (8.2) up to quark
or gluon dipole color factors.) While the definitions (8.28) and (8.29) allow us to achieve
the kT -factorization formula (8.30), it is a priori not clear why one has to use these gluon
distributions in the gluon production formula. The interplay between the two unintegrated
gluon distributions has recently been explored by Dominguez et al. (2011).

To assess the impact of (8.30) on the kT -distribution of the produced gluons (also known
as the gluon transverse momentum spectrum) let us evaluate its large-kT and small-kT

asymptotics. At large kT we expand Eq. (5.51) to the lowest nontrivial order to get NG =
x2

⊥Q2
sG(�b⊥)/4, which we use in Eq. (8.28) to obtain the lowest-order φA. For simplicity,

modeling the proton again as a single quark, we use Eq. (8.24) in Eq. (8.29) to obtain
the same expression for φp as in (8.2). Finally, substituting all this into Eq. (8.30) and
remembering that Q2

sG(�b⊥) = 4πα2
s T (�b⊥), we obtain

dσpA

d2kT dy

∣∣∣∣
kT �QsG

≈ 8α3
s CF A

π

1

k4
T

ln
kT

�
, (8.31)
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kT

dσpA

d2kT dy

∼ 1
k4
T

∼ 1
k2
T

QsG

Fig. 8.7. A sketch of the gluon production spectrum generated by Eq. (8.30).

in agreement with Eq. (8.5) up to a factor A, signifying that now we have A nucleons in
the nucleus that can interact with the incoming projectile quark to produce the gluon that
we are measuring (again with each nucleon modeled by a single quark). Conversely, at
kT � QsG we note that NG ≈ 1 for x⊥ > 1/QsG. Using this approximation in Eq. (8.21)
and integrating over �x2⊥, �x2′⊥ yields

dσpA

d2kT dy

∣∣∣∣
kT �QsG

≈ αsCF S⊥
π2

1

k2
T

(8.32)

with S⊥ the transverse area of the nucleus. We see that the produced gluon spectrum has
been modified by saturation effects from the factor 1/k4

T in Eq. (8.31) at kT � QsG to
the factor 1/k2

T in Eq. (8.32) at kT � QsG. This is illustrated in Fig. 8.7 (cf. Fig. 5.7).
We conclude that saturation effects in one scattering particle (the nucleus) tend to soften
the IR divergence, making the integrated cross section dependent on the IR cutoff only
logarithmically, dσpA/dy ∼ ln(QsG/�).

To better understand the result (8.30) it is useful to construct the nuclear modification
factor, which in pA collisions can be defined as

RpA(kT , y) = dσpA/d2kT dy

A dσpp/d2kT dy
. (8.33)

and has the meaning of the ratio of the number of particles produced in a pA collision
per individual proton–nucleon collision and the number of particles produced in a proton–
proton (pp) collision in the same kinematic region. Deviations of the nuclear modification
factor from unity measure collective nuclear effects in the collision.

In the quasi-classical approximation one can evaluate RpA by using NG from Eq. (5.51)
in Eq. (8.20) to find the gluon production in pA collisions and by using n

q
G from Eq. (8.24),

instead of NG, in the same formula to find the gluon production in pp. The resulting nuclear
modification factor is plotted in Fig. 8.8 (Kopeliovich, Tarasov, and Schafer 1999, Baier,
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2.0R
pA

k   / QsGT

Fig. 8.8. Nuclear modification factor as a function of kT /QsG for gluon production in pA
collisions in the quasi-classical approximation. The horizontal line at RpA = 1 is shown to
guide the eye. Since Eq. (8.33) includes an integral over b⊥, QsG should be understood as the
typical saturation scale: the same Cronin enhancement is also seen for fixed b⊥. (Reprinted
with permission from Kharzeev, Kovchegov, and Tuchin (2003). Copyright 2003 by the
American Physical Society.)

Kovner, and Wiedemann 2003, Kharzeev, Kovchegov, and Tuchin 2003): we see a depletion
in the produced gluons at low kT (kT � QsG) and an enhancement at large kT (kT � QsG).
We conclude that multiple rescatterings tend to broaden the kT -distribution of the produced
gluons, effectively pushing the gluons out to large kT . The enhancement shown in Fig. 8.8
was observed experimentally in hadron production in pA collisions and is known as the
Cronin effect (Cronin et al. 1975).

The suppression of gluons at low kT may be identified with the manifestation of nuclear
shadowing in the saturation/CGC framework. In the case of gluons the shadowing is
quantified by the ratio

RA(x,Q2) = xGA(x,Q2)

AxGN (x,Q2)
(8.34)

(with an analogous ratio for quarks). The shadowing ratio RA measures the number of
gluons per nucleon in the nucleus divided by the number of gluons in a proton (in the same
kinematic region). At small x the ratio RA is known to be below 1, which means that the
number of gluons per nucleon in a nucleus is less than the number of gluons in a free proton:
this effect is known as nuclear shadowing. (For more on nuclear shadowing see Frankfurt
and Strikman (1988).) This depletion of gluons in the nuclear wave function leads to the
suppression of produced gluons as measured by the nuclear modification factor. In fact,
one can show that the suppression of produced gluons at low kT in Fig. 8.8 results from the
suppression of low-kT gluons in the unintegrated gluon distribution of Eq. (8.28).

8.2.2 Including nonlinear evolution

We want to include the effects of nonlinear LLA small-x evolution in the inclusive gluon
production cross section (8.20) and in the more general cross section (8.30). Again we
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N

0

Y

yproduced
gluon

1⊥
0⊥

Fig. 8.9. Gluon production in dipole–nucleus scattering with small-x evolution emissions
both between the produced gluon (marked by a cross) and the target nucleus and between
the produced gluon and the projectile dipole.

assume that the target nucleus has zero rapidity and that the produced gluon has rapidity
y. However, now the incoming projectile has rapidity Y such that there are large rapidity
intervals between the projectile and the produced gluon and between the gluon and the
target. The process is illustrated in Fig. 8.9 for the case of dipole–nucleus scattering: gluon
emissions (and absorptions) are allowed everywhere in the rapidity interval from 0 to Y .
The target nucleus may indeed break up in this inclusive process.

To include BK/JIMWLK evolution effects in the gluon production formula, let us con-
sider the dipole–nucleus scattering case rather than the quark–nucleus scattering considered
in the previous subsection. We start by generalizing Eq. (8.20) to the case of a dipole pro-
jectile (Kovchegov 2001):

dσ qq̄A

d2kT dy
(�x10) =

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

4π4

1∑
i,j=0

(−1)i+j �x2i · �x2′j

x2
2ix

2
2′j

× [NG(�xi⊥, �x2′⊥, y) + NG(�x2⊥, �xj⊥, y)

−NG(�x2⊥, �x2′⊥, y) − NG(�xi⊥, �xj⊥, y)
]
, (8.35)

where the quark in the dipole is located at �x1⊥ and the antiquark is at �x0⊥, as shown in
Fig. 8.9. (The reader is invited to derive Eq. (8.35) in Exercise 8.2.)

Including the evolution in the rapidity interval between the gluon and the target is
straightforward: in fact this was already done in deriving Eq. (8.20). Indeed, as we have
seen above, the Wilson-line formalism used in arriving at (8.20) applies equally well to
GGM multiple rescatterings and to the LLA evolution. We therefore conclude that NG

evaluated at rapidity y in Eq. (8.35) (and in Eq. (8.20) as well) does not need to come
from multiple rescatterings only but may also contain the nonlinear BK/JIMWLK LLA
evolution. In the large-Nc limit of BK evolution one can readily show that

NG(�x⊥, �b⊥, y) = 2N (�x⊥, �b⊥, y) − N2(�x⊥, �b⊥, y), (8.36)
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Fig. 8.10. One step of small-x evolution between the projectile onium and the produced
gluon, marked by a cross and labeled 2.

where N is the quark dipole amplitude found from Eq. (4.138). The formula (8.36) is due
to the fact that in the large-Nc a gluon dipole limit can be thought of as a pair of quark
dipoles, with either one or both dipoles interacting directly with the target.

Including the evolution in the rapidity interval between the projectile and the produced
gluon requires a bit more work. We will carry out the calculation in the large-Nc limit of
Mueller’s dipole model. We show one step of such an evolution in Fig. 8.10, where the
gluon labeled 3 is harder than the produced gluon 2, that is z3 � z2 with z2 and z3 the
fractions of the longitudinal momentum of the onium carried by the two gluons respectively.
For simplicity we consider a case of particular couplings of the gluons to the onium: the
gluon 3 is emitted (and absorbed) by the quark while gluon 2 is emitted by the antiquark.
Diagrams A–D in Fig. 8.10 have two real emissions while in the diagrams E–J gluon 3 is
virtual. For completeness, we show in diagrams K and L of Fig. 8.10 the emission of gluon
2 without the corrections due to gluon 3.

It is important to stress that we have only given the leading-logarithmic diagrams in
Fig. 8.10. Indeed, a diagram similar to A but with the emission of gluon 2 before gluon 3
is possible but will not lead to leading logarithms of 1/x (see Fig. 4.17 and its evaluation
for an analogous calculation). Similarly one can demonstrate that a diagram similar to D
but with the emission of gluon 3 before gluon 2 also lies outside the LLA. This is an
important observation: while for x− < 0 the harder gluons are emitted before the softer
ones, for x− > 0 the harder gluons would need to be emitted later than the softer ones to
give an LLA contribution. This rule is also valid for the virtual diagrams; this is illustrated
by the fact that graph H in Fig. 8.10 gives an LLA contribution. (Indeed, we do not
integrate over the rapidity y of gluon 2 since we are tagging this gluon (i.e., it is the
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gluon of interest): however, the leading contribution to the production cross section with all
rapidity intervals large is given by the LLA approximation as if we were about to integrate
over y.)

