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A Skolem–Mahler–Lech Theorem for
Iterated Automorphisms of K-algebras

Jason P. Bell and Jeffrey C. Lagarias

Abstract. In this paper we prove a commutative algebraic extension of a generalized Skolem–Mahler–
Lech theorem. Let A be a finitely generated commutative K-algebra over a field of characteristic 0, and
let σ be a K-algebra automorphism of A. Given ideals I and J of A, we show that the set S of integers m
such that σm(I) ⊇ J is a finite union of complete doubly infinite arithmetic progressions in m, up to
the addition of a finite set. Alternatively, this result states that for an affine scheme X of finite type over
K, an automorphism σ ∈ AutK (X), and Y and Z any two closed subschemes of X, the set of integers
m with σm(Z) ⊆ Y is as above. We present examples showing that this result may fail to hold if the
affine scheme X is not of finite type, or if X is of finite type but the field K has positive characteristic.

1 Introduction

The Skolem–Mahler–Lech theorem is a fundamental result that characterizes the
structure of the set of zeros of a linear recurrence. We term the resulting structure the
SML property. The paper is motivated by the question: “What is the maximal level
of generality for which the conclusion of the Skolem–Mahler–Lech theorem holds?”
We view this question in the general framework of orbits of dynamical systems of
algebraic type.

In 2006 the first author ([4, 5]) gave an algebro-geometric generalization of the
Skolem–Mahler–Lech theorem that applied to orbits of an automorphism of an affine
variety acting on geometric points. The object of this paper is to show there is a
further algebro-geometric generalization of the Skolem–Mahler–Lech theorem that
applies to automorphisms of the coordinate ring of the variety acting at the level of
ideals. The new result can be interpreted as a result about automorphisms of affine
schemes. To state it, we first review the successive generalizations of the Skolem–
Mahler–Lech theorem.

1.1 The Skolem–Mahler–Lech Theorem

The Skolem–Mahler–Lech theorem (SML Theorem) is a fundamental result that can
be stated in several apparently different forms. The original formulation of the SML
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Theorem concerned the zeros of power series coefficients of rational functions.

Theorem 1.1 (SML Theorem: rational function form) Let K be a field of character-
istic zero, and let G(x) ∈ K(x) be a rational function that is finite at x = 0. If the Taylor
expansion G(x) ∈ K[[x]] at x = 0 is given as

G(x) =
∞∑

k=0
akxk,

then the set of its zero coefficients S := {k ∈ N : ak = 0} is a union of a finite number
of arithmetic progressions {an + b : n ≥ 0} with a, b > 0, together with a (possibly
empty) finite set.

This result was established by Skolem [28] in 1934 for the case of rational coef-
ficients using a p-adic method he introduced in [27]. It was extended by Mahler
[21, Sect. 6] in 1935 to series with coefficients in algebraic number fields, and much
later in 1956 ([22]) to coefficients in the complex field C. In this last extension Mahler
was unaware of the 1953 work of Lech [20] discussed below; see [23].

There are now many different proofs and extensions of the SML Theorem in the
literature [8, 18, 31, 32], some described in the book of Everest et al. [14, Chap. 2.1].
The result is valid in any field of characteristic zero; however, all known proofs use
p-adic methods.

The property of the set S formulated in the conclusion of all versions of the SML
Theorem can be stated as follows.

Definition 1.2 A set of natural numbers S ⊂ N has the (one-sided) SML property
if it is a finite union of one-sided arithmetic progressions {an + b : n ≥ 0} with
a, b > 0 (possibly empty), augmented by a finite set, possibly empty. (We allow the
possibility b > a in the one-sided arithmetic progressions, i.e., some initial terms of
the complete progression in N can be omitted.)

A second form of the SML Theorem concerns zeros of linear recurrence sequences.
This version was first formulated by Lech [20] in 1953.

Theorem 1.3 (SML Theorem: recurrence form) Let K be a field of characteristic
zero and let f : N→ K be a K-valued sequence that satisfies a linear recurrence

f (n) = a1 f (n− 1) + a2 f (n− 2) + · · · + ar f (n− r), ai ∈ K,

for all n ≥ r. Then the set S := {n ≥ 0 : f (n) = 0} of zeros of the recurrence has the
SML property.

We can view the recurrence version of the SML Theorem as asserting a property
of a forward orbit of a discrete dynamical system given by the linear recurrence. Note
that the set S can also be interpreted as the intersection of the forward orbits of two
different dynamical systems, the first being the recurrence f (n) and the second being
the constant linear recurrence g(n) = 0.
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The recurrence form of the SML Theorem can be recast in a third equivalent
form, which concerns iteration of linear maps, and encodes containment relations
in a subspace of orbits of invertible linear maps under iteration ([4, Theorem 1.2 and
Section 2]).

Theorem 1.4 (SML Theorem: linear map form) Let K be a field of characteristic 0,
and let σ : Kn → Kn be an invertible linear map. If v ∈ Kn and W is a vector subspace
of Kn of codimension 1, then the set S := {n ∈ N : σn(v) ∈W} has the SML property.

In 2006 the first author [4,5] found a generalization of the SML Theorem to alge-
braic dynamics, which applies at the geometric level to iteration of automorphisms
on affine algebraic varieties. It concerns two-sided infinite sequences of iterates, and
to state it we extend the notion of SML property to this case.

Definition 1.5 A set of integers S ⊂ Z is said to have the two-sided SML property
if it is a finite union of complete arithmetic progressions {an + b :n ∈ Z} on Z aug-
mented by a finite set. (That is, we allow arithmetic progressions with a = 0, which
give one element sets.)

The generalization of the SML Theorem to automorphisms on affine varieties is
as follows.

Theorem 1.6 (Generalized SML Theorem for affine varieties) Let K be a field of
characteristic zero, and let X be an affine K-variety and let σ be an automorphism of X.
If x is a K-point of X and Y is a subvariety of X (Zariski closed subset of X), then the set

S := {n ∈ Z : σn(x) ∈ Y}

has the two-sided SML property.

Despite its restriction to two-sided infinite sequences, Theorem 1.6 recovers the
original (one-sided) recurrence form of the SML Theorem above via its implica-
tion of the linear map form (Theorem 1.4). The proof of Theorem 1.6 in [4, 5]
again relies on a p-adic result, the p-adic analytic arc theorem, first established in
[4, 5] and strengthened in [6]. This latter result was recently further strengthened by
Poonen [25].

We also note that since the conclusion of Theorem 1.6 is purely set-theoretic and
is preserved under extension of scalars, the result for a general characteristic 0 field K
follows easily from the special case where K is an algebraically closed field of charac-
teristic zero.

Subsequent work of the first author with Ghioca and Tucker [6, Theorem 1.3],
established an analogous theorem for forward orbits of étale endomorphisms of
quasiprojective varieties defined over C. We also point out that Denis [11] had earlier
proved a special case of this result for étale self maps of Pn

C. Recently Sierra [26, Con-
jecture 5.15] suggested a possible extension of these results that would have interest-
ing consequences for the algebras studied in noncommutative projective geometry.
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1.2 Main Result

Our starting point is the observation that Theorem 1.6 can be recast in purely alge-
braic terms. To do this, suppose that K is an algebraically closed field of characteristic
zero. In classical affine algebraic geometry, we then have a contravariant equivalence
of categories

{Affine K-Varieties} ←→ {Reduced finitely generated K-algebras}
induced by the functor that takes an affine variety X to its coordinate ring K[X] and
takes a morphism φ : X → Y of affine varieties to the homomorphism φ∗ : K[Y ] →
K[X] of K-algebras given by φ∗( f ) = f ◦ φ ([19, Corollaries 1.4 and 3.8]). The
Nullstellensatz gives further information, showing that there is an inclusion reversing
bijection between the subvarieties of an affine variety X and the radical ideals of
its coordinate ring K[X]. In particular, for a morphism φ : X → X the inclusion
φ(V (I)) ⊆ V ( J) of zero sets of radical ideals I, J corresponds to the reversed algebraic
inclusion φ?(I) ⊇ J. It follows that Theorem 1.6 restricted to algebraically closed
fields K can be recast in algebraic terms as follows:

If A is a finitely generated, reduced, commutative K-algebra with a K-algebra
automorphism σ and M and J are ideals of A with M a maximal ideal and J a
radical ideal, then the set of integers n for which σn(M) ⊇ J has the two-sided
SML property.

From this algebraic perspective, it is natural to ask whether a similar result holds
for more general ideal inclusions in finitely generated commutative K-algebras. Our
main result gives an affirmative answer to this question.

Theorem 1.7 (Generalized SML Theorem for ideal inclusions) Let K be any field of
characteristic zero and let A be a finitely generated commutative K-algebra. If σ : A→ A
is a K-algebra automorphism and I and J are ideals of A, then

S = S(I, J) := {n ∈ Z : σn(I) ⊃ J}
has the two-sided SML property. Here, σ(I) := {σ(a) : a ∈ I}.

The two-sided SML property of this result also holds for the set of integers n for
which σn( J) ⊆ I, because this condition holds if and only if σ−n(I) ⊇ J, where
σ−1(I) = {b : σ(b) ∈ I}; apply Theorem 1.7 to the automorphism σ−1.

Theorem 1.7 implies Theorem 1.6 and hence all the earlier forms of the SML The-
orem stated above. In the special case where I is a maximal ideal, Theorem 1.7 is
itself deducible from the algebraic form of Theorem 1.6. The main content of The-
orem 1.7, and also the source of the difficulty in proving it, revolves around relaxing
the maximality condition on I. For example, if A = C[x, y], then a polynomial
p(x, y) ∈ A is in the maximal ideal (x, y) if and only if p(0, 0) = 0. On the other
hand, p(x, y) is in the ideal (x, y2) if and only if p(0, 0) = 0 and ∂p(x, y)/∂y van-
ishes at (0, 0). In this sense, the ideal I = (x, y2) encodes additional “infinitesimal”
information. It seems easier to understand the behavior of the iterates of an element
p(x, y) of A under an automorphism σ with respect to evaluation at a given point
than to understand how the iterates behave with respect to more complicated con-
ditions involving the vanishing of partial derivatives at a point. This difficulty, and
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more generally the possible occurrence of nil ideals and non-radical ideals in A, adds
an extra level of complication to the problem (see Examples 6.2 and 6.3).

