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Abstract

A construction of finite semifield planes of order n using irreducible semilinear transformations on a finite
vector space of size n is shown to produce fewer than /n log, n different nondesarguesian planes.
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1. Introduction

Let V = Vi be a d-dimensional vector space over a finite field K. Suppose that
T e 'L(Vk) is an irreducible semilinear transformation: 0 and V are the only
T -invariant subspaces of V. (The simplest exampleis V = K and T € Aut(K).) Then
26’_1 T'K is a presemifield [5], so that there is a corresponding semifield plane 77
(see Section 2 below). While it appears that there might be quite a few projective
planes obtained in this manner, the purpose of this paper is to show that this is not
the case.

THEOREM 1.1. Fewer than +/nlog, n pairwise nonisomorphic nondesarguesian
semifield planes mwr of order n are obtained from irreducible semilinear
transformations T on vector spaces of size n.

A weaker bound announced in [6] highlighted remarks concerning the relatively
small number of known semifield planes. Many standard results concerning linear
transformations have been generalized to the semilinear case [4, 2], but these do not
appear to give the desired information concerning irreducible transformations. In
Section 3 we develop enough machinery concerning semilinear transformations to
deduce the theorem.
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2. Semifield planes

A finite presemifield is a finite vector space V together with a product a * b that
is left and right distributive and satisfies the condition that a x b = 0 implies a = 0 or
b =0. This produces an affine plane (a semifield plane [1, Section 5.3]) with point
set V2 and lines x = ¢ and y =m % x + b. There is a simple, elegant construction
of finite presemifields due to Jha and Johnson [5], using an irreducible semilinear
transformation 7 on a d-dimensional vector space V over a finite field K. Namely, the
set St := gfl T'K consists of |V| additive maps V — V, with all nonzero maps
invertible; define a x b = f(a)(b), a, b € V, for an arbitrary additive isomorphism
f: V— Sr. This produces a presemifield and hence also an affine plane w7.
Different choices for f produce isomorphic planes 7 [1, p. 135].

We repeat the elementary proof in [6] that, if at least one of the k; € K is not
zero, then the element Zg_l T'k; of St is invertible. If this transformation is not
invertible then there is some nonzero vector v such that ngl T (kjv) = 0. Then there
is some j suchthat1 < j <dand0# T/ (kjv) = — Z{)_l T'(k;jv). Since TK = KT,
we have T(KT/~1(v)) = KT(Tj’l(ij)) - 2{)71 KTi(v), so that the latter is a
proper T -invariant subspace, whereas 7 is irreducible.

If T is a linear transformation then this construction produces a field in the standard
manner. In general, unlike in the case of fields, if T and T’ generate the same cyclic
group then the planes 7 and 77/ might not be isomorphic since St is not T -invariant.

However, T'L(V)-conjugates of T produce I'L(V)-conjugate sets St and hence
isomorphic planes 77 (but not conversely, as is easily seen using GF(|V|)). Therefore,
in the next section we focus on conjugacy of irreducible semilinear transformations.

3. Proof of Theorem 1.1
We begin with the following result.

PROPOSITION 3.1. Let T be an irreducible o-semilinear transformation on a finite
vector space V over a finite field K. Then there is a decomposition

V=Vi® - aV (3.2)

of V into subspaces V; permuted cyclically by T such that T'|y, is a 1-dimensional
semilinear map over an extension field of K. Moreover, t divides the order of o, and
the map T' |y, uniquely determines T up to GL(V)-conjugacy.

PROOF. We will proceed in several steps. Throughout the proof, V will always denote
a vector space over K. Whenever a subspace of V is viewed as a vector space over
another field, or the field involved needs to be emphasized, we will add that field as a
subscript.

STEP 1. Let s be the order of o and E := Cg (o). Clearly V is a vector space over E
and T° € GL(V) <GL(Vg). Let u(x) € E[x] be the minimal polynomial of T°¢
on Vg. We claim that p(x) is irreducible. For, if g(x) € E[x] is a proper nontrivial
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divisor of w(x), then Ker g(T*) is a proper nontrivial subspace of Vg. Since both K
and 7 commute with g(7*), they leave invariant the K-space Ker g(7*), contrary to
the irreducibility of 7 on V.

