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Abstract
We show that there is an extra grading in the mirror duality discovered in the early nineties by Greene–Plesser and
Berglund–Hübsch. Their duality matches cohomology classes of two Calabi–Yau orbifolds. When both orbifolds
are equipped with an automorphism s of the same order, our mirror duality involves the weight of the action of 𝑠∗ on
cohomology. In particular it matches the respective s-fixed loci, which are not Calabi–Yau in general. When applied
to K3 surfaces with nonsymplectic automorphism s of odd prime order, this provides a proof that Berglund–Hübsch
mirror symmetry implies K3 lattice mirror symmetry replacing earlier case-by-case treatments.

1. Introduction

The earliest formulation of mirror symmetry relates pairs of d-dimensional Calabi–Yau manifolds 𝑋, 𝑋∨

with mirror Hodge diamonds:

ℎ𝑝,𝑞 (𝑋) = ℎ𝑑−𝑝,𝑞 (𝑋∨).

In the early 1990s, physicists Greene, Morrison and Plesser found many such mirror pairs [23], starting
with a Calabi–Yau (and Fermat) hypersurface in projective space and constructing a mirror, which is
a resolution of the quotient of the same hypersurface by a finite group. In 1992, this construction was
generalized by Berglund–Hübsch [5], starting with a Calabi–Yau orbifold given as a quotient of a more
general hypersurface in weighted projective spaces by a finite group. The hypersurface is a Calabi–Yau
orbifold defined as the zero locus of a quasi-homogenous polynomial𝑊 =

∑𝑛
𝑖=0

∏𝑛
𝑗=0 𝑥

𝑚𝑖 𝑗
𝑗 such that W

is nondegenerate and ‘invertible’ (i.e., with as many variables as monomials). After quotienting out by
a finite group H of diagonal symmetries within SL(𝑛 + 1;C) one obtains the orbifold Σ𝑊 ,𝐻 . The mirror
Σ𝑊 ∨ ,𝐻∨ is another such quotient of a hypersurface modulo a finite group. The hypersurface is given by
the polynomial𝑊∨, defined by transposing the matrix of the exponents 𝐸 = [𝑚𝑖 𝑗 ] of W. The group 𝐻∨

is a subgroup of SL(𝑛 + 1;C) Cartier dual to H and preserving𝑊∨; see equation (19). Then, the mirror
duality can be stated in terms of orbifold Chen–Ruan cohomology as

𝐻 𝑝,𝑞
CR (Σ𝑊 ,𝐻 ;C) = 𝐻𝑑−𝑝,𝑞

CR (Σ𝑊 ∨ ,𝐻∨ ;C), (1)

which implies the same relation in ordinary cohomology whenever there exists crepant resolutions.
The striking mirror relation above appears more natural when we look at it through the lens of

singularity theory or, in physics terminology, the Landau–Ginzburg (LG) model. This happens because
mirror symmetry holds for LG models without any Calabi–Yau condition. In this paper, we present this
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2 Alessandro Chiodo and Elana Kalashnikov

change of perspective through the LG model via the crepant resolution of a singularity; see Section 5.
This not only allows us to simplify previous proofs of LG/CY correspondence by the first author with
Ruan [9]; it also yields a new statement of mirror symmetry relating the fixed loci of powers of an
isomorphism s of Σ, the Hodge decomposition and the weights the representation 𝑠∗ in cohomology.

Let 𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) be a nondegenerate, quasi-homogenous, invertible polynomial. Let us
consider again the automorphisms groups 𝐻 ⊆ Aut𝑊 and its dual 𝐻∨ ∈ Aut𝑊 within SL(𝑛 + 1;C).
The Calabi–Yau orbifolds Σ𝑊 ,𝐻 , Σ𝑊 ∨ ,𝐻∨ are equipped with the action by the group 𝜇𝜇𝜇𝑘 of kth roots of
unity spanned by 𝑠 : 𝑥0 ↦→ 𝑒2𝜋𝑖/𝑘𝑥0. For i in the group of characters Z/𝑘 = Hom(𝜇𝜇𝜇𝑘 ;G𝑚) we consider
the weight-i term of cohomology

𝐻∗(—,C)𝑖 = {𝑥 | 𝑠∗𝑥 = 𝑖(𝑠)𝑥}.

The first statement is that the s-invariant cohomology mirrors the ‘moving’ cohomology: the sum of all
cycles of nonvanishing weight.
Theorem A (see Theorem 44, part 1). Consider 𝑠 : Σ𝑊 ,𝐻 → Σ𝑊 ,𝐻 and its mirror partner
𝑠 : Σ𝑊 ∨ ,𝐻∨ → Σ𝑊 ∨ ,𝐻∨ . We have

𝐻 𝑝,𝑞
𝑜𝑟𝑏 (Σ𝑊 ,𝐻 ;C)0 �

𝑘−1⊕
𝑖=1
𝐻𝑑−𝑝,𝑞
𝑜𝑟𝑏 (Σ𝑊 ∨ ,𝐻∨ ;C)𝑖 ,

where 𝑑 = 𝑛 − 1 is the dimension of Σ𝑊 ,𝐻 .
The locus of geometric points of Σ𝑊 ,𝐻 which are fixed by s also exhibits a mirror phenomenon.