In Section 6 we give examples showing that this result is strictly more general than
Theorem 1.6. In particular, there exist two ideals I1, I2 having the same radical ideal
I =
√

I1 =
√

I2 and J such that the sets S(I1, J) 6= S(I2, J); see Example 6.1.
As with previous work, our method to prove Theorem 1.7 makes use of a p-adic

result. We present a p-adic interpolation result that strengthens the p-adic analytic
arc theorem established in [5], which we call the generalized p-adic analytic arc theo-
rem (Theorem 3.1). This result concerns polynomial automorphisms

σ : Zp[x1, . . . , xd]→ Zp[x1, . . . , xd]

and applies for p ≥ 5. It asserts that for a Zp-algebra S that is finitely generated
and is a torsion-free Zp-module, the induced (nonlinear) map fσ : Sd → Sd has the
property that iterates of a suitable initial point s = (s1, . . . , sd) ∈ Sd under σ can
be embedded in a p-adic analytic arc. Note that S is a free Zp-module of finite rank
r > 0, and one might think that this extension can be obtained by fixing a Zp-module
isomorphism between S and (Zp)r and then applying the analytic arc theorem of [4]
separately to each coordinate. This is not the case, however, as application of the
map σ involves expressions that include combinations of elements from different
coordinates. Our innovation to get around this obstacle consists of working with
a larger ring of functions than usual, namely, the subset R(S) of S ⊗Zp Qp[z] that
consists of all polynomials which map Zp into S, and obtaining analytic maps via
successive approximations via functions in this ring. The commutative ring R(S)
is rather pathological; it is not Noetherian and is not of finite type over Zp. Our
proof requires establishing a nice property of certain subalgebras of R(S), given in
Lemma 3.7. As in the case of the p-adic analytic arc theorem treated in [4], the
generalized p-adic analytic arc theorem fails to hold for p = 2. Its truth for p = 3
remains open.

The proof of Theorem 1.7 is commutative algebraic, aside from the p-adic inter-
polation result. A key idea is to first establish a result for the ring A = Zp[x1, . . . , xd],
treating only the special case where I, J are p-reduced ideals (Definition 4.2) for
p ≥ 5 (Theorem 4.5). The p-reduced condition is needed in order to apply the gener-
alized p-adic analytic arc theorem. Here we also use an idea of Amitsur (Lemma 4.4),
to handle the case of p-reduced ideals I where (A/I)⊗Qp is an infinite-dimensional
Qp-vector space. We next deduce the result for arbitrary ideals I, J in a polynomial
ring A = K[x1, . . . , xd] over a field of characteristic 0 (Theorem 4.1), as follows. We
first show that K can be taken to be finitely generated over Q ; next, we use the fact
that such a field embeds into infinitely many p-adic fields Qp via the Chebotarev
density theorem. Finally, passing from Qp to Zp-coefficients, we show that one can
pass from ideals to suitable p-reduced ideals. We then treat the general case that A is
a finitely-generated commutative K-algebra by using a theorem of Srinivas [29, The-
orem 2] to reduce this case to that of a polynomial ring K[x1, . . . , xd].

An interesting feature of this proof is that while Theorem 1.7 concerns finitely-
generated commutative K-algebras A that are Noetherian rings, the proof itself cur-
rently requires a detour using the non-Noetherian ring R(S).
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1.3 Affine Scheme Version of Main Result

Using the standard correspondence of categories

{Affine Schemes} ←→ {Commutative rings with identity},

we can restate Theorem 1.7 as follows.

Theorem 1.8 (Generalized SML Theorem for affine schemes of finite type) Let K
be a field of characteristic zero and let X be an affine scheme of finite type over K. If
σ ∈ AutK (X) and Y and Z are closed subschemes of X, then

S = S(Z,Y ) := {n ∈ Z : σn(Z) ⊆ Y}

has the two-sided SML property.

From the scheme-theoretic viewpoint, Theorem 1.6 corresponds to the special
case that Y and Z are reduced closed subschemes and Z = {x} is a point. The main
difficulty in establishing Theorem 1.8 is omitting the requirement that the source
Z and target Y be reduced. Allowing a source Z of arbitrary dimension is less of a
difficulty.

We show via examples in Section 6 that for automorphisms one cannot generalize
this result to arbitrary affine schemes without altering the conclusion that the set is
a two-sided SML set. Example 6.4 shows the need for the scheme to be of finite type
over K, while Example 6.5 shows the need to work over a field K of characteristic
zero. There remains a possibility of generalizing the result to arbitrary schemes of
finite type over characteristic zero fields.

1.4 Generalizations

The ultimate level of generalization possible for mappings having the SML property
is not clear.

A natural question is: “Is there an SML Theorem for endomorphisms of alge-
braic varieties?” For endomorphisms that are not automorphisms, the maps τm with
m < 0 are not defined, and extensions of Theorem 1.7 to endomorphisms must be
formulated in terms of one-sided infinite arithmetic progressions. Recent work de-
scribed below shows that the SML property does hold for some classes of endomor-
phisms at the geometric level, while endomorphisms at the algebraic level have not
yet been studied. At present in the characteristic 0 case, no counterexamples to the
(one-sided) SML property are known for any endomorphism at either the geometric
or algebraic level.

The dynamics of endomorphisms in the geometric setting is currently a very active
area of study. In 2009 Ghioca and Tucker [16] conjectured that the forward iterates
of a point P under an endomorphism τ : X → X of a quasiprojective variety over C
should satisfy the SML property for intersecting a closed subvariety V . They term
this assertion the dynamical Mordell–Lang conjecture; see Ghioca, Tucker, and Zieve
[17]. This conjecture fits in the general framework of dynamical conjectures of S.
Zhang [33, Sect. 4]. It is now known that one-sided versions of the SML Theorem are
valid for some special classes of endomorphisms; see for example Benedetto, Ghioca,
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Kurlberg, and Tucker [7]. The dynamical Mordell–Lang conjecture currently appears
to be difficult in the general case.

When endomorphisms are viewed at the ideal level, as in this paper, there are two
different questions to consider: the first concerns upward inclusions, and the second
downward inclusions, of ideals under preimages of endomorphisms of polynomial
rings. Given an endomorphism τ : A → A of a commutative K-algebra A, and a
nonzero ideal I of A the preimages τ−1(I) are ideals of A, but the image τ (I) is usually
not an ideal of A but is an ideal of the image ring A′ := τ (A). To formulate inclusions
purely in terms of A-ideals, these concern the sets

S(I, J) := {m ≥ 0 | I ⊇ (τm)−1( J)},
S′(I, J) := {m ≥ 0 | (τm)−1(I) ⊇ J},

respectively.
Our methods in this paper do not give information about either of the sets S(I, J)

and S′(I, J). However, a number of results in this paper partially extend to the endo-
morphism case; see Remarks 2.2 and 3.3. New ideas are certainly needed for general
endomorphisms, because the generalized analytic arc theorem need not hold in the
p-adic case in neighborhoods of superattracting fixed points.

2 p-Adic Preliminaries

Much of our study of automorphisms of algebras relies on reductions to simpler
cases. We will eventually reduce the proof of Theorem 1.7 to the special case where
one is working with a polynomial ring over a p-adic field.

For the analysis of this special case we establish preliminary results on Jacobian
matrices of p-adic mappings and some results from p-adic analysis. Section 2.1 al-
lows S-algebra endomorphisms, while all later sections specialize to the automor-
phism case.

2.1 Evaluation Maps and Jacobians for Polynomial Endomorphicms

Let R = S[x1, . . . , xd] be a polynomial ring over an integral domain S. Any S-algebra
endomorphism τ : R → R is uniquely determined by its values {τ (xi) : 1 ≤ i ≤ d}
on the monomials xi , and any assignment of values

τ (xi) := Fi(x1, . . . , xd) ∈ S[x1, . . . , xd], 1 ≤ i ≤ d,

uniquely extends to an endomorphism τ : R→ R that acts as the identity on S, given
by

(2.1) τ (P(x1, . . . , xd)) := P(τ (x1), . . . , τ (xd)) ∈ S[x1, . . . , xd].

Composition of endomorphisms will be denoted τ2 ◦ τ1(P) := τ2(τ1(P)). In what
follows we use τ to denote a general S-algebra endomorphism, while symbols σ, ρ
are reserved for S-algebra automorphisms.

https://doi.org/10.4153/CJM-2013-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-048-3


A Skolem–Mahler–Lech Theorem 293

The Jacobian matrix J(τ ; x) ∈ Md×d(S[x1, . . . , xd]) of the map τ at x is given by

J(τ ; x) :=


∂
∂x1

F1
∂
∂x2

F1 · · · ∂
∂xd

F1

∂
∂x1

F2
∂
∂x2

F2 · · · ∂
∂xd

F2

· · · · · ·
∂
∂x1

Fd
∂
∂x2

F2 · · · ∂
∂xd

Fd

 .
These matrices satisfy the polynomial identity under composition

J(τ2 ◦ τ1; x) = J
(
τ2; τ1(x)

)
J(τ1; x),

in the ring Md×d(S[x1, . . . , xd]).
For s = (s1, s2, . . . , sd) ∈ Sd, we define the evaluation map evs : S[x1, x2, . . . , xd]→

S, which assigns xi 7→ si , i.e.,

evs(F)(x1, . . . , xd) := F(s1, s2, . . . , sd).

