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ON THE QUANTIZATION OF QUADRATIC MOMENTA
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Abstract

Using geometric quantization, and accepting the quantum Hamiltonian of previous
authors, we propose some candidate formulae for the quantum operator of an observable
which is a quadratic form in the momenta.

1. Introduction

In this note, we undertake a partial mathematical discussion of the following
quantization problem, formulated in the language of geometric quantization [4, 5,
6,7,91.

Let us assume that we have a dynamical system whose configuration space is
the orientable differentiable manifold M, dim M = n, and whose phase space is
the corresponding cotangent bundle 7*M. We shall denote by & the canonical
1-form on T*M and set ©® = ~(1/(2wh))d®, where A = h/2x, and h is Planck’s
constant.

Let us also assume that the system has an associated electromagnetic field
defined by a closed 2-form F on M, and that it has an electric charge e. Finally,
the system will be assumed to have an energy defined by

H = 3g(u, u), (1.1)

where 1 € T*M, and g is the contravariant tensor of a Riemannian metric on M,
which will also be denoted by g.
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(2] Quantization of quadratic momenta 395

Such a system has a basic symplectic form defined on T*M by
Q=0 + eF, (1.2)

where, by an abuse of notation, we denote by F both the considered form on M
and its lift to T*M.

The quantization of a system of this type using geometric quantization has been
discussed by J. Sniatycki in [5, 6] (see also Woodhouse [9]), where a formula is
given for the corresponding quantum operator H. This formula generalizes the
formula of de Witt [3] and Cheng (2], who studied, by other methods, the case
F=0.

Concerning other observables of the system, one knows, by the general theory,
how to quantize the so-called configuration and momentum observables [1, 5],
and the corresponding formulae are provided by Dirac’s condition of the “pre-
servation” of the Poisson brackets. But there is no well defined method for the
quantization of the other observables, and it is even known that it is impossible to
have a “good” quantization for all the observables of the system [1]. Conse-
quently, it is usual to give quantization formulae for various observables, by more
or less heuristic arguments, while the preservation of the brackets is no more
always observed.

As a matter of fact, this remark also applies to the quantization of H. However,
since the different methods of [2, 3, S, 6] give the same result, we shall accept the
formula for H in {5, 6], as a basic formula valid for the considered system.

Now, the problem which we have in mind is that of quantizing in the given
system those observables which are of the form

Y = 3v(u, u), (1.3)

where u € T*M, and vy is an arbitrary second order contravariant symmetric
tensor of M. We shall call such observables quadratic momenta.

Here also we shall be obliged to use some heuristic arguments, and the basic
one will be that quantization of the other observables is determined by the
classical energy H, and by its quantum operator H, because of the fact that H and
H are fundamental from the physical viewpoint. This means that we shall be
looking for quantum operators ¥, which are compatible with the known formula
for H. Another principle will be that of “preserving” as many Poisson brackets as
possible.

By applying these principles, we shall arrive at some formulae for the operators
¥, which can be considered as mathematical candidates for the corresponding
real-physical quantum operators. It is an interesting fact that these formulae will
include the Riemannian metric g, and its curvature.

Finally, it should be emphasized that any discussion of whether the candidate
formulae mentioned above are physically correct is beyond the scope of this note.
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2. Previous results

Let us start by a survey of the known results (see, for example, [6, 7]). First, we
should assume that the following integrality condition is satisfied: eF represents
an integral cohomology class of M. This condition ensures the existence of a
complex line bundle K’ on M, endowed with a Hamiltonian metric 4’, and with a
Hermitian connection V' of curvature 2wieF where i = y— 1. Namely, K’ is
defined by some local trivialization with local bases {0’} such that

K(o’,0’) =1 and viyo = B(X)d’, (2.1)
where

B = (i/h)ea and F=(1/(27h)) da. (2.2)
(The second relation (2.2) defines the local 1-forms a since F is closed).

Then, the lift K of K’ to T*M has some corresponding local bases {0} and it
can be given a Hermitian metric x, and a Hermitian connection v by

x(o,0) =1 and Vv z0 = B(Z)0, (2.3)
where
B=(i/h)(-? + ea). (2.4)
The curvature of the connection V is
dp =27iQ, (2.5)

whence it follows that K is the Kostant-Souriau line bundle of the dynamical
system considered [4, 6, 7, 9].

On the other hand, 7*M has the natural vertical polarization S defined by the
tangent spaces of the fibres. The natural atlas (g¢ p,) of T*M, where ¢
(a =1,...,n) are local coordinates of a positively oriented atlas on M, and p,
(a = 1,...,n) are the natural covector coordinates with respect to the same atlas,
is an adapted altas of S [7]. Moreover, equation (2.4) shows that {¢} is a
corresponding distinguished basis of K [7].

Furthermore, a metalinear structure of (T*M, S) can be fixed by choosing
[det(3G“/dq®)]'/? > 0 for every coordinate transformation §(g) of the above
mentioned positive atlas [7]. It follows that the line bundle L whose cross-sections
are half-forms on T*M is trivial. Indeed, let us consider the Riemannian metric g
of (1.1), and set G = det g. Then the local functions G'/* lifted to T*M define an
adapted half-form § which never vanishes.