Since Σ𝑊 ,𝐻 is a stack, let us provide a definition for this s-fixed locus. For s a finite order automorphism
acting on a smooth Deligne–Mumford orbifold 𝔛, we consider the graph of Γ𝑠 : 𝔛 → 𝔛 × 𝔛 and its
intersection with the graph of the identity (the diagonal morphism)

𝔛 ×
𝑠, 𝔛×𝔛, id

𝔛,

(we write s and id instead of the respective graphs). We recall that orbifold cohomology is the (age-
shifted) cohomology of this product for 𝑠 = id. Then, we define the s-orbifold cohomology as the
age-shifted cohomology of the above fibred product in general (see Definition 7). This is a bigraded
vector space, and, if the coarse space X of 𝔛 admits a crepant resolution 𝑋 where s lifts, there is a
bidegree-preserving isomorphism 𝐻∗

𝑠 (𝔛;C) � 𝐻∗
𝑠 (𝑋;C), where the right-hand side is the age-shifted

cohomology of the s-fixed locus in 𝑋; see Proposition 9.
We can now state two mirror dualities for 𝑠 𝑗 -fixed loci in this sense. Under the same conditions on W

and H as above, set Σ = Σ𝑊 ,𝐻 and Σ∨ = Σ𝑊 ∨ ,𝐻∨ . If the order k of s is not prime, then s acts nontrivially
on the fixed locus of powers of s. The s-moving cohomology of the fixed locus of powers of s mirrors
the same on Σ∨, interweaving the weight and the exponent of the power of s.
Theorem B (see Thm 44, part 3). Let 0 < 𝑏, 𝑡 < 𝑘 . Then, we have

𝐻 𝑝,𝑞

𝑠𝑏
(Σ)

(
𝑏
𝑘

)
𝑡
� 𝐻𝑑−𝑝,𝑞

𝑠−𝑡
(Σ∨)

(
𝑘−𝑡
𝑘

)
−𝑏
,

where 𝑑 = 𝑛 − 2, the largest dimension of the components of the s-fixed locus.
Finally, also the fixed cohomology of each power 𝑠 𝑗 exhibits a mirror phenomenon but only after

adding certain moving cycles in Σ. Namely, the cycles we add are all those whose weight differs from 0
(i.e., moving cycles) and from j (the exponent of s). We denote this group by 𝐻 𝑝,𝑞

id, 𝑗 (Σ); see equation (34).
Theorem C (see Theorem 44, part 2). For 0 < 𝑗 < 𝑘 , we have[

𝐻 𝑝,𝑞

𝑠 𝑗
(Σ)

(
𝑗
𝑘

)] 𝑠
⊕ 𝐻

𝑝,𝑞
id, 𝑗 (Σ) �

[
𝐻𝑑−𝑝,𝑞

𝑠 𝑗
(Σ∨)

(
𝑗
𝑘

)] 𝑠
⊕ 𝐻

𝑑−𝑝,𝑞
id, 𝑗 (Σ∨).
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The correcting terms 𝐻∗ disappear when 𝑘 = 2 (for 𝑘 = 2, we have 𝑠 𝑗 = 𝑠 and there is no positive
weight except 1). This shows how the statement above specialises to the construction of Borcea–Voisin
mirror pairs, which can be stated as a mirror duality between the s-fixed loci (see [12]).

In dimension 2, and after resolving, these results are about mirror symmetry for K3 surfaces with
nonsymplectic automorphisms. Suppose X and 𝑋∨ are crepant resolutions of Σ𝑊 ,𝐻 and Σ𝑊 ∨ ,𝐻∨ , where
W is a polynomial in 4 variables. The above mirror theorems imply that the topological invariants of the
fixed locus of the K3 surface X controls that of 𝑋∨; we refer to Corollary 51 for simple formulae on the
number of fixed points and the genera of the fixed curves. The automorphism s also gives the K3 surface
a lattice polarization: 𝐻2(𝑋,Z)𝑠 . There is another version of mirror symmetry for lattice polarized K3
surfaces, arising from the work of Nikulin [28], Dolgachev [18], Voisin [35] and Borcea [6]. When
the order of s is odd and prime, this lattice is characterised by the invariants (𝑟, 𝑎): the rank and the
discriminant. Families of lattice polarized K3 surfaces come in mirror pairs, and in the odd prime case
this mirror symmetry takes a lattice with invariants (𝑟, 𝑎) to (20 − 𝑟, 𝑎). The following corollary is a
theorem of Bott, Comparin, Lyons, Priddis and Suggs [14, 15, 8] proven by case-by-case analysis. Here,
it is shown directly from the above statements (see Theorem 53).

Corollary ([14, 15, 8]). Let p be prime and different from 2. Let Σ𝑊 ,𝐻 and Σ𝑊 ∨ ,𝐻∨ be mirror K3
orbifolds with order-p automorphisms 𝑠, 𝑠∨, and let Σ and Σ∨ be crepant resolutions with automorphisms
also denoted 𝑠, 𝑠∨. Then Σ and Σ∨ are mirror as lattice polarized K3 surfaces.

1.1. Relation to previous work

This paper generalises the results of [12]. There, only involutions were considered; here, the mirror
theorems apply to automorphism of any order. There, Theorems A and C are simpler (invariant classes
mirror anti-invariant classes in Theorem A and no extra terms appear in Theorem C). Theorem B does
not apply in the involution case. In the above corollary, we do not consider the order-2 case treated in
[12]; in the present paper, this allows us to deduce the lattice mirror symmetry statement of [14] in full.

Section 5 restates and recasts the proof of mirror symmetry through LG models and the corre-
spondence between cohomology and LG models in terms of resolutions of singularities (see Theorem
31). This may be regarded as the outcome of the work of many authors, we refer to [26], [7], [25]
[9], [19], [20] and [21] and [13] validating over the years the approach of the physicists Intriligator–
Vafa [24] and Witten [36]. It is also worth mentioning that the main object of our study, a polynomial
𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) with the cyclic symmetry group of kth roots of unity acting on 𝑥0, was used
in Varchenko’s proof of semicontinuity of Steenbrink’s spectra of singularities [32] and [31]. We hope
that this may lead to further explanations of mirror symmetry in the framework of singularity theory. In
particular, our setup only concerns hypersurfaces in weighted projective space; it would be interesting
to see if it extends to other contexts where mirror constructions are known.

