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THE COHERENCE NUMBER OF 2-GROUPS 

BY 

JAMES McCOOL 

ABSTRACT. Let G be a finite group. A natural invariant c(G) of G has 
been defined by W.J. Ralph, as the order (possibly infinite) of a distinguished 
element of a certain abelian group associated to G. Ralph has shown that 
c(Zn) = 1 and c(Z2 © Z2) = 2. In the present paper we show that c(G) is 
finite whenever G is a dihedral group or a 2-group, and obtain upper bounds 
for c(G) in these cases. 

1. Introduction. Let G be a finite group. In [2] Ralph has defined a somewhat mys
terious invariant c(G) of G, called the coherence number of G. Although the motivation 
for introducing c(G) comes from algebraic topology, the definition itself is completely 
algebraic, and may be described as follows. Let H = H(G) be a free group with basis 
B consisting of elements ag, (3g(g G G), so that H has rank 2| G|. Next, for each g G G 
define Hg to be the normal closure of the set of elements otx(5~g

x (x G G), and let K be the 
intersection of all these subgroups. Now consider the quotient group Hj KH', where H' 
is the commutator subgroup of //, and note that any torsion element of this group must 
be a power of the image of the element 0 — WX^G &XPX~X of H, since any element of K 
not in H' must coincide with a power of 6, modulo H'. Thus Hj KH' can be described 
as Zm 0 Z2I Gl - l , where m is the order of 9 in Hj KH' (cf. Corollary 1.16 of [2]). As we 
show below, this number m is the coherence number c(G) of G as defined in [2]. 

Despite its ease of definition, and some general results obtained in [2], some very basic 
questions about c(G) remain unanswered. Thus, for example, it is not known whether or 
not c(G) is always finite, even in the case where G is abelian. Indeed, the only groups for 
which c(G) is known seem to be the cyclic groups Zn and the group Z2 0 Z2. The object 
of the present note is to provide a modest increase of our knowledge in this regard. More 
precisely, our main result is to show that if G is an extension of degree two of a group 
Go with C(GQ) finite, then c(G) itself is finite. As a consequence we obtain that c(G) is 
finite whenever G is a dihedral group D^, and whenever G is a 2-group. The method 
of proof shown that c(D*) is a divisor of k, while if | G\ = 2k then c(G) is a divisor of 
22k~k~l (it is conjectured in [2] that this is the value of ^(Z*)). 

2. Notation and preliminary results. We begin by recalling a form of the defini
tion of c(G) given in [2]. Let \G\ = n, and consider the G-set S = {(g, /); g G G, 1 ^ 
i ^ n}, where y(g, i) — (yg, ï) for each y G G. Let F/ (1 ^ / ^ n) be the free group 
with basis the subset St of 5, where St — {(g, /); g G G}, and take P to be the direct 
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product F\ x • • • x Fn. Observe that the action of G on S induces a corresponding action 
on P. We define elements ag,(3g of P, for g G G, as follows. Firstly, we put 

/ = 1 i=\ 

where e is the identity element of G, and g\,g2, • • •, gn is some chosen ordering of 
the elements of G. Then we define ag — gae and (3g — gPe for each g £ G. Taking 
H = //(G) to be the subgroup of P generated by the ag and f3g(g G G), and 0 to be the 
element n"=i 0CgiPg~

X ̂  m e coherence number c(G) is then defined to be the order of the 
image of 6 in the quotient Hj H' of H by its commutator subgroup. 

