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Abstract. For a smooth projective variety X of dimension n in a projective space PN defined over
an algebraically closed field k, the Gauss map is a morphism from X to the Grassmannian of n-plans
in PN sending x 2 X to the embedded tangent space TxX � PN . The purpose of this paper is
to prove the generic injectivity of Gauss maps in positive characteristic for two cases; (1) weighted
complete intersections of dimension n > 3 of general type; (2) surfaces or 3-folds with �-semistable
tangent bundles; based on a criterion of Kaji by looking at the stability of Frobenius pull-backs of
their tangent bundles. The first result implies that a conjecture of Kleiman–Piene is true in case X is
of general type of dimension n > 3. The second result is a generalization of the injectivity for curves.

Mathematics Subject Classifications (1991): Primary 14N05, 14F10; Secondary 14M10, 14J29,
14F05, 14J60
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1. Introduction

Let X be a smooth projective variety of dimension n over an algebraically closed
field k of characteristic p > 0. Let � : X ! PN be an embedding whose image
is not linear. Set H = ��O

PN(1) and L = 
n
X 
 H
(n+1), where 


q
X denotes

the sheaf of differential q-forms. Recall that the Gauss map of � is a morphism
�(1) : X ! Grass(PN ; n) sending x 2 X to the n-dimensional embedded tangent
space TxX � PN .

A result of Zak [15, Ch. I, (2.8)] asserts the finiteness of the Gauss map �(1),
equivalently the ampleness of L, in arbitrary characteristic, and the birationality
of �(1) in characteristic 0. In positive characteristic, the birationality and even the
generic injectivity of �(1) are no longer true in general. But several results suggest
that the Gauss map would be generically injective for most cases; in other words,
the field extension K(X) over K(�(1)(X)) would be purely inseparable ([6, 7, 8,
10, 12]).

The purpose of this paper is to prove the generic injectivity of Gauss maps in
positive characteristic for two cases, by giving a criterion for the injectivity in terms
of the stability of tangent bundles and by looking at the stability.

(Kb. 2) INTERPRINT: J.N.B. CRCs Corr. M/c ?? PIPS Nr.:
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Our main results are the following:

THEOREM 1.1. Let X be a smooth weighted complete intersection defined over
k. Suppose that X is of dimX = n > 3 and of general type. Then the Gauss maps
�(1) are generically injective for any embeddings � : X ! PN .

THEOREM 1.2. LetX be a smooth projective variety of dimensionn = 2 or 3 over
k and � : X ! PN an embedding. Set H = ��OP(1) and L = 
n

X 
H
(n+1). Let
T be the first piece of the Harder–Narasimhan filtration of the tangent bundle TX
with respect to L (see Section 3). Assume that (c1(T ); L

n�1) < 0. When n = 3, we
assume in addition that T is not of rank 2. Then the Gauss map �(1) is generically
injective.

Here ( ) denotes the intersection products of line bundles.
Theorem 1.1 implies that a conjecture of Kleiman–Piene [10], the generic

injectivity of the Gauss map of a smooth complete intersection X for the natural
embedding, is true whenX is of dimension n > 3 and of general type. Our result is
applicable not only to other projective variety than a ‘usual’ complete intersection
but also to a complete intersection with any embedding in a projective space.
Theorem 1.2 is one of a generalization of results for curves [6, 7] and [10]; roughly
speaking, those assert that Gauss maps of smooth curves of genus g > 2 are always
generically injective for any embeddings. In fact, Theorem 1.2 implies that the
Gauss map �(1) of a smooth surface or 3-fold of general type with �-stable tangent
bundle with respect to L is generically injective.

To obtain these results, we essentially use Kaji’s criterion for the generic injec-
tivity of Gauss maps given in [8] (see (2.1)). By using Kaji’s criterion, first we
prove our key criterion via stability: Namely, if every eth Frobenius pull-back of
the tangent bundle has no subsheaf of non-negative �-slope with respect to L, then
the Gauss map �(1) is generically injective (Proposition 3.1). Next we look at the
stability of the Frobenius pull-backs of the tangent bundles and prove the main
theorems. In Section 4, we show that every Frobenius pull-back of the tangent
bundle of a smooth weighted complete intersection is �-stable if the intersection is
of general type and of dimension > 3 (Proposition 4.2). In Section 5, we show that
if the tangent bundle of a smooth surface or 3-fold has no subsheaf of non-negative
�-slope, then the same is true for every eth Frobenius pull-back of the tangent
bundle, based on Shepherd–Barron’s argument [14, (9.1.3.3)]. Consequently, we
obtain the main theorems by the above criterion.

