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Abstract

Multiwavelets possess some nice features that uniwavelets do not. A consequence of this
is that multiwavelets provide interesting applications in signal processing as well as in
other fields. As is well known, there are perfect construction formulas for the orthogonal
uniwavelet. However, a good formula with a similar structure for multiwavelets does not
exist. In particular, there are no effective methods for the construction of multiwavelets with
a dilation factor a (a > 2, a e Z). In this paper, a procedure for constructing compactly
supported orthonormal multiscaling functions is first given. Based on the constructed
multiscaling functions, we then propose a method of constructing multiwavelets, which is
similar to that for constructing uniwavelets. In addition, a fast numerical algorithm for
computing multiwavelets is given. Compared with traditional approaches, the algorithm is
not only faster, but also computationally more efficient. In particular, the function values of
several points are obtained simultaneously by using our algorithm once. Finally, we give
three examples illustrating how to use our method to construct multiwavelets.

1. Introduction

In recent years, multiscaling functions and multiwavelets have been studied exten-
sively. Goodman, Lee and Tang [11] established a characterisation of multiscaling
functions and corresponding multiwavelets. Chui and Wang [3] introduced semi-
orthogonal spline multiwavelets. Examples of cubic and quintic finite elements and
their corresponding multiwavelets were studied by Strang and Strela [16]. In [2], Chui
and Lian introduced a scheme for constructing symmetric and antisymmetric com-
pactly supported orthogonal multiscaling functions and multiwavelets. Geronimo,
Hardin and Massopust [10] used fractal interpolation to construct orthogonal multi-
scaling functions, and their corresponding multiwavelets were given in [7]. In [8],
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Donovan, Geronimo and Hardin showed that there exist compactly supported or-
thogonal polynomial spline multiscaling functions with arbitrarily high regularity.
Interpolation multiscaling functions and multiwavelets were investigated in [19] and
in [14]. For the bivariate setting, one easy way to get a multiscaling function is to use
the tensor product of two univariate multiscaling functions. Although this method is
simple, the bivariate tensor product multiscaling function has r x r components if the
bivariate multiscaling function has r components and this hence increases complexity
in applications. The most interesting research on multiscaling functions and multi-
wavelets is therefore that dealing with the construction of nonseparable multiscaling
functions and multiwavelets. Tymczak et al. [18] gave a method of construction for
nonseparable orthogonal multiscaling functions and multiwavelets. At present, the
study of multiwavelets is still of considerable interest to many researchers (see, for
example, [1, 9, 12]).

As is well known, Daubechies [4] obtained perfect constructing formulas for the
uniwavelet. Since multiwavelets are vector-valued functions, the construction of
multiwavelets is more difficult than that of uniwavelets. Multiwavelets can possess
simultaneously many desirable properties, such as being compactly supported, or-
thonormality, interpolating, and very importantly, symmetry or antisymmetry. How-
ever, for the uniwavelet, some of these properties are impossible or incompatible.
From this respect, applications of multiwavelets are more extensive than those of uni-
wavelets. Therefore, finding good construction approaches for multiwavelets is very
significant both in theory and in applications. Donovan, Geronimo and Hardin [7]
discussed the above problem by using fractal interpolation functions, but their con-
struction procedure is very complicated. The main objective of this paper is to give
a way of constructing compactly supported multiscaling functions and the associated
multiwavelets.

The paper is organised as follows. In Section 2, we briefly recall the concept
of multiresolution analysis of multiplicity r. In Section 3, we give a constructing
procedure for compactly supported orthogonal multiscale functions and multiwavelets.
In Section 4, based on the construction algorithm given in Section 3, some examples of
constructing multiwavelets are given. In Section 5, based on multiresolution analysis
and matrix theory, we give a fast numerical algorithm for computing multiwavelets.

2. Multiresolution analysis with multiplicity r

Multiwavelets are associated with multiresolution analysis of multiplicity r, that
is, multiwavelets can be constructed by multiresolution analysis with multiplicity r.

