Some New Properties of the Triangle.
By J. S. Mackay, M.A., L.L.D.
[The substance of this communication will be included in Dr Mackay's paper on The Triangle in the first volume of the Proceedings, which is about to be printed.]

Proofs of some optical theorems.

By William Peddie, D.Sc.
[The results of this paper will be contained in Dr Peddie's book on
Physics, which will appear in a short time.]

Second Meeting, December 12th, 1890.
R. E. Allardice, Esq., President, in the Chair.

On the condition that the straight line

$$
l x+m y+n z=0
$$

should be a normal to the conic
$(a, b, c, f, g, h)(x, y, z)^{2}=0$
the co-ordinates being trilinear.
By R. H. Pinkerton, M. A.

1. The condition in question may be found by using the following theorem:-

If the equation in trilinear co-ordinates

$$
\begin{equation*}
\mathrm{F}(x, y, z) \equiv\left(u, v, w, u^{\prime}, v^{\prime}, w^{\prime}\right)(x, y, z)^{2}=0 \quad . \tag{A}
\end{equation*}
$$

represents a pair of straight lines, then the line whose equation is

$$
\begin{equation*}
l x+m y+n z=0 \quad \ldots \quad \ldots \quad \ldots \tag{B}
\end{equation*}
$$

will be perpendicular to one of those lines if
$\mathrm{F}(l-m \cos \mathrm{C}-n \cos \mathrm{~B}, m-n \cos \mathrm{~A}-l \cos \mathrm{C}, n-l \cos \mathrm{~B}-m \cos \mathrm{C})=0$
where A, B, C are the angles of the fundamental triangle.

To prove this, transform the equations (A) and (B) to Cartesian co-ordinates by writing, as usual,
$x, \quad y, \quad z=x \cos \alpha+y \sin \alpha-p_{1}, \quad x \cos \beta+y \sin \beta-p_{2}, \quad x \cos \gamma+y \sin \gamma-p_{3}$, where $\beta-\gamma=180^{\circ}-\mathrm{A}$, etc.

The equation (A) thus becomes in Cartesian co-ordinates
$\mathrm{F}\left(x \cos \alpha+y \sin \alpha-p_{1}, x \cos \beta+y \sin \beta-p_{23} x \cos \gamma+y \sin \gamma-\mathrm{p}_{3}\right)=0$,
and the equation to the pair of straight lines through the origin of co-ordinates parallel to the lines (A), is
$\mathrm{F}(x \cos \alpha+y \sin \alpha, x \cos \beta+y \sin \beta, x \cos \gamma+y \sin \gamma)=0 \quad \ldots \quad$ ($\left.\mathrm{A}^{\prime}\right)$.
The equation in Cartesian co-ordinates to the straight line through the origin parallel to the (B) is similarly

$$
\lambda x+\mu y=0 \quad \ldots \quad . .
$$

where $\lambda, \mu=l \cos \alpha+m \cos \beta+n \cos \gamma, l \sin \alpha+m \sin \beta+n \sin \gamma$.
Now the line (B) will be perpendicular to one of the lines (\dot{A}) if the line (\mathbf{B}^{\prime}) is perpendicular to one of the lines (\mathbf{A}^{\prime}). The condition that (B^{\prime}) should be perpendicular to one of the lines (A^{\prime}) is found by substituting in the equation ($\left.\mathrm{A}^{\prime}\right) \lambda, \mu$ for x, y. The line (B) will therefore be perpendicular to one of the lines (A) if

$$
F(\lambda \cos \alpha+\mu \sin \alpha, \lambda \cos \beta+\mu \sin \beta, \lambda \cos \gamma+\mu \cos \gamma)=0 .
$$

Replacing λ, μ by their values in terms of l, m, n, we get

$$
\begin{aligned}
\lambda \cos \alpha+\mu \cos \beta & =\cos \alpha(l \cos \alpha+m \cos \beta+n \cos \gamma) \\
& +\sin \alpha(l \sin \alpha+m \sin \beta+n \sin \gamma) \\
& =l+m \cos (\alpha \sim \beta)+n \cos (\gamma \sim a) \\
& =l-m \cos C-n \cos B,
\end{aligned}
$$

with similar values $\lambda \cos \beta+\mu \sin \beta$ and $\lambda \cos \gamma+\mu \sin \gamma$. Hence the theorem follows.

2. Taking now the conic

$$
\mathrm{S} \equiv(a, b, c, f, g, h)(x, y, z)^{2}=0
$$

and the straight line

$$
l x+m y+n z=0 \quad \ldots \quad \ldots \quad \ldots \quad(\mathrm{P})
$$

we write down the equation to the pair of tangents to the conic at the points where the straight line cuts the conic. This equation is

$$
\mathrm{S} \Sigma=\Delta(l x+m y+n z)^{2} \quad \ldots \quad \ldots \quad(\mathrm{~T})
$$

where \sum is written for $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{G}, \mathrm{H})(l, m, n)^{\circ}$, and $\Delta, \mathrm{A}, \mathrm{B}, \mathrm{C}$, $\mathrm{F}, \mathrm{G}, \mathrm{H}$ have their usual meanings.

The line (P) will be a normal to the conic S if it is perpendicular to one of the lines (T). The condition for this is, by (C), found by
substituting $l-m \cos \mathrm{C}-n \cos \mathrm{~B}$, etc., for x, y, z in (T). The result is $(a, b, c, f, g, h)(l-m \cos \mathrm{C}-n \cos \mathrm{~B}, m-n \cos \mathrm{~A}-l \cos \mathrm{C}, n-l \cos \mathrm{~B}-m$ $\cos C)^{2} \times \Sigma=\Delta\left(l^{2}+m^{2}+n^{2}-2 m n \cos A-2 n l \cos B-2 l m \cos C\right)^{2}$, the condition sought for.

The triangle and its escribed parabolas.

By A. J. Pressland, M.A.
§1. The problem " to inflect a straight line between two sides of a triangle so that the intercepted portion is equal to the segments cut off" has been discussed in the third volume of the Proceedings.

If we discuss the same analytically; taking CB and CA as axes of x and y (Fig. 1) and calling each segment k, the equation of the line considered is

$$
\begin{array}{cccc}
& x /(a-k)+y /(b-k)=1, & \cdots & \cdots \\
\text { where } & k^{2}=(a-k)^{2}+(b-k)^{2}-2(a-k)(b-k) \operatorname{cosC} & \ldots
\end{array}
$$

The envelope of (α) considering k unrestricted by (β) is

$$
(x+y)^{2}-2(a-b)(x-y)+(a-b)^{2}=0 \quad \ldots
$$

a parabola touching the axis of x at $(a-b, 0)$
and the axis of y at $(0, b-a)$
and which can be shown to touch $A B$
at the point $\left(\frac{a^{2}}{a-b},-\frac{b^{2}}{a-b}\right)$.
Its axis is

$$
x+y=0
$$

and tangent at vertex $x-y=\frac{a-b}{2}$.
§ 2. If we consider $x /(a-k)+y /(b+k)=1$
which cuts off equal portions from BC and CA produced, the envelope is

$$
(x-y)^{2}-2(a+b)(x+y)-(a+b)^{2}=0
$$

which touches CB at $(a+b, 0) \quad$ the point l,
CA at $(0, a+b) \quad$ the point k,
AB at $\left(\frac{a^{2}}{a+b}, \frac{b^{2}}{a+b}\right)$ the point t,
the axis being

$$
\begin{aligned}
& x-y=0 \\
& x+y=\frac{a+b}{2}
\end{aligned}
$$

and tangent at vertex