1.1. NOTATION

Unless otherwise mentioned, we work over an algebraically closed field k of
characteristic p > 0 throughout. By a variety, we mean an irreducible and reduced
algebraic scheme over k. By the eth Frobenius morphism of a variety X defined
over k, we mean the induced morphism from the peth power map of the structure
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sheaf. For a torsion-freeOX -module E on a variety X over k, by E_ we denote the
dual HomOX

(E ;OX ), and by c1(E) we mean det(E)__.

2. Kaji’s criterion for generic injectivity of Gauss maps

PROPOSITION 2.1 (Kaji [8], [9]). Let X be a smooth projective variety of
dimX = n over k and � : X ! PN an embedding whose image is not linear. Set
H = ��OP(1) and L = 
n

X 
H
(n+1). Consider the following condition for X
and �, called Kaji’s condition (K):

H0(Y; f�(TX 
H_)
 ��f�H) = 0

holds for any finite surjective morphism f : Y ! X from a normal projective
variety Y with a decomposition f = g � h, h : Y ! Y 0 a finite, separable
morphism to a normal projective variety Y 0 and g : Y 0 ! X a finite, purely
inseparable morphism, and for any k-automorphism � : Y ! Y of finite order
with ��f�L = f�L.

If Kaji’s condition (K) holds for X and �, then the Gauss map �(1) is generically
injective.

Remark 2.2. Kaji’s criterion above is a key step in his proof of the main theorem
in [8] and hence it is not stated explicitly in [8]. The criterion in the form above will
be given in the forthcoming paper [9]. Historically, the prototype of the criterion
and its proof were already announced in Kaji’s seminar talk at Waseda University
in July 1989.

3. Criterion for generic injectivity of Gauss maps via stability

First we recall notation and results about stability (see, for example, [13]). In
general, let X be a normal projective variety of dimension n over k with an
ample line bundle L. For a torsion-free OX-module E of rank r, we set �L(E) =
(c1(E); Ln�1)=r. We say that E is �-stable (resp. �-semistable) with respect to L

if for every OX-submodule F(0 < rankF < r), we have �L(F) < (resp. 6)
�L(E). For the Harder–Narasimhan filtration (or H.-N. filtration, for short) 0 =

E0 � E1 � � � � � El = E of a torsion-freeOX -module E with respect to L (w.r.t. L)
(i.e., Ei=Ei�1 are torsion-free �-semistable with �L(E1=E0) > � � � > �L(El=El�1)),
we set

�L�max(E) = �L(E1=E0) and �L�min(E) = �L(El=El�1)

and by the type of E we mean a sequence of numbers (rank(E1=E0); : : : ;

rank(El=El�1)). We sometimes callE1 the first piece of the H.-N. filtration ofE . With
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this notation, for torsion-freeOX -modulesE andE 0 with�L�min(E
0) > �L�max(E),

we have HomX(E
0; E) = 0.

Let X be a smooth projective variety of dimX = n over k and � : X ! PN an
embedding whose image is not linear. Set H = ��OP(1) and L = 
n

X 
H
(n+1).
Note that L is ample by a corollary of Zak’s finiteness theorem of �(1) [15, Ch. I,
(2.14)].

PROPOSITION 3.1. Let X , �, H and L be as above. If �L�max(F
e�TX) < 0 for

every eth Frobenius morphism F e : X ! X (e > 0), then the Gauss map �(1) is
generically injective.