Let

•GO = (0i. 02, • • • • 4>r)T, 0i, 02 0r 6 L\R),
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satisfy the following two-scale matrix equation:

M

t-k), (2.1)
i=0

where M is a positive integer and some r x r matrices [Pk] are called the two-scale
matrix sequence. Here &(x) is called a multiscaling function with dilation a, a > 2,
a e Z, and multiplicity r.

Applying the Fourier transformation to (2.1), we obtain

•(«;) = P(z)*(w/a), (2.2)

where z = e~iw/a, and

fltz*. (2-3)
a *=o

We note that P (z) is referred to as the two-scale matrix symbol of the two-scale matrix
sequence [Pk} of $.

Define a sequence of subspace V, c L2(R),

\ j = closLHR)(<pl:j,k : \ < e < r , k e Z ) , j e Z, (2.4)

here and afterwards; for/ ( e L2, we will use the notation fej,k = ail2ft{ajx — k).
As usual, $(x) in (2.1) generates a multiresolution analysis {Vy}jeZ of L2(R), if

{\j } j e Z defined in (2.4) satisfies the nestedness condition • • • C Vo C Vi C V2 • • •.
Let W; ,j e Z, denote the orthogonal complementary subspace of V; in \j+l, and

let the vector-valued function *(*) = (^1,^2 iA(o-i)r)7, tyi 6 L2,1 = 1, 2 , . . . ,
(a — l)r, constitute a Riesz basis for W7, that is,

W, = closL2W(\lrt:jik : 1 < I < (a - l)r, k e Z>, j € Z. (2.5)

From condition (2.5), it is clear that ty\(,x), V^OO. • • •. ̂ (a-OrOO are in Wo C V|.
Hence there exists a sequence of matrices {Qk)k<=z such that

M

*=0

From the two-scale relation (2.6), we obtain *(iw) = Q(z)$(u>/a), where Q(z) =

For column vector functions A and F with elements in L2(R), define

(A,D= ! Mx)T{x)Tdx.
JR
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We call * ( x ) = (</>i, <p2 4>r)
T an orthogonal multiscaling function if

< * ( • ) , • ( • - « ) ) = So,Jr, neZ.

Here *(x) = {\j/\, T]/2, • •., i/f(a-\)r)
T will be said to be the orthogonal multiwavelets

associated with multiscaling functions $ if ty(x) satisfy the following equations:

(•(• ) . * ( • " «)> = (*(•), • ( • " «)) = Orx(fl-l)r,

where 0rx(a-i)r and /(fl_i)r denote the zero matrix and identity matrix, respectively.

LEMMA 2.1. Let r) = (r)u r)2, ..., r\r)
T, where r}\, r}2, •.., rjr 6 L2. Then {r)t(x —

k) : 1 < t < r, k 6 Z] is a family of orthogonal functions if and only if

= Ir. (2.7)
keZ

Here and throughout, the asterisk denotes complex conjugation of the transpose.

PROOF. Let rj be a family of orthogonal functions. For every n e Z, we have

8o,nlr = <»?(•), »?(• -n)) = ^- f fj(w)fj(wyeinwdw

oo i /.2(i+l);r

= J2T~ n(w)f}(wye
inwdw

= ^- f \ y rj(w + 2kn)fj(w + 2kn)* einw dw,2n Jo Vttz J
which implies (2.7) holds. The converse is obvious.

LEMMA 2.2. Let $(x) be a multiscaling function satisfying (2.1) and P(z) defined
in (2.3) be a two-scale matrix symbol. Then

(i) 4f(x) is compactly supported, with supp <b(x) C [0, M/(a — 1)],
(ii) P(l) has eigenvalue 1, and [P(l)]n converges as n -> oo, and

(iii) r/ie vector u = *(0) w an eigenvector corresponding to the eigenvalue 1 of

PROOF. Similar to the case of a = 2 (see [15]), (i) can be proved. Next, we prove
(ii) and (iii).