(For constants c ∈ S we have evs(c)(x1, . . . , xd) = c.) Using this map, we define the
Jacobian matrix of a polynomial map τ with its entries evaluated at the point s ∈ Sd

as

J(τ ; s) := evs( J(τ ; x)) =
[

evs

( ∂

∂x j
Fi(x1, . . . , xd)

)]
1≤i, j≤d

,

with J(τ ; s) ∈ Md×d(S).
In the same vein, given an endomorphism τ of S[x1, . . . , xd] we define a map

fτ : Sd → Sd for each s ∈ Sd, acting coordinatewise, by

fτ (s) := evs

(
τ (x1), τ (x2), · · · , τ (xd)

)
=
(

F1(s1, . . . , sd), F2(s1, . . . , sd), . . . , Fd(s1, . . . , sd)
)
.

We call fτ the dynamical evaluation map associated with τ . The important property
it has is compatibility with composition of maps, given as

fτ2◦τ1 (s) = ( fτ2 ◦ fτ1 )(s).

In particular, for iteration of the map fτ one has fτm = ( fτ )m. A consequence of this
compatibility is that if the endomorphism is an automorphism σ, then the dynamical
evaluation map fσ : Sd → Sd is a bijection, because fσ ◦ fσ−1 = fid, the identity map.
A second consequence is the identity

J(τ2 ◦ τ1; s) = J(τ2; fτ1 (s)) J(τ1; s), s ∈ S

in the ring Md×d(S).
The dynamical evaluation map fτ is analogous to a map acting on an affine va-

riety as in Theorem 1.6. In general it is a nonlinear map, and it usually does not
respect either addition or coordinatewise multiplication on Sd; i.e., one can have
fτ (s1 + s2) 6= fτ (s1) + fτ (s2) and fτ (s1s2) 6= fτ (s1) fτ (s2). Furthermore, one can have
fτ (0) 6= 0, where 0 := (0, 0, . . . , 0) ∈ Sd. In an Appendix to this paper we prove a
result (Proposition A.1) that clarifies the differences between the algebraic dynamic
action of an endomorphism τ acting on ideals I and the geometric action of the dy-
namic evaluation map fτ acting on varieties V (I).

The above definitions are stated for endomorphisms τ , but in the remainder of
the paper we will restrict to the case of automorphisms σ, unless specified otherwise.
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2.2 p-adic Approximate Fixed Points for Automorphisms

Now we specialize to the case where the integral domain S is a Zp-algebra. We con-
sider an automorphism σ of R = S[x1, . . . , xd] and study the dynamical evalua-
tion map fσ . The following lemma asserts the existence of approximate fixed points
(mod p) with invertible Jacobian matrices for dynamical evaluation maps of polyno-
mial automorphisms.

Lemma 2.1 Let p be a prime, let S be a Zp-algebra that is finitely generated as a Zp-
module, and let σ = (F1, . . . , Fd) : Zp[x1, . . . , xd] → Zp[x1, . . . , xd] be an Zp-algebra
automorphism. Then there is an integer m such that for every point s0 = (s1, . . . , sd) ∈
Sd with the property that the dynamical evaluation map fσ : Sd → Sd at s0 satisfies

fσ(s1, . . . , sd) ≡ (s1, . . . , sd) (mod pS),

and the Jacobian J(σm; x) evaluated at (x1, x2, . . . , xd) = (s1, . . . , sd) is the identity
matrix (mod pS), that is, evs0 ( J(σm; x)) ≡ I(mod pS).

Proof The ring S/pS is a finite ring, since S is a finitely generated Zp-module. Fur-
thermore, J(σ; s) has inverse mod p given by J(σ−1; s), and hence it is invertible
mod p. Take m to be the order of GLd(S/pS). We let

J(σ; s) := evs

(
J(σ; x)

)
∈ Md×d(S)

denote the Jacobian matrix of a polynomial map σ with its entries evaluated at the
point s ∈ Sd. Since σ is a Zp-algebra automorphism, we have for s1, s2 ∈ Sd that

s1 ≡ s2 (mod pS)⇒ fσ(s1) ≡ fσ(s2) (mod pS).

It follows that the quotient map f̄σ : (S/pS)d → (S/pS)d is well-defined. Similarly,
since J(σ; x) has entries given by polynomials with coefficients in Zp,

s1 ≡ s2 (mod pS) =⇒ J(σ; s1) ≡ J(σ; s2) (mod pS),

where≡ is taken entry-wise.
Then for any point s = (s1, . . . , sd) ∈ Sd we have

J(σm; s) = J
(
σ; fσm−1 (s)

)
J
(
σ; fσm−2 (s)

)
· · · J(σ; s)

= J
(
σ; ( fσ)m−1(s)

)
J
(
σ; ( fσ)m−2(s)

)
· · · J(σ; s).

Hence if s0 is a fixed point of the quotient map f̄σ , then ( fσ) j(s0) ≡ s0 (mod pS),
for all j ≥ 1, so that

J
(
σ; ( fσ) j(s0)

)
≡ J(σ; s0) (mod pS).

Substituting these in the formula above yields

J(σm; s0) ≡ J(σ; s0)m (mod pS).

By our choice of m, M := J(σm; s0) is congruent to the identity mod pS, as required.

Remark 2.2 The argument of Lemma 2.1 extends to Zp-algebra endomorphisms
τ , but yields only the weaker conclusion: there exists an integer m such that for each
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s0 such that fτ (s0) ≡ s0 (mod pS), the Jacobian evs0 ( J(τm; x)) ≡ M(mod pS), where
M2 = M is an idempotent in Md×d(S/pS) and M depends on s0.

2.3 p-adic Reduction Lemmas

We start with an embedding theorem due to Lech [20, §4–5]. His result can be re-
garded as a p-adic analogue of the Lefschetz principle.

Lemma 2.3 Let K be a finitely generated extension of Q and let S be a finite subset of
K. Then there exist infinitely many primes p such that K embeds in Qp; moreover, for
all but finitely many of these primes every nonzero element of S is sent to a unit in Zp.

Proof This is shown in [4, Lemma 3.1]. The Chebotarev density theorem is used to
show that there exists a positive density set of primes p having the required property.

Strassman’s theorem [30] asserts that if a power series f ∈ Qp[[z]] converges in
the closed p-adic unit disc

BQp (0; 1) := {z ∈ Qp : |z|p ≤ 1} = Zp

and has infinitely many zeros in this disc, then it is identically zero. We will use the
following variant of Strassman’s theorem.

Theorem 2.4 (Extended Strassman’s Theorem) Let p be a prime and let R be a
finite-dimensional Qp-algebra. Suppose that the formal power series f (z) ∈ R[[z]] is
absolutely convergent for all z ∈ Zp and has infinitely many zeros in Zp. Then f (z) is
identically zero.

Proof Let n denote the dimension of R as a Qp-vector space. We write

R = Qpv1 + Qpv2 + · · · + Qpvn,

with v1 = 1. Then f (z) = v1 f1(z) + · · · + vn fn(z) with each

fi(z) =
∞∑

k=0
ckzk ∈ Qp[[z]],

converging for all z ∈ Zp. Linear independence of the vi over Qp implies that f (z) =
0 requires that each fi(z) = 0 separately. Since f (z) has infinitely many zeros on
z ∈ Zp, by Strassman’s theorem ([30], cf. Cassels [10, Theorem 4.1]) applied to fi(z),
each fi(z) is identically zero. Thus f (z) is identically zero.

Finally, we will need a finiteness result for reduction (mod p) in a Zp-module.

Lemma 2.5 Let p be prime and letM be a Zp-module that is isomorphic to a submod-
ule of Qd

p for some natural number d. Then M/pM is a finite-dimensional Z/pZ-vector
space.

Proof Note that M/pM is a Z/pZ-vector space. We claim that its dimension is at
most d. To see this, let θ1, . . . , θd+1 be elements of M. If we regard M as a submodule
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of Qd
p , then we see that 0 is a nontrivial Qp-linear combination of the images of

θ1, . . . , θd+1 in Qd
p . Clearing denominators, we see that there exist a1, . . . , ad+1 ∈

Zp, not all of which are in pZp, such that
∑d+1

i=1aiθi = 0. Reducing mod pM, we
see that the images of θ1, . . . , θd+1 in M/pM are linearly dependent over Z/pZ and
thus any set of size d + 1 in M/pM is linearly dependent. Hence M/pM is at most
d-dimensional, and, in particular, it is a finite-dimensional Z/pZ-vector space.

3 Generalized p-adic Analytic Arc Theorem

In this section we prove a generalization of the p-adic analytic arc theorem given in
[5, Theorem 1.1] that applies to a larger class of rings. The generalization applies to
any Zp-algebra S that is finitely generated and torsion-free as a Zp-module with the
added hypothesis that p ≥ 5. Examples given in [4] show that this theorem does not
hold for p = 2; the case p = 3 is currently open.

Theorem 3.1 (Generalized p-adic analytic arc theorem) Let p ≥ 5 be prime, and
suppose σ = (H1,H2, . . . ,Hd) is a polynomial automorphism of Zp[x1, . . . , xd]. Let
S be a Zp-algebra that is finitely generated and torsion-free as a Zp-module, and let
fσ : Sd → Sd denote the induced dynamical evaluation map. Suppose that an initial
value s0 = (s1, . . . , sd) ∈ Sd satisfies the following two conditions:

(i) Hi(s1, . . . , sd) ≡ si (mod pS) for 0 ≤ i ≤ d;
(ii) the Jacobian matrix M = J(σ; x)|x=s0 evaluated at x = s0 is the identity matrix

(mod pS).

Then there exist power series f1(z), . . . , fd(z) ∈ (S ⊗Zp Qp)[[z]] that converge for all
z ∈ Zp and that satisfy

(a) fi(z + 1) = Hi( f1(z), . . . , fd(z)), for 1 ≤ i ≤ d;
(b) fi(0) = si , for 1 ≤ i ≤ d.

Remark 3.2 The associated analytic arc in Sd constructed in Theorem 3.1 is

C = C(σ, s0) := {( f1(z), . . . , fd(z)) : z ∈ Zp} ⊂ Sd.