Finally, it is worth mentioning that the work of Bott, Comparin, Lyons, Priddis and Suggs [14];
earlier work of Artebani, Boissière and Sarti [2] and more generally Nikulin’s classification [28] yield
several tables summarising explicit treatments of K3 surfaces via resolution of singularities. Much of
these data are now embodied into the s-weighted Hodge numbers of Theorems A, B and C. We provide
some examples for this in the tables at the end of §7.

1.2. Structure of the paper

Section 2 states notation and terminology. Section 3 presents the Berglund–Hübsch mirror symmetry
construction. Section 4 sets up our generalisation of orbifold cohomology sensing the s-fixed locus:
s-orbifold cohomology. Section 5 illustrates and reproves the transition to Landau–Ginzburg models
which is crucial in the proof. In particular it provides a straightforward description of the LG/CY
correspondence from the crepant resolution conjecture without using the combinatorial model of [9].
Section 6 is the technical heart of the paper; it proves the main theorem (Theorem 43) on the LG side.
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Section 7 translates the result from the LG side to the CY side. It contains Theorem 44 proving the
statements A, B and C and Theorem 53 specialising to K3 surfaces.
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2. Terminology

Deligne–Mumford orbifolds are smooth separated Deligne–Mumford stacks with a dense open subset
isomorphic to an algebraic variety.

2.1. Conventions

We work with schemes and stacks over the complex numbers. All schemes are Noetherian and separated.
By linear algebraic group we mean a closed subgroup of GL(𝑚 ;C) for some m.

2.2. Notation

We list here notation that occurs throughout the entire paper.
V𝐾 is the invariant subspace of a vector space V linearized by a finite group K.
P(𝑤𝑤𝑤) is the quotient stack [(C𝑛 \ 000)/G𝑚], where G𝑚 acts with weights 𝑤𝑤𝑤.
𝑍 ( 𝑓 ) is the variety defined as zero locus of 𝑓 ∈ C[𝑥1, . . . , 𝑥𝑛].
𝐻 (𝑎, 𝑏) is the bigraded vector space with shifted grading: [𝐻 (𝑎, 𝑏)] 𝑝,𝑞 = 𝐻 𝑝+𝑎,𝑞+𝑏 .

Remark 1 (zero loci). We add the subscriptP(𝑤𝑤𝑤) when we refer to the zero locus inP(𝑤𝑤𝑤) of a polynomial
f which is 𝑤𝑤𝑤-weighted homogeneous. In this way, we have

𝑍P(𝑤𝑤𝑤) ( 𝑓 ) = [𝑈/G𝑚], with𝑈 = 𝑍 ( 𝑓 ) ⊂ C𝑛 \ 000.

Remark 2 (zero dimensional P(𝑑) for 𝑑 ∈ N∗). For d a positive integer, we write P(𝑑) for the stack
[C×/G𝑚], isomorphic to 𝐵𝜇𝜇𝜇𝑑 if 𝜆 ∈ G𝑚 operates on z as 𝜆 · 𝑧 = 𝜆𝑑𝑧.

Remark 3 (degree shift). We often write 𝐻 (𝑎) for 𝐻 (𝑎, 𝑎).

Remark 4 (cohomology coefficients). We only consider cohomology with coefficients in C; therefore,
we sometimes write 𝐻∗(𝑋;C) as 𝐻∗(𝑋).

Remark 5 (graphs and maps). Given an automorphism 𝛼 of 𝔛, we write Γ𝛼 for the graph 𝔛 → 𝔛 × 𝔛.
However, to simplify formulæ, we often abuse notation and use 𝛼 for the graph Γ𝛼 as well as the
automorphism. In this way, in subscripts, the diagonal Δ : 𝔛 → 𝔛 × 𝔛 will be often written as id𝔛 or
simply id.

3. Setup

We recall the general setup of nondegenerate polynomials P where the theory of Jacobi rings applies.
Then we introduce polynomials of the special form

𝑊 (𝑥0, 𝑥1, . . . , 𝑥𝑛) = 𝑥
𝑘
0 + 𝑓 (𝑥1, . . . , 𝑥𝑛)

for 𝑛 > 0.
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3.1. Nondegenerate polynomials

We consider quasi-homogeneous polynomials P of positive degree d and of positive weights 𝑤0, . . . , 𝑤𝑛

satisfying

𝑃(𝜆𝑤0𝑥0, . . . , 𝜆
𝑤𝑛𝑥𝑛) = 𝜆

𝑑𝑃(𝑥0, . . . , 𝑥𝑛),

for all 𝜆 ∈ C. We assume that the polynomial P is nondegenerate; i.e., the choice of weights and degree
is unique and the partial derivatives of W vanish simultaneously only at the origin. We consider the zero
locus

Σ𝑃 = 𝑍P(𝑤𝑤𝑤) (𝑃) ⊂ P(𝑤𝑤𝑤)

which is, by nondegeneracy, a smooth hypersurface within the weighted projective stack P(𝑤𝑤𝑤) =
[(C𝑛+1 \ 000)/G𝑚] with G𝑚 acting with weights 𝑤0, . . . , 𝑤𝑛. The polynomial is of Calabi-Yau type if

𝑛∑
𝑖=0
𝑤𝑖 = 𝑑. (2)

This implies that the canonical bundle of Σ𝑃 is trivial; we refer to Σ𝑃 as a Calabi–Yau orbifold.
Because P is nondegenerate, the group of its diagonal automorphisms

Aut𝑃 = {diag(𝛼0, . . . , 𝛼𝑛) | 𝑃(𝛼0𝑥0, . . . , 𝛼𝑛𝑥𝑛) = 𝑃(𝑥0, . . . , 𝑥𝑛)}

is finite. Indeed, the ℎ × (𝑛 + 1) exponent matrix 𝐸 = (𝑚𝑖, 𝑗 ) defined by the condition 𝑃 =∑ℎ
𝑖=1 𝑐𝑖

∏𝑛
𝑗=0 𝑥

𝑚𝑖, 𝑗
𝑗 is left invertible as a consequence of the uniqueness of the vector (𝑤𝑖/𝑑)𝑛𝑖=0 = 𝐸−1111.