It is clear from (2.2) that P( l) has eigenvalue 1 with eigenvector u = &(0). So in
order to prove (ii) and (iii), it is sufficient to prove that [P(l)]n converges as n -> oo.
This is, however, obvious, since it follows from (2.2) that u = Iim<_).oo{[/>(1)]'«},
which implies that [P(l)]n must converge as n ->• oo.
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LEMMA 2.3. Let & be a multiscaling function satisfying (2.1). If both Po, P\i ore
not nilpotent, then supp <t> = [0, M/(a — 1)].

The case of a = 2 in Lemma 2.3 has been thoroughly studied by Massopust, Ruch
and Van Fleet [13]. By means of an idea of these aforementioned authors, Lemma 2.3
can be proved for a > 3.

3. Construction of orthonormal multiwavelets

THEOREM 3.1. Let &(x) be the orthogonal multiscaling functions defined in (2.1),
P(z) be the two-scale matrix symbol defined in (23) and o)j,j = 1,2, ...,aberoots
of the equation z" — 1 = 0. Then

Y = Ir, |Z| = 1. (3.1)

Equation (3.1) is equivalent to the following equation:

M

£P'P*+«t = a**.°7" lzl = l- (3-2)
i=0

Further, suppose * = (^t, ^2. • • •. ^(a-i)r)T are the orthogonal multiwavelets asso-
ciated with $ and Q(z) is a two-scale matrix symbol. Then

a

J2p^jZ)Q(cojzr=0 and (3.3)
7 = 1

a

£ 2 (^ )2 (^2 )* = /(a-.)r- (3-4)

7=1

Equations (3.3) and (3.4) are equivalent to the following equations, respectively:

M M

1=0 i=0

PROOF. By Lemma 2.1, we have J^teZ \Q(a) + 2nl)\2 = Ir, for all co. Hence

Ir =

+ 2kn)\2

t=ak
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l=ak+l

t=ak+a-\

2n/a)\2 + ••

\ 2kn + 2jr/(a -
k

= \P(e-ia>)\2 + IPie-^^e-"")]2 + ••• + \P(e-*a-l}n/ae-iai)\2,

which implies (3.1) holds. Similarly, applying the Poisson formula

+ In 1) = 0
r

I

for all co, (3.3) and (3.4) can be proven.
We assume that the functions in $ are (r — l)-times differentiable. Analogous

to Hermite cardinal spline interpolation, $(x) = (</>i, fa, • • •, <f>r)
T with common

support is said to be an interpolation, if it satisfies the following condition:

J • « - » ( * + *o) = </>j/-1)(*o)S*,0e,, 1 < j < r, k e Z,

where ko denotes some integer inside the support of </>,, 1 < j < r, and e] = (1,0,
. . . . 0 ) r , e2 = (0, 1 0) r er = (0 , . . . , 0, l ) r .

THEOREM 3.2. Let <&(x) be a multiscaling function with dilation a and multiplicity
r as in (2.1) and satisfy (3.5) for some positive integer ko, 1 < ko < [M/{a — 1)].
Then

Pak+ico = «*.oP«o, k e Z , (3.6)

with

Pfc = diag(l, I/a I/a'-1). (3.7)

PROOF. Taking the (/ — l)th derivative of (2.1) and applying the interpolation
condition (3.5), we have Pai+^gy = (l/a'~1)5tio«/, 1 < j < r, which implies (3.6)
and (3.7).
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THEOREM 3.3. Let &(x) = (01( 02>..., <j>r)
T be a multiscaling function with dila-

tion a as in (2.1) and let P(z) be a two-scale matrix symbol. If supp0, — [hh g,],
1 < i < r, then

(i) 02/ -l ore symmetric and fcj antisymmetric for all j in the following sense:

0 , 0 0 = ( - l ) ' - '0 . - (A« + gi -x),l<i< r, (3.8)

if and only if the entries PQ of the matrix P(z) satisfy

(ii) For any preassigned integer r\, 1 < rt < r, the scaling functions 0i, 02, • • •, 0r,
are symmetric and the remainder ones 0r,+i, • • •, </v are antisymmetric in the sense