Using the cancellations of Fig. 7.10 (which are valid for the inelastic interactions with
the target shown in Fig. 8.4 as well), one can write down the following relations between
the squares and interference terms of the diagrams in Fig. 8.10:

|C|2 + GK∗ + G∗K = 0, |D|2 + HL∗ + H∗L = 0, (8.37a)

CD∗ + GL∗ + KH∗ = 0, AC∗ + IK∗ = 0, (8.37b)

BC∗ + JK∗ = 0, AD∗ + IL∗ = 0, BD∗ + JL∗ = 0. (8.37c)

With the help of Eqs. (8.37) we see that

|A + B + · · · + L|2
∣∣∣∣
O(α2

s )

= |A + B|2 + (E + F )(K + L)∗

+ (E + F )∗(K + L), (8.38)

that is, only emissions or absorptions of gluon 3 with x− < 0 both in the amplitude and in
the complex conjugate amplitude remain. This conclusion can be generalized to the case
of other gluon couplings and, more importantly, to the case of higher-order hard gluon
emissions: the terms which survive the cancellations of Fig. 7.10 are those with all the
emissions and absorptions at x− < 0 and x ′− < 0; all late-time (x−, x ′− > 0) emissions
cancel. We conclude that the evolution in the rapidity interval between the projectile and
the produced gluon is the evolution of Mueller’s dipole model! In fact an analysis of
the higher-order diagrams shows that not all the nonlinear dipole evolution contributes:
rather, the nonlinearities cancel leaving only the linear part of the evolution describing the
generation by the original incoming onium of the dipole in which gluon 2 was emitted.3

The quantity n1 describing such a distribution is defined in Eq. (4.81) and is found from
the dipole BFKL equation (4.82) with the initial condition (4.83).

We have thus arrived at the following physical picture of the gluon production process in
DIS and pA at large Nc: the evolution in the projectile wave function generates a distribution
of single dipoles. A gluon that we will tag (measure) is then emitted by one such dipole,
making the evolution between the projectile and the produced gluon linear. The gluon along
with the dipole from which it was emitted then interact with the target nonlinearly.

Formally the LLA evolution between the projectile and the produced gluon is included
in Eq. (8.35) by the following replacement:

dσ qq̄A

d2kT dyd2B⊥
(�x10) →

∫
d2b⊥d2x1′0′ n1(�x10, �x1′0′ , �B⊥ − �b⊥, Y − y)

× dσqq̄A

d2kT dyd2b⊥
(�x1′0′ ), (8.39)

3 For instance, one can see that all subsequent evolution in the dipole formed by the (antiquark line of the) gluon 3 and
the quark line in Fig. 8.10A cancels.
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where the impact parameters are labeled as in Fig. 8.6; �B⊥ = (�x1⊥ + �x0⊥)/2 is the center
of the projectile dipole 10 and �b⊥ = (�x1′⊥ + �x0′⊥)/2 is the center of the dipole 1′0′. Note
that the integration over �b⊥ for fixed �x1′0′ in Eq. (8.39) is equivalent to the integration
over �x1⊥ in Eq. (8.35). Equation (8.35), which does not contain any evolution between the
projectile and the produced gluon, is recovered from Eq. (8.39) by inserting Eq. (4.83) into
it.

We can now write down the final expression for the gluon production in dipole–nucleus
scattering. Combining Eq. (8.39) with Eq. (8.35) yields (Kovchegov and Tuchin 2002)

dσqq̄A

d2kT dy
(�x10)

=
∫

d2B⊥d2b⊥d2x1′0′ n1(�x10, �x1′0′ , �B⊥ − �b⊥, Y − y)

×
∫

d2x2 d2x2′e−i�k⊥·�x22′ αsCF

4π4

1′∑
i,j=0′

(−1)i+j �x2i · �x2′j

x2
2ix

2
2′j

× [NG(�xi⊥, �x2′⊥, y) + NG(�x2⊥, �xj⊥, y) − NG(�x2⊥, �x2′⊥, y) − NG(�xi⊥, �xj⊥, y)
]
.

(8.40)

This is the gluon production cross section including the LLA small-x evolution both
between the projectile and the produced gluon and between the gluon and the target. While
it has been derived in the large-Nc limit, Eq. (8.40) is also valid for any Nc as was shown
by Kovner and Lublinsky (2006).

Equation (8.40) can also be written in a kT -factorized form. Defining the unintegrated
gluon distribution of the nucleus (cf. Eq. (8.28)) as

φA(y, k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥NG

(
�x⊥, �b⊥, y

)
(8.41)

and that of the onium (cf. Eq. (8.4)) as

φqq̄ (y, k2
T ) = αsCF

π

1

k2
T

∫
d2b⊥d2x⊥

(
2 − e−i�k⊥·�x⊥ − ei�k⊥·�x⊥

)
× n1

(
�x10, �x⊥, �b⊥, y

)
(8.42)

and evaluating Eq. (8.40) following steps similar to those in Sec. 8.2.1, we obtain (Braun
2000c, Kovchegov and Tuchin 2002)

dσ qq̄A

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φqq̄(Y − y, q2

T ) φA

(
y, (�k⊥ − �q⊥)2

)
. (8.43)

We see that the LLA small-x evolution preserves the kT -factorization of Eq. (8.30)!
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Fig. 8.11. A sketch of the nuclear modification factor as a function of kT /QsG, where
QsG is the typical saturation scale (see the caption to Fig. 8.8), for gluon production in
pA collisions: the upper solid line corresponds to the quasi-classical approximation from
Fig. 8.8, while the dashed-and-dotted, dashed, and lower solid lines demonstrate the change
in RpA with increasing rapidity, owing to small-x evolution. (Reprinted with permission
from Kharzeev, Kovchegov, and Tuchin (2003). Copyright 2003 by the American Physical
Society.)

Equation (8.43) can be generalized to the case of any projectile, in particular the proton,
for which we define the unintegrated gluon distribution

φp(y, k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥nG(�x⊥, �b⊥, y), (8.44)

with nG the gluon dipole–proton forward scattering amplitude evolved by the linear BFKL
evolution equation. One then writes for the inclusive gluon production cross section (Braun
2000c, Kharzeev, Kovchegov, and Tuchin 2003)

dσpA

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φp(Y − y, q2

T ) φA

(
y, (�k⊥ − �q⊥)2

)
. (8.45)

The gluon spectrum generated by Eq. (8.45) is qualitatively similar to that obtained in
the quasi-classical approximation in Fig. 8.7: the IR divergence is softened to 1/k2

T , though
it is not removed completely. The nuclear modification factor RpA resulting from using
Eq. (8.45) is very different from the quasi-classical one in Fig. 8.8 and is shown in Fig. 8.11;
the various curves correspond to different values of rapidity y, such that the lower the curve
the higher is the rapidity y. The effect of small-x evolution and saturation is such that the
quasi-classical Cronin enhancement at large kT is replaced by suppression at all values of
kT (Kharzeev, Levin, and McLerran 2003, Albacete et al. 2004, Kharzeev, Kovchegov, and
Tuchin 2003). The diagram in Fig. 8.11 was confirmed by the precise numerical evaluation
of RpA by Albacete et al. (2004).

To understand this result analytically we use the approximate solution of the fixed-
coupling BK equation immediately outside the saturation region given by Eq. (4.161).
Concentrating on its A-dependence we see that NG ∼ A(1+2iν0)/6, where we employ the
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290 Particle production in high energy QCD

facts that NG ∼ N in this linear-evolution region (see Eq. (8.36)) and that Qs0 ∼ A1/6.
Using this in Eq. (8.41) we see that φA ∼ S⊥A(1+2iν0)/6 ∼ A5/6+iν0/3. This factor is the only
source of A-dependence in Eq. (8.45). Using the latter in Eq. (8.33) we obtain (Kharzeev,
Levin, and McLerran 2003)

RpA(kT � QsG) ∼ A−1/6+iν0/3 = A−0.124 � 1 for A � 1. (8.46)

We see that for large enough nuclei and for large rapidities y (such that Eq. (4.161) is
applicable) the nuclear modification factor in pA collisions becomes smaller than 1, in
agreement with Fig. 8.11.

8.3 Gluon production in nucleus–nucleus collisions

An important problem, both from the standpoint of saturation physics and for the physics
of ultrarelativistic heavy ion collisions, is to find the gluon production cross section for
nucleus–nucleus (AA) collisions. Practically, the problem means that one has to find the
gluon transverse momentum spectrum in the case when neither the saturation scale of the
projectile Qs1 nor the saturation scale of the target Qs2 is negligibly small in the kT -range
of interest. The solution of the problem would involve first constructing a quasi-classical
solution for the MV model with multiple rescatterings in both colliding nuclei. On top of
that one would have to include quantum small-x evolution. Phenomenological applications
would also require fixing the scales of all the coupling constants in the expression.