Since we are working over C, we adopt the notation

[𝑎0, . . . , 𝑎𝑛] = diag(exp(2𝜋i𝑎𝑖))𝑛𝑖=0

for 𝑎𝑖 ∈ Q ∩ [0, 1[. The age of the diagonal matrix above is

age[𝑎0, . . . , 𝑎𝑛] =
𝑛∑
𝑖=0
𝑎𝑖 . (3)

The distinguished diagonal symmetry

𝑗𝑃 =
[𝑤0
𝑑
, . . . ,

𝑤𝑛

𝑑

]
,

usually denoted by j, spans the intersection Aut𝑃 ∩G𝑚, where G𝑚 is the group of automorphisms of the
form diag(𝜆𝑤0 , . . . , 𝜆𝑤𝑛 ). The group element 𝑗𝑃 has a natural interpretation as a monodromy operator
of the fibration defined by P restricted to the complement in C𝑛+1 of the zero locus 𝑍 (𝑃); see, for
instance, [17]. We will denote by 𝑀𝑃 the generic Milnor fibre

𝑀𝑃
��

��

C𝑛+1 \ 𝑍 (𝑃)

𝑃
��

�

𝑡 ≠ 0 �� C×.

(4)

For any subgroup H of Aut𝑃 containing 𝑗𝑃 , we consider the Deligne–Mumford stacks

Σ𝑃,𝐻 = [Σ𝑃/𝐻0], 𝑀𝑃,𝐻 = [𝑀𝑃/𝐻],
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where 𝐻0 = 𝐻/(𝐻 ∩ G𝑚) = 𝐻/〈 𝑗〉 and acts faithfully on Σ𝑃 . The orbifold Σ𝑃,𝐻 is a smooth
codimension-1 substack of [P(𝑤𝑤𝑤)/𝐻0]

Σ𝑃,𝐻 ⊂ [P(𝑤𝑤𝑤)/𝐻0],

and has trivial canonical bundle if P is Calabi–Yau in the sense of equation (2) and H lies in

SL𝑃 := Aut𝑃 ∩SL(𝑛 + 1;C).

3.2. Polynomials with automorphism

We focus on polynomials of Calabi–Yau type of the form

𝑊 (𝑥0, 𝑥1, . . . , 𝑥𝑛) = (𝑥0)
𝑘 + 𝑓 (𝑥1, . . . , 𝑥𝑛).

We have Aut𝑊 = 𝜇𝜇𝜇𝑘 ×Aut 𝑓 , where, using again the choice exp(2𝜋𝑖/𝑘), the first factor is regarded here
as Z/𝑘 , canonically generated by the order-k automorphism

𝑠 =

[
1
𝑘
, 0, . . . , 0

]
. (5)

The second factor is regarded as the subgroup of Aut𝑊 formed by symmetries fixing the first coordinate.
We have 𝑗𝑊 = 𝑠 · 𝑗 𝑓 , with 𝑠 ∈ Z/𝑘 and 𝑗 𝑓 ∈ Aut 𝑓 . Notice that the group Z/𝑘 acts on the stack Σ𝑊 ,𝐻

m : (Z/𝑘) × Σ𝑊 ,𝐻 → Σ𝑊 ,𝐻 .

Instead of considering all groups 𝐻 ⊆ Aut𝑊 ∩ SL(𝑛 + 1;C) containing 𝑗𝑊 , we can equivalently
consider their intersections with Aut 𝑓 . In this way, since the first coordinate of ( 𝑗𝑊 )ℎ equals 1 if and
only if ℎ ∈ 𝑘Z, we obtain all the subgroups 𝐾 ⊂ Aut 𝑓 satisfying

( 𝑗 𝑓 )
𝑘 ∈ 𝐾 ⊆ SL 𝑓 .

We recover the previous subgroups H of Aut𝑊 ∩ SL(𝑛 + 1;C) as the subgroups of Aut𝑊 spanned by
𝑗𝑊 and K.

Our mirror duality requires a slightly more general class of groups. Therefore, we consider the
subgroup of Aut𝑊

𝐾 [ 𝑗𝑊 , 𝑠] =
𝑘−1∑
𝑎,𝑏=0

( 𝑗𝑊 )𝑎 (𝑠)𝑏𝐾,

with its natural ( 1
𝑘Z/Z)-gradings

𝑑 𝑗 =
𝑎

𝑘
, 𝑑𝑠 =

𝑏

𝑘
.

By the condition
∑𝑛
𝑖=0 𝑤𝑖 = 𝑑, the determinant of an element 𝑔 ∈ 𝐾 [ 𝑗𝑊 , 𝑠] equals exp(2𝜋i𝑑𝑠 (𝑔)).

The condition 𝑑𝑠 = 0 singles out the groups which we considered initially: 𝐻 ⊆ Aut𝑊 ∩ SL(𝑛 + 1;C)
containing 𝑗𝑊 .