Proof. By (2.1), we have only to show that the condition (K) holds. Assume
to the contrary that the vanishing in (K) does not holds for some f : Y ! X and
� : Y ! Y . Hence f�TX has a submodulef�H
��f�H_ with ((f�L)n�1; f�H

��f�H_) = 0, and hence �f�L�max(f

�TX) > 0. Since h is finite and separable,
by Gieseker [3, (1.1)], we have �g�L�max(g

�TX) > 0. By noting that g is purely
inseparable, let � : X ! Y 0 a morphism with g � � = F e for some e > 0. Since
F e�L = L
p

e

and since � is flat in codimension 1, we have

pe(n�1)�L�max(F
e�TX) = �F e�L�max(�

�g�TX)

> (deg�)�g�L�max(g
�TX) > 0:

This contradicts to the assumption. 2

From Proposition 3.1, we recover an improved version of Kaji [8] (see [9]). Recall
that a vector bundle F on a normal projective variety X of dimension n with an
ample and globally generated line bundle L is generically ample with respect to
L
m1 ; : : : ; L
mn�1(mi > 0) if its restriction FjC is ample on C for a complete
intersection scheme C = D1 \ � � � \Dn�1 with Di 2 jL
mi j (see [9]).

COROLLARY 3.2 ([9]). Let X , �, H and L be as in (3:1). If the tangent bundle
TX is anOX -submodule of a vector bundleF whose dualF_ is generically ample
with respect to L
m1 ; : : : ; L
mn�1 for some mi > 0, then the Gauss map �(1) is
generically injective.

Proof. Let E be the first piece of the H.-N. filtration of F e�F . If Di 2 jL
mi j
are general, then F_jC is ample on C = D1 \ � � � \Dn�1 by the open property
of ampleness ([4, Sect. 4, (4.4)]), and EjC is a subbundle of F e�FjC . Since
F ejC : C ! C is finite, (F e�FjC)_ is ample, and hence degEjC < 0. Since F e

is flat, we have �L�max(F
e�TX) 6 �L�max(F

e�F) = �L(E) < 0 as required. 2

4. Stability of F e�TX for weighted complete intersections

In this section, we fix the following notation (see [11]). A weak projective space
P is an open subscheme \�>1D+(fT� ; � - e�g) of a weighted projective space
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Proj k[T0; : : : ; Tn+m], where the grading of R := k[T0; : : : ; Tn+m] is defined
by degT� = e� > 0(0 6 � 6 n + m) and dega = 0(a 2 k). A weight-
ed complete intersection X of P is a complete subscheme of P isomorphic to
Proj(R=(F1; : : : ; Fm)) for some homogeneous regular sequence F1; : : : ; Fm of R
with degF� = d�. If e� = 1 for every �, then X is a complete intersection in the
usual sense.

LEMMA 4.1. Let X be a smooth weighted complete intersection of dimension n.
For every eth Frobenius morphism F e : X ! X(e > 0),

Ht(X; (F e�

q
X)
OX(`)) = 0 (4.1.0)

holds for ` < 0, 0 6 t+ q 6 n� 1, and 1 6 q 6 n� 1.
Proof. For an OX -module G on X and for ` 2 Z, we set G(`) = G 
 OX(`).

First we claim that

Ht(X;F e�(

q
P

OX)(`)) = 0 (4.1.1)

for 0 6 t 6 n � 1, 1 6 q 6 n � 1, and ` < 0. To prove this, we consider the
Frobenius pull-back of the restriction of the Euler sequence on P(e) to X (see [11,
Remark 2.4]),

0 ! F e�(
1
P

OX)! �n+m

i=0 OX(�p
eei)! OX ! 0:

By taking the exterior product^q and the twist byOX(`), for each q(1 6 q 6 n�1),
we have an exact sequence

0 ! F e�(

q
P

OX)(`)! (^q �n+m

i=0 OX(�eip
e))(`)

! F e�(

q�1
P


OX)(`)! 0: (4.1.2)

We note that

Ht(X; (^q �n+m
i=0 OX(�eip

e))(`)) = 0

for every t(0 6 t 6 n � 1) and q(0 6 q 6 n � 1) (see [11, Proposition 3.3]). So
the claim (4.1.1) follows from (4.1.2) by induction on q.