At the time of writing none of the above steps has been done analytically. For some the-
oretical developments see Balitsky (2004), Blaizot and Mehtar-Tani (2009), and Kovchegov
(2001). One may perhaps expect that the persistence of the kT -factorization formula (8.45)
for various approximations of gluon production in pA and DIS would indicate that this
formula could be valid for AA collisions as well. However, in AA collisions both nuclei
come in with fully saturated wave functions, which are completely screened in the IR (see
Eq. (5.56) and Fig. 5.7): one would therefore expect that owing to the lack of low-kT

partons the produced-gluon spectrum would have no power-law divergence at small kT ,
making it unlikely that kT -factorization gives the right answer for gluon production in AA

collisions. To see this, note that, an inspection of Eq. (8.45) shows that it always leads
to 1/k2

T divergence at small kT , thus contradicting the physical argument we have just
presented. Furthermore, the kT -factorization formula does not appear to agree with the
results of numerical solutions of the quasi-classical AA problem.

The quasi-classical gluon field in AA collision was found numerically in the works
of Krasnitz and Venugopalan (2000, 2001), Lappi (2003), and Krasnitz, Nara, and Venu-
gopalan (2003a, b). In Fig. 8.12 we show the resulting gluon spectrum and, for comparison,
the predictions of the kT -factorization formula (8.30) (Blaizot, Lappi, and Mehtar-Tani
2010). The solid line in Fig. 8.12 gives the gluon spectrum multiplied by k2

T as a function of
kT /QsG for a numerical solution of the classical Yang–Mills equations with the two nuclei
giving the source current (QsG = 2 GeV; the IR cutoff � = 0.1 GeV). The prediction of
the kT -factorization formula (8.30) is shown by the dotted line in Fig. 8.12: one can clearly
see that while the two curves are close to each other for kT � QsG, Eq. (8.30) deviates from
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Fig. 8.12. The gluon spectrum multiplied by k2
T in AA collisions in the quasi-classical

approximation as a function of kT /QsG, given by a numerical solution (solid line). The
dotted line represents the prediction of the kT -factorization formula (8.30). (Reprinted from
Blaizot, Lappi, and Mehtar-Tani (2010), with permission from Elsevier.) A color version
of this figure is available online at www.cambridge.org/9780521112574.

the full solution for kT � QsG. In fact k2
T dNAA/d2kT dy for the full numerical solution

goes to zero as kT → 0, so that the total multiplicity dNAA/dy is independent of the IR
cutoff, in agreement with the physical argument presented above.

A promising strategy for including small-x evolution corrections in numerical simula-
tions of the quasi-classical gluon production was proposed recently by Gelis, Lappi, and
Venugopalan (2007, 2008a, b, 2009). It involves a new type of kT -factorization in which
the JIMWLK evolutions of both nuclei factorize, each providing sources for quasi-classical
gluon production.

Further reading

In this chapter we presented theoretical developments addressing single inclusive gluon
production in high energy collisions in the saturation/CGC framework. The techniques
presented here have been used to calculate other inclusive observables in DIS and pA colli-
sions. Single inclusive valence quark production was found by Dumitru and Jalilian-Marian
(2002) for a hard quark, while the valence quark production at mid-rapidity was calcu-
lated by Albacete and Kovchegov (2007a). The prompt photon production cross section
was derived by Gelis and Jalilian-Marian (2002a). Two-particle inclusive production (and
hence particle correlations) can also be determined. Di-lepton pair production (the Drell–
Yan process) was found by Gelis and Jalilian-Marian (2002b), Baier, Mueller, and Schiff
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(2004), and Kopeliovich et al. (2003). Inclusive two-gluon production was found by Jalilian-
Marian and Kovchegov (2004) and by Kovner and Lublinsky (2006). Gluon–valence-quark
production was calculated by Marquet (2007) and, using a different technique, by Jalilian-
Marian and Kovchegov (2004). Quark–antiquark pair production was found by Blaizot,
Gelis, and Venugopalan (2004) and by Kovchegov and Tuchin (2006). A number of proper-
ties of two-particle correlations have been discussed recently by Dominguez et al. (2011).

Exercises

8.1 Show that the lowest-order gluon production in onium–onium scattering is given by
Eq. (8.3) with the unintegrated gluon distributions given by Eq. (8.4).

8.2 Show that the inclusive gluon production cross section in onium–nucleus scattering
and in the quasi-classical MV/GGM approximation is given by Eq. (8.35). Demon-
strate that this expression can be reduced to the kT -factorized form (8.30).

8.3 Using a simplified model for NG,

NG(�x⊥, �b⊥, 0) = 1 − exp

{
−x2

⊥Q2
sG

4

}
, (8.47)

and assuming that Q2
sG is �b⊥-independent in a very large circle of radius R and is

zero outside the circle, evaluate Eq. (8.20) exactly. Use the obtained expression to
construct the nuclear modification factor RpA defined in Eq. (8.33). Plot the resulting
RpA as a function of kT /QsG and compare the plot with Fig. 8.8.

8.4 Prove the cancellations in Eqs. (8.37).

8.5∗ Reduce Eq. (8.40) to Eq. (8.43) using the unintegrated gluon distributions defined in
Eqs. (8.41) and (8.42).
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9

Instead of conclusions

The research on saturation/CGC physics is ongoing, with a number of open theoretical
and phenomenological questions. Therefore, instead of conclusions, in this chapter we
briefly review the phenomenology of saturation/CGC physics and list some important open
theoretical problems.

9.1 Comparison with experimental data

In this section we will give a brief overview of how high energy QCD theory compares
with the current experimental data. The reader may wonder whether such a comparison
is possible to fit into one short section; indeed, a comparison of saturation/CGC physics
with experiment could be a subject for a separate book. However, a serious quantitative
comparison with experiment suffers from two major difficulties. The first is that a well-
developed theoretical approach exists only for the scattering of a dilute parton system on a
dense one; the key examples are DIS on nuclei (eA) and the proton–nucleus (pA) collisions
considered earlier. At the same time, much of the data exist either for the scattering of a
dense parton system on another dense parton system, as is the case in nucleus–nucleus
(AA) collisions, or for the scattering of two dilute systems on each other, like DIS on a
proton (ep) or proton–proton (pp) collisions. The theoretical progress in the description
of these reactions in the saturation/CGC framework is rather limited, with many open
questions and opportunities for further research (see Sec. 8.3 for a brief summary of
the existing AA results). Hence, in describing the AA, ep, and pp data using existing
theoretical knowledge one is often forced to make assumptions whose validity is hard to
verify.

The second difficulty in comparing the saturation/CGC physics with experiment is in
the fact that many experimental observations allow alternative descriptions, usually in the
framework of DGLAP evolution within the standard collinear factorization framework.
The key problem is that an experimentum crucis that would allow us to unambiguously
differentiate the nonlinear saturation physics from the linear DGLAP evolution has not
been found. This is also partly a theoretical problem.

On the positive side, high energy QCD leads to a unified description of various experi-
mental observations providing not only a possible understanding of the underlying physics
but also suggestions and directions for future experiments. The phenomenological picture
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Fig. 9.1. Geometric scaling in the total γ ∗p cross section in DIS. (Reprinted with permission
from Stasto, Golec-Biernat, and Kwiecinski (2001). Copyright 2001 by the American
Physical Society.)

resulting from the theoretical developments discussed in this book is so beautiful, universal,
and self-consistent that we cannot finish the book without sharing it with our reader.

9.1.1 Deep inelastic scattering

As discussed earlier (see Sec. 4.5), one of the most striking predictions of high energy
QCD is that the DIS structure functions should depend on only one variable, τ = Q2/Q2

s :
this is the phenomenon of geometric scaling. This scaling behavior is a manifestation of
the simple idea that the only relevant dimensionful scale at high energy is the saturation
momentum. Geometric scaling was first observed by Stasto, Golec-Biernat, and Kwiecinski
(2001) and is shown in Fig. 9.1 for a compilation of HERA data on the total γ ∗p cross
section for x < 0.01.

Another important consequence of saturation physics is that the ratio of the diffractive
and total cross sections should be independent of energy (see Eqs. (7.23) and the discussion
around them). The experimental data from HERA shown in Fig. 9.2 appears to agree with
this prediction.
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MX. (Reprinted with permission from Abramowicz and Caldwell (1999). Copyright 1999
by the American Physical Society.)

On the more quantitative side, the first comprehensive fit of the HERA DIS data based
on a variation of the GGM/MV formula (4.51) for the dipole amplitude was carried out by
Golec-Biernat and Wusthoff (1999a, b) and is known as the GBW model (see Eqs. (4.12),
(4.24), and (4.10) for the relation between F2, F1, and the dipole amplitude N ). A more
recent fit, based on rcBK evolution, of the combined data on the DIS cross section reported
by the H1 and ZEUS experiments at HERA is shown in Fig. 9.3. It can be seen that the
“reduced” DIS cross section, defined by

σr = F2 − y2

1 + (1 − y)2
FL (9.1)

(with y from Eq. (2.2)) is well described by the rcBK evolution.

9.1.2 Proton(deuteron)–nucleus collisions

The formalism developed in this book is applicable to proton–nucleus collisions, as we saw
in Chapter 8. One can therefore test the predictions made in that chapter: in particular we
showed that saturation physics predicts a transition of the nuclear modification factor from
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taken from the H1 and ZEUS collaboration (2010). (With kind permission from Springer
Science+Business Media: Albacete et al. (2011).) A color version of this figure is available
online at www.cambridge.org/9780521112574.