4. Variants of orbifold Chen–Ruan cohomology

We introduce this section by a short description of the variant of cohomology group needed in this paper
and by a motivation via its main application.

https://doi.org/10.1017/fms.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.41


Forum of Mathematics, Sigma 7

For any finite order automorphism g of a stack 𝔛, we define g-orbifold cohomology, a slight general-
ization of orbifold Chen–Ruan cohomology; see Definition 7. The setup follows the original definition
of orbifold Chen–Ruan cohomology: the cohomology of the inertia stack whose grading is shifted by
the locally constant rational age function. Here, we start from the g-inertia stack, which is a g-dependent
version of the ordinary inertia stack corresponding to 𝑔 = id𝔛 . Then, as in the ordinary case, we take its
cohomology with complex coefficients after a degree-shift by the same age function. The treatment pro-
vided here improves [12], where the g-inertia stack was obtained via a new ad hoc construction. Here,
we produce the g-inertia stack as a union of connected components of the inertia stack of [𝔛/𝐺], where
G is a group acting on 𝔛 and containing g. The definition of the age function is then straightforward via
the natural inclusion within the larger inertia stack of [𝔛/𝐺] and by restriction of the usual age function.

We recall that the main interest of orbifold Chen–Ruan cohomology is its identification with the
ordinary cohomology of certain resolutions of coarse quotients in terms of their orbifold (i.e., stack-
theoretic) presentation. Because the g-inertia stack of a space X is simply the g-fixed locus, the present
setup allows an analogous statement for g-fixed loci; see Proposition 9. In fact, the orbifold and the
crepant resolution can be described as K-equivalent (a relation holding when the canonical sheaves
match). Indeed, the canonical bundle of the stack descends from the orbifold to the coarse space and
matches the canonical bundle of the resolution via pullback. In this perspective, the identification of
cohomology groups follows from a result by Yasuda, [37] on invariance under K-equivalence of motivic
cohomology. In Proposition 9, we check that his result applies to our slightly more general setup. We
point out that, in [12, Prop. 4.7.2], we proved all this explicitly via a direct argument which holds only
in dimension two.

We now introduce the G-inertia stack. The construction parallels the presentation of the inertia stack
of a quotient stack [𝑈/𝐺], where U is a scheme and G is a group, which is in turn a quotient stack
[𝐼𝐺 (𝑈)/𝐺], where 𝐼𝐺 (𝑈) is the G-inertia group scheme (a group scheme referred to as ‘the stabilizer of
the groupoid’ in [29, Lem. 70.25.1]) modulo a natural G-action. What follows is the analogue definition
when the scheme U is replaced by a Deligne–Mumford stack 𝔛 (see [12, §4.3] for an earlier version of
this). This is again a special case of the above-mentioned G-inertia group scheme construction of [29,
Lem. 70.25.1]. Here, we illustrate how these notions can be made more explicit in the present setup.

We consider a finite group G acting on a Deligne–Mumford orbifold 𝔛

m : 𝐺 × 𝔛 → 𝔛.

The G-inertia stack 𝐼𝐺 (𝔛) fits in the following fibre diagram

𝐼𝐺 (𝔛) ��

��

𝔛

Δ
��

�

𝐺 × 𝔛
(m,pr2)

�� 𝔛 × 𝔛.

When G is a trivial group, 𝐼𝔛 is the ordinary inertia of 𝔛.
In this way, we have

𝐼𝐺 (𝔛) = (𝐺 × 𝔛) ×(m,pr2) ,𝔛×𝔛, Δ 𝔛 =
⊔
𝑔∈𝐺

𝐼𝑔 (𝔛),

where 𝐼𝑔 (𝔛) is the g-inertia orbifold

𝐼𝑔 (𝔛) := 𝔛 ×
𝑔, 𝔛×𝔛, id

𝔛. (6)

The G-inertia stack of 𝔛 can be naturally related to the ordinary inertia stack of [𝔛/𝐺]. Indeed, we
have the fibre diagram
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𝐼𝐺 (𝔛) ��

p
��

𝔛

��
�

𝐼 [𝔛/𝐺] �� [𝔛/𝐺],

(7)

and we may regard p as a G-torsor by pullback of 𝔛 → [𝔛/𝐺].
The G-action on

⊔
𝑔∈𝐺 𝐼𝑔𝔛 is given by conjugation on the indices and by 𝐹ℎ : 𝐼𝑔𝔛 → 𝐼ℎ𝑔ℎ−1𝔛 on

the components, where 𝐹ℎ acts by the effect of h on the first factor of equation (6) and by the identity
on the second factor.

Remark 6. In this paper, we only consider quotient stacks of the form [𝑈/𝐻], where H is an abelian
group with finite stabilizers. Then, as in [12, Defn. 4.3.2], unraveling the above definitions yields a
presentation of 𝐼𝑔 [𝑈/𝐻] (denoted by ‘ℑ𝑔

[𝑈/𝐻 ]
’ there) as the quotient stack [𝐼𝑔𝐻 (𝑈)/𝐻], where 𝐼𝑔𝐻 (𝑈)

equals {(𝑔ℎ, 𝑥) | 𝑔ℎ · 𝑥 = 𝑥} and the group H operates on the second factor.

4.1. A g-orbifolded cohomology

The g-orbifold cohomology is the cohomology of 𝐼𝑔 (𝔛) defined in equation (6) shifted by the locally
constant function ‘age’ given by 𝔞𝑔 = 𝔞 ◦ p

𝔞𝑔 : 𝐼𝑔 (𝔛)
p
−→ 𝐼 [𝔛/𝐺]

𝔞
−→ Q, (8)

where p is the fibre diagram (7) and where 𝔞 assigns to each geometric point of the ordinary inertia
stack (𝑥, 𝑔 ∈ Aut(𝑥)) the rational number age(𝑔) from equation (3) applied to the diagonalization of the
action of 𝑔 ∈ Aut(𝑥) on the tangent bundle 𝑇 (𝔛) at x.