<Pt(x) = (Pi(hi + gi -x), i = 1, 2 , . . . . r,,

0,00 = -4>i(hi + gi -x), i = ru r, + 1 , . . . , r,

if and only if the entries Ptj of the matrix P(z) satisfy

z«(«"+«i)-«'y+ft)p. J .(z) i l < ij < n or n + 1 < i,j < r ;

(J), 1 < i: < r\ and r\ + 1 < j < r;

or r\ + 1 < i < r and 1 < j < rx.

(iii) If a(ht + g,) — (fty + g;) < 0 or w nor an integer for 1 < i,_/' < r, f/ien

°ij = 0.

PROOF. If 0,, 0 2 , . . . , <pr satisfy (3.8), then

*0O = (0,00,0200 0r(
= 5,(0, (Al + f, - JC), 02(/l2 + 52 - *) 4>r(hr + gr ~ x)V,

where

- l , . . . , ( - 1 ) ' " 1 ; . (3.10)

Hence, by (3.10), we have for i,j = 0, 1 , . . . , a and 5 = 1, 2 , . . . , a — 1

Successively using (2.2), we obtain

P(z)*(co/a) = SrD,{
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Since {<j>t{x - k) : 1 < I < r, k € Z) is a Riesz basis of Vo,

P(z) = SrDr(z
a)P(z)Dr(z)Sr,

or equivalently,

SrP(z)Sr = Dr(z
a)'Plz)Dr(z),

which implies (3.9) holds. This completes the proof of Theorem 3.3.

COROLLARY 3.4. If supp <t>\ = supp</>2 = • •• = supp<̂ >f = [0, M/(a- 1)], then
<p2j-i are symmetric and (p2j antisymmetric for all j ifand only ifPk — SrPM-kSr.

In fact, since supp0, = [0, M/(a — 1)], a(/i, + g() — (hj + gj) = M, we obtain
P(z) = zMSrP(z)Sr by (3.9). Hence Corollary 3.4 holds.

As we know, for a multiscaling function $(*), if supp$(x) = [0, M], then
supp*'(x) = [0, \M/d\\, where

*'(*) = [*r(ax), * r ( a x - 1 ) , . . . , * r ( ax - a + l)]T.

Hence, without loss of generality, we only investigate the construction of multi wavelets
with a + 1 coefficients, that is, $r(;c) satisfies the following equation:

-k). (3.11)

LEMMA 3.5. Let B be an n x n positive definite matrix. Then there exist 2"
symmetric matrices A which are distinct such that A2 = B.

PROOF. Let kit k2, ..., kn be n eigenvalues of B. Since B is a positive definite
matrix, A., > 0, i = 1, 2 , . . . , n. There exists an orthogonal matrix U, such that
B = U* diag(A,, \2,...,kn)U. It is clear that

A = U* diag (±y/k~u ±Jk~2,..., ± y i ; ) U

satisfies the matrix equation A2 = B and that A is symmetric. Obviously, the number
of the above A is 2".

In the application of multiwavelets, certain special properties are desirable, such as
interpolating. In the two-scale matrix sequence {Pk), associated with multiwavelets
with these properties, there must exist some Pt, 0 < i < a, such that the matrix
(al - PiPT)-xPiPl is a positive definite matrix. In fact, by Theorem 3.2, if <P(x)
is an orthogonal interpolatory multiscaling function, then there exists some posi-
tive integer £Q such that P^ = diag(l, I/a,..., I/a'"1). It is clear that the matrix
(a/ — PkaPl,)^ ^Pkl is a positive definite matrix.
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LEMMA 3.6. Let &{x)be the orthogonal compactly supported multiscaling function
with dilation a and multiplicity r satisfying (3.11). Assume that there exists some P,,
0 < i < a, such that the matrix H defined in the following equation is a positive
definite matrix:

H2 = (alr-PiP?yxPiP?. (3.12)

Let Hs (s = 1, 2 , . . . , a — 1) be (a — 1) distinct symmetric matrices satisfying (3.12).