Cronin enhancement to suppression at all produced particle momenta pT (see Fig. 8.11).
This prediction may be compared with the data by means of Fig. 9.4, where we plot the
nuclear modification factor Rd+Au for negatively charged hadrons obtained in deuteron–
gold (d+Au) collisions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory by the BRAHMS collaboration. (At RHIC, data was collected for
d+Au collisions instead of pA; we assume that the deuteron is also a dilute parton system,
not unlike the proton.) The various different panels in Fig. 9.4 correspond to different
pseudo-rapidity values; clearly, suppression sets in as the rapidity η increases, in agreement
with the saturation physics prediction.

For dilute–dilute parton-system scattering (say, for pp collisions), we expect that two jets
with large transverse momenta �p1⊥ and �p2⊥ are produced back to back, so that �p2⊥ ≈ − �p1⊥
as required by momentum conservation if we assume that the other produced particles are
few and carry small transverse momenta. In the saturation phase, new processes are possible
in which the large value of �p1⊥ is not compensated by a single second jet but instead the
momentum is distributed among many particles with average transverse momentum of
order Qs , thus depleting the back-to-back correlation of the jets. A large rapidity interval
between the two measured particles only makes this effect stronger, by enhancing extra
emissions by powers of rapidity. Figure 9.5 demonstrates that it is likely that this effect has
been observed experimentally. Data on neutral pion correlations reported by the PHENIX
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Fig. 9.4. Nuclear modification factor Rd+Au of charged particles for different pseudo-
rapidities. The data are taken from the BRAHMS collaboration (2004). The theoretical
curves and figures are taken from Kharzeev, Kovchegov, and Tuchin (2004). (Reprinted
from Kharzeev, Kovchegov and Tuchin (2004), with permission from Elsevier.) A color
version of this figure is available online at www.cambridge.org/9780521112574.

collaboration at RHIC are shown. The figure gives the π0−π0 correlation function for pp,
d+Au peripheral, and d+Au central collisions as a function of the azimuthal angle �φ

between the pions (the angle in the transverse plane) for three different pairs of values
of the pions’ transverse momenta. One clearly sees that the back-to-back correlation at
�φ = π in the central d+Au collisions, where saturation effects should be strongest, is
indeed depleted as compared with the pp or peripheral d+Au cases.

9.1.3 Proton–proton and heavy ion collisions

Proton–(anti)proton and nucleus–nucleus collisions are indeed very different in the sizes
of the colliding particles and in the multiplicity of the produced particles. Still, saturation
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Fig. 9.5. The π 0−π 0 correlation function for pp, d+Au peripheral (60%−88% centrality)
and d+Au central (0%−20% centrality) collisions at

√
sNN = 200 GeV, as a function

of the azimuthal angle between the pions. The triggered π 0 is measured at mid-rapidity
(|η| < 0.35), while the associated π 0 is at forward rapidity (3.0 < |η| < 3.8, deuteron
direction). The transverse momenta of the triggered and associated pions are labeled at
the top of each panel. (Reprinted with permission from the PHENIX collaboration (2011).
Copyright 2011 by the American Physical Society.) A color version of this figure is available
online at www.cambridge.org/9780521112574.

physics teaches us that at very high energies, when the saturation scales of the protons are
large, pp collisions may start resembling AA collisions. While such a regime has not yet
been accessed by modern-day accelerators, there are indications that it may be achieved
at higher energies, and this led us to group those two reactions under one heading. These
days, pp collisions are performed at the Large Hadron Collider (LHC) at CERN with the
goal of finding the Higgs boson or particles outside the Standard Model of particle physics.
Ultrarelativistic heavy ion (AA) collisions are being carried out at RHIC and LHC with the
aim of creating a thermal medium of quarks and gluons, the quark–gluon plasma (QGP),
and studying its properties (see e.g. the review by Kolb and Heinz (2003)).

The first piece of evidence in favor of saturation physics comes again from geometric
scaling: one might expect that geometric scaling in the distribution functions would translate
into such a scaling for the produced particle spectra; this conclusion is supported by more
detailed calculations. Geometric scaling is observed in both pp and AA collisions and is
depicted here in Fig. 9.6, where we show plots of charged-hadron transverse momentum
spectra in pp and AA collisions as functions of the scaling variable τ = (pT /Qs)2+λ,
where Qs = Q

2/(2+λ)
0 (

√
s × 10−3)λ/(2+λ) with Q0 = 1 GeV,

√
s measured in GeV, and λ as

specified in the figures. In the AA case the scaling variable τ also includes a factor A−1/3.
The quality of scaling is much lower in the AA case owing to the quark–gluon plasma
(QGP) final-state effects.

Since the saturation scale is the only relevant momentum scale in the problem, the
hadron multiplicity produced in a pp or AA collision per unit transverse area should be
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energy. (Reprinted from McLerran and Praszalowicz (2011) (left) and Praszalowicz (2011)
(right), with permission by Acta Physica Polonica. The data are as reported by the CMS
collaboration (2010a, b) and the PHOBOS collaboration (2002, 2003) respectively. A color
version of this figure is available online at www.cambridge.org/9780521112574.

proportional to the saturation scale squared (Gribov, Levin, and Ryskin 1983, McLerran
and Venugopalan 1994a),

1

S⊥

dN

dy
∼ Q2

s , (9.2)

leading to the prediction that the particle multiplicity should grow with Q2
s as a power of

energy. A compilation of the experimental data on the hadron multiplicity in pp and AA

collisions at various energies is shown in Fig. 9.7, demonstrating a power-of-energy growth
for both reactions, along with saturation-model fits by Levin and Rezaeian (2011). (The
highest-energy pp data point appeared after the saturation prediction.)

Saturation physics also predicts that the average transverse momentum of the produced
particles should be proportional to the saturation scale, 〈pT 〉 ∼ Qs (see e.g. Fig. 8.7) since
again it is the only scale in the problem. One expects 〈pT 〉 to grow with energy and,
because of Eq. (9.2), with particle multiplicity. This behavior is demonstrated in Fig. 9.8.
The left-hand panel of Fig. 9.8 shows a compilation of the proton–proton and proton–
anti-proton collision data collected in several experiments over the years, demonstrating
that 〈pT 〉 does grow with energy. The right-hand panel of Fig. 9.8 shows the growth of
〈pT 〉 with charged-hadron multiplicity in pp collisions at LHC. It should be stressed that,
in the traditional approaches based on high energy pomeron phenomenology, 〈pT 〉 does
not depend on either energy or multiplicity; therefore we consider the observation of these
dependences in Fig. 9.8 as a strong argument in favor of the advantage of saturation physics
over such models.
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It is difficult to make precise quantitative saturation/CGC physics predictions for the
hadron multiplicity and spectra in pp and AA collisions since, mentioned above, these
theoretical problems have not been solved. Instead, as a reasonable approximation to the
full answer, one may use the kT -factorization formula (8.45) with the qT -integral cut off
by an upper bound proportional to kT . This is known as the Kharzeev–Levin–Nardi (KLN)
approach (Kharzeev and Nardi 2001, Kharzeev and Levin 2001, Kharzeev, Levin, and Nardi
2005a, b). Predictions based on the KLN approach have been quite successful in describing
heavy ion data on multiplicities. A fit of the RHIC multiplicity data plotted as a function of
pseudo-rapidity for different centrality bins (denoted by percentages in the legend, along
with the appropriate scaling factors) based on the KLN model is shown in Fig. 9.9; clearly
the data is well described by the saturation model.

This agreement between the multiplicity data in heavy ion collisions and the saturation
predictions is further illustrated in Fig. 9.10, where we show the particle multiplicity per
participating nucleon as a function of the collision centrality; Npart is the number of
nucleons participating in the collision and varies between a few for peripheral collisions
to 2A for central collisions (for identical nuclei). The three lower lines in the legend of
Fig. 9.10 correspond to predictions coming from saturation-based models.1 Clearly all the
curves do well; the prediction by Albacete and Dumitru (2011) (the short-dashed curve in
Fig. 9.10) based on rcBK evolution for the dipole amplitude combined with the KLN model
for particle production matches the data almost perfectly.

1 The three upper curves in the legend of Fig. 9.10 are Monte-Carlo simulations not based on saturation physics; note,
however, that the HIJING event generator prediction uses an IR cutoff that grows with energy, which is reminiscent of
the saturation scale.
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Another possible piece of evidence in favor of saturation/CGC physics is provided by the
long-range rapidity correlations between the produced hadrons at small azimuthal angles
�φ ≈ 0, which have been seen in AA and, more recently, in pp collisions and are shown
in Fig. 9.11. Owing to the shape of these correlations they are often referred to as the
“ridge”. The search for a detailed explanation of them in the saturation framework is still
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in progress (see Gavin, McLerran, and Moschelli (2009), and Dumitru et al. 2008, 2011a,
b), but a discussion of this work is beyond of the scope of the present text. However, two
facts, inherent properties of the saturation approach, are shown experimentally. First, the
correlations are long-range in rapidity. Second, in pp collisions the long-range rapidity
correlations at �φ ≈ 0 appear only in events with high multiplicity (N ≥ 110 in the right-
hand panel of Fig. 9.11): hence high-multiplicity pp collisions appear to be similar to the
AA collisions. This suggests that the source of the correlations shown in Fig. 9.11 is in the
properties of dense parton systems.