We assume that 𝔛 is smooth so that 𝐼𝑔 (𝔛) is smooth and all coarse spaces are quasi-smooth; in
particular cohomology groups admit a Hodge decomposition. Starting from a Hodge decomposition of
weight n, for any 𝑟 ∈ Q, we can produce a new decomposition of weight 𝑛−2𝑟 via 𝐻 (𝑟) 𝑝,𝑞 = 𝐻 𝑝+𝑟 , 𝑝+𝑟 .
We will systematically use this notation (𝑟) for bi-graded vector spaces.

Definition 7 (g-orbifold cohomology). For any 𝑔 ∈ 𝐺 the g-orbifold cohomology is defined as

𝐻∗
𝑔 (𝔛;C) = 𝐻∗(𝐼𝑔 (𝔛);C) (−𝔞𝑔).

We point out the slight abuse of notation: The age function is not constant in general, but, since
it is locally constant, the shift operates independently on each cohomology group arising from each
connected component. A precise notation should read

𝐻 𝑝,𝑞 (—;C) (𝔞) =
⊕
𝑟 ∈Q≥0

𝐻 𝑝,𝑞 (𝔞−1(𝑟);C) (−𝑟).

For 𝑔 = id = 1𝐺 , g-orbifold cohomology coincides with the cohomology of the inertia stack shifted
by the age function. By definition, this is Chen–Ruan orbifold cohomology

𝐻∗
id(𝔛;C) = 𝐻∗

CR (𝔛;C).

In this paper, we often consider the relative version of orbifold Chen–Ruan cohomology; indeed when
ℨ is a substack of 𝔛 then 𝐼 (ℨ) is a substack of 𝐼 (𝔛), and we set

𝐻∗
id(𝔛,ℨ;C) = 𝐻∗(𝐼 (𝔛), 𝐼 (ℨ);C) (−𝔞id),

where 𝔞id is the age function on 𝐼 (𝔛).
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Remark 8. Beside the grading, orbifold cohomology is merely the cohomology of quasi-smooth
schemes locally presented as complex varieties modulo finite groups. Therefore, the above cohomology
and relative cohomology groups are not new and inherit the same Hodge decomposition holding at the
level of schemes. The values of the rational age function identify distinct connected components. There,
the relative cohomology groups are taken in the ordinary sense, and the relative cohomology sequence
does not need to be generalized. In fact, it is merely the ordinary sequence shifted identically on each
term by the age function (we will apply this in §5.1).

Yasuda [37] proves the identity of the dimensions of each term in the Hodge decomposition of
orbifold Chen–Ruan cohomology under the following definition of K-equivalence: Two smooth Deligne–
Mumford stacks𝔛 and𝔜 are K-equivalent whenever there exists a smooth and proper Deligne–Mumford
stack ℨ with birational morphisms ℨ → 𝔛 and ℨ → 𝔜 with 𝜔ℨ/𝔛 � 𝜔ℨ/𝔜. This equivalence holds
for our Gorenstein orbifolds and for the crepant resolution of their coarse space by a simple argument
which we detail in the proof of Proposition 9.

The hypotheses in our setup are slightly stronger and yield the statement below. Indeed, we consider
a smooth Gorenstein orbifold 𝔛: The local picture at each point 𝑥 ∈ 𝔛 is [Cdim𝔛/𝐻] with 𝐻 ∈

SL(dim𝔛;C). In particular, the orbifold cohomology groups 𝐻 𝑝,𝑞 of 𝔛 vanish if (𝑝, 𝑞) ∉ Z2.
Let 𝐺 = 〈𝑠〉 be a cyclic group of order k whose generator s acts on each tangent space 𝑇𝑥 of the

Gorenstein orbifold 𝔛 with age 𝑎𝑥 ∈ 1/𝑘 + Z (the age is defined up to automorphisms of x whose age
is integer). Let us assume that the coarse space X of 𝔛 admits a crepant resolution 𝑋 where we can lift
the G-action induced by 𝔛 on X. By Yasuda’s theorem we have a bidegree-preserving isomorphism

𝐻∗(𝔛;C) � 𝐻∗(𝑋;C).

The aim of the following proposition, is to point out how this isomorphism relating 𝔛 and 𝑋 extends to
g-orbifold cohomology.

Proposition 9. We assume the above conditions on 𝔛 (smooth Gorenstein Deligne–Mumford stack), on
X (the coarse space) and on 𝑋 (the crepant resolution). In particular, we consider the order-k cyclic
group 𝐺 = 〈𝑠〉 acting compatibly on 𝔛, 𝑋, and 𝑋 . The age 𝑎𝑥 of the action of s on each tangent space
𝑇𝑥 of 𝔛 satisfies 𝑎𝑥 ∈ 1/𝑘 + Z. Then, for any 𝑔 ∈ 𝐺, we have an isomorphism preserving the bidegree

𝐻∗
𝑔 (𝔛;C) � 𝐻∗

𝑔 (𝑋;C).

In particular, the isomorphism identifies 𝐻∗
𝑔 (𝔛;C) with 𝐻∗(𝑋𝑔;C) (−�̃�𝑔), where �̃�𝑔 is the composite of

𝑋𝑔 → [𝑋/𝐺] and of the age function [𝑋/𝐺] → Q.