We now reconcile this with the description of c(G) as given above. Let 7/ be the 
projection homomorphism from P to F/, so that 7/(/i, • •. ,/w) = //• Clearly we have 
f|"=1 ker 7/ = {<?}. Also (regarding each Ft as embedded in P), Ki(ag) = (ggt,i) and 
^APggi) — (ggh 0> s o t n a t ^g/^,1 £ ker 7/. Thus if //5i. is the normal closure in H of all 
elements agPg~g) of H, then Hgi < H H ker 7/. Now H/ (H D ker7/) is isomorphic to 
F/, since the fact that li{ag) = (ggt, i) tells us that 7/ maps the set agl, . . . , agn onto the 
basis St of F,; it follows that H/ Hgi is free with basis agl Hgi, . . . , agnHgi, because it is 
generated by the images of the agj and maps onto the free group Hj (HH ker 7/). Using 
the well known result that free groups of finite rank are hopfian (see, e.g. proposition 
3.5 of [1]) we see that Hgi = HD ker7;, and hence that fl̂ Li Hgi = { e} . Now consider 
the groups //, Hg and K — f]geG Hg as defined above, and let TT be the homomorphism 
from H to H which is the identity map on the set B = {ag, /3g; (g E G)}. Then clearly 
Tr(Hg) = Hg for each g G G, and we have 

LEMMA l.ker7r = K. 

PROOF. Since fl?= \Hgi = { e}, it follows from the remarks above that K < ker TT . On 
the other hand, since Hj Hgi is free on the cosets aglHgi, . . . , ocgnHgi, and Hj Hgi is free 
with corresponding basis noted above, it is clear that ker7r < Hgi for 1 ^ / S n. This 
proves the lemma. 

We thus have Hj K isomorphic to H via the identity map on B, and the equivalence 
of the two descriptions of c(G) is now obvious. 

We now introduce automorphisms ry, ly and sy (y G G) of the group H, by specifying 
their effect on elements of the basis #, as follows 

ry(ag) = ag, 
ly(ag) = agy-\, 
se(ag) = pg, 

and sy = lyry~]se, so that 

sy(<*g) = Pgy> 

ry(Pg) = Pgy 
£y(Pg) = P8, 
se(Pg) = ag, 

sy((3g) = agy-i . 

It is an easy matter to check that the mapping ry —• (e,y, e), ty -^ (y, e, e), s — se —> 
(e, e, s) is a isomorphism from the subgroup Q\ of Aut H generated by the ry, ty and s 
to the group (G x G) x Z2, noting that syry = lysy for all y G G, and in particular for 

.s * . 
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It is convenient to regard Q\ as a subgroup of Bij(H), the group of bijections of//, and 
to denote by / the element of Bij(H) such that I(w) = w~l for all w G //. We note that 
the subgroup Q = Q(G) of Bij(H) generated by Q\ and/is just Q\ x (/) = Q\ x Z2. 
We now define the element Ry of Ç, for y G G, to be given by Ry = syL Thus we have 
Ry(ag) = f3~l, RyiPg) — oc~L, and we can now state 

LEMMA 2. Let w e H and y G G. 77œn wRy(w) G //y. 

PROOF. If w = ae
g (e = ±1) then w/?y(w) = a|/3~e G ^ , and similarly (3e

gRy{(3e
g) G 

//y. We now note that for any w, v G //, 

/?y(wv) = ^O"1*/"1) = ^(v" 1 )^^" 1 ) = Ry(v)Ry(u). 

Thus if w = uoce
g, then working modulo Hy we have 

wRy(w) = uae
gP~yRy(u) = uRy(u), 

and in the same way we see that if w = uf5g then wRy(w) = uRy(u) modulo Hy. Induction 
on the length of w now proves the result. 

Next we have 

LEMMA 3. Let g G G and w E H, and put k = \g\. Define fc(w) — fg,G(w) by 

2k 

(i) /G(W) = n ^ v v 1 •••**)(*) • 
r=l 

ThenfG(w) G f l ^ H$-

PROOF. We write r = Re and <j> — igrg-\. It is then easy to check that Rgi = 4> V, and 
tha t ( r ,0 ) is just a copy of the dihedral g roupe , with </>* = r 2 = (T(/>)2 = ^. 