Define

Then

P0(q^)T = 0, (3.14)

Po(4s))T + Piid'Y + ••• + PMaV = o . (3-15)

( 9 o " ) ( 9 a J ) ) r = 0 . t,s = l,2,...,a-l, (3.16)

(9oJ))(9ol))r + (9iW)(9i(l))r "I r- (g^ 'X^) 7 " = a/r- (3.17)

PROOF. For convenience, let i = 1. Equations (3.14) and (3.16) can be proven
using (3.3).

For (3.15) and (3.17), we have from (3.3) that

a

^2Pi(.qf)T = PQPQHS - P\P\T(H7*) + ••• + PaPjHs

= [aIr-PlPl
T]Hs-PlPl

T(Hsy
x

a

E ~(-0/'-(j)\7' y n nT rj • / rj \—1 n p ^ / U \ —1 _i i U t> D? LJ

Hi \Ht ) — " J M ) * O **S * \ " j / * \ * 1 \ " s ) i~ ' ' * ~t~ * * s i a r t t s

'=° = //,[PoPo
r + P2P2

T + • • • + P . P / ] / / , + (//,)-' Pi P,^//,)-1

— H Xsi 1 D DTIJJ I / U \ - l D &T/ zj \ — \
— tts\CHr — r\r* J " j i \**s) * 1 * l \**s)

= (Hsy
x[(H,)2(aIr-PiF~

= //,[/>, P,7" + (Hsy
2plpi

T](Hsy
x

= HsaIr(Hsy
x = alr.

This completes the proof of Lemma 3.6.
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1,2,

4 YangShouzhi [1

In the setting of Lemma 3.6, we can generate a — 1 sequences {q(
k
s)}, s

2 , . . . , a — 1. We construct the following functions in terms of these sequences:

# " • ( « * - i t ) , s = 1,2, . . . , a - 1. (3.18)
t=o

On the premise of no change in the vector function $ (* ) , applying Gram-Schmidt
orthonormalisation to the vectors of a functions $(*)> V^(*)> s = 1, 2 , . . . , a — 1,
and generating a—I new functions **(*), s = 1, 2 a — 1, we can conclude that
there must exist a — 1 sequences {Q^}, s = 1,2, ... ,a — 1, such that

- /tt v — 1 2 «— 1 H 19^
k=0

Hence we have the following theorem.

THEOREM 3.7. In the setting of Lemma 3.6, let Vs(x), s = 1,2,... ,a — 1 be
definedas in (3.19). Define *(;c) = [*i(;t) r , * 2 ( * ) r , • •, * f l _ i (x) r ] T . 77ie« * (x ) is
a compactly supported orthogonal multiwavelet with dilation a associated with &(x),
and satisfies the following two-scale matrix equation:

I V . (Gf)7. • • •, (Q^VY ^(ax - k). (3.20)

COROLLARY 3.8. In the setting of Lemma 3.6,

(i) If the dilation factor a = 2, then r//\(x) defined in (3.18) is a compactly
supported orthogonal multiwavelet with dilation 2 associated with <&(x).

(ii) If the dilation factor a = 3, and ¥,(*) = £ L o Q^Qiax -k),s = 1,2, then
ty(x) = [H?i(x)T, ^2(x)T]T is a compactly supported orthogonal multiwavelet with
dilation 3 associated with &(x), and satisfies (3.20) in which

= 0 > l f 2 t 3 -

4. Example

We will illustrate by a specific example how to construct orthogonal multiwavelets
based on our method.
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EXAMPLE 1 (Construction of orthogonal multiwavelets). Let
supp<I>(x) = [0,2], be 3-coefficient orthogonal multiscaling functions satisfying
the following equations [17]:

/»2«(2x - 2),

where

TO (2 + 77)/4l _ [3/4 1/4] _ [(2 - V7)/4 0_ [
[p (2-77)/4j' ^ "L l /4 3/4

Suppose i = 1. Using (3.12) and (3.13) in Corollary 3.8, we obtain

„ _ ["(7 + 77)/14 (7 - V7)/14] _ [0 3/4]
L(7-V7)/14 (7 + V7)/14j' ^ " L o 1/4J'

r

From Corollary 3.8, * ( J : ) = XiLo 2**(2* — Jt) are orthogonal multiwavelets asso-
ciated with $(x).