Consequently, K ® L ~ K, and the wave functions are cross-sections of the
form

® = ¢f§ (2.6)

where p is an adapted cross-section of K [7].
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At this point, we can use the classical formulae of geometric quantization in
order to obtain the quantum operators of configuration and momentum observa-
bles.

A configuration observable [1] is the lift of a function f: M — R to T*M. Hence,
it is adapted [7], and we have its quantum operator f given by

f(®) = fo. (2.7)

A momentum observable [1] is one of the form ¢ = u( X), where u € T*M, and
X is a fixed vector field on M. By means of the coordinates (¢¢, p,) we have

£=u(X) =&, (2.8)

(the Einstein summation convention being used throughout). The corresponding
symplectic gradient [7] is

_ . 0 9
sg&=2wh| ¢ 8q“+n"apa)’ (2.9)
where the n, are some unimportant coefficients, and, by means of the usual
quantization formulas [7] one obtains the quantum operator [1, 5],
(@) = -ik[ viyp + 1(div X)g¢] 8. (2.10)

In (2.10), by an abuse of notation, we denoted by the same ¢ the cross-section
of K’ induced by the adapted section ¢ of K, while div X is computed by means
of the metric g.

Let us also note that the operators f, ¢ satisfy commutation relations of the
form

A =-— {4, By, (2.11)

where {A4, B} is the Poisson bracket of the observables A, B with respect to the

symplectic form . Equation (2.11) is the correct technical meaning of Dirac’s

preservation of brackets condition mentioned in the Introduction. If F = 0, (2.11)
* becomes

AB — BA = -in{A, B}, (2.12)

where {4, B} is the classical Poisson bracket.
Finally, the quantization of the energy H of (1.1), as given in {2, 3, 5, 6, 9], is

. h? 1
A(®) = -5 89/ — 5 R9)S, 2.13)
where R is the scalar curvature of the metric g, and ¢, is a mixed covariant

derivative defined as follows. Let ¢ be a cross-section of the line bundle K’. Then
V’e is a K’-valued 1-form with the local components V% 5.9 = @, (notation!),
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and, if I';, are the Christoffel symbols of the Riemannian metric g, we shall define

Prab = V,00Pra — Lap®yes (2.14)
the latter being obviously a K’-valued tensor. Note that we shall also use a bar to
denote the usual covariant derivatives with respect to I, when required.

We have already mentioned in the Introduction that (2.13) cannot be deduced
as straightforwardly as (2.7) and (2.10). Its deduction requires for instance the
technical procedure known as BKS-pairing, for which we refer the reader to [4, 6,
9]. Here, we shall accept without further proofs that equation (2.13) holds good.

3. Quadratic momenta

Now, we can proceed with the discussion of the quantization of observables of
the form (1.3), whose coordinate expressions with respect to the atlas of Section 2
are

Y = 3Y"p, py- (3.1)
For this reason, we call them quadratic momenta. Of course, we could try the BKS
pairing method, but it will be simpler to proceed in a more straightforward
manner.
Let us begin by looking for the quantum operator attached to the observable
&2, where ¢ is given by (2.8). With the notation in Section 2, we get

{§, f}o=27hXf and (£, f}o = 47hé(Xf), (32)
for any function f on M, and the first relation (3.2) yields by means of (2.11)
E(f@) - 7E(®) = -in(Xf)®. (3.3)
On the other hand, (2.10) implies
FE(@) = 75(®) — in(xf)®. (34)

Hence, the second relation (3.2) leads to the following condition, which we
consider as a necessary one since we have to “preserve as many brackets as
possible”:

E( @) — f(£(®)) = -2ir2( X/ )E(®) — h(XX[)®. (3.5)

Now, a simple computation based on (3.3) shows that, if we replace here 23 by
£ o &= £ the relation (3.5) will be identically verified. Hence, if we denote

£ — 8 =n%,, (3.6)
we get
Ax(f®) = fAx(D), (3.7)
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which means that 4 is a cross-section of Hom(K, K) and, locally, it consists of
multiplication by a function.

Thereby, ? is defined up to a zero order operator, and, by means of (3.6) and
(2.10), we get

£(®) = -1 vy Ve + (div X) (Vi) + $(Xdiv X)e + $(divX )’ 9} 8
+h24,(®), (3.8)

where @ is given by (2.6).