In order to show that fo(w) G Hgt we may work with any suitable conjugate offc(w), 
since Hgt is a normal subgroup of //. Writing wi = {Rgt\Rgt-2.. ./?^)(w), we observe 
that the subword w\Rgt(w\) offc(w) is in Hgt, by Lemma 2. Taking/G(w) to be written 
in a circle, and working modulo Hgt, we may therefore delete this subword to obtain a 
'smaller' circular word. We claim that at the point in the circle where the subword was 
deleted we can continue this deletion process until the empty word results. The proof 
of this is by induction on the number of deletions. At the rth stage the subwords \r(w\) 
and pr(wi) become adjacent, where Ar = Rgt-rRgt-r+\ .. .Rgt-\ and pr = Rgt+rRgt+r-\ ...Rgt 

(here we use the fact that Rk+t = Rt, and (Rgk\Rgk-2... Re)
2 = e). We show that RgXr = 

pr. This is the case for r = 0, since Ao = e and p0 = g*\ for r > 0 we have 

Rgt\r = RgtRgt-r\r_i = RgtRgt-rRgt pr—\ 

= aWa^raWpr-i = at+rrpr-\ = Rgt+rpr_i = pr, 

as claimed. Thus Rgt\r = pr, and so \r(w)pr(w) = \r(w)Rgt\r(w) G Hgt, by Lemma 2, 
and hence Ar(w)pr(w) can be deleted. This proves the Lemma. 
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We note that with/c defined as in the lemma above, we have 

k 

fc(<Xe) = I I / V 1 ( V ' 

and so, in particular, we recover the result of [2] that c(G) — 1 for G cyclic. 
If K is a homomorphism from G to G\, there will be induced, in a functorial way, 

corresponding homomorphisms from H(G) to H(G\) and Ç(G) to Q{G\). Since we will 
only be concerned with the case of a single monomorphism, the following naive remarks 
will be sufficient for our purpose. Thus we shall regard G as a subgroup of G\, and then 
consider the basis B(G) of H(G) as a subset of the basis B(G\) of H(G\). In addition, 
for y G G, writing ry(G), ry(G\), etc., to distinguish elements of Ç(G) and Q(G\), we 
have an embedding of Ç(G) in Q{G\) which maps ry(G) to ry(G\), ly(G) to ly(G\), etc. 
We note, for use below, that the restrictions of ly(G\), ry(G\), sy(G\)91(G\) to the free 
factor H(G) of H(G\) are just the corresponding elements of //(G), for each y E G. 

Given G as a subgroup of G\, we can now replace the function fG of Lemma 3 by the 
corresponding function/G, » mapping H(G\) to //(Gi), given by 

2* 

/ G » = n(MG i)V'(G i)---^(G i))(w)' 

for each w in H(G\). Of course, the result of the Lemma now gives us that fdiw) E 
nj=o Hg>(G\) f° r aU w m ^ ( G 0 - In order to facilitate discussion of this type of result, 
we shall define an H(G)-formulaf to be an element/ = ((/>i, . . . , <j>n) of Ç(G)n, for any 
positive integer «; the corresponding H(G)-function fG : //(G) —» //(G) is then given by 
/G(W) = n ^ i </>/(w). Each //(G)-formula can be regarded, via the embedding of Q{G) in 
Ç(G\), as an H(G\)-formula, with corresponding //(Gi)-function/Gl, and/o, restricted 
to //(G) is just fc again. 

If/ = (< î, . . . , (/>„) and /* = (/ii, . . . , jLxm) are //(G)-formulas, then we define the 
product hf to be the formula 

¥ = (MI(^1> • • • > </>«)> M2(</>1, • • • , <£«), • • • , Mm(01, • • • , </>«)) , 

where /i(</>i, . . . , </>n) = (/i<£i, . . . , M^n)- In other words, /*/ is the element of Q(G)mn 

with rth entry /x/<̂  if r = (/— l)n+j, with 1 ^ / ^ m and 1 ^ 7 ^ n. It is not difficult to 
check that this product is associative, and that the function (hf)c is just the composition 
hcfc. 

