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Abstract

A construction of finite semifield planes of order n using irreducible semilinear transformations on a finite
vector space of size n is shown to produce fewer than

√
n log2 n different nondesarguesian planes.
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1. Introduction

Let V = VK be a d-dimensional vector space over a finite field K . Suppose that
T ∈ 0L(VK ) is an irreducible semilinear transformation: 0 and V are the only
T -invariant subspaces of V . (The simplest example is V = K and T ∈ Aut(K ).) Then∑d−1

0 T i K is a presemifield [5], so that there is a corresponding semifield plane πT
(see Section 2 below). While it appears that there might be quite a few projective
planes obtained in this manner, the purpose of this paper is to show that this is not
the case.

THEOREM 1.1. Fewer than
√

n log2 n pairwise nonisomorphic nondesarguesian
semifield planes πT of order n are obtained from irreducible semilinear
transformations T on vector spaces of size n.

A weaker bound announced in [6] highlighted remarks concerning the relatively
small number of known semifield planes. Many standard results concerning linear
transformations have been generalized to the semilinear case [4, 2], but these do not
appear to give the desired information concerning irreducible transformations. In
Section 3 we develop enough machinery concerning semilinear transformations to
deduce the theorem.
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2. Semifield planes

A finite presemifield is a finite vector space V together with a product a ∗ b that
is left and right distributive and satisfies the condition that a ∗ b = 0 implies a = 0 or
b = 0. This produces an affine plane (a semifield plane [1, Section 5.3]) with point
set V 2 and lines x = c and y = m ∗ x + b. There is a simple, elegant construction
of finite presemifields due to Jha and Johnson [5], using an irreducible semilinear
transformation T on a d-dimensional vector space V over a finite field K . Namely, the
set ST :=

∑d−1
0 T i K consists of |V | additive maps V → V , with all nonzero maps

invertible; define a ∗ b = f (a)(b), a, b ∈ V, for an arbitrary additive isomorphism
f : V → ST . This produces a presemifield and hence also an affine plane πT .
Different choices for f produce isomorphic planes πT [1, p. 135].

We repeat the elementary proof in [6] that, if at least one of the ki ∈ K is not
zero, then the element

∑d−1
0 T i ki of ST is invertible. If this transformation is not

invertible then there is some nonzero vector v such that
∑d−1

0 T i (kiv)= 0. Then there

is some j such that 1≤ j ≤ d and 0 6= T j (k jv)=−
∑ j−1

0 T i (kiv). Since T K = K T ,

we have T (K T j−1(v))= K T (T j−1(k jv))⊆
∑ j−1

0 K T i (v), so that the latter is a
proper T -invariant subspace, whereas T is irreducible.

If T is a linear transformation then this construction produces a field in the standard
manner. In general, unlike in the case of fields, if T and T ′ generate the same cyclic
group then the planes πT and πT ′ might not be isomorphic since ST is not T -invariant.

However, 0L(V )-conjugates of T produce 0L(V )-conjugate sets ST and hence
isomorphic planes πT (but not conversely, as is easily seen using GF(|V |)). Therefore,
in the next section we focus on conjugacy of irreducible semilinear transformations.

3. Proof of Theorem 1.1

We begin with the following result.

PROPOSITION 3.1. Let T be an irreducible σ -semilinear transformation on a finite
vector space V over a finite field K . Then there is a decomposition

V = V1 ⊕ · · · ⊕ Vt (3.2)

of V into subspaces Vi permuted cyclically by T such that T t
|V1 is a 1-dimensional

semilinear map over an extension field of K . Moreover, t divides the order of σ, and
the map T t

|V1 uniquely determines T up to GL(V )-conjugacy.

PROOF. We will proceed in several steps. Throughout the proof, V will always denote
a vector space over K . Whenever a subspace of V is viewed as a vector space over
another field, or the field involved needs to be emphasized, we will add that field as a
subscript.
STEP 1. Let s be the order of σ and E := CK (σ ). Clearly V is a vector space over E
and T s

∈ GL(V )≤ GL(VE ). Let µ(x) ∈ E[x] be the minimal polynomial of T s

on VE . We claim that µ(x) is irreducible. For, if g(x) ∈ E[x] is a proper nontrivial
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divisor of µ(x), then Ker g(T s) is a proper nontrivial subspace of VE . Since both K
and T commute with g(T s), they leave invariant the K -space Ker g(T s), contrary to
the irreducibility of T on V .
STEP 2. Let µ1(x) ∈ K [x] be an irreducible factor of µ(x). Then for some t | s,
µ(x)=

∏t
i=1 µi (x) where the polynomials µi (x) := µ σ i−1

1 (x) ∈ K [x] are distinct
and irreducible. For 1≤ i ≤ t , let Vi := Ker(µi (T s)). Then (3.2) holds with
T (Vi )= Vi+1 (the subscripts are mod t), and T s has minimal polynomial µi (x) on
(Vi )K . Moreover, m1 := T s

|V1 is K -linear with irreducible minimal polynomial µ1(x)
∈ K [x], so that L := K [m1] is a subfield of End(V1) and V1 is a vector space over L .