STEP 2. Let p(x) € K[x] be an irreducible factor of w(x). Then for some 7 | s,
nix) = ]_E:1 Wi(x) where the polynomials w;(x):= ,u,l"H(x) € K[x] are distinct
and irreducible. For 1 <i <t, let V;:=Ker(u;(T*)). Then (3.2) holds with
T (Vi) = Vi41 (the subscripts are mod ¢), and 7° has minimal polynomial wu;(x) on
(Vi) . Moreover, m1 := T*|y, is K-linear with irreducible minimal polynomial 141 (x)
€ K|[x], so that L := K[m] is a subfield of End(V1) and V] is a vector space over L.

We always let v; denote an arbitrary nonzero vector of V;. We have

T (kmyvy) = k% T'(T* (v1)) =k T*(T" (1)) = k% m T' (v1)

for k € K. Tt follows that T"|y, is p-semilinear on V; for an automorphism p of
L = K[m ] that coincides with ¢’ on K, fixes m = T* and hence has the same order
s/taso’.

STEP 3. Most of the proof now focuses on the semilinear transformation 77 := T v,
of Vi, rather thanon 7 and V.

The map Ti acts irreducibly on the K-space V1. For, let Wi be a nonzero
Ti-invariant subspace of Vi. Then W;:= Ti_l(Wl) is a subspace of V; for
I<i<t,and TW)=T'W)=T1(W))=W;. By B2), Wi®---®&W, is a
nonzero T-invariant subspace of V, and hence W = V1, as required.

STEP 4. By Step 2, T is semilinear on (V1) with associated field automorphism p of
order n := s/t. The ‘polynomial algebra’ L[T7] (see [4]) is not commutative if p # 1.
This leads us to consider the set R of polynomials f(x) = Zg x/ f ; with f; € L,
using the twisted product x'a = a?’ xJ for a € L. Then R is a (noncommutative)
L-algebra having L[T7] as a homomorphic image under the substitution x — 7.
Jacobson [4] viewed V as an R-module, but we will not need this point of view.
We only need to know that each f € R has a degree in the usual manner, and that
f(T)(vy) = Zf)l le fj(v1), where le fj is a composition of additive maps on Vj.
Then f(77) is an additive map on Vi, but it need not be K -semilinear.

STEP 5. Let 0# f(x)= Zg xjfj €R, fjeL, fy=1, have minimal degree d
such that f(71)(V1) =0. Then d < n since (T{' —mI)(V1) = (T* —mI)(V1) =0
(by the definition of m in Step 2). We claim that d = n; in fact we will show that
fx)=x" —mj. .

Take a € L lying in no proper subfield, so that a # a”’ for 0 < j < n. Consider
gx):= apdf(x) — f(x)a € R. On the one hand,

d d
g(T)(vy) =a” f(T1)(v1) — f(T)(av) =a” 0—-0=0.
On the other hand, calculating in R we find that

d

d d )
g =Y @' =Y W (fiay =Y @ —a)f;
0 0

0
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has degree < d since a* —a=0. Now g(T1)(V1) = O and our choice of f (x) imply
that (a*"’ —a)f; =0for 0 < j <d. Then fj =0 for 0 < j <d (since a” ' % a),
so that f(x) = x4+ fo- If d < n then ar’’ # a, so that fo = 0, whereas Tld(Vl) # 0.
Thus, d =n and f(x)=x"+ fy. Finally, since (fo+ m1)(Vi) =0 we have
fo = —my, as claimed.

STEP 6. We next claim that V| has dimension one as a vector space over L. Since
Ty acts irreducibly on V| by Step 3, it suffices to exhibit a 1-dimensional subspace of
(V1) fixed by T;.

By Step 2, m; € F:=Cr(p), where [L: F]=|p|=s/t =n. Consequently, if
Np/r: L — F is the norm map, then there exists an element a € L such that
Np/r(a) = 8_1 a”’ equals ml_l.