EXAMPLE 2 (Trivial example - construction of an orthogonal uni wavelet). Let </>3
D

be a Daubechies scaling function [5], that is,

_(2-V7)/4]
-(2-V7)/4 -(2 j

f (x) = i ± ^ I t f <2x) + 03(2x 1)

- 2) + ̂ 5 ^ ( 2 x - 3).

Since </>3°(J:) is a 4-coefficient orthogonal scaling function, using Lemma 2.2, and
letting *(x) = (03

D(2x), 03
D(2^ - l ) ) r , then

«„„[<•[<
(3-V3)/4

V3)/4j l '

[ (3-+

is an orthogonal multiscaling function with multiplicity 2. Using Corollary 3.8, we
obtain

- D / 4 ( 3 - V 3 ) / 4
0 0
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-(3 + V3)/4
-(3-73)/4

0

3°(4* - 2)]
3
D(4JC - 3)J

1 [<t>°(4x - 4 )1
J L^(4r - 5)J •

Hence

03
D(2x -

3
D(2X - 3).

EXAMPLE 3. (Construction of orthogonal multiwavelets with dilation 3 and mul-
tiplicity 3). Let 4>(x) - (0i,02,03)r satisfy $(•*) = Po&Qx) + FI*(3A: - 1) +
P2Q>(3x — 2). By Lemma 2.2, supp<I>(x) c [0, 1]. Suppose both <f>\ and 03 are
symmetric and 02 is antisymmetric. Then $(*) satisfies the interpolation condition
(3.5) with k0 = 1. Then in view of (3.6) and (3.7), we obtain

'1 0
0 1/3
0 0

0
0

1/9J

Let Po = [Xij]lJ=i- Since Pk = S3PM.kS3, we have Po = 53P053 and P3 = Po.
Applying (3.2), we obtain

"72/2
P n =

0
-1/2 77/6 1

0 0 ll/9_

Taking i = 1 and using (3.12), we obtain

and P7 =
"V2/2 -V2/2

1/2 V7/6
0 0

0
-1

ll/9_

H2 = 0
0

o
1/26

0

0
0

l/242_

Hence

H, =
V2/2 0

0 726/26
0 0

Using (3.13), we have

1

.v/26
52

0

0 •
0

72/22_
and H2 =

V2/2 0 0
0 726/26 0
0 0 -72/22_

0
v/26

156 26.
0 ifj

' -72 0
o -Jf
0

0
0

o -uf
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a? =

52

0

0
0

156

0

0
726

"is" .

00
-M o

0 Of

J2) _ 726
52

0

726
52

0

7l82
156

0

7182
156

0

0
726
26

18 _

0
726

~2A
18

Finally, we obtain orthogonal multiwavelets by (3.20) and (3.21).

5. A fast algorithm for computing multiwavelets

In this section, by means of the idea of Daubechies and Lagarias [6], we present
a fast numerical algorithm for computing the function value of multiwavelets at an
arbitrary point. For generality, we assume that the scale factor of the multiscaling
function is an integer a, a > 2.

Let $ ( * ) = ((f>\,(j>2 0r)r be multiscaling functions which satisfy the following
equation:

M

- k). (5.1)
*=o

Let TO = \M/(a — 1)]. Define a vector-valued function A € fl(m-')r, by

A = [• r ( l ) 1 * r (2) * 7 ( m - l ) ] r

= [0i(D, 02(1), • • •, 0,(1). 0i(2), 02(2) 0,(2)

0,(m - 1), 02(m - 1), . . . , 0r(m - l ) ] r .