The result implies that the arc C contains all the iterates { f (m)
σ (s0) : m ≥ 0} of the

initial value s0, since (a) shows that f (m)
σ (s0) = ( f1(m), . . . , fd(m)) holds. It covers

cases such as S = Z5 with σ(x) = x + 5 on Z5[x], where one can take s0 = 0, and
nevertheless the induced dynamical evaluation map fσ has no fixed points. The proof
follows the basic plan of the result in [4] but involves more complications. It shows

that conditions (i) and (ii) imply that f (pm)
σ (s0) converges rapidly to s0 as m → ∞,

and uses this to show analyticity of the constructed maps f1(z), . . . , fd(z).

Remark 3.3 Theorem 3.1 cannot be extended to cover all general algebra endo-
morphisms of Zp[x1, . . . , xd]. For general endomorphisms there may be no iterate
where conditions (i) and (ii) both hold, and Remark 2.2 asserts one can only guar-
antee there exists a point where the Jacobian, when evaluated (mod pS), is an idem-
potent matrix. The worst case is where the Jacobian vanishes identically (mod pS).
Consider d = 1 with H1(x) = x10, where we take p = 5 and s0 = 5, a case where the
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Jacobian vanishes identically. In this case, we have that σn(s0) = 510n

for n ≥ 0. Sup-
pose that it were possible to find an arithmetic progression {an + b}n∈Z and a 5-adic
analytic map f : Z5 → Z5 with the property that f (n) = σan+b(s0) for all integers n.
Then we would necessarily have f (5k) → 0 as k → ∞. But f (0) = σb(5) 6= 0, and
so it is impossible to find even a continuous map f : Z5 → Z5 that has the property
(a).

To begin the proof, we first introduce a ring of polynomials that take “integral”
values when evaluated at values in Zp.

Definition 3.4 Given a prime p and a Zp-algebra S that is finitely generated and
torsion-free as a Zp-module, let R(S) denote the subring of the polynomial ring
(S ⊗Zp Qp)[z] consisting of those polynomials that belong to S under evaluation at
each z ∈ Zp.

The Zp-algebra R(S) offers a crucial advantage over the polynomial ring S ⊗Zp

Q[z], which is that the following closure property holds: if Q(z) ∈ R(S), then the
equation

F(z + 1)− F(z) = Q(z)

has a solution with F(z) ∈ R(S). We use this in proving our general analytic arc
theorem (Theorem 3.1). We note however that the ring R(S) has some pathological
properties. It is a non-Noetherian ring, by a general criterion of Cahen and Chabert
[9, Prop. VI.2.4]. (In fact, for S = Zp, the ring

R(S) = Zp

[
fn(z) =

z(z − 1) · (z − (n− 1))

n!
: n ≥ 0

]
as a linear space over Zp; see Lemma 3.5. An example of an infinite ascending chain of
ideals inR(S) that does not stabilize is (z), (z, fp(z)), (z, fp(z), fp2 (z)), . . . .) Secondly,
it can be shown that R(S) is not of finite type over Zp; i.e., , it is not finitely generated
as a Zp-algebra. Finally, R(S) is not a UFD in general: for S = Z2, u := z(z − 1)/2,
v := (z−2)(z−3)/2, u′ := z(z−3)/2, v′ := (z−1)(z−2)/2 are irreducible elements
of R(S) and uv = u′v′; there are similar examples for S = Zp, p ≥ 3.

Lemma 3.5 Given a prime p and a Zp-algebra S that is finitely generated and torsion-
free as a Zp-module, the ring R(S) is given by

R(S) =

{
f (z) =

m∑
i=0

bi

(
z

i

)
: m ≥ 0 and bi ∈ S

}
.

Proof In the special case S = Zp the lemma asserts that the polynomials(
z

k

)
=

z(z − 1) · · · (z − k + 1)

k!

for k ≥ 0 are a basis of the polynomials in Qp[z] that map Zp into itself. This is a
theorem of Mahler [24, pp. 49–50]. For the general case, since S is finitely generated
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and torsion-free, S⊗Zp Qp[z] is a finite direct sum of copies of Qp[z]. The result then
follows from the special case applied to each copy separately.

Lemma 3.6 Let p be prime and let S be a Zp-algebra that is finitely generated and
torsion-free as a Zp-module. Suppose Q1(z), . . . ,Qd(z) ∈ R(S) are given polynomials
of degree at most N. Then there exists a solution [h1(x), . . . , hd(x)]T ∈ R(S)n to the
equation

(3.1)

h1(z + 1)
...

hn(z + 1)

 ≡
h1(z)

...
hd(z)

−
Q1(z)

...
Qd(z)

 (mod pR(S)
)

such that h1(0) = · · · = hd(0) = 0 and h1, . . . , hd have degree at most N + 1.

Proof By assumption, each Qi(z) ∈ R(S) is of degree at most N, and so

Qi(z) =
N∑

k=0

ci,k

(
z

k

)
with each ci,k ∈ S. We define

hi(z) := −
N∑

k=0

ci,k

(
z

k + 1

)
,

which implies that hi is in R(S) and is of degree at most N + 1. Using the identity(
z + 1

k + 1

)
−
(

z

k + 1

)
=

(
z

k

)
it is easy to check that this gives a solution to equation (3.1). Furthermore, hi(0) = 0
for 1 ≤ i ≤ d.

To create analytic maps in the modified version of the p-adic analytic arc lemma,
we will use the following lemma about subalgebras of R(S).

Lemma 3.7 Let p be a prime and let S be a Zp-algebra that is finitely generated and
torsion-free as a Zp-module. Let N be a natural number, and let

SN =
{

c +
N∑

i=1
pihi(z) | c ∈ S, hi(z) ∈ R(S), deg(hi) ≤ 2i − 1

}
,

TN = SN +
{

c +
M∑

i=1
pihi(z) | M ≥ 1, c ∈ S, hi(z) ∈ R(S), deg(hi) ≤ 2i − 2

}
.

Then the Zp-subalgebra of R(S) generated by SN is contained in TN .
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Proof Since SN and TN are both closed under addition and SN ⊆ TN , it is sufficient
to show that SN TN ⊆ TN . To do this, suppose

H(z) = c +
N∑

i=1
pihi(z) ∈ SN ,

G(z) = d +
M∑

i=1
pigi(z) ∈ TN ,

where c, d ∈ S and hi(z), gi(z) ∈ R(S) with deg(gi) ≤ 2i − 2 for i > N and
deg(gi), deg(hi) ≤ 2i − 1 for i ≤ N. We must show that H(z)G(z) ∈ TN . Notice that

H(z)G(z) = cG(z) + dH(z)− cd +
N∑

i=1
pihi(z)

M∑
j=1

p jg j(z).

Then cG(z), dH(z), and cd are all in TN , and since TN is closed under addition, it is
sufficient to show that

N∑
i=1

pihi(z)
M∑

j=1
p jg j(z) =

N+M∑
k=2

pk
k−1∑
i=1

gi(z)hk−i(z)

is in TN . But since gi(z) has degree at most 2i − 1 and hk−i(z) has degree at most
2(k− i)− 1, we see that

k−1∑
i=1

gi(z)hk−i(z)

has degree at most 2k− 2. It follows that

N∑
i=1

pihi(z)
M∑

j=1
p jg j(z) ∈ TN .

The result follows.

Proof of Theorem 3.1 We construct ( f1(z), . . . , fd(z)) by successive approximation
(mod p jR(S)). The approximations will be denoted gi, j(z) for 1 ≤ i ≤ d. We
initialize with

gi,0(z) := si for 1 ≤ i ≤ d.

We prove by induction on j that one can recursively pick

gi, j(z) := si +
j∑

k=1
pkhi,k(z),

such polynomials hi, j(z) ∈ R(S) (1 ≤ i ≤ d) satisfy the three conditions:

(a) hi, j(0) = 0 for 1 ≤ i ≤ d;
(b) hi, j(z) has degree at most 2 j − 1 for 1 ≤ i ≤ d;
(c) there holds

gi, j(z + 1) ≡ Hi

(
g1, j(z), . . . , gd, j(z)

) (
mod p j+1R(S)

)
.

The base case of the induction is j = 0. Conditions (a) and (b) are vacuous, and (c)
holds using hypothesis (i), observing that R(S) ∩ S = S.

Let j ≥ 1 and assume that we have defined hi,k for 0 ≤ i ≤ d and k < j so that
conditions (a)–(c) hold for j − 1. Our object is now to construct

gi, j(z) := gi, j−1(z) + p jhi, j(z),
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in which polynomials hi, j(z) ∈ R(S) are to be determined, so that conditions (a)–(c)
hold. By assumption

gi, j−1(z + 1)−Hi(g1, j−1(z), . . . , gd, j−1(z)) = p jQi, j(z),

with Qi, j ∈ R(S) for 1 ≤ i ≤ d. Using the notation of the statement of Lemma 3.7,
we see that conditions (b) and (c) show that g1, j−1(z), . . . , gd, j−1(z) are in S j−1. Thus
by Lemma 3.7 we see that

p jQi, j(z) = gi, j−1(z + 1)−Hi

(
g1, j−1(z), . . . , gd, j−1(z)

)
is in the algebra generated by S j−1 and hence is in T j−1. It follows that we can write

p jQi, j(z) = ci, j +
M∑

k=1
pkqi, j,k(z)

for some ci, j ∈ S and polynomials qi, j,k(z) ∈ R(S) such that deg(qi, j,k) ≤ 2k − 1 for
k ≤ j − 1 and deg(qi, j,k) ≤ 2k − 2 for k ≥ j. Consequently, p jQi, j(z) is equivalent
modulo p j+1R to the polynomial

ci, j +
j∑

k=1
pkqi, j,k(z),

a polynomial of degree at most 2 j− 2. Hence Qi, j(z) is congruent to a polynomial in
R(S) of degree at most 2 j − 2 mod pR(S). To satisfy property (c) for j it is sufficient
to find {hi, j(z) ∈ R(S) : 1 ≤ i ≤ d} such that

gi, j−1(z + 1) + p jhi, j(z + 1)−Hi

(
g1, j−1(z) + p jh1, j(z), . . . , gd, j−1(z) + p jhd, j(z)

)
is in p j+1R(S) for 1 ≤ i ≤ d. This expression becomes

p jQi, j(z) + p jhi, j(z + 1)− p j
d∑̀
=1

h`, j(z)
∂Hi

∂x`
(x1, . . . , xd)

∣∣∣
x1=gi, j−1(z),...,xd=gd, j−1(z)

modulo p j+1R(S). It therefore suffices to solve the system

(3.2) Qi, j(z) + hi, j(z + 1)−
d∑̀
=1

h`, j(z)
∂Hi

∂x`
(x1, . . . , xd)

∣∣∣
x1=gi, j−1(z),...,xd=gd, j−1(z)

(mod pR(S)), for 1 ≤ i ≤ d, where we can assume that Qi, j is of degree at most
2 j − 2. Now consider the Jacobian matrix M( j)(z) ∈ Md×d(R(S)) with polynomial
entries

M( j)(z)i` :=
∂Hi

∂x`
(x1, . . . , xd)

∣∣∣
x1=gi, j−1(z),...,xd=gd, j−1(z)

.