9.2 Unsolved theoretical problems

In this book we have tried to introduce our readers to the new world of the ideas and
methods of high energy QCD. We hope that after reading our book the reader will be able
to work in this field, which is in the early stages of development. We conclude the book by
outlining unsolved theoretical problems in the field.

1. Impact parameter dependence In Chapters 4 and 5 we showed that the dipole–
nucleus forward scattering amplitude N (�x⊥, �b⊥, Y ) resulting either from the GGM model
or from BK/JIMWLK evolution does not violate the black-disk limit, so that one always
has N ≤ 1. While this is an improvement over BFKL evolution, some unitarity problems
still remain. As we saw in Sec. 3.3.6, the Froissart–Martin bound consists of two ingre-
dients, that the scattering obeys the black-disk limit and that the radius of the black disk
grows logarithmically with energy. As follows from Eq. (3.115), the latter property results
from QCD having a mass gap (since the lightest particle in the spectrum, the pion, has a
nonzero mass). In perturbative QCD one works with gluons, which have zero mass: clearly
Eq. (3.115) should no longer apply and the Froissart–Martin bound is violated.

To see this explicitly imagine that we are trying to prove the Froissart–Martin bound for
onium–onium scattering. Consider the scattering at large impact parameter b⊥, where the
scattering amplitude is small and nonlinear saturation corrections can be neglected. The
onium–onium scattering cross section, defined in Eq. (4.85), is then governed by the BFKL
evolution (4.87) (in the LLA). At large b⊥ one can show that the general BFKL equation
solution in Eq. (4.126) leads to

n
(
�x10, �x1′0′ , �b⊥, Y

)
b⊥ � x10, x1′0′−−−−−−−→

∞∫
−∞

dν

(
x2

10 x2
1′0′

b4
⊥

)1/2+iν

C(ν) eᾱsχ (0,ν)Y , (9.3)

where C(ν) is a function of ν, the exact form of which is not important to us. Evaluating
the ν-integral in Eq. (9.3) near the saddle point at ν = 0, we get

n
(
�x10, �x1′0′ , �b⊥, Y

)
b⊥ � x10, x1′0′−−−−−−−→ x10 x1′0′

b2
⊥

e(αP −1)Y . (9.4)
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Using Eq. (9.4) instead of Eq. (3.113), we obtain the black-disk radius R = b∗ by requiring
that (cf. Eq. (3.114))

x10 x1′0′

b∗ 2
e(αP −1) Y ∝ 1 (9.5)

so that

b∗ 2 ∝ sαP −1. (9.6)

Thus the radius of interaction increases as a power of s, R2 ∼ sαP −1. The total cross section
increases as a power of energy too,

σtot = 2πR2 ∝ sαP −1. (9.7)

We conclude that nonlinear evolution gives a scattering amplitude that satisfies the black-
disk limit but still leads to a violation of the Froissart–Martin bound, owing to the fast
growth of the black disk.

This power-like increase in the total cross section was first discussed by Kovner and
Wiedemann (2002a, b, 2003). Their conclusions were confirmed by a numerical solution
of the BK equation with impact parameter dependence performed by Golec-Biernat and
Stasto (2003) (see also Gotsman et al. (2004)). Equation (9.7) shows that saturation/CGC
physics (or any other perturbative QCD calculation) cannot be trusted in large-impact-
parameter scattering and some nonperturbative effects need to come in to make the total
cross section satisfy the Froissart–Martin bound. One hopes that, with some minimalistic
assumptions about confinement physics included in the evolution, and for a large nucleus,
such peripheral nonperturbative effects would give a relatively small contribution to the
total cross section, since the perimeter scales as a smaller power of A than the area. The
existing data appears to indicate that such a hope is not unfounded.

2. Higher-order corrections to the BFKL, BK, and JIMWLK evolution equations
We have briefly discussed the problem of higher-order corrections to the BFKL evolution
in Sec. 6.3, outlining possible ways of getting the corrections under control. To improve
the precision of the BK/JIMWLK predictions for the phenomenology, one needs to carry
out this (or any other) program for calculating higher-order corrections to these nonlinear
evolution equations. Would the agreement with the data shown in Sec. 9.1 survive the
inclusion of higher-order corrections? Can we devise a systematic way of improving the
precision of the nonlinear evolution equations? These are important questions, which need
to be studied seriously.

3. Scattering of two dilute systems: BFKL pomeron loops At first sight the scatter-
ing of one dilute system of partons on another dilute system of partons (say the scattering
of two onia with small sizes) can be described by the exchange of a BFKL pomeron.
However, as we discussed in Sec. 3.3.6, such a contribution would violate the black-disk
limit at high energy. Owing to the low initial parton density in both onia (so that there is
no parameter A), the pomeron fan diagrams of Fig. 3.23 in such a dilute–dilute scattering
are not enhanced compared to the pomeron loop diagrams of Fig. 3.24: both kinds of
interaction have to be included. The BK/JIMWLK evolution equations assume that one

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
Downloaded from https://www.cambridge.org/core. IP address: 3.144.16.21, on 30 May 2024 at 23:47:40, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D9BFB752C0B7EFDFD2A0531EFAE92B09
https://www.cambridge.org/core


9.2 Unsolved theoretical problems 305

Fig. 9.12. A diagram contributing to the total cross section of nucleus–nucleus scattering
in the BFKL pomeron calculus.

scattering particle (the nucleus) is large and thus do not contain the pomeron loop con-
tributions from Fig. 3.24. Nonetheless it is likely that such contributions are essential for
the unitarization of onium–onium scattering. This problem is important because the high
energy onium–onium scattering process will happen in the next-generation linear colliders
(where each colliding lepton could split into a virtual photon, with each γ ∗ in turn split-
ting into a qq̄ pair). On top of that, unitarization in a dilute–dilute scattering would be
“pure QCD” in its nature, since it would not be relying on a large nucleus as one of the
scatterers. In spite of many efforts (see Salam 1995, 1996, Navelet and Peschanski 1999,
Mueller, Shoshi, and Wong 2005, Levin and Lublinsky 2005b, Iancu and Triantafyllopou-
los 2005, Kovner and Lublinsky 2005d, Hatta et al. 2006, Altinoluk et al. 2009, Levin,
Miller, and Prygarin 2008) we are still far from understanding this problem of dilute–dilute
scattering.

4. Heavy ion collisions We have already mentioned, in Sec. 8.3, that the calculation
of gluon and quark production in AA collisions in the saturation/CGC framework is an
important problem for understanding the early-time dynamics of heavy ion collisions. While
some progress on this issue has been achieved lately, mainly along the lines of finding a
numerical solution, the problem is still an open one. A related problem, which is also open,
is the problem of thermalization in heavy ion collisions: one needs to understand how the
produced quarks and gluons form a thermal medium (QGP), which is likely to be observed
in heavy ion collisions.

Multi-particle correlations in AA collisions are also important, particularly correlations
in rapidity since they are sensitive to subtle details of the early-time dynamics and can
be measured experimentally. Initial progress on this issue has recently been achieved by
Gavin, McLerran, and Moschelli (2009), and by Dumitru et al. (2008, 2011a, b).

Another, related, unsolved theoretical problem concerns the calculation of the total
nucleus–nucleus scattering cross section in the saturation/CGC framework. One has to
sum diagrams fanning out in the directions of both nuclei (Braun 2000b, 2004). A sample
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diagram contributing to this process is shown in Fig. 9.12. An equation summing all such
diagrams has been suggested by Braun (2000a, 2004) using the BFKL pomeron calculus.
The solution of such an equation is not known, however, and it is yet to be reproduced using
the BK/JIMWLK approach (see Altinoluk et al. (2009)).

Further reading

The inevitable space limitations of this book did not allow us to include (or do justice to)
everything that is known about high energy QCD. We had to make a selection based on
what, in our opinion, is needed to quickly bring a student or a researcher from a neighboring
field up to speed in saturation/CGC physics. Below, some topics that did not make it into the
book are introduced briefly; they constitute our final recommendation for further reading,
complementary to all our earlier suggestions.

Ciafaloni (1988), Catani, Fiorani, and Marchesini (1990a, b), and Marchesini (1995)
suggested an evolution equation that, in the framework of a single equation, reproduces
both the Q2 (DGLAP) and x (BFKL) evolutions. This result, known as the CCFM equation,
is at the foundation of most Monte Carlo simulations of high energy collisions. While the
presentation of CCFM goes beyond the scope of this book, we certainly recommend our
readers to learn more about this equation by reading the original papers mentioned above.

We have also omitted any presentation of particle production in the collinear factorization
framework; however, the reader may learn the basics of collinear factorization from the
textbook by Sterman (1993), with more advanced results along with a presentation of the
related jet physics given by Dokshitzer, Diakonov, and Troian (1980), Collins, Soper, and
Sterman (1985a, b, 1988a, b), Dokshitzer et al. (1991), and Collins (2011).