Now we prove the vanishing (4.1.0) by induction on q. By pulling back the
conormal-to-cotangents sequence of X to P by F e, we have an exact sequence

0 ! �m
�=1OX(�p

ed�)! F e�(
1
P

OX)! F e�
1

X ! 0: (4.1.3)

When q = 1, by using (4.1.3), the vanishing (4.1.0) follows fromHt(X;OX (`�
ped�)) = 0(0 6 t 6 n� 1; 1 6 � 6 m) and from (4.1.1) for q = 1.
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When 1 < q 6 n�1, the exact sequence (4.1.3) induces a filtration ofF e�(

q
P



OX),

0 = Fq+1 � Fq � � � � � Fj � � � � � F1 � F0 = F e�(

q
P

OX)

such that

0 ! Fj+1 ! Fj ! (F e�

q�j
X )
 (^j �m

�=1 OX(�p
ed�))! 0 (4.1.4)

are exact for j (j = 0; : : : ; q) (see, for example, [5, Ch. II Ex. 5.16]). Before
proving the vanishing (4.1.0) for this q, we prove that

Ht(X;Fj(`)) = 0 (4.1.5)

for every j(1 6 j 6 q) and t(0 6 t 6 n� q � 1 + j), by descending induction on
j. If 1 < q 6m, we have only to start this induction from j = q with

Fq(`) =
M

16�1<���<�q6m

OX(`� pe(d�1 + � � � + d�q ));

and hence our claim (4.1.5) for j = q follows. If q > m, we have only to start from
j = m with

Fm(`) = (F e�

q�m
X )(`� pe

mX

�=1

d�);

and hence our claim (4.1.5) for j = m follows from the inductive hypothesis
(4.1.0) on q. For general j > 1, by using (4.1.4), our claim (4.1.5) follows from the
inductive hypothesis (4.1.5) on j and the inductive hypothesis (4.1.0) on q. Thus,
in particular, we have Ht(X;F1(`)) = 0 for 0 6 t 6 n� q. Therefore, (4.1.0) for
q(1 < q 6 n� 1) follows from the vanishing above and (4.1.1), by using the exact
sequence (4.1.4) for j = 0. 2

PROPOSITION 4.2. Let X be a smooth weighted complete intersection of dimen-
sion n > 3. The eth Frobenius pull-backs F e�
1

X(e > 0) are �-stable (resp.
�-semistable) with respect to OX(1) (and hence with respect to every ample line
bundle on X) if X is of general type (resp. of Kodaira dimension 0).

Proof. Let F be a submodule of F e�
1
X of rank r(1 6 r 6 n � 1). So there

is an injection (^rF)__ ! F e�
r
X . Since PicX �= OX(1) � Z by Grothendieck–

Lefschetz theorem for dimX > 3 [11, Theorem 3.7], we may assume that c1(F) =

(^rF)__ = OX(`) for some ` 2 Z. Hence H0(X; (F e�
r
X)
OX(�`)) 6= 0. By

(4.1), we have ` 6 0. Therefore

�OX(1)(F) = (degX=r)` 6 0 < (resp: 6) �OX(1)(F
e�
1

X):
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Thus F e�
1
X is �-stable (resp. �-semistable) w.r.t.OX(1). Since PicX �= OX(1) �

Z, the same is true for the �-stability w.r.t. any ample line bundle on X . 2

Proof of Theorem 1.1. By (4.2), for every eth Frobenius morphism F e : X ! X

(e > 0), F e�
1
X is �-stable with respect toL, and hence the dualF e�TX is �-stable

of �L(F e�TX) < 0. Therefore the theorem follows from (3.1). 2

Remark 4.3. In (4.2), the assumption n = 3 is used only when we deduce
PicX �= OX(1) � Z. Thus the same results as in (4.2) and hence (1.1) hold for a
weighted complete intersection surface with PicX �= OX(1) � Z.