Proof. Following the definition of K-equivalence, let us show the existence of a smooth and proper
Deligne–Mumford stack ℨ mapping to the stack 𝔛 and its resolution 𝑋 . We consider the fibred product
ℨ = 𝔛 ×𝑋 𝑋 and the associated reduced stack. Then, there exists a proper birational morphism ℨ′ → ℨ
such that ℨ′ is smooth. The existence of this resolution is explained in Section 4.5, §2, of Yasuda’s paper
[37] (and is essentially due to Villamayor papers [33] and [34] showing the existence of resolutions
compatible with smooth, in particular étale, morphisms). Actually, in his recent generalization [38],
Yasuda proves that it suffices to consider the reduction and the normalization ofℨ, without any resolution.
This happens because his new statements allows us to extend the definition of orbifold cohomology to
singular or wild (in positive characteristic) Deligne–Mumford stacks.

We consider the cyclic group 𝐺 = 〈𝑠〉. Then 𝔄′ = [𝔛/𝐺] and 𝔄′′ = [𝑋/𝐺] are K-equivalent by
the same argument. Indeed, the action of G descends to the coarse space X and we can consider the
stack 𝔄 = [𝑋/𝐺] and the morphisms 𝔄′ → 𝔄 and 𝔄′′ → 𝔄. Then, the reduced stack associated to the
fibred product 𝔄′ ×𝔄 𝔄′′ can be resolved and yields a smooth Deligne–Mumford stack ℨ mapping to
𝔄′ and 𝔄′′. As above, the fact that the canonical bundles of 𝔛 and 𝑋 are the pullback of 𝜔𝑋 is enough
to show that ℨ → 𝔄′ = [𝔛/𝐺] and ℨ → 𝔄′ = [𝑋/𝐺] is a K-equivalence. Indeed, 𝜔𝔄 is merely the
G-equivariant line bundle 𝜔𝑋 , which pulls back to 𝜔𝔄′ and 𝜔𝔄′′ .
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Then, [37, Cor. 4.8] affirms that the Chen–Ruan orbifold cohomology of 𝔄′ and that of 𝔄′′ are
isomorphic for all bidegrees (𝑝, 𝑞). The desired claim in our statement is just a restriction of this claim.
Indeed, for 𝑔 = 𝑠𝑏 and 𝑏 ∈ {0, . . . , 𝑘 − 1}, the cohomologies of 𝐼𝑔𝔛 and 𝐼𝑔𝑋 arise as the summands of
the Chen–Ruan cohomology groups of [𝔛/𝐺] and of [𝑋/𝐺] whose bidegree lie in (𝑏/𝑘, 𝑏/𝑘) +Z2. By
definition, they are the cohomology groups of the sectors attached to g, which are given by g-invariant
classes of 𝐼𝑔 (𝔛) and 𝐼𝑔 (𝑋). Since g operates trivially on these sectors, we can regard these contributions
as 𝐻∗(𝐼𝑔 (𝔛);C) and 𝐻∗(𝐼𝑔 (𝑋);C). Finally, we obtain an identification at the level of the age-shifted
g-orbifolded cohomology 𝐻∗

𝑔 (—;C) due to the fact that the age is a rational function factoring through
the usual age function of [𝔛/𝐻] and of [𝑋/𝐻]. �

Remark 10. The above statement uses a condition on the age of the automorphism s in order to deduce
an isomorphism from a restriction of Yasuda’s isomorphism. It is possible, but we did not check it,
that Yasuda’s identification preserves the G-grading in general, even when the G-grading cannot be
reconstructed from the bigrading.

In special cases where �̃�𝑔 is constant, the above theorem allows us to relate the g-orbifold cohomology
to the cohomology of the g-fixed locus of the resolution via a constant shift by �̃�𝑔. The following example
generalises the case of antisymplectic involutions of orbifold K3 surfaces considered in [12] (this case
occurs in Section 7 for 𝑘 = 2 and 4).

Example 11. Consider a proper, smooth, Gorenstein, Deligne–Mumford orbifold 𝔛 of dimension 2
satisfying the Calabi–Yau condition 𝜔 � O. We refer to this as a K3 orbifold because there exists a
minimal resolution 𝑋 which is a K3 surface. Consider the volume form Ω of 𝑋 , which descends on
𝔛. We assume that g is an order-k automorphism of 𝔛 whose induced action on Ω is multiplication by
𝑒2𝜋𝑖 (𝑘−1)/𝑘 . Then, g naturally lifts to the minimal resolution 𝑋; furthermore, locally at each fixed point
of 𝑋 , the action of g can be diagonalized and expressed as (𝑥, 𝑦) ↦→ (𝜉𝑎𝑘 𝑥, 𝜉

𝑏
𝑘 𝑦) where 𝑎 + 𝑏 ≡ 𝑘 − 1

mod 𝑘 . In fact, 𝑎 + 𝑏 equals 𝑘 − 1 without reduction mod k (this happens because the case 𝑎 + 𝑏 =
2𝑘 − 1 is impossible for 𝑎, 𝑏 ∈ {0, . . . , 𝑘 − 1}). In this way, the age shift 𝔞𝑔 at the fixed loci always
equals 1 − 1

𝑘

𝐻∗
𝑔 (𝔛;C) = 𝐻∗(𝑋𝑔;C) ( 1

𝑘 − 1).

5. Landau–Ginzburg state space

The expression ‘Landau–Ginzburg’ comes from physics and is often used forC-valued functions defined
on vector spaces possibly equipped with the action of a group. More generally the definition is extended
to vector bundles on a stack. In this paper, we only use it for the above setup 𝑃 : [C𝑛+1/𝐻] → C,where P
is a nondegenerate polynomial and 𝑗 ∈ 𝐻 ⊆ Aut𝑃 . Indeed, this may be regarded as a C-valued function
defined on a rank-(𝑛 + 1) vector bundle on the stack 𝐵𝐻 = [SpecC/𝐻]. We show how this geometric
setup is naturally connected to Σ𝑊 ,𝐻 via K-equivalence.