Since h(x):= g_l(ax)j € R has degree less than n, by Step 5 we have
h(T1)(V1) #0. Letv € V] with w := gfl(aTl)j (v) # 0. Then

(@T1)"(v) = Npyr(@) T (v) = Np/p(@)ymiv = v,

and hence

n—1

X_:(aTl)j(v) +v=w.
1

n—

1
(@Ty)(w) =Y (@T)! (v) + (@T)" (v) =

1

Thus, 71 (Lw) = Lw, so that Lw is the required 77 -invariant 1-space over L, and hence

dim(Vy), = 1.
STEP 7. Finally, we need to show that the action of 77 on V| determines T
up to GL(V)—conjugacy. For, if B :={v;1 |[i=1,...,d} is a K-basis of V; and
vjj = T/=Y(v;1), then {vijli=1,...,d}isa K-basisof V; for 1 < j <t. If Ais
the matrix of T3 = T"|y, with respect to B then

Ui P> U2 > o vy > Avy, 1 <0 <d,
uniquely describes T up to GL(V')-conjugacy. O

Observe that, in the notation of Steps 1 and 2, |K|=|Ck(0)|* =|E|", so
VI=ILI' = (K|%em) = |E|" deem,

PROOF OF THEOREM 1.1. We are given a vector space V of size n = p” over the
prime field GF(p). We will imitate the preceding proposition in order to construct
semilinear transformations over subfields of End(V) that include all irreducible ones
but also include many others. Thus, we will need a decomposition (3.2), a subfield L of
End(V}) implicit in the statement of Proposition 3.1, a field K, automorphisms of K
and L (see Step 2 of the proposition), and a semilinear transformation 71 = T’|y,
on V.
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Choose a factorization r = fe with e > 1 and ¢|e; the number of these factorizations
is the number t(r) — 1 of positive divisors of 7 other than 1. Fix a decomposition (3.2)
of V into subspaces V; of size p®. Fix a subfield L = GF(p°) of End(V}), so that V|
is an L-vector space. Given e, all such decompositions and fields are GL(r, p)-
conjugate.

Choose a subfield K # GF(p) of L.

Choose 1 # o’ € Aut(L) such that 0’| ¢ # 1 has order divisible by 7. Let p :=0o"".
(Thus, o :=0'|x € Aut(K) and p € Aut(L) satisfy 0! = p|g, as required in Step 2
of the proof of Proposition 3.1. According to that step we should also require that
lo!| = |p|, but we will ignore this restriction in our estimates.)

Extend the action of K from Vj in order to make V and all V; vector spaces over K .
All such extensions are GL(r, p)-conjugate.

Choose ¢ € L*, and let T} € End(V}) be v+ £v”, v € V| (see Proposition 3.1).
We can restrict the choice of ¢ as follows. If M,: vi>av, aelL*
then M 'TiM,: v> €a”~'vP. Since we require different conjugacy classes of
transformations 77, we can restrict £ to a set A(e, p) of

|L*/(L*)P—1| =|Cr+(p)| = pe/|/)| -1

coset representatives of (L*)?~! in L*.

Up to conjugacy in GL(r, p), the choices made above uniquely determine
Ti =T'|y,, and hence also T by the last part of Proposition 3.1. (However, we
emphasize that a o-semilinear map obtained in this manner need not be irreducible
on Vk.) Thus, the number of GL(r, p)-conjugacy classes of pairs K, T, with T an
irreducible K-semilinear transformation that is not linear is at most

Do D A aIEK S Lok # D). (3.3)
elre£1 o’#1

There are t(r) — 1 choices for e and L, and then at most e — 1 choices for ¢/, at
most 7(e) — 1 subfields K, and p¢/!°| — 1 elements in A (e, p), where again p =o',
Clearly, p¢/!?! — 1 dominates the corresponding term in (3.3). This is at most p’/3 — 1
unless o’ has order 2 and either
(i) |Ll=p",t=1, p=0c"hasorder?2and|A(e, p)| = p"/?>—1;o0r
() |Ll=p"*t=2,p=1,|0'|=2and|A(e, p)| = p/* — 1.