Finally, in our book we have presented only the basic aspects of the connections between
saturation/CGC physics and heavy ion collisions. This is in part due to the fact that under-
standing AA collisions in saturation physics is a difficult, unsolved, problem. We recom-
mend the reviews by McLerran (2005, 2008, 2009a) as a starting point for the further
exploration of the richness of the saturation/CGC dynamics in AA collisions.
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Appendix A

Reference formulas

A.1 Dirac matrix element tables

Tables A.1 and A.2 first appeared in Lepage and Brodsky (1980). Following the original authors
of these tables we use the notation

�p⊥ × �p′
⊥ ≡ p1p′2 − p2p′1. (A.1)

Note that ε12 = −ε21 = 1, ε11 = ε22 = 0. The spinors in the tables are defined in Eqs. (1.50)
and (1.51).

The following formulas will be useful in relating other matrix elements to those tabulated:

v̄σ ′ (p′)γ μvσ (p) = ūσ (p)γ μuσ ′ (p′), (A.2)

v̄σ ′ (p′)γ μγ νγ ρvσ (p) = ūσ (p)γ ργ νγ μuσ ′ (p′), (A.3)

v̄σ ′ (p′)vσ (p) = −ūσ (p)uσ ′ (p′). (A.4)

These formulas allow one to obtain matrix elements constructed only from v-spinors using
Table A.1 for matrix elements constructed solely from u-spinors.

For any Dirac spinors ψ and η and a 4 × 4 matrix �, the following is true:(
ψ̄�η
)∗ = η̄γ 0�†γ 0ψ. (A.5)

This allows one to construct matrix elements of the type

ūσ (p)�vσ ′ (p′) = [v̄σ ′ (p′)γ 0�†γ 0uσ (p)]∗ (A.6)

from those tabulated in Table A.2. As

γ 0γ μγ 0 = (γ μ)† (A.7)

in the case � = γ μ, Eq. (A.6) gives

ūσ (p)γ μvσ ′ (p′) = (v̄σ ′ (p′)γ μuσ (p)
)∗

. (A.8)

A.2 Some useful integrals

Below we list several integrals used throughout the book. We leave their derivation as an exercise
for the reader. The Green function of the Laplace equation in two dimensions is∫

d2q⊥
q2

⊥
ei �q⊥·�x⊥ = 2π ln

1

x⊥�
, (A.9)
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Table A.1. Dirac matrix elements constructed from u-spinors only. Table reprinted
with permission from Lepage and Brodsky (1980). Copyright 1980 by the American
Physical Society.

Matrix element Value

ūσ ′(p′)√
p′+ γ + uσ (p)√

p+ 2δσσ ′

ūσ ′(p′)√
p′+ γ − uσ (p)√

p+

δσσ ′
2

p+p′+ ( �p⊥ · �p′
⊥ − iσ �p⊥ × �p′

⊥ + m2)

−δσ,−σ ′σ
2m

p+p′+
[
(p′1 + iσp′2) − (p1 + iσp2)

]

ūσ ′(p′)√
p′+ γ i

⊥
uσ (p)√

p+

δσσ ′

(
p′i

⊥ − iσ εijp
′j
⊥

p′+ + pi
⊥ + iσ εijp

j
⊥

p+

)

−δσ,−σ ′σm

(
p′+ − p+

p′+p+

)
(δi1 + iσδi2)

ūσ ′(p′)√
p′+

uσ (p)√
p+ δσσ ′m

p+ + p′+

p+p′+ − δσ,−σ ′σ

(
p′1 + iσp′2

p′+ − p1 + iσp2

p+

)

ūσ ′(p′)√
p′+ γ −γ +γ − uσ (p)√

p+ 4
ūσ ′(p′)√

p′+ γ − uσ (p)√
p+

ūσ ′(p′)√
p′+ γ −γ +γ i

⊥
uσ (p)√

p+ δσσ ′ 4
p′i

⊥ − iεij σp
′j
⊥

p′+ + δσ,−σ ′ σ
4m

p′+ (δi1 + iσ δi2)

ūσ ′(p′)√
p′+ γ i

⊥γ +γ − uσ (p)√
p+ δσσ ′ 4

pi
⊥ + iεij σp

j
⊥

p+ − δσ,−σ ′ σ
4m

p+ (δi1 + iσ δi2)

ūσ ′(p′)√
p′+ γ i

⊥γ +γ
j
⊥

uσ (p)√
p+ δσσ ′2(δij + iσ εij )

where � is the IR cutoff on the integration. Taking the transverse gradient of Eq. (A.9) yields

∫
d2q⊥ei �q⊥·�x⊥ �q⊥

q2
⊥

= 2πi
�x⊥
x2

⊥
. (A.10)

Here is a variation of Eq. (A.9), for a massive Green function:

∫
d2q⊥

q2
⊥ + m2

ei �q⊥·�x⊥ = 2πK0(mx⊥). (A.11)
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Table A.2. Dirac matrix elements constructed from u- and v-spinors. Table reprinted
with permission from Lepage and Brodsky (1980). Copyright 1980 by the American
Physical Society.

Matrix element Value

v̄σ ′(p′)√
p′+ γ + uσ (p)√

p+ 2δσ,−σ ′

v̄σ ′(p′)√
p′+ γ − uσ (p)√

p+

δσ,−σ ′
2

p+p′+ ( �p⊥ · �p′
⊥ − iσ �p⊥ × �p′

⊥ − m2)

−δσσ ′σ
2m

p+p′+
[
(p′1 + iσp′2) + (p1 + iσp2)

]

v̄σ ′(p′)√
p′+ γ i

⊥
uσ (p)√

p+

δσ,−σ ′

(
p′i

⊥ − iσ εijp
′j
⊥

p′+ + pi
⊥ + iσ εijp

j
⊥

p+

)

−δσσ ′σm

(
p′+ + p+

p′+p+

)
(δi1 + iσ δi2)

v̄σ ′(p′)√
p′+

uσ (p)√
p+ δσ,−σ ′m

p′+ − p′+

p+p′+ − δσσ ′σ

(
p′1 + iσp′2

p′+ − p1 + iσp2

p+

)

v̄σ ′(p′)√
p′+ γ −γ +γ − uσ (p)√

p+ 4
v̄σ ′(p′)√

p′+ γ − uσ (p)√
p+

v̄σ ′(p′)√
p′+ γ −γ +γ i

⊥
uσ (p)√

p+ δσ,−σ ′ 4
p′i

⊥ − iεij σp
′j
⊥

p′+ + δσσ ′σ
4m

p′+ (δi1 + iσ δi2)

v̄σ ′(p′)√
p′+ γ i

⊥γ +γ − uσ (p)√
p+ δσ,−σ ′ 4

pi
⊥ + iεij σp

j
⊥

p+ − δσσ ′σ
4m

p+ (δi1 + iσ δi2)

v̄σ ′(p′)√
p′+ γ i

⊥γ +γ
j
⊥

uσ (p)√
p+ δσ,−σ ′ 2(δij + iσ εij )

Equations (A.10) and (A.9) can be used to show that

∫
d2y⊥

�y⊥ · (�y⊥ + �x⊥)

y2
⊥(�y⊥ + �x⊥)2

= 2π ln
1

x⊥�
. (A.12)

Several angular integrals are useful too:

2π∫
0

dϕq

(�q⊥ − �l⊥)2
= 2π

|l2
⊥ − q2

⊥| , (A.13)
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where ϕq is the angle between �q⊥ and �l⊥;

2π∫
0

dϕq

�q⊥ − �l⊥
(�q⊥ − �l⊥)2

= −2πθ (l⊥ − q⊥)
�l⊥
l2
⊥

; (A.14)

2π∫
0

dϕq

q2
⊥ + (�q⊥ − �l⊥)2

= 2π√
4q4

⊥ + l4
⊥

; (A.15)

2π∫
0

dϕ eiz sin φ−inϕ = 2πJn(z), (A.16)

for integer n ≥ 0;

∞∫
0

dk kλ−1Jν(kx) = 2λ−1x−λ
�
(

1
2 (ν + λ)

)
�
(

1
2 (2 + ν − λ)

) . (A.17)

The integral (A.17) converges for real x > 0 and for −Re ν < Re λ < 3/2, but it can be
analytically continued outside this region of λ. A useful special case is ν = 0:

∞∫
0

dk kλ−1J0(kx) = 2λ−1x−λ
�
(

1
2λ
)

�
(
1 − 1

2λ
) . (A.18)

One can also show that

∞∫
0

dk kλ−1[1 − J0(kx)] = −2λ−1x−λ
�
(

1
2λ
)

�
(
1 − 1

2λ
) . (A.19)

This integral converges for real x and for −2 < Re λ < 0: it can also be analytically continued
outside this region of λ.