We shall require one more result concerning the functions/c, namely that each //(G)-
function/G induces a corresponding function, denoted by/G , on the commutator quo
tient group //(G)/ //(G)', and/G is an endomorphism of this abelian group. In fact, if 
/ = (</>i, . . . , <j>n) is the formula affording/G, then it is clear that each </>/ induces a cor
responding automorphism </>/ of//(G)///(G)', and then/G is just the (usual) sum of the 

3. The main result. In order to state our main result, we need the concept of a 
coherence-formula f for G; by this we mean an //(G)-formula/ and a positive integer 
n = n(f) such that whenever G is embedded in Gi we have 
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(a) fGl (w) G ngec Hg(Gx) for all w G H(GX\ 
and, for each x G G\9 

(bl) fGi(ax) = ïlgeG(cxxgpx-g
iy (modulo//(GO') 

and n 

(b2) ^ ( f t ) = H g e G ^ a ^ 1 ) (modulo ffCGi/). 
It is easily checked that the formula given in Lemma 3 is a coherence-formula for the 

cyclic group ( g) generated by g. In general, if G has a coherence-formula/ then (taking 
G = G\ above) we see that G has finite coherence number, and c(G) divides n(f). 

We can now state our main result. 

THEOREM. Letf be a coherence-formula for the finite group G, and suppose L is an 
extension of G with [L : G] = 2. Then, for any z in L — G, 7 = fij is a coherence-
formula formula for L, with «(7 ) = { n(f)} 2\G\. 

PROOF. Let G\ be a finite extension of L. We have to verify (a) and (b) above for 
7G, = /G, IJGX • Taking w G //(Gi), we have 

fGlMe C\Hg(Gi): 

Now we note that lx(ocg(3~l) = agx-i(3~l, and it follows that lx maps Hy{G\) to 
Hxy(G\), for each jc,;y G Gi, so that, in particular, 

^ ( H O G n^(^ i ) = n^(^ i ) -
gEG geG 

Similar observations show that rx(Hy) = Hyx-i, sx{Hy) = Hxy-\x and I(Hy) = Hy. If 
we let W = r\geGHgz(G\) then taking x G G and y = gz we see that W is fixed by 
each of £x, rx, sx and /. Since / is an //(G)-formula, we have fcx (u) G W whenever 
u G W, since/^(w) is expressible in terms of £x(u), TX(U), SZ(U) and I(u). It follows that 

/G, V G , (W) G W. We also have 

fGx{£éGxiw)) e (\Hg{Gx), 
geG 

since/ is a coherence-formula for G, and combining these results we see 

so that 7 — /^z/" satisfies condition (a) above. 
Next, working modulo H(G\)f, we have 

g e G v y 

and n 

/é,(/w = n (««&*) • 
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where n = n(f) and x is any element of G\. Thus 

so that 

g<EGh<EGX J 

- n K^ , 
since z G L — G. This verifies that condition (bl) above is satisfied by 7, with n(l) — 
n2\G\, and a similar computation verifies (b2) holds for this same value. This proves the 
theorem. 

As an application, we obtain 

COROLLARY. Let L be a finite group. We have 
(a)IfL = Die then c(L) divides k. 
(b) If\L\ = 2k then c(L) divides 22k-k~\ 

PROOF. For part (a) we note that L has a cyclic subgroup G of index two. Now G has 
a coherence-formula/ with n(f) — 1, so L has a coherence-formula 7 with n(l) = k, as 
required. 

Now suppose \L\ — 2k, with k ^ 1. We use induction on k to prove that L has a 
coherence-formula 7 with n(l) = x2 ~k~l. This is certainly the case if k = 1, so we 
suppose that k > 1. Then L has a subgroup G of index two, and G has a coherence-
formula/ with n(f) = 22 -Â:. Hence, by the theorem, L has a coherence-formula 7 
with 

n{l) = {n(f)}2\G\ = {22t"-k}22k-1 = 22 ' -*- ' , 

as required. This proves the result. 
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