We always let v1 denote an arbitrary nonzero vector of V1. We have

T t (km1v1)= kσ
t
T t (T s(v1))= kσ

t
T s(T t (v1))= kσ

t
m1T t (v1)

for k ∈ K . It follows that T t
|V1 is ρ-semilinear on V1 for an automorphism ρ of

L = K [m1] that coincides with σ t on K , fixes m1 = T s and hence has the same order
s/t as σ t .
STEP 3. Most of the proof now focuses on the semilinear transformation T1 := T t

|V1

of V1, rather than on T and V .
The map T1 acts irreducibly on the K -space V1. For, let W1 be a nonzero

T1-invariant subspace of V1. Then Wi := T i−1(W1) is a subspace of Vi for
1≤ i ≤ t , and T (Wt )= T t (W1)= T1(W1)=W1. By (3.2), W1 ⊕ · · · ⊕Wt is a
nonzero T -invariant subspace of V , and hence W1 = V1, as required.
STEP 4. By Step 2, T1 is semilinear on (V1)L with associated field automorphism ρ of
order n := s/t . The ‘polynomial algebra’ L[T1] (see [4]) is not commutative if ρ 6= 1.
This leads us to consider the set R of polynomials f (x)=

∑d
0 x j f j with f j ∈ L ,

using the twisted product x j a = aρ
j
x j for a ∈ L . Then R is a (noncommutative)

L-algebra having L[T1] as a homomorphic image under the substitution x 7→ T1.
Jacobson [4] viewed V as an R-module, but we will not need this point of view.
We only need to know that each f ∈ R has a degree in the usual manner, and that
f (T1)(v1)=

∑d
0 T j

1 f j (v1), where T j
1 f j is a composition of additive maps on V1.

Then f (T1) is an additive map on V1, but it need not be K -semilinear.
STEP 5. Let 0 6= f (x)=

∑d
0 x j f j ∈ R, f j ∈ L , fd = 1, have minimal degree d

such that f (T1)(V1)= 0. Then d ≤ n since (T n
1 − m1 I )(V1)= (T s

− m1 I )(V1)= 0
(by the definition of m1 in Step 2). We claim that d = n; in fact we will show that
f (x)= xn

− m1.
Take a ∈ L lying in no proper subfield, so that a 6= aρ

j
for 0< j < n. Consider

g(x) := aρ
d

f (x)− f (x)a ∈ R. On the one hand,

g(T1)(v1)= aρ
d

f (T1)(v1)− f (T1)(av1)= aρ
d
0− 0= 0.

On the other hand, calculating in R we find that

g(x)=
d∑
0

(aρ
d
x j ) f j −

d∑
0

x j ( f j a)=
d∑
0

x j (aρ
d− j
− a) f j

https://doi.org/10.1017/S1446788708000888 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000888


336 W. M. Kantor and R. A. Liebler [4]

has degree< d since aρ
d−d
− a = 0. Now g(T1)(V1)= 0 and our choice of f (x) imply

that (aρ
d− j
− a) f j = 0 for 0≤ j < d. Then f j = 0 for 0< j < d (since aρ

d− j
6= a),

so that f (x)= xd
+ f0. If d < n then aρ

d−0
6= a, so that f0 = 0, whereas T d

1 (V1) 6= 0.
Thus, d = n and f (x)= xn

+ f0. Finally, since ( f0 + m1)(V1)= 0 we have
f0 =−m1, as claimed.
STEP 6. We next claim that V1 has dimension one as a vector space over L. Since
T1 acts irreducibly on V1 by Step 3, it suffices to exhibit a 1-dimensional subspace of
(V1)L fixed by T1.

By Step 2, m1 ∈ F := CL(ρ), where [L : F] = |ρ| = s/t = n. Consequently, if
NL/F : L→ F is the norm map, then there exists an element a ∈ L such that

NL/F (a) :=
∏n−1

0 aρ
j

equals m−1
1 .

Since h(x) :=
∑n−1

0 (ax) j
∈ R has degree less than n, by Step 5 we have

h(T1)(V1) 6= 0. Let v ∈ V1 with w :=
∑n−1

0 (aT1)
j (v) 6= 0. Then

(aT1)
n(v)= NL/F (a)T

n
1 (v)= NL/F (a)m1v = v,

and hence

(aT1)(w)=

n−1∑
1

(aT1)
j (v)+ (aT1)

n(v)=

n−1∑
1

(aT1)
j (v)+ v = w.