A.3 Another useful integral

Let us find here the integral

Idip =
∫

d2x2
x2

10

x2
20x

2
21

, (A.20)

which is very useful in the Mueller’s dipole model. We first note that one can write

d2x2 = 2πx02x12

∞∫
0

dkkJ0(kx10) J0(kx20) J0(kx21), (A.21)
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where the right-hand side is non-zero only if there exists a triangle with sides x10, x20, and x21.
Equation (A.20) becomes

Idip = 2πx2
10

∞∫
0

dk kJ0(kx10)

∞∫
ρ

dx20

x20
J0(kx02)

∞∫
ρ

dx21

x21
J0(kx12), (A.22)

where we have inserted a UV regulator ρ into the x20- and x21- integrals. Writing
∞∫

ρ

dx

x
J0(kx) = lim

ε→0

⎧⎨
⎩

∞∫
0

dx xε−1J0(kx) −
ρ∫

0

dx xε−1J0(kx)

⎫⎬
⎭ , (A.23)

we use Eq. (A.18) to perform the first integral on the right while putting J0(kx) = 1 in the
second integral before integrating over x, thus neglecting higher powers of the UV regulator ρ.
Expanding the result in ε and taking the limit ε → 0 yields

∞∫
ρ

dx

x
J0(kx) = ln

2

kρ
− γE + O(ρ). (A.24)

Substituting Eq. (A.24) into Eq. (A.22) we obtain

Idip = 2πx2
10

∞∫
0

dk kJ0(kx10)

(
ln

2

kρ
− γE

)2

. (A.25)

Using (for x10 > 0)
∞∫

0

dk kJ0(kx10) = 0, (A.26)

∞∫
0

dk kJ0(kx10) ln k = lim
ε→0

∂

∂ε

∞∫
0

dkk1+εJ0(kx10) = − 1

x2
10

, (A.27)

and
∞∫

0

dk kJ0(kx10) ln2 k = lim
ε→0

∂2

∂ε2

∞∫
0

dk k1+εJ0(kx10) = 2

x2
10

(
ln

x10

2
+ γE

)
, (A.28)

all of which follow from Eq. (A.18), we can rewrite Eq. (A.25) as

Idip = 4π ln
x01

ρ
, (A.29)

which is used in arriving at the last line of Eq. (4.64) in the main text.
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Appendix B

Dispersion relations, analyticity, and unitarity of the
scattering amplitude

Our analysis of high energy scattering amplitudes cannot be complete, since the problem
of quark (and gluon) confinement in QCD has not been solved. It is clear that the solution
of this problem lies beyond the realm of perturbative QCD. At the same time, nonperturba-
tive physics may affect the scattering amplitudes (though maybe to a lesser extent than one
would naively expect, since the saturation dynamics described in this book tends to suppress
nonperturbative effects). Therefore, it would be very instructive to summarize the properties
of the scattering amplitudes in the perturbative and nonperturbative approaches to any field
theory.

First, any scattering amplitude should be a relativistic invariant (a scalar with respect to
Lorenz transformations) and, because of this, it can depend only on variables that are relativistic
invariants, namely on quantities such as (pi − pj )2, where p

μ
i and p

μ
j are the four-momenta of

external lines labeled i and j . In the case of a 2 → 2 scattering amplitude we have three such
invariants, given by the Mandelstam variables (Mandelstam 1958)

s = (pA + pB )2 = m2
A + m2

B + 2pB · pA,

u = (pC − pB )2 = m2
C + m2

B − 2pC · pB, (B.1)

t = (pA − pC)2 = m2
C + m2

A − 2pC · pA,

with

s + u + t = m2
A + m2

B + m2
C + m2

D. (B.2)

The process is illustrated in the left-hand panel of Fig. B.1, where the notation is explained as
well.

The second basic principle is the unitarity of the S-matrix: S†S = I where I is the
identity operator. This translates into the following equation for the T -matrix, defined by
S = I + iT :

i(T † − T ) = T †T . (B.3)

Below we will rewrite Eq. (B.3) as a condition on scattering amplitudes.
The presentation of the material in this appendix is based mainly on the books Chew (1961,

1966), Roman (1969), Schweber (1961), and Weinberg (1996), vol. 1.

B.1 Crossing symmetry and dispersion relations

It turns out that when calculating any amplitude using Feynman diagrams in a field theory one
always obtains a function that is analytic in its Lorentz-invariant arguments. In the case of a
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B.1 Crossing symmetry and dispersion relations 313
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Fig. B.1. Scattering amplitude for a 2 → 2 process and tree-level diagrams for the process
in the φ3 theory in three different channels, s, u, and t , corresponding respectively to parts
a, b, and c of the figure.

2 → 2 scattering amplitude these arguments are the Mandelstam variables s, t, u. The singu-
larities of the scattering amplitude are located only at the real values of these Lorentz-invariant
variables. These singularities are closely related to the physical processes: they correspond to
the production thresholds for physical particles (this is known as the Landau principle (Landau
1959, 1960)).

Relations between the scattering amplitudes for different processes may be obtained using
crossing symmetry. This symmetry allows one to use only one function (say A (s, t)) to describe
three different processes: A + B → C + D, in the kinematic region where s > 0 and t < 0;
C̄ + B → Ā + D, for u > 0 and t < 0; and A + C̄ → B + D̄, for t > 0 and s < 0. (Here
C̄, D̄, and Ā denote antiparticles in complex-field theories and particles in real-field theories:
in both cases the four-momenta are inverted under crossing symmetry transformations, e.g.,
p

μ

Ā
= −p

μ
A.)

The crossing symmetry can be illustrated using the example of simple tree-level graphs in φ3

theory with the Lagrangian of Eq. (1.71). In Figs. B.1 a, b, c we plot the diagrams for the s-, t- and
u-channel contributions respectively, all corresponding to the same process A + B → C + D.
Indeed, the diagrams of Fig. B.1 lead to the following expressions for the scattering amplitudes:

A(s, t ; Fig. B1a) = λ2

m2 − (pA + pB )2 − iε
= λ2

m2 − s − iε

A(u, t ; Fig. B1b) = λ2

m2 − (−pC + pB )2 − iε
= λ2

m2 − u − iε
(B.4)

A(t, s; Fig. B1c) = λ2

m2 − (pA + −pC)2 − iε
= λ2

m2 − t − iε
.

It is clear that Fig. B.1a describes the process A + B → C + D, while the diagram of Fig. B.1b
can be viewed either as describing the same process as the diagram of Fig. B.1a but with s
replaced by u = 4m2 − s − t or it can be viewed as the tree-level diagram for the process
C̄ + B → Ā + D, with the invariant s defined now as s = (pC̄ + pB )2 if we assume that
p

μ

C̄
= −p

μ
C . Defining

A(s, t) = AA+B→C+D (pA, pB, pC, pD) (B.5)

we see that the relation between the amplitudes in diagrams Figs. B.1a, b that describes their
crossing symmetry is

AC̄+B→Ā+D (pC̄, pB, pĀ, pD) = AA+B→C+D (−pC, pB,−pA, pD) = A(u, t). (B.6)
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314 Dispersion relations, analyticity, and unitarity of the scattering amplitude

Im

Re

4 m2

s

0 9 m2−5m2

C1

C2

Fig. B.2. The singularities of the scattering amplitude A(s, t), shown in the complex plane of
the variable s. They are mainly given by branch cuts that start at the production thresholds
for two, three, and more particles. For the sake of simplicity we do not show the pole
contributions of Fig. B.1.

Similarly, for the amplitude resulting from the diagram Fig. B.1c we have

AA+C̄→B+D̄ (pA, pC̄, pB, pD̄) = AA+B→C+D (pA,−pC,−pB, pD) = A(t, s). (B.7)

Therefore, the scattering amplitude A(s, t) as a function of the variables s and t is able to
describe all three processes.

The analyticity of the scattering amplitude gives more detailed information about the ampli-
tude. Indeed, owing to Cauchy’s theorem the amplitude, being an analytical function, can be
written in the form (see Fig. B.2)

A(s, t) = 1

2πi

∮
C1

ds ′ A
(
s ′, t
)

s ′ − s
= 1

2πi

∮
C2

ds ′ A
(
s ′, t
)

s ′ − s
. (B.8)

The contours C1 and C2 are shown in Fig. B.2, and s is taken somewhere in the complex plane
away from the real axis. The singularities of A (s, t) are also shown in Fig. B.2: as mentioned
before, they are confined to the real s-axis, and are typically branch cuts starting at the particle
production thresholds. Since the amplitude does not have singularities at complex values of s,
we can stretch the contour of integration C1 to C2 without modifying the value of the integral,
as is reflected in Eq. (B.8). One can see that the integration over contour C2 in Eq. (B.8) can be
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B.1 Crossing symmetry and dispersion relations 315

rewritten in the form

A(s, t) = 1

2πi

⎧⎨
⎩

∞∫
smin

ds ′ Discs A
(
s ′, t
)

s ′ − s
+

∞∫
umin

du′ Discu A
(
u′, t
)

u′ − u

⎫⎬
⎭

+ 1

2πi

∮
large circle

ds ′ A
(
s ′, t
)

s ′ − s
, (B.9)

where

DiscsA
(
s ′, t
) = lim

ε→0

[
A
(
s ′ + iε, t

)− A
(
s ′ − iε, t

)]
(B.10)

and

DiscuA
(
u′, t
) = lim

ε→0

[
A
(
u′ + iε, t

)− A
(
u′ − iε, t

)]
. (B.11)

In the second term on the right-hand side of Eq. (B.9) we have changed the integration variable
to u′ = 4m2 − t − s ′; note that A(u, t) is no longer equal to A (s, t) with s replaced by u:
rather A(u, t) = A(s = 4m2 − t − u, t). Typically the limits of integration in Eq. (B.9) would
be smin = 4m2 and umin = 4m2 − t , and we are keeping t fixed and real. (If the amplitude has
poles on the real axis for 0 < s < 4m2, as is the case for the φ3-theory amplitudes given by
Eq. (B.4), the contributions of such poles has to be included in the right-hand side of Eq. (B.9)
by appropriately lowering smin.)