Now let us consider y of (3.1). Here, we shall use another heuristic principle
namely, the quantum operators should have a local character, that is, they should
be compatible with the restriction to any open neighbourhood. This is usually
admitted in quantization. Accordingly, let us assume that our computations are
done over a neighbourhood U which is small enough and on which rank y = s.
Then we can set

1 s
Yu=75 kE_:] ecéi (3.9)
where &, = u(v,), (u € T*M), for some vector fields v, defined on U, and
g, = *1. Componentwise (3.9) means

5

vt = Y goivh. (3.10)
k=1

Correspondingly, we can compute ¥ by means of (3.8) applied to the vector
fields v,. It is easy to show that
Vo V@ + (divo,) Ve = vivle,u, + (vi0}) n%)us (3.11)
where ¢ ab is defined by (2.14), and (3.11) yields

s
S e[V, Vel + [divo) Vo] = Y0 + Ve (3.12)
k=1

On the other hand, we have
v,(dive, ) + 3(div vk)2 =040} e T %u‘,:/avz/b. (3.13)

In order to compute the contribution of these terms, we derive from (3.10)
s

b — b b b b
Yab = 2 Ek(UZ/abvk + 0% 0k T V% /6% sa T '-’ka/ah)’ (3.14)
k=1

and, next, use the classical formula

b _
v/’i/ab ~ Y% /ba — R,Z'abvz’ (3.15)
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where R is the curvature tensor of the metric g. Then, (3.14) becomes

R

b b b b
Yiap = > 8k(zvzvk/ba + 0k k6 T+ v‘k‘/bv;’i/a + DZDchab)
k=1

s s
=2 ek[vk(divvk) + %(divvk)z] + > ekvz/boz/a + Y*R,., (3.16)
k=1 k=1

where R, 1s the Ricci curvature of the metric g.
From these results, we deduce that the quantum operator ¥ should be of the

form
s — h2 ab, ab, 1 ab ab hZ
7(®) = 5 {Y Prap T Va9 T+ Z(Y/ab — YR, ) }Q + _B (‘D)
(3.17)
where
B(®) = 3 &4,(®) + i0f,s0L,.2), (3.18)
k=1
which is an operator defined by a cross section of Hom(K, K).
In particular, (3.17) can be applied for y = H of (1.1), and this gives
- h? h?
H(®) = -7 (8**/u — ¥R9)S + = By (@), (3.19)

where, unless well chosen, B, will depend on the choice of the local bases v,. This
happens if, for instance, we make the mathematically natural choice 4, = 0 for
every X. Hence, as surprising as it might seem, we should consider £2 * §2 while
the difference depends on the metric g.

Another mathematically natural choice is

Ay(®@) = -380,60.0, (3.20)

which implies B, = 0 for every v, but then (3.19) does not reduce to the already
accepted formula (2.13). (See, however, the remark of [8, page 28] about the
possibility of having in (2.13) the coefficient § instead of {, and the remark of [3,
page 395] about the ambiguity of this coefficient.)

Now, since our principle has been to accept equation (2.13) as it stands, we
must look for a corresponding choice of 4 and B,. If we are taking a closer look
at equations (2.13), and (3.17)—(3.19), we can see that the convenient choice is

Ay(®) = §{ X(div X) + 4(div X)* — £2,¢°, )@
= {48288, + 5 (£€°) sup — BRHEE0} O, (3.21)

where the last equality follows by a computation similar to that of (3.16).
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With this choice, (3.19) reduces to (2.13), and our candidate for the quantum
operator of a general quadratic momentum, as deduced from (3.17), will be

(@) = —%2 (Y0 + vio + $(vi = Y"Ra)9}S.  (3:22)
We shall also have, in particular,
20 = -1 v v'yp + (divX) Vye + (X div X)p
+ 4(div X )’ + L1 DEI%p)8,  (323)

where D¢ denotes the tensor £7,.

4. Appendix

In this appendix, we should like to call the attention of the reader to the
possibility of using local coordinates on the phase space 7*M such that H
assumes the canonical form.

Namely, it is known that local orthonormal bases consisting of local vector
fields v, (@ = 1,...,n) are available, and the vector bundle T*M has the local
dual cobases w? defined by

w(v,) =8 (a,b=1,...,n). (4.1)
Then we can define on the manifold 7*M the local coordinates (g%, s,), where

the ¢¢ are as in the foregoing sections, and the s, are the components of the
covectors with respect to the cobases w* or, equivalently,

s (u) = u(v,). (4.2)
The transition functions for these local coordinates are
§“=q%(q"), 5,=al(q)ss (4.3)

wherea, b,c=1,...,n, and (aZ) is an orthogonal matrix.
Now the Hamiltonian H becomes
H=1 52, (4.4)
1

o
I M=

and we shall say that (¢, s,) are canonical coordinates with respect to H.
Obviously, the canonical 1-form & on 7*M becomes

¢ = 5,0° (4.5)
In order to compute 44, let us introduce the local forms
o =1 (et v.=0) (4.6)
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of the Levi-Civita connection of the metric g defined by H, with respect to the
basis v,. As it is well known, we have then the structure equations

do® = 0’ N Wi, 4.7)
and we derive
=-(1/(Q7h))Ds, \ &* (4.8)
where
Ds, = ds, — sywl. (4.9)
Let us also note that the horizontal lifts of the vector fields v, to T*M are given
by
Yy = v, aab + ¥5as ‘82 (4.10)
Now the basic symplectic form (1.2) becomes
=—-(1/(27h))Ds, \ w* + €F, (4.11)

and one can proceed from here with the study of the quantization problem.
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