Property (a) for j yields that

gi, j(z) ≡ si (mod pR(S)) for 1 ≤ i ≤ d.

It follows that M( j)(z) ≡ J(σ; s0)(mod pR(S)). By hypothesis (ii) the matrix M =
J(σ; s0) ∈ Md×d(S) is congruent to the identity (mod pS), and we have M( j)(z) ≡
M(mod pR(S)). Now equation (3.2) can be rewritten in the formh1, j(z + 1)

...
hd, j(z + 1)

 ≡ M

h1, j(z)
...

hd, j(z)

−
Q1, j(z)

...
Qd, j(z)

(mod pR(S)
)
.
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The hypotheses of Lemma 3.6 are satisfied, so we conclude that there exists a solution
[h1, j(z), . . . , hd, j(z)]T ∈ R(S)d with hi, j(0) = 0 for 1 ≤ i ≤ d and hi(z) of degree
at most 2 j − 1. Thus conditions (a)–(c) are satisfied for j, completing the induction
step.

We now set

fi(z) := si +
∞∑
j=1

p jhi, j(z).

Each hi, j(z) ∈ R(S) is of degree at most 2 j − 1 and hence

hi, j(z) =
2 j−1∑
k=0

ci, j,k

(
z

k

)
,

with ci, j,k ∈ S. We find that

(3.3) fi(z) = si +
∞∑
j=1

p j

( N j∑
k=0

ci, j,k

(
z

k

))
= s0 +

∞∑
k=0

bi,k

(
z

k

)
in which

bi,k :=
∞∑
j=1

p jci, j,k

is absolutely convergent p-adically, since each ci, j,k ∈ S. To show that the series (3.3)
converges to an analytic map on z ∈ Zp, we must establish that |bi,k|p/|k!|p → 0 as
k → ∞, i.e., that for any j > 0 one has bi,k/k! ∈ p j Zp for all sufficiently large k. To
do this, we note that ci, j,k = 0 if k > 2 j − 1, which is j < (k + 1)/2. Hence

bi,k :=
∑

j≥(k+1)/2

p jci, j,k.

It follows that |bi,k|p < p−(k+1)/2. Since 1/|k!|p < pk/(p−1), we see that bi,k/k! → 0,
since p > 3. Hence f1, . . . , fd are analytic maps on Zp.

The argument above also showed that

fi(z) ≡ gi, j(z)
(

mod p jR(S)
)
.

It then follows from property (c) that

fi(z + 1) ≡ Hi

(
f1(z), . . . , fd(z)

)(
mod p jR(S)

)
.

Since this holds for all j ≥ 1, we conclude that

fi(z + 1) = Hi

(
f1(z), . . . , fd(z)

)
.

This establishes (a). Finally, we have

fi(0) = si +
∞∑
j=1

p jhi, j(0) = si ,

which establishes (b).
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4 Polynomial Ring Case

In this section, we consider automorphisms of a polynomial ring over a field. We
prove the following theorem.

Theorem 4.1 Let K be a field of characteristic zero and let A = K[x1, . . . , xd]. If
σ : A→ A is a K-algebra automorphism and I and J are ideals of A, then

{n ∈ Z : σn(I) ⊇ J}
has the two-sided SML property.

In Section 5 we will deduce the main Theorem 1.7 from this result. We establish
Theorem 4.1 using a reduction to the ring Zp[x1, . . . , xd], given below (Theorem 4.5).
A key ingredient in the proof of Theorem 4.5 will be the p-adic analytic arc theorem
proved earlier; see Proposition 4.3.

In restricting ideals from a ring with Qp-coefficients to one with Zp-coefficients,
we only need to consider a special subclass of ideals in Zp[x1, x2, . . . , xd], defined as
follows.

Definition 4.2 Let p be a prime and let A be a Zp-algebra. We say that a proper
ideal I of A is p-reduced if, whenever x ∈ A has the property that px ∈ I, we neces-
sarily have x ∈ I.

The condition that an ideal I of a Zp-algebra A be p-reduced is imposed to ensure
that the quotient ring A/I is torsion-free as a Zp-module.

Proposition 4.3 Let p be prime, and let I and J be two p-reduced ideals in
Zp[x1, . . . , xd]. Suppose that (Zp[x1, . . . , xd]/I) ⊗Zp Qp is finite dimensional as a
Qp-vector space. If σ is a Zp-algebra automorphism of Zp[x1, . . . , xd], then the set
{n ∈ Z | σn(I) ⊇ J} has the two-sided SML property.

Proof For a polynomial automorphism, σn(I) ⊇ J if and only if σ−n( J) ⊆ I. Thus,
replacing σ with σ−1, it is sufficient to show that {n ∈ Z : σn( J) ⊆ I} is a finite union
of complete arithmetic progressions and a finite set. Let S := Zp[x1, . . . , xd]/I. The
ring S is a finitely generated and torsion-free Z-algebra, since I is p-reduced. Write
σ = (F1, . . . , Fd) ∈ Zp[x1, . . . , xd]d. The automorphism σ induces the dynamical
evaluation map fσ : Sd → Sd given by

(s1, . . . , sd) 7→
(

F1(s1, . . . , sd), . . . , Fd(s1, . . . , sd)
)
,

for si ∈ S, which is a (nonlinear) bijection on Sd. Since S is a torsion-free Zp-algebra
and since, by hypothesis, S ⊗Zp Qp is finite-dimensional, we have that Sd/pSd is a
finite ring. Although fσ is nonlinear, we have

fσ(s + pSd) ⊆ fσ(s) + pSd,

hence fσ induces a well-defined bijective map of Sd/pSd. Since S/pS is finite, there
exists a positive integer a such that f a

σ (s) ≡ s (mod pSd) for all s ∈ Sd.
Now set ρ = σma, where m is chosen as in the statement of Lemma 2.1 and write

ρ = (H1, . . . ,Hd). Then for any s ∈ Sd, we have fρ(s) ≡ s (mod pSd), and by
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Lemma 2.1, the Jacobian matrix of ρ is the identity matrix (mod pS) when evaluated
at any point in Sd. For any polynomial P(x1, . . . , xd) ∈ Zp[x1, . . . , xd] and for any k
with 0 ≤ k ≤ ma− 1, the fact that σ and ρ are endomorphisms gives (via (2.1))

ρn(σk(P(x1, . . . , xd))) ∈ I if and only if P ◦ fρn ◦ fσk (s1, . . . , sd) = 0,

where si := xi + I. We now treat each k separately. By construction,

fρ ◦ fσk (s1, . . . , sd) ≡ fσk (s1, . . . , sd) (mod pS),

and the Jacobian matrix J(ρ, fσk (s1, . . . , sd)) is congruent to the identity (mod pS).
Now the generalized p-adic analytic arc theorem (Theorem 3.1) applies to show there
exist power series

f1(z), . . . , fd(z) ∈ (S⊗Zp Qp)[[z]]

that are analytic on Zp and satisfy ( f1(0), . . . , fd(0)) = fσk (s1, . . . , sd) and

fi(z + 1) = Hi( f1(z), . . . , fd(z)) for 1 ≤ i ≤ d.

By construction, fρn ◦ fσk (s1, . . . , sd)) = ( f1(n), . . . , fd(n)) for all n ∈ N. Next, select
a generating set for the ideal J,

J =
〈

P1(x1, . . . , xd), . . . , Pm(x1, . . . , xd)
〉
.

Then for 1 ≤ i ≤ m, define

gi(z) := Pi

(
f1(z), . . . , fd(z)

)
∈ (S⊗Zp Qp)[[z]].

Since f1, . . . , fd are analytic on Zp and P1, . . . , Pm ∈ Zp[x1, . . . , xd], each gi(z) is a
power series that converges on Zp, for 1 ≤ i ≤ d. Moreover, gi(n) = 0 if and only
if ρn ◦ σk(Pi(x1, . . . , xd)) ∈ I. Notice that if gi(n) = 0 for infinitely many integers n,
then it is identically zero by Theorem 2.4. Thus

{n ∈ Z | ρn(σk)( J) ⊆ I}
is either a finite set or is all of Z. Since this holds for 0 ≤ k ≤ ma1, the result now
follows.

We must also treat the case where (Zp[x1, . . . , xd]/I) ⊗ Qp is an infinite-dimen-
sional Qp-vector space. This is handled by a reduction to the preceding proposition.
To perform this reduction, we use the following lemma, based on an idea of Amitsur
[2, Lemma 4, p. 41].

Lemma 4.4 Let K be an uncountable field and let A be a finitely generated commu-
tative K-algebra. Suppose that there exists a countable set of ideals {Ii | i ≥ 1} of A
such that each ideal L of A of finite codimension contains one of the Ii . Then there exists
a finite set j1, . . . , jd such that I j1 ∩ · · · ∩ I jd = (0).