Thus, T1(Lw)= Lw, so that Lw is the required T1-invariant 1-space over L , and hence
dim(V1)L = 1.
STEP 7. Finally, we need to show that the action of T1 on V1 determines T
up to GL(V )-conjugacy. For, if B := {vi1 | i = 1, . . . , d} is a K -basis of V1 and
vi j := T j−1(vi1), then {vi j | i = 1, . . . , d} is a K -basis of V j for 1≤ j ≤ t . If A is
the matrix of T1 = T t

|V1 with respect to B then

v1i 7→ v2i 7→ · · · 7→ vti 7→ Av1i , 1≤ i ≤ d,

uniquely describes T up to GL(V )-conjugacy. 2

Observe that, in the notation of Steps 1 and 2, |K | = |CK (σ )|
s
= |E |nt , so

|V | = |L|t = (|K |deg µ1)t = |E |nt2 deg µ1 .

PROOF OF THEOREM 1.1. We are given a vector space V of size n = pr over the
prime field GF(p). We will imitate the preceding proposition in order to construct
semilinear transformations over subfields of End(V ) that include all irreducible ones
but also include many others. Thus, we will need a decomposition (3.2), a subfield L of
End(V1) implicit in the statement of Proposition 3.1, a field K , automorphisms of K
and L (see Step 2 of the proposition), and a semilinear transformation T1 = T t

|V1

on V1.
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Choose a factorization r = te with e > 1 and t |e; the number of these factorizations
is the number τ(r)− 1 of positive divisors of r other than 1. Fix a decomposition (3.2)
of V into subspaces Vi of size pe. Fix a subfield L ∼= GF(pe) of End(V1), so that V1
is an L-vector space. Given e, all such decompositions and fields are GL(r, p)-
conjugate.

Choose a subfield K 6= GF(p) of L .
Choose 1 6= σ ′ ∈ Aut(L) such that σ ′|K 6= 1 has order divisible by t . Let ρ := σ ′t .

(Thus, σ := σ ′|K ∈ Aut(K ) and ρ ∈ Aut(L) satisfy σ t
= ρ|K , as required in Step 2

of the proof of Proposition 3.1. According to that step we should also require that
|σ t
| = |ρ|, but we will ignore this restriction in our estimates.)
Extend the action of K from V1 in order to make V and all Vi vector spaces over K .

All such extensions are GL(r, p)-conjugate.
Choose ` ∈ L∗, and let T1 ∈ End(V1) be v 7→ `vρ , v ∈ V1 (see Proposition 3.1).

We can restrict the choice of ` as follows. If Ma : v 7→ av, a ∈ L∗,
then M−1

a T1 Ma : v 7→ `aρ−1vρ . Since we require different conjugacy classes of
transformations T1, we can restrict ` to a set 3(e, ρ) of

|L∗/(L∗)ρ−1
| = |CL∗(ρ)| = pe/|ρ|

− 1

coset representatives of (L∗)ρ−1 in L∗.
Up to conjugacy in GL(r, p), the choices made above uniquely determine

T1 = T t
|V1 , and hence also T by the last part of Proposition 3.1. (However, we

emphasize that a σ -semilinear map obtained in this manner need not be irreducible
on VK .) Thus, the number of GL(r, p)-conjugacy classes of pairs K , T , with T an
irreducible K -semilinear transformation that is not linear is at most∑

e|r,e 6=1

∑
σ ′ 6=1

|3(e, σ ′t )|(#K ⊆ L , σ ′|K 6= 1). (3.3)

There are τ(r)− 1 choices for e and L , and then at most e − 1 choices for σ ′, at
most τ(e)− 1 subfields K , and pe/|ρ|

− 1 elements in 3(e, ρ), where again ρ = σ ′t .
Clearly, pe/|ρ|

− 1 dominates the corresponding term in (3.3). This is at most pr/3
− 1

unless σ ′ has order 2 and either

(i) |L| = pr , t = 1, ρ = σ ′ has order 2 and |3(e, ρ)| = pr/2
− 1; or

(ii) |L| = pr/2, t = 2, ρ = 1, |σ ′| = 2 and |3(e, ρ)| = pr/2
− 1.