Taking (5.1) into account, we have

= MA,

where M is an (TO — l)r x (TO — l)r matrix defined by (M)li7 =
1, 2 , . . . , TO — 1. Hence, under the normalisation condition ][^
(5.2) has a unique solution.

Define a vector-valued function H(x) e Rrm, x e [0, 1] by

(5.2)

H(x) = [0,(r), <f>2(x) 0r(r), 0,(JC + 1), <h(x + 1 ) , . . . .

0r(jc + 1) 0i(* + TO - 1), 02(;t + m - 1), . . . , 4>r(x + m - I)]7".

https://doi.org/10.1017/S144618110001378X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110001378X


198 Yang Shouzhi [14]

-0.2
(

1.5

1

0.5

0

-0.5

-1

-1.5

(C)

A
A-

J
FIGURE 1. The function <I>(x)and its corresponding orthogonal multi wavelets *1<(JC):
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FIGURE 2. The function <t>(je) and its corresponding orthogonal multiwavelets *(JC) from Example 1:
(a) 0,(x), (b) <h(x), (c) *iW and (d)
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Obviously, we have
r

H(0) = [oToT^~7o, A7"]7". (5.3)

Define rm x rm matrices To, T\,..., Ta_i by

(7J)y = Pai-j-(a-\)+i, € = 0 , l , . . . , a - l ; i,y = l , 2 , . . . , m . (5.4)

For every x e [0, 1], we have, from (5.1),

H( ( j c+€) / a )=7 iH( j c ) , I = 0, 1, . . . , a - 1. (5.5)

For any x e [0, 1], its a-adic fractional expression is

0 0

x = 22 dj a~j', dj€ {0,1 a-I}.

Define the shift operator r on x by rx = £ J 1 2 dj a~J+1. It follows from (5.5) that

H(JC) = TdlK(zx). (5.6)

Let x = O.did2 ...dm. Repeat using (5.6), then we have H(x) = Tdl Tdl--- r^H(O).
According to the above discussion, we can obtain the following algorithm:

(1) By (5.4), construct rm x rm matrices To, T\,... Ta_\.
(2) For every x e [0, m], there must exist an integer k such that x 6 [k, k + 1). Let

s = x — k. Since s € [0, 1], s can be approximated by Y17=\ dj<i~'.
(3) Compute H = Tdl Td2--- 7dmH(0), where H(0) is defined in (5.3).
(4) The components of the vector H, hrk+\, Zi^+2,..., hrk+r, are the approximate

values of 4>\{x), (f>2{x), ... ,<f>r(x), respectively.

REMARK. The first r components of the vector H,h\,...,hr,src the approximate
values of <p\(s),..., 4>r(s), respectively; the second r components of the vector H,
hr+i,..., hr+r, are the approximate values of 0i( l + s),... , 0 r ( l + s), respectively;
the final r components of the vector H, /i(m_2)r+i. • • • . ^(m-2)r+r. are the approximate
values of <f>\{m — I + s),... , <pr(m — 1 + s), respectively, that is, the function values
of several points are obtained simultaneously using the algorithm once.

Let 4>(x) = (<p](x), <pz(x))T, supp4>(x) = [0, 3], be an orthogonal multiscaling
function satisfying the following equations [2]:

<&(*) = P0<t>(2x) + P1*(2x - 1) + P 2 *(2JC - 2) + P 3 *(2JC - 3),
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where

Pa =

Yang Shouzhi

Pi =

[16]

The corresponding orthogonal multiwavelets satisfy the following equations:

* ( * ) = Qo®(2x) + />,<t>(2jt - 1) + P2<t>(2x - 2) + P3<t>(2x - 3),

where

Qo =

(23 =

Using our algorithm, we draw the graphs of the above scaling functions and wavelets,
as seen in Figure 1 and the graphs of the scaling functions and wavelets of Example 1
as seen in Figure 2, respectively.
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