The amplitude A(s, t) has no imaginary part (no branch cuts corresponding to particle
production) along the real axis between s = 0 (corresponding to u = 4m2, t = 0) and s = 4m2.
Therefore it is a real function of s and t in this interval and, as can be shown, is in fact a real
function of s and t in the whole region of its analyticity. We thus conclude that A(s ′ − iε, t) =
A∗(s ′ + iε, t), such that

Discs A
(
s ′, t
) = 2iIm A(s, t) . (B.12)

Similarly,

Discu A
(
u′, t
) = 2iIm A(u, t) . (B.13)

(It should be stressed that, owing to the optical theorem, which follows from Eq. (B.3), Im A(u, t)
and Im A(s, t) are directly related to physical processes.)

One can show that the contribution to the right-hand side of Eq. (B.9) coming from the
integral over the large circle vanishes as we stretch the radius of the circle to infinity (see e.g.
Weinberg (1996), vol. 1):

1

2πi

∮
large circle

ds ′ A
(
s ′, t
)

s ′ − s
−→ 0. (B.14)

Neglecting this last term on the right of Eq. (B.9) and employing Eqs. (B.12) and (B.13) we
finally obtain the following dispersion relation:

A(s, t) = 1

π

⎧⎨
⎩

∞∫
smin

ds ′ Ims A
(
s ′, t
)

s ′ − s
+

∞∫
umin

du′ Imu A
(
u′, t
)

u′ − u

⎫⎬
⎭ . (B.15)

Equation (B.15) allows one to reconstruct the full amplitude if its imaginary part is known.
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316 Dispersion relations, analyticity, and unitarity of the scattering amplitude

For example, the tree-level diagrams in Fig. B.1 yield

Ims A
(
s ′, t ; Fig. B1a

) = πλ2δ
(
m2 − s ′) , (B.16a)

Imu A
(
u′, t ; Fig. B1b

) = πλ2δ
(
m2 − u′) . (B.16b)

Substituting each of these imaginary parts into the right-hand side of Eq. (B.15) yields the
appropriate amplitude after straightforward integration over the delta functions.

Note that a dispersion relation in the form Eq. (B.15) cannot be used in QCD since we know
that QCD amplitudes grow as the energy s at large s (see e.g. Eq. (3.17)), making the integrals
in Eq. (B.15) divergent. Therefore, we have to alter Eq. (B.15) by subtracting, for example,
the amplitude A(s = 0, t) obtained by putting s = 0 in Eq. (B.15). Doing this, we obtain the
subtracted dispersion relation

A(s, t) = A(s = 0, t) + 1

π

{
s

∫ +∞

smin

ds ′ Ims A
(
s ′, t
)

s ′(s ′ − s)

+ [u − u(s = 0)]
∫ +∞

umin

du′ Imu A
(
u′, t
)

[u′ − u(s = 0)](u′ − u)

}
. (B.17)

Finally, subtracting s∂sA(s = 0, t) from Eq. (B.17) (with A(s, t) again given by Eq. (B.15)) we
obtain the double-subtracted dispersion relation

A(s, t) = A(s = 0, t) + s∂sA(s = 0, t) + 1

π

{
s2
∫ +∞

smin

ds ′ Ims A
(
s ′, t
)

s ′2(s ′ − s)

+ [u − u(s = 0)]2
∫ +∞

umin

du′ Imu A
(
u′, t
)

[u′ − u(s = 0)]2(u′ − u)

}
. (B.18)

This is exactly the dispersion relation used in Eq. (3.43). Note that in perturbative QCD
A(s = 0, t) = 0.

B.2 Unitarity and the Froissart–Martin bound

The unitarity constraint (B.3) can be written in terms of scattering amplitudes as (see e.g. Peskin
and Schroeder (1995))

M(k1, k2 → k1, k2) − M∗(k1, k2 → k1, k2)

= i

∞∑
n=2

∫ n∏
i=1

d3qi

(2π )32Eqi

|M(k1, k2 → q1, . . . , qn)|2(2π )4δ4

⎛
⎝k1 + k2 −

n∑
j=1

qj

⎞
⎠ , (B.19)

where M(k1, k2 → q1, . . . , qn) is the 2 → n scattering amplitude for the scattering of two
particles with momenta k1, k2 into n particles with momenta q1, . . . , qn, and M(k1, k2 → k1, k2)
is the forward scattering amplitude; Eqi

is the energy of a particle with momentum qi .
Let us consider the case of high energy scattering, where k+

1 and k−
2 are very large and

so are q+
1 ≈ k+

1 and q−
2 ≈ k−

2 . Separating the elastic 2 → 2 contribution from the inelastic
contributions (2 → 3, 2 → 4, etc.) on the right-hand side of Eq. (B.19), and integrating over the
delta-function in that contribution, yields

2 Im A(k1, k2 → k1, k2) =
∫

d2q⊥
(2π )2

|A(k1, k2 → q1, q2)|2 + inelastic terms, (B.20)
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B.2 Unitarity and the Froissart–Martin bound 317

where q is the momentum transfer four-vector, defined by

q = q1 − k1 = k2 − q2, (B.21)

and we also define a new rescaled scattering amplitude

A(k1, k2 → q1, q2) ≡ M(k1, k2 → q1, q2)

2
√

2Ek1 2Ek2 2Eq1 2Eq2

≈ M(k1, k2 → q1, q2)

2k+
1 k−

2

. (B.22)

Since both the incoming and outgoing particles are on mass shell the momentum transfer q has
only two free components, which we choose to be transverse and over which we integrated in
Eq. (B.20).

The optical theorem then states that the total scattering cross section is given by (again, see
e.g. Peskin and Schroeder (1995))

σtot = 2 Im A(k1, k2 → k1, k2) (B.23)

so that Eq. (B.20) simply implies that

σtot = σel + σinel, (B.24)

where σel is the elastic 2 → 2 cross section and σinel is the total inelastic cross section.
As we have seen above, in general the elastic amplitude A(k1, k2 → q1, q2) can be written

as a function of the Mandelstam variables s and t . However, for our purposes it is convenient to
go to impact parameter (�b⊥) space, using

A(k1, k2 → q1, q2) =
∫

d2b e−i �q⊥·�b⊥A(s, �b⊥), (B.25)

which, when applied in Eq. (B.20) yields

2 Im A(s, �b⊥) = |A(s, �b⊥)|2 + inelastic terms. (B.26)

In arriving at Eq. (B.26) we have used the fact that the forward amplitude corresponds to the
case of zero momentum transfer, t = 0, or, equivalently, q⊥ = 0, such that

A(k1, k2 → k1, k2) =
∫

d2b A(s, �b⊥). (B.27)

Note that the total cross section in impact parameter space is

σtot = 2
∫

d2b Im A(s, �b⊥). (B.28)

We also see immediately from Eq. (B.26) that the elastic cross section is given by

σel =
∫

d2b |A(s, �b⊥)|2. (B.29)

Relating the inelastic terms in Eq. (B.26) to the corresponding cross section yields

2ImA(s, �b⊥) = |A(s, �b⊥)|2 + dσinel

d2b
. (B.30)

The simple nonnegativity condition

dσinel

d2b
≥ 0 (B.31)

used in Eq. (B.30) yields

Im A(s, �b⊥) ≤ 2. (B.32)
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318 Dispersion relations, analyticity, and unitarity of the scattering amplitude

This is an important condition, which follows from unitarity. When used in Eq. (B.28) it yields
an upper bound for the total cross section:

σtot = 2
∫

d2b ImA(s, �b⊥) ≤ 4
∫

d2b = 4πR2, (B.33)

where R is the radius of the region in b⊥-space where the interactions are sufficiently strong
(the radius of the “black disk”).

Parametrizing the forward scattering amplitude by (as follows from S = I + iT )

A(s, �b⊥) = i
[
1 − S(s, �b⊥)

]
, (B.34)

with S(s, �b⊥) the forward matrix element of the S-matrix, we see that the constraint (B.32) and
the nonnegativity of the total cross section σtot together lead to |ReS(s, �b⊥)| ≤ 1.

Using Eq. (B.34) in Eqs. (B.28), (B.29), and (B.30) yields

σtot = 2
∫

d2b
[
1 − Re S(s, �b⊥)

]
, (B.35a)

σel =
∫

d2b
∣∣∣1 − S(s, �b⊥)

∣∣∣2 , (B.35b)

σinel =
∫

d2b
[
1 − |S(s, �b⊥)|2

]
. (B.35c)

In high energy scattering the bound on the total cross section is even stronger than Eq. (B.33).
At very high energies inelastic processes dominate, so that σinel ≥ σel, which leads to

Re S(s, �b⊥) ≥ 0. (B.36)

With the help of Eq. (B.34) we obtain

ImA(s, �b⊥) ≤ 1, (B.37)

which is a stronger constraint than (B.32). Equation (B.37) leads to

σtot = 2
∫

d2b Im A(s, �b⊥) ≤ 2πR2. (B.38)

This is the bound used in the text in Eq. (3.112). (For a derivation of this result in nonrelativistic
quantum mechanics see Landau and Lifshitz (1958), vol. 3, Chapter 131.) Using the estimate
(3.115) for the typical interaction range, i.e.,

R = b∗ ∼ �

2mπ

ln s, (B.39)

in Eq. (B.38) yields the Froissart–Martin bound (3.116)

σtot ≤ π�2

2m2
π

ln2 s (B.40)

(Froissart 1961, Martin 1969, Lukaszuk and Martin 1967).
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