Proof Let J(A) denote the Jacobson radical of A. Since A is a finitely generated
K-algebra, A is a Jacobson ring (that is, every prime ideal of A is the intersection of
the maximal ideals containing it) [13, Theorem 4.19]. Thus J(A) is the intersection of
the prime ideals of A (that is, it is the nilradical of A). By the Hilbert basis theorem A
is Noetherian and hence some power of the nilradical of A is zero [3, Corollary 7.15].
Hence there is some m ≥ 1 such that J(A)m = (0). Given a maximal ideal M of
A, note that there is some i such that Ii ⊆ Mm. Let Qi denote the intersection of

https://doi.org/10.4153/CJM-2013-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-048-3


304 J. P. Bell and J. C. Lagarias

all ideals of the form Mm, where M is a maximal ideal of A with the property that
Mm ⊇ Ii . Similarly, we let Pi denote the intersection of all maximal ideals M with the
property that Mm ⊇ Ii . Then Pm

i = Qi ⊇ Ii for each i ≥ 1.
Each maximal ideal M of A necessarily contains some Pi . A result of Amitsur (cf.

[2, Corollary 4, p. 40]) shows that there exist j1, . . . , jd such that P j1 ∩P j2 ∩ · · · ∩P jd

is contained in the Jacobson radical J(A) of A. Hence

I j1 ∩ · · · ∩ I jd ⊆ Q j1 ∩ · · · ∩ Q jd = Pm
j1
∩ · · · ∩ Pm

jd
⊆ J(A)m = (0),

as required.

Theorem 4.5 Let p ≥ 5 be prime, let I and J be two p-reduced ideals in
Zp[x1, . . . , xd] with I ∩ Zp = J ∩ Zp = (0). If σ is a Zp-algebra automorphism of
Zp[x1, . . . , xd], then the set {m ∈ Z | σm(I) ⊇ J} has the two-sided SML property.

Proof Let T denote the collection of subsets of Z that are finite unions of com-
plete doubly-infinite arithmetic progressions along with a finite set. Then T is count-
able. Suppose first that I ⊆ Zp[x1, . . . , xd] is a p-reduced ideal with the property
that (Zp[x1, . . . , xd]/I) ⊗Zp Qp is finite-dimensional as a Qp-vector space. Then by
Proposition 4.3, we have

{n ∈ Z | σn(I) ⊇ J} ∈ T.

We now treat the general case. Given T ∈ T, let IT denote the intersection of all
p-reduced ideals L that contain I and such that

(a) L ∩ Zp = (0);
(b) (Zp[x1, . . . , xd]/L)⊗Zp Qp is a finite-dimensional Qp-vector space;
(c) T = {n ∈ Z | σn(L) ⊇ J}.

Suppose first that T ∈ T is such that IT is a non-empty intersection. We first
note that if n ∈ T, then σn(IT) ⊇ J; moreover, IT is an intersection of ideals that
contain I and hence it contains I. If n 6∈ T, then σn(I) cannot contain J, since by
definition σn(IT) 6⊇ J and I ⊆ IT . Thus if IT is a non-empty intersection, then
{n | σn(IT) ⊇ J} = T.

We next note that the collection of ideals

{IT | T ∈ T, IT is a nonempty intersection}
in Zp[x1, . . . , xd] is countable. Consider the ideals I′T = IT Qp[x1, . . . , xd]. By Lemma
4.4, one of the following holds:

(i) there exist T1, . . . ,Td ∈ T such that I′T1
∩ · · · ∩ I′Td

⊆ IQp[x1, . . . , xd];
(ii) there is an ideal L ⊃ IQp[x1, . . . , xd] of Qp[x1, . . . , xd] of finite codimension

that does not contain any of the non-empty I′T .

In the first case, note that T0 = T1 ∩ · · · ∩ Td ∈ T and by definition,

I′T0
⊆ I′T1

∩ · · · ∩ I′Td
⊆ IQp[x1, . . . , xd].

Since IQp[x1, . . . , xd] ⊆ IT0 , we see that IQp[x1, . . . , xd] = IT0 . It follows that the
set of integers n for which σn(I) ⊇ J is exactly T0. If, on the other hand, (ii) holds,
then there exists an ideal L of finite codimension that contains I but does not contain
any of the non-empty IT . Then L1 = L ∩ Zp[x1, . . . , xd] is p-reduced and satisfies
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Zp[x1, . . . , xd]/L1 ⊗Zp Qp
∼= Qp[x1, . . . , xd]/L is finite-dimensional. Hence IT ⊆ L1

for some T ∈ T, and so I′T ⊆ L, a contradiction. We thus obtain the result.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1 Let K be a field of characteristic 0 and let A = K[x1, . . . , xd],
with σ : A → A a K-algebra automorphism, and let I and J be two proper ideals
of A. Then there exist polynomials F1, . . . , Fd,G1, . . . ,Gd in A such that σ(xi) =
Fi(x1, . . . , xd) and σ−1(xi) = Gi(x1, . . . , xd) for i ∈ {1, . . . , d}. Next there exist
polynomials C1, . . . ,Cs in A that generate I as an ideal and polynomials D1, . . . ,Dt

in A that generate J.
We let S denote the set of all nonzero elements of K that occur as a coefficient of

one of F1, . . . , Fd,G1, . . . ,Gd and C1, . . . ,Cs,D1, . . . ,Ds. Then we let R0 denote the
finitely generated Z-algebra generated by the elements of S inside K, and let K0 de-
note the field of fractions of R0. By construction, σ(R0[x1, . . . , xd]) ⊆ R0[x1, . . . , xd]
and σ−1(R0[x1, . . . , xd]) ⊆ R0[x1, . . . , xd], and so σ restricts to an R0-algebra auto-
morphism of R0[x1, . . . , xd] and to a K0-algebra automorphism of K0[x1, . . . , xd].

We let I0 := I ∩ K0[x1, . . . , xd]) and J0 = J ∩ K0[x1, . . . , xd]), which are both
K0[x1, x2, . . . , xd]- ideals. We claim that σn(I) ⊇ J if and only if σn(I0) ⊇ J0. To see
this, first observe that if σn(I) ⊇ J, then we have σn(I0) ⊇ J0, since

σn(K0[x1, . . . , xd]) = K0[x1, . . . , xd].

Next suppose that n is an integer for which σn(I0) ⊇ J0. Note that σn(I) is gener-
ated by σn(C1), . . . , σn(Cs), and each of these generators is in K0[x1, . . . , xd]. Since
K[x1, . . . , xd] is a free K0[x1, . . . , xd]-module, we have that σn(I0) is generated by
σn(C1), . . . , σn(Cs) as an ideal in K0[x1, x2, . . . , xd]. By construction of K0, the gen-
erators Di of J lie in J0 for i ∈ {1, . . . , t}, and so by assumption

Di ∈
t∑

i=1

K0[x1, . . . , xd]σn(Ci) ⊆ σn(I)

for i = 1, . . . , t . It follows that J ⊆ σn(I), proving the claim.
By Lemma 2.3, there exists a prime p ≥ 5 such that R0 embeds in Zp as a Z-

algebra. We identify R0 with its image in Zp, and we similarly identify K0 with
its image in Qp. We then see that the restriction of σ to K0[x1, . . . , xd] lifts to a
Qp-algebra automorphism ρ of Qp[x1, . . . , xd], by identifying Qp[x1, . . . , xd] with
(K0[x1, . . . , xd]⊗K0 Qp) and then taking ρ to be the map σ ⊗ id. In addition, the
restriction of σ to R0[x1, . . . , xd] lifts to a Zp-algebra automorphism ρ0 of

Zp[x1, . . . , xd] ∼= (R0 ⊗R0 Zp)[x1, . . . , xd].

Note that Qp[x1, . . . , xd] is a free K0[x1, . . . , xd]-module, and hence the ideals I0 and
J0 lift to ideals I′ and J′ of Qp[x1, . . . , xd] respectively. Moreover, since any basis for
Qp over K0 is fixed by ρ, by freeness we have

{m ∈ Z : σm(I0) ⊇ J0} ≡ {m ∈ Z : ρm(I′) ⊂ J′}.

Next, we let

Ĩ = I′ ∩ Zp[x1, . . . , xd] and J̃ = J′ ∩ Zp[x1, . . . , xd].
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Since I′, J′ are Qp[x1, . . . , xd]-ideals, the ideals Ĩ, J̃ are necessarily p-reduced. Since
ρ restricts to the automorphism ρ0 of Zp[x1, . . . , xd], a similar argument to the one
employed earlier in the proof gives

{m ∈ Z : ρm(I′) ⊂ J′} ≡ {m ∈ Z : ρm
0 (Ĩ) ⊂ J̃}.

Theorem 4.5 now applies to show that the set on the right is the union of a finite
number of complete, doubly infinite, arithmetic progressions plus a finite set; this
equals the set of n with σn(I0) ⊇ J0. Finally, using the claim above, this set is identical
to the set of integers n for which σn(I) ⊇ J, giving the result.

5 Proof of Main Result

In this section we prove Theorem 1.7. This is established by reduction of the general
case to the polynomial ring case using the following result of Srinivas, and then using
Theorem 4.1.

Theorem 5.1 (Srinivas) Let A be a finitely generated algebra over an infinite field K.
Then there exists a natural number n = n(A) such that for all N > n, if

f : K[x1, . . . , xN ] −→ A and g : K[x1, . . . , xN ] −→ A

are two surjective K-algebra homomorphisms, then there is an elementary K-algebra
automorphism φ : K[x1, . . . , xN ]→ K[x1, . . . , xN ] such that f = g ◦ φ.

Remark Here elementary K-algebra automorphism means one that is a finite com-
position of automorphisms of the types:

(i) (Translations) xi 7→ xi + ci , with ci ∈ K;
(ii) (Linear transformations) xi 7→

∑
j ci, jx j where (ci, j) ∈ GLN (K);

(iii) (Triangular automorphisms) xi 7→ xi for 1 ≤ i ≤ N − 1 and
xN 7→ xN + F(x1, x2, . . . , xN−1).

For our application we only need the fact that φ is a K-algebra automorphism.

Proof See Srinivas [29, Theorem 2, p. 126].

We obtain the following result as an immediate corollary.