The structure of this section is the following. In §5.1, we setup the K-equivalence relating the g-
orbifold cohomology of a vector bundle V to the the g-orbifold cohomology of a line bundle L on a
weighted projective stack P(𝑤𝑤𝑤). We deduce from this equivalence the entire proof of Theorem 24 stated
in §5.4 relating a g-orbifold variant of the Landau–Ginzburg state space to the g-orbifold cohomology
of Σ𝑊 ,𝐻 . On the one hand, in §5.2, the line bundle L is related to the hypersurface Σ𝑊 ,𝐻 via a
generalization of the Thom isomorphism. On the other hand, in §5.3, the vector bundle V is related to
the Landau–Ginzburg state space (the vector space underlying a Jacobi ring) introduced in its earliest
orbifold formulation by Fan, Jarvis and Ruan. In §5.4, based on the previous sections, we choose an
isomorphism relating V and L yielding the desired result: Thm. 24. We then comment on previous
proofs and related results.
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5.1. K-equivalence

Consider the rank-(𝑛 + 1) vector bundle

V = OP(𝑑) (−𝑤0) ⊕ · · · ⊕ OP(𝑑) (−𝑤𝑛) = [C𝑛+1/〈 𝑗〉],

where we recall that P(𝑑) is simply the special case of a zero-dimensional projective stack isomorphic
to 𝐵𝜇𝜇𝜇𝑑 (see Remark 2). Its coarse space is 𝑋 = C𝑛+1/〈 𝑗〉 with a singularity given by the 𝜇𝜇𝜇𝑑-action
[
𝑤0
𝑑 ,

𝑤1
𝑑 , . . . ,

𝑤𝑚
𝑑 ].

We also consider the smooth Deligne–Mumford stack

L = OP(𝑤𝑤𝑤) (−𝑑)

defined as the (stack-theoretic) total space L of the line bundle of degree −𝑑 on P(𝑤𝑤𝑤). Because L is a
weighted blow up of X in the stack-theoretic sense, there is a natural map from L to X.

The stacks V and L are the two stack-theoretic GIT quotients of C×C𝑛+1 modulo G𝑚 operating with
weights (−𝑑, 𝑤0, . . . , 𝑤𝑛+1) on the two open subsets obtained by removing the origin of the left- and
right-hand side factors of the product C×C𝑛+1. Notice that V without the origin coincides with the line
bundle L without the zero section: V× = L×.

As in equation (4), we consider the generic fibre 𝑀𝑃 of 𝑃 : C𝑛+1 → C. The morphism P descends to
a morphism from V to C, whose generic fibre is isomorphic to F = [𝑀𝑃/〈 𝑗〉], a substack of V× which
we may regard, via the above identification, as a substack of L×.

We assume the Calabi–Yau condition
∑𝑛
𝑖=0 𝑤𝑖 = 𝑑. Then, the canonical bundle of V is j-invariant

and descends to X and its pullback to L coincides with 𝜔L. Following the above arguments, i.e., by
Proposition 9 and ultimately by Yasuda [37], we have

Φ : 𝐻 𝑝,𝑞
𝑔 (V;C) �−→ 𝐻 𝑝,𝑞

𝑔 (L;C) (9)

for any 𝑝, 𝑞 ∈ Q and for any 𝑔 = 𝑠𝑏 for 𝑏 ∈ {0, . . . , 𝑘 − 1} and 𝑔 = [0, 1
𝑘 , 0 . . . , 0] (notice that we

extended g trivially on the fibre of L).
The isomorphism 𝐻∗

𝑔 (V;C) → 𝐻∗
𝑔 (L;C) is not canonical, the claim of its existence is simply an

identity between dimensions of vector spaces. The argument here consists in choosing an isomorphism
Φ in such a way that it commutes with the restrictions𝐻𝑟

𝑔 (V;C) → 𝐻𝑟
𝑔 (F;C) and𝐻𝑟

𝑔 (L;C) → 𝐻𝑟
𝑔 (F;C)

and with the identity on 𝐻𝑟
𝑔 (F;C) in the diagram below in all degrees 𝑟 ∈ Q

. . . �� 𝐻𝑟
𝑔 (V, F;C) ��

��

𝐻𝑟
𝑔 (V;C)

Φ

��

�� 𝐻𝑟
𝑔 (F;C)

=

��

�� 𝐻𝑟+1
𝑔 (V, F;C) ��

��

. . .

. . . �� 𝐻𝑟
𝑔 (L, F;C) �� 𝐻𝑟

𝑔 (L;C) �� 𝐻𝑟
𝑔 (F;C) �� 𝐻𝑟+1

𝑔 (L, F;C) �� . . . .

(10)

We detail this isomorphism Φ in §5.4 after studying more carefully the two horizontal exact sequences
involving L and V in §5.2 and §5.3, respectively. This allows us to conclude that there is a bidegree-
preserving isomorphism

𝐻∗
𝑔 (V, F;C) � 𝐻∗

𝑔 (L, F;C)

making the above diagram commute. Based on §5.2 (using [13, Prop. 3.5]), the right-hand side is
naturally identified via the Thom isomorphism to the Chen–Ruan cohomology of Σ𝑃,𝐻 up to a (−1)-
shift. Based on §5.3, the left-hand side is naturally identified to an orbifold version of the Jacobi ring
known as the FJRW or Landau–Ginzburg state space.
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5.2. Thom isomorphism in orbifold cohomology

Consider 𝑃 : L → C and its generic fibre F = 𝑃−1 