5. Stability of F e�TX for surfaces and 3-folds

First we slightly generalize a lemma of Shepherd–Barron. To this purpose, we recall
a result from foliation theory in positive characteristic due to Ekedahl ([1], see also
[14, (9.1.2.1)]). A smooth 1-foliation F on a smooth variety X is a subbundle of
TX closed under the bracket and pth power operation of derivations. Then there
exist a smooth variety, denoted by X=F , and a k-morphism � : X ! X=F with
the following properties: X=F is homeomorphic to X via �; OX=F consists of
those elements of OX killed by the derivations of F ; and � is purely inseparable
of deg� = prankF factoring through the k-Frobenius morphism FX : X ! X(�1)

as FX = � � � for some � : X=F ! X(�1). Here X(e) denotes the base change of

X by the peth power map of k. Conversely, a factorization X �
! Y

�
! X(�1) with

a smooth variety Y and a finite surjective � : X ! Y is recovered by a smooth
1-foliation F := Ker(d�) in this way.

LEMMA 5.1 (Shepherd-Barron, cf. [14, (9.1.3.3)]). Let X be a normal projective
variety of dimX = n, and L an ample line bundle on X . Let E be a torsion-free
OX-module that is �-semistable with respect to L but the Frobenius pull-back
eE := F �E is not. Let A be a piece of the Harder–Narasimhan filtration of eE , and
set B = eE=A. Then there exists a nonzero map TX ! (A_ 
 B)__, and hence
�L�min(TX) 6 �L�max((A_ 
 B)__).

Proof. Let E(�1) be the pull-back of E to X(�1), and hence F �E = F �
XE

(�1).
We consider the following commutative diagram:

P(B) ,! P( eE)
eF- P(E(�1))

@
@
@
@
@

�
R

�

X

e�

?

FX
- X(�1):

?

�
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Here �, e�, and � are natural projections and eF is the base change morphism of FX
by �. Let U � X be the largest open subset of points x where Ox;X is regular,
and eEx and Bx are free. Set P = ��1(U (�1)), eP = e��1(U), and eP0 = ��1(U).
Since eF factors through F

P(eE), by Ekedahl [1], H := TeP=P= Ker(d eF ) is a smooth

1-foliation with eP=H �= P. Since e� is the base change of � by FX , a natural map
H ! e��TU is isomorphism. Let � : H0 := Hj eP0 ! NeP0=eP be the composition of

the inclusion and a natural map TeP
OeP0 ! NeP0=eP to the normal bundle of eP0 to eP.

Then we claim that � is nonzero. Indeed, if not, H0 is a smooth 1-foliation of
eP0. Set P0 = eP0=H0. Then the induced inclusion P0 ,! P is a bundle homomor-
phism over U (�1), since eP0 ! eP is a bundle homomorphism and P = eP=H. So a
torsion-free quotient OX-module B0 of E(�1) such that B0jU (�1) corresponds to
P0 destroys the stability of E , since �L(B) < �L( eE) and since p(c1(B0); Ln�1) =

(c1(B); Ln�1). Thus � is nonzero. By pushing � out by �, we have a nonzero map
TX ! (A_
B)__. By stability, we have�L�min(TX) 6 �L�max((A_
B)__).2

COROLLARY 5.2. Let X , E , eE , and L be as in (5.1). Let 0 = eE0 � eE1 � � � � �
eEl = eE(l > 2) be the Harder–Narasimhan filtration eE with respect to L. Assume
that rank eE 6 3. Set �(1; 1) = 1

2 , �(2; 1) = 1
3 , �(1; 2) = 2

3 , and �(1; 1; 1) = 1.
Then we have

�L( eE1) 6 p�L(E)� �(rank eE1= eE0; : : : ; rank eEl= eEl�1) � �L�min(TX):

Proof. Set Gi = eEi= eEi�1. Since eEi or eE= eEi is of rank 1 and hence eEi = Gi or
eE= eEi = Gi+1, for each i, we have

�L�max((
eE_i 
 eE= eEi)

__) = �L((G
_
i 
 Gi+1)

__) = �L(Gi+1)� �L(Gi):

Applying (5.1) to eE and eEi, we have �L(Gi)� �L(Gi+1) 6 ��L�min(TX). By the
definition of �L, we have

P
i rankGi � �L(Gi) = rank eE � �L( eE). Thus we get the

required inequalities. 2

Proof of Theorem 1.2. By (3.1), we have only to show that�L�max(F
e�TX) < 0

for every e > 0. By stability, we have only to check that for every e > 0, F e�TX
has a (possibly trivial) filtration each of whose graded piece is a torsion-free �-
semistable OX -module of negative �-slope.