Proposition 5.2 Let A be a finitely generated algebra over a field K and let φ : A →
A be a K-algebra automorphism. Then there exists a natural number N, a surjective
K-algebra homomorphism ν : K[x1, . . . , xN ] → A, and a K-algebra automorphism φ̃
of K[x1, . . . , xN ] such that:

(i) ν ◦ φ̃n = φn ◦ ν for all integers n;
(ii) if I and J are ideals in A, then φn(I) ⊇ J if and only if φ̃n(ν−1(I)) ⊇ ν−1( J).

Proof We pick n(A) as in the statement of Theorem 5.1. Since A is finitely gener-
ated, by f1, . . . , fr, say, we can take N = max(r, n(A) + 1) and construct a surjective
map ν : K[x1, . . . , xN ] → A sending xi 7→ fi for 1 ≤ i ≤ r and, if r < n(A) + 1,
sending any extra x j to 0. Now, since ν and φ ◦ ν are surjective, by Theorem 5.1 there
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exists an automorphism φ̃ of K[x1, . . . , xN ] satisfying ν ◦ φ̃ = φ ◦ ν. Note that by
composing on the left by φ−1 and on the right by φ̃−1, we see

ν ◦ φ̃−1 = φ−1 ◦ ν.
We now prove property (i) by induction on |n|, noting the base case |n| = 1

is established (for both n = 1,−1). Assume that it is true for all integers n with
0 < |n| < m. Then

φm ◦ ν = φ ◦ (φm−1 ◦ ν) = φ ◦ (ν ◦ φ̃m−1) = (φ ◦ ν) ◦ φ̃m−1 = ν ◦ φ̃m.

A similar argument shows that φ−m ◦ ν = ν ◦ φ̃−m, and so (i) follows by induction.
To verify (ii), suppose that I and J are ideals of A. Since ν is surjective, we have

ν(ν−1(L)) = L for every ideal L of A. If φn(I) ⊇ J, then φn ◦ ν(ν−1(I)) ⊇ J.
Consequently, ν ◦ φ̃n(ν−1(I)) ⊇ J. Thus

φ̃n(ν−1(I)) ⊇ ν−1(ν ◦ φ̃n(ν−1(I))) ⊇ ν−1( J).

Also, if φ̃n(ν−1(I)) ⊇ ν−1( J), then ν(φ̃n(ν−1(I))) ⊇ ν(ν−1( J)) = J. Since ν ◦ φ̃n =
φn ◦ ν, we see that φn(I) = φn(ν(ν−1(I)) ⊇ J. Thus (ii) is established.

Proof of Theorem 1.7. We are given a field K of characteristic 0 and a finitely gener-
ated commutative K-algebra A with a K-algebra automorphism σ. We wish to show
that the set of integers n such that σn(I) ⊇ J is a finite union of complete doubly-
infinite arithmetic progressions along with a finite set.

By Proposition 5.2 there exists a polynomial algebra K[x1, . . . , xN ] with an auto-
morphism φ and ideals I′ and J′ such that

φn(I′) ⊇ J′ ⇐⇒ σn(I) ⊇ J.

The result now follows from Theorem 4.1.

6 Examples

We give several examples showing that the results for general ideals I, J can change
the answers compared to their associated radical ideals

√
I,
√

J. Allowing non-radical
ideals can change the structure of infinite arithmetic progressions, or eliminate them
entirely. We recall that in a commutative ring R, the radical is the ideal I consisting
of all nilpotent elements of R. In particular, R/I is reduced.

Example 6.1 Let K be an algebraically closed field of characteristic 0 and let A =
K[x, y, z, t, u]. We define a K-algebra automorphism σ by

x 7→ y − (x − y + yz)t + (x − y + yz), y 7→ x − y + yz, z 7→ −z,

t 7→ −t, u 7→ u.

Then σ is an automorphism. Let

J = (x2, xy, y2, y − x, zt − 1, x − u),

I = (x2, xy, y2, y − x, zt − 1, x(z − 1), x − u).

Then σn(
√

I) ⊇
√

J for all n ∈ Z. However we have

σn(I) ⊇ J if and only if n ≡ 0, 3 (mod 4).
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Also, σn(I) ⊇
√

J never holds.

Proof We note that σ is an automorphism, since it is a composition of automor-
phisms σ3 ◦ σ2 ◦ σ1, where

σ1(x) = x + yt + y, σ2(x) = y, σ3(x) = x − y + yz

σ1(y) = y, σ2(y) = x, σ3(y) = y

σ1(z) = z, σ2(z) = z, σ3(z) = −z

σ1(t) = t, σ2(t) = t, σ3(t) = −t

σ1(u) = u, σ2(u) = u, σ3(u) = u.

We note that
√

J ⊇ (x, y, zt− 1, u), as x2, y2 ∈ I and zt− 1, x−u ∈ J. We claim that√
J = (x, y, zt−1, u). To see this, observe that J ⊆ (x, y, zt−1, u) and so A/ J surjects

onto A/(x, y, zt − 1, u) ∼= K[z, z−1]. Since K[z, z−1] is reduced, we see that
√

J must
have zero image under this homomorphism and so

√
J ⊆ (x, y, zt − 1, u). Thus√

J = (x, y, zt−1, u),which is a σ-invariant ideal. Also J ⊂ (x, y, zt−1, xz, u) ⊂
√

I
hence σn(

√
J) ⊆

√
I for all n ∈ Z. Let L = (x2, xy, y2, y − x, zt − 1). We note that

L ⊆ J is σ-invariant. An easy induction shows that

σn(x) ≡ (−1)(n−1
2 )xzn (mod L)

for n ∈ Z, where we interpret z−i as being t i (mod L). Thus σn( J) ⊆ I if and only if

(−1)(n−1
2 )xzn − u ∈ L + A

(
x(z − 1)

)
+ A(x − u) =: I.

Since x(z − 1) ∈ I, this occurs if and only if

(−1)(n−1
2 )x − u ∈ L + A

(
x(z − 1)

)
+ A(x − u).

Since x − u ∈ I, this occurs when n ≡ 0, 1 (mod 4). Note that

I = L + A
(

x(z − 1)
)

+ A(x − u) ⊆ (z − 1, t − 1, x2, y, x − u)

and

A/(z − 1, t − 1, x2, y, x − u) ∼= K[x]/(x2).

The image of (−1)(n−1
2 )x − u under this homomorphism is (−1)(n−1

2 )x − x + (x2),
which has nonzero image for n ≡ 2, 3 (mod 4). Hence we have two arithmetic
progressions n ≡ 0 (mod 4) and n ≡ 1 (mod 4) for which σn( J) ⊆ I. Equivalently,
σn(I) ⊇ J if and only if n ≡ 0, 3 (mod 4). We already saw that σn(

√
I) ⊇

√
J for all

n. Finally, note that we always have σn(
√

J) 6⊆ I, since
√

J is σ-stable and x 6∈ I.

We next consider finitely generated commutative K-algebras A having a nontrivial
radical. We give two examples of automorphisms of algebras with nonzero radicals
for which the radical affects the dynamics nontrivially. We begin with a simple exam-
ple that shows that an automorphism of a ring whose action is trivial on the reduced
ring can still produce nontrivial dynamics.

Example 6.2 Let K be a field of characteristic 0 and let A = K[x, y, z]/(x, y)3. Let
σ : A→ A be the automorphism given by σ(x) = y, σ(y) = x, σ(z) = z. Let I = (x)
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and J = (y). Then

σn(I) ⊇ J if and only if n ≡ 1 (mod 2).

Proof This holds by inspection. The point of this example is that σ induces the
trivial automorphism on K[z] ∼= A/ J(A), where J(A) denotes the radical of the zero
ideal.

We next give an example of an automorphism of a non-reduced ring A with suit-
able ideals exhibiting nontrivial dynamics, consisting of infinite arithmetic progres-
sions, on both A and its reduction A/ J(A), but the dynamics differ.

Example 6.3 Let K be a field of characteristic 0, and let

A = K[u, v, y, y−1, z, z−1]/(u, v)3.

We let σ : A→ A be the automorphism given by σ(u) = uy, σ(v) = vz, σ(y) = −y,
σ(z) = z. Let

J = (u + v), I = (y − 1, z − 1, u + v).

Then
σn(I) ⊇ J if and only if n ≡ 0, 3 (mod 4).

Proof We have
σn( J) =

(
(−1)(n−1

2 )uyn + vzn
)
,

which is contained in I if and only if
(n−1

2

)
≡ 0 (mod 2). This occurs exactly when

n ≡ 0, 1 (mod 4). The result follows.

In Example 6.3 the ring A is non-reduced and the arithmetic progressions that
occur each have “gaps” of length 4. However, when one studies the action of the
automorphism σ on the reduced ring A/ J(A) ' K[y, y−1, z, z−1] one sees that it has
order 2, so that its action on the reduced ring for any ideals I, J will have orbits that
decompose into arithmetic progressions whose gaps have length 1 or 2 along with a
finite set; in Example 6.3 it is all integers n, since J ⊆ J(A). An interesting question
is whether the “gaps” between the two cases can be bounded in terms of the size of
the gaps that occur from the induced action on the reduced ring and the degree of
nilpotency of the radical ideal.

We conclude with examples showing that the hypotheses that the commutative
K-algebra A must be finitely generated over K and that K must have characteristic
zero, are both needed for the truth of the theorems above.

Example 6.4 Let K be a field and let S be an arbitrary subset of the integers. Then
there exists a commutative K-algebra A = AS that is not Noetherian and is infinitely
generated over K, having the property that it has an automorphism σ and ideals I
and J such that σi(I) ⊇ J holds if and only if i ∈ S.