Possibilities (i) and (ii) together contribute at most 2( P2 —D(x(r) —t(r/2))
to (3.3). Then (3.3) is easily bounded as required in the theorem if  is not too small,
leaving a few cases to be handled by a slightly more detailed and tedious examination
of (3.3). O

4. Concluding remarks

We conclude with some elementary observations concerning the semifields Sy and
our arguments.
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REMARK 4.1. Note that my7 = nr, w7447 = 7 and w1 = 7y forall k € K*, since
Skr = Sr, Srkr =St and Sy T9=! = Sr. Thus, as in the desarguesian case, there
are isomorphisms among the planes w7 that do not arise from conjugate semilinear
transformations.

REMARK 4.2. As in Section 2, if we fix 0 # e € V then we obtain a presemifield
operation on V from Sr via axb=g(a)(b),a,beV, using the additive
isomorphism g: V — St defined by g(A(e)) = A for A € S7. Then

A(e)xv=A(v) forall AeSr,veV,

gives a simple description of our operation. In fact, this turns V into a semifield with
identity element e, since e x v = I (¢) * v = [ (v) and A(e) % e = A(e) for all v and A.

REMARK 4.3. It is straightforward to extend the action of L in Proposition 3.1
from V7 to all of V so as to make all V; into 1-dimensional L-spaces. However, as
has been pointed out to us by Dempwolff via an example [3], there can be irreducible
semilinear transformations over K that are not semilinear over any such extension
field L.

Nevertheless, a simple way to obtain a candidate for an irreducible o-semilinear
map on a vector space V over a field K is to use o-semilinearity together with the
requirement

T:vi=> V> - > U > mup “.1)
for some basis {vi, ..., v;} of V and some m € K. If t > 1 in (4.1), it is easy to
check that the corresponding semilinear map has no invariant 1-space if and only
if m¢ K'+o+-+9"""In this case, if =2 then the corresponding semifield was
discovered by Knuth [7].

REMARK 4.4. Similarly, we can obtain many irreducible semilinear transformations
by assuming o -semilinearity in (4.1).

PROPOSITION 4.2. Let V be a vector space over K with basis vy, ..., v, and let
oceAut(K) and p=o'. If me K with m® =1 ¢ KP~! for 1 < j <t, then (4.1)
defines an irreducible o-semilinear transformation on V with associated field
automorphism o.

PROOF. Suppose that W is a nonzero T'-invariant subspace of V. Let 0 # Z’l kiv;
e W, k; € K, with the minimum number of k; #0. Using 7 we may assume that
k1 = 1. By (4.1) and the fact that W is T'-invariant,

! t 13 .
Tt(Z kﬂh’) —m Zkivi = Z(kfmol lvi — kimv;)
1 1 2

lies in W and has smaller support, and hence is zero. Then kip mo T = kim for

2 <i <t. If some such k; # 0 then m®  ~
onm.

=1 /(kf _1), contradicting our condition
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Thus, v € W. Applying T shows that all v; € W, so that W = V. O

REMARK 4.5. We conclude with a very elementary but weaker version of
Theorem 1.1 (compare to [6, Theorem 6.2]) having a less informative proof.

PROPOSITION 4.3. Given a vector space V of size n over a prime field GF(p),
there are fewer than n log% n conjugacy classes of pairs (K, T) consisting of a
field K C End(V) over which V is a vector space and an irreducible semilinear
transformation T on V.

PROOF. Letd =dimg V. Let T be an irreducible o -semilinear transformation of V.
Fix a nonzero vector v. Then {T7(v) | 0 <i < d} is a basis of V (in Section 2 we saw
that Y0 k; T (v) = 0, k; € K, implies that all k; = 0).

Write 79 (v) = 2371 ki T!(v) with k; € K. Since T (kv) = k' T (v) for each i
and each k € K, the k; completely determine 7.

Thus, T is determined by the following choices: a field K = GF(p°) over which V
is a vector space, an automorphism o of K, and a choice of d =r/e elements k; € K,
where | V| = p”. There are at most r divisors e of r, at most e choices for o, and then
|V choices for the k;. Choosing a K-basis of V amounts to conjugating in GL(Vk)
and hence in GL(r, p). Consequently, the number of GF(p)-conjugacy classes of pairs

(K, T)islessthanrr|V|=|V| logf, |V, as required. O
Unlike in the proof of Proposition 3.1, this argument used all |K |¢ = p" possible
d-tuples (ky, . .., kg), which is independent of the choice of K and o.
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