First we consider the case when TX is �-semistable. Hence �L�min(TX) =

�L(TX). When F e�TX is also �-semistable for e > 0, then there is nothing to
prove. Otherwise, let e0(< e) be the least non-negative integer such that F e0�TX
is �-semistable but F e0+1�TX is not. Let 0 = T0 � T1 � � � � � Tl = F e0+1�TX be
the H.-N. filtration and set e1 = e� (e0 + 1).
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When F e0+1�TX is of type (1, 1) (resp. (1, 1, 1)), by (5.2) for E = F e0�TX and
our assumption, we have

�L(T2=T1) < �L(T1) 6 p�L(F
e0�TX)�

1
2�L(TX)

= (pe0+1 � 1
2)�L(TX) < 0

(resp: �L(T3=T2) < �L(T2=T1) < �L(T1) 6 (pe0+1 � 1)�L(TX) < 0:)

Thus for e1 := e � (e0 + 1), F e1�(Ti+1=Ti) are torsion-free sheaves of rank 1 of
negative �-slopes, as required.

When F e0+1�TX is of type (2, 1) (resp. (1, 2)), by (5.2) and our assumption, we
have

�L(T2=T1) < �L(T1) 6 (pe0+1 � 1
3)�L(TX) < 0

(resp: �L(T2=T1) < �L(T1) 6 (pe0+1 � 2
3)�L(TX) < 0:)

Set e1 = e� (e0+1) and G = T1 (resp. G = T2=T1). If F e1�G is �-semistable, then
there is nothing to prove. If F e1�G is not �-semistable, let e2 be the least integer
with e � (e0 + 1) > e2 > 0 such that F e2�G is �-semistable but F e2+1�G is not.
For the H.-N. filtration 0 � S1 � S2 = F e2+1�G of F e2+1�G, we have

�L(S2=S1) < �L(S1) 6 p�L(F
e2�G)� 1

2�L(TX)

6 fpe2+1(pe0+1 � 1
3)�

1
2g�L(TX) < 0

(resp: 6 fpe2+1(pe0+1 � 2
3)�

1
2g�L(TX) < 0)

by (5.2) and our assumption. Thus for e3 := e � (e0 + e2 + 2), we have
�L(F

e3�(S2=S1)) < �L(F
e3�S1) < 0 and �L(F

e1�(T2=T1)) < 0 (resp.
�L(F

e1�T1) < 0), as required.
Second we consider the case when TX is not �-semistable with H.-N. filtration

0 = T0 � T1 � � � � � Tl = TX . By assumption, the type of TX is (1, 1), (1, 1, 1),
or (1, 2).

When TX is of type (1, 1) (resp. (1, 1, 1)), by assumption, we have 0 >

�L(F
e�(T1=T0)) > � � � > �L(F

e�(Tl=Tl�1)), as required.
When TX is of type (1, 2) with H.-N. filtration 0 � T1 � T2 = TX , we have

0 > �L(T1) > �L(TX) > �(TX=T1) = �L�min(TX). By the similar argument as
in the case of F e0+1�TX of type (1, 2), we have �L�max(F

e�TX) < 0 for e > 0. 2

Remark 5.3. (1) When X is a smooth 3-fold such that the first piece T of the
H.-N. filtration of TX is of rank 2, by the same argument as above, it turns out that
the Gauss map �(1) is generically injective if (2(p + 1)=3)�L(T ) < �L(TX) <

�L(T ) < 0.
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(2) In the proof of (1.2) above, by using only the ampleness of L but without
using the form of L = 
n

X 
H
n+1, we show that for a smooth projective surface
or 3-fold, if �L�max(TX) < 0, then �L�max(F

e�TX) < 0 for every eth Frobenius
morphism F e, with the exceptional case for n = 3.

(3) A result of Ekedahl [2, Theorem 2.4] tells us the structure of surfaces of
non-�-stable tangent bundles in case �L�max(TX) > (
2

X ; L)=(p� 1).
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