Proof Let A = K[xn : n ∈ Z] be a polynomial ring in infinitely many variables and
let σ be the two-sided shift automorphism defined by σ(xi) = xi+1 for i ∈ Z. Given
a subset S of integers, we let PS = (xi | − i ∈ S). Then σi((x0)) ⊆ PS if and only if
−i ∈ S, and so σn(PS) ⊇ (x0) precisely when n ∈ S.
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If we impose the extra requirement that A be Noetherian, but allow it to be in-
finitely generated, there are nontrivial restrictions on the allowable sets S ⊂ Z giving
ideal inclusions. A result of Farkas [15, Theorem 8] (applied with G = Z) shows that
if A is Noetherian and φ is an endomorphism of A, then the set of natural numbers
i such that φi(I) ⊆ J must either be the entire set of natural numbers, or else must
have a syndetic complement; that is, there exists a natural number d such that if m
is in the complement then there exists j with 1 ≤ j ≤ d such that m + j is also in
the complement. For K a field of characteristic 0, we do not know any example of an
infinitely generated Noetherian commutative K-algebra A with ideals such that the
set S is not a finite union of arithmetic progressions, possibly augmented by a finite
set.

Our final example shows that the hypothesis that the ground field K have charac-
teristic zero is necessary for Theorem 1.7 to hold. In 1953, Lech [20] gave a coun-
terexample in positive characteristic p, and we observe that it applies at the level of
ideals.

Example 6.5 (Lech) Let p be a prime, let K = Fp(t) for the finite field Fp, and let
A = K[x, y]. Define σ : A→ A by σ(x) = tx and σ(y) = (1 + t)y. Take

J = (x + y − 1), I = (x − 1, y − 1).

Then σn(I) ⊇ J if and only if n ∈ {−1,−p,−p2, . . . }.

Proof We show the equivalent assertion σn((x− y + 1)) ⊆ (x−1, y−1) if and only
if n ∈ {1, p, p2, . . . }. Note that σn(x− y + 1) = tnx− (1 + t)n y + 1, whence we have
the ideal inclusion σn((x− y + 1)) ⊆ (x−1, y−1) if and only if tn− (1 + t)n + 1 = 0.
This equation holds if and only if n is a power of p.

In the case K has characteristic p > 0, Derksen [12] has further shown that if σ
is a linearizable endomorphism of A = K[x1, . . . , xd], then for ideals I and J of A,
the set of m such that σm(I) ⊆ J can be classified; in particular this set is always a
p-automatic set, as defined in Allouche and Shallit [1].

Appendix A Dynamics of Endomorphisms—Geometric versus
Algebraic

This appendix presents a result addressing the difference between the geometric and
algebraic formulations of dynamics of endomorphisms. This result relates the geo-
metric action of endomorphisms acting as dynamical evaluation maps fτ on Sd by
forward iteration versus the algebraic action of endomorphisms τ acting on ideals in
R = S[x1, . . . , xd] by backward iteration. It shows that the two actions differ in some
circumstances.

To state the result, suppose that S is an integral domain, take R = S[x1, . . . , xd]
and let U be a subset of R. The set of S-points cut out by U in Sd is

V (U ) := VS(U ) = {s = (s1, . . . , sd) ∈ Sd : evs(p(x)) = 0 for all p(x) ∈ U}.

https://doi.org/10.4153/CJM-2013-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-048-3


A Skolem–Mahler–Lech Theorem 311

Of course V (U ) = V (I(U )), where I(U ) is the smallest ideal containing U . Note that
for endomorphisms τ and ideals I that τ−1(I) is an R-ideal, while

τ (I) :=
{
τ (p(x)) : p(x) ∈ I

}
need not be an R-ideal.

Proposition A.1 Let S be an integral domain of any characteristic, and consider the
polynomial ring R = S[x1, . . . , xd]. Let τ : R → R be a S-algebra endomorphism of
R. Consider the following possible relations between ideals I and J of R, the S-algebra
endomorphism τ , and the dynamical evaluation map fτ :

(i) τ−1(I) ⊇ J, in the ring R;
(ii) I ⊇ τ ( J), in the ring R;
(iii) V (I) ⊆ V (τ ( J)) in Sd;
(iv) fτ (V (I)) ⊆ V ( J) in Sd;
(v) V (I) ⊆ ( fτ )−1(V ( J)) in Sd.

Then the following hold:

(a) We have (i)⇔ (ii) and (iii)⇔ (iv)⇔ (v). In addition (ii)⇒ (iii), however, in
general (iii) 6⇒ (ii).

(b) If S = K is an algebraically closed field of any characteristic and I is a radical ideal,
then (iii)⇔ (ii). In this case all five relations (i)–(v) are equivalent.

This proposition shows that for endomorphisms τ the obstruction to the equiv-
alence of all five of these properties is (iii) 6⇒ (ii), which concerns non-radical ideals
I. This difference matters at the level of the generalized SML Theorem for ideal in-
clusion (Theorem 1.7) in that it can change the allowed arithmetic progressions for
inclusion relations of ideals I, I′ having the same radical ideal

√
I =
√

I′ with a fixed
J; cf. Example 6.1.

Proof Let τ be an S-algebra endomorphism of R = S[x1, . . . , xd].
(a). (i)⇔ (ii). For any U ⊆ R, set τ−1(Y ) := {r(x) ∈ R : τ (r(x)) ∈ U}. Then we

have the inclusions
τ ◦ τ−1(U ) ⊆ U ⊆ τ−1 ◦ τ (U ).

Furthermore, if τ := σ is an automorphism, then equality holds in both inclusions.
Suppose τ−1(I) ⊇ J. We apply τ to both sides to obtain

I ⊇ τ ◦ τ−1(I) ⊇ τ ( J).

Conversely, given I ⊇ τ ( J), applying τ−1 to both sides gives

τ−1(I) ⊇ τ−1 ◦ τ ( J) ⊇ J.

(ii)⇒ (iii). We are given I ⊃ τ ( J). Now suppose that s ∈ V (I) = VS(I), and
we are to show that s ∈ V (τ ( J)). The hypothesis asserts that evs(q(x)) = 0 for all
q(x) ∈ I. The conclusion asserts that

τ (p)(s) := evs(τ (p)(x)) = 0 for all p(x) ∈ J.

To verify this, the inclusion τ ( J) ⊆ I gives

τ (p)(x) = p
(
τ (x1), . . . , τ (xd)

)
=: q(x),
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for some q(x) ∈ I. Now

evs

(
τ (p)

)
(x) = p

(
evs

(
τ (x1)

)
, . . . , evs

(
τ (xd)

))
and by definition evs

(
τ (x1), . . . , τ (xd)

)
= fτ (s). We conclude

evs

(
τ (p)(x)

)
= ev fτ (s)

(
p(x)

)
.

Now s ∈ V (I) gives q(s) = 0, whence

0 = q(s) := evs

(
q(x)

)
= evs

(
p
(
τ (x1), . . . , τ (xd)

))
= p

(
evs

(
τ (x1), . . . , τ (xd)

))
= ev fτ (s)

(
p(x)

)
Since this holds for all p(x) ∈ J, we have s ∈ V (τ ( J)).

(iii) ⇔ (iv). Let s ∈ Sd. The key property is the identity, valid for all r(x) =
r(x1, . . . , xd) ∈ R, that

evs

(
τ
(

r(x1, . . . , xd)
))

= evs

(
r(τ (x1)), . . . , r(τ (xd))

)
= ev fτ (s)(r(x)).

In what follows we abbreviate r(s) := evs(r(x1, . . . , xd)).
Suppose V (I) ⊆ V (τ ( J)). If s ∈ V (I), then q(s) = 0 for all q(x) ∈ I. We

are to show that fτ (V (I)) ⊆ V ( J), which asserts that for all p(x) ∈ J there holds
p( fτ (s)) := ev fτ (s)(p(x)) = 0. Here, using the equality above,

ev fτ (s)

(
p(x)

)
= evs

(
τ (p)(x)

)
=: τ

(
p(s)

)
.

Now τ (p(s)) = 0, because V (I) ⊂ V (τ ( J)).
Conversely, suppose , fτ (V (I)) ⊆ V ( J) in Sd. We must show that V (I) ⊂ V (τ ( J)).

Given s ∈ V (I), we must show that for each p(x) ∈ J,

τ (p)(s) := evs

(
τ (p)(x)

)
= 0.

Using the identity above, evs(τ (p)(x)) = ev fτ (s)(p(x)). But by hypothesis, fτ (s) ∈
V ( J), whence

p
(

fτ (s)
)

:= ev fτ (s)

(
p(x)

)
= 0,

as required.
(iv)⇔ (v). For any subset N ⊂ Sd, set f−1

τ (N) = {s ∈ Sd : fτ (s) ∈ N}. Then we
have the inclusions

fτ ◦ f−1
τ (N) ⊆ N ⊆ f−1

τ ◦ fτ (N).

Furthermore if τ := σ is an automorphism, we have equality in both inclusions, for
in this case fσ is a bijection with inverse fσ−1 . The argument is similar to (i)⇔ (ii).
Suppose fτ (V (I)) ⊂ V ( J). Applying f−1

τ yields

V (I) ⊆ f−1
τ ◦ fτ

(
V (I)

)
⊆ fτ

(
V ( J)

)
.

Conversely, suppose V (I) ⊆ f−1
τ (V ( J)). Applying f−1

τ yields

fτ (V (I)) ⊆ fτ ◦ f−1
τ (V ( J)) ⊆ V ( J).

(iii) 6⇒ (ii). This is well known. Take R = K[x], for K a field and τ (x) = x3. Take
I = (x4) and J = (x). Then x3 ∈ τ ( J) ⊂ (x3), so that V (I) = V (τ ( J)) = {0}, and
V (I) ⊆ V (τ ( J)). But x3 6∈ I, so I 6⊇ τ ( J). (Note also that

τ ( J) = {τ (p)(x) : p(x) ∈ J}
is not an R-ideal.)
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(b). The assertion (iii)⇒ (ii) when S = K is an algebraically closed field (of any
characteristic) and I is a radical ideal is the Nullstellensatz. This gives all the equalities
(i)–(v). No condition is imposed on the ideal J to get the equality.

Remark A.2 The failure of the methods of this paper to handle general endomor-
phisms arises not from Proposition A.1, but rather from the failure of the generalized
p-adic analytic arc theorem to apply to certain endomorphisms.
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