Possibilities (i) and (ii) together contribute at most 2(pr/2
− 1)(τ (r)− τ(r/2))

to (3.3). Then (3.3) is easily bounded as required in the theorem if r is not too small,
leaving a few cases to be handled by a slightly more detailed and tedious examination
of (3.3). 2

4. Concluding remarks

We conclude with some elementary observations concerning the semifields ST and
our arguments.
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REMARK 4.1. Note that πkT ∼= πT , πT+k I ∼= πT and πT−1 ∼= πT for all k ∈ K ∗, since
SkT = ST , ST+k I = ST and ST−1 T d−1

= ST . Thus, as in the desarguesian case, there
are isomorphisms among the planes πT that do not arise from conjugate semilinear
transformations.

REMARK 4.2. As in Section 2, if we fix 0 6= e ∈ V then we obtain a presemifield
operation on V from ST via a ∗ b = g(a)(b), a, b ∈ V, using the additive
isomorphism g : V → ST defined by g(A(e))= A for A ∈ ST . Then

A(e) ∗ v = A(v) for all A ∈ ST , v ∈ V ,

gives a simple description of our operation. In fact, this turns V into a semifield with
identity element e, since e ∗ v = I (e) ∗ v = I (v) and A(e) ∗ e = A(e) for all v and A.

REMARK 4.3. It is straightforward to extend the action of L in Proposition 3.1
from V1 to all of V so as to make all Vi into 1-dimensional L-spaces. However, as
has been pointed out to us by Dempwolff via an example [3], there can be irreducible
semilinear transformations over K that are not semilinear over any such extension
field L .

Nevertheless, a simple way to obtain a candidate for an irreducible σ -semilinear
map on a vector space V over a field K is to use σ -semilinearity together with the
requirement

T : v1 7→ v2 7→ · · · 7→ vt 7→ mv1 (4.1)

for some basis {v1, . . . , vt } of V and some m ∈ K . If t > 1 in (4.1), it is easy to
check that the corresponding semilinear map has no invariant 1-space if and only
if m /∈ K 1+σ+···+σ t−1

. In this case, if t = 2 then the corresponding semifield was
discovered by Knuth [7].

REMARK 4.4. Similarly, we can obtain many irreducible semilinear transformations
by assuming σ -semilinearity in (4.1).

PROPOSITION 4.2. Let V be a vector space over K with basis v1, . . . , vt , and let
σ ∈ Aut(K ) and ρ = σ t . If m ∈ K with mσ j

−1 /∈ K ρ−1 for 1≤ j < t, then (4.1)
defines an irreducible σ -semilinear transformation on V with associated field
automorphism σ .

PROOF. Suppose that W is a nonzero T -invariant subspace of V . Let 0 6=
∑t

1 kivi
∈W , ki ∈ K , with the minimum number of ki 6= 0. Using T we may assume that
k1 = 1. By (4.1) and the fact that W is T t -invariant,

T t
( t∑

1

kivi

)
− m

t∑
1

kivi =

t∑
2

(kρi mσ i−1
vi − ki mvi )

lies in W and has smaller support, and hence is zero. Then kρi mσ i−1
= ki m for

2≤ i ≤ t . If some such ki 6= 0 then mσ i−1
−1
= 1/(kρ−1

i ), contradicting our condition
on m.
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Thus, v1 ∈W . Applying T shows that all vi ∈W , so that W = V . 2

REMARK 4.5. We conclude with a very elementary but weaker version of
Theorem 1.1 (compare to [6, Theorem 6.2]) having a less informative proof.

PROPOSITION 4.3. Given a vector space V of size n over a prime field GF(p),
there are fewer than n log2

p n conjugacy classes of pairs (K , T ) consisting of a
field K ⊆ End(V ) over which V is a vector space and an irreducible semilinear
transformation T on VK .

PROOF. Let d = dimK V . Let T be an irreducible σ -semilinear transformation of VK .
Fix a nonzero vector v. Then {T i (v) | 0≤ i < d} is a basis of V (in Section 2 we saw
that

∑d−1
0 ki T i (v)= 0, ki ∈ K , implies that all ki = 0).

Write T d(v)=
∑d−1

0 ki T i (v) with ki ∈ K . Since T i (kv)= kσ
i
T i (v) for each i

and each k ∈ K , the ki completely determine T .
Thus, T is determined by the following choices: a field K = GF(pe) over which V

is a vector space, an automorphism σ of K , and a choice of d = r/e elements ki ∈ K ,
where |V | = pr . There are at most r divisors e of r , at most e choices for σ , and then
|V | choices for the ki . Choosing a K -basis of V amounts to conjugating in GL(VK )

and hence in GL(r, p). Consequently, the number of GF(p)-conjugacy classes of pairs
(K , T ) is less than rr |V | = |V | log2

p |V |, as required. 2

Unlike in the proof of Proposition 3.1, this argument used all |K |d = pr possible
d-tuples (k1, . . . , kd), which is independent of the choice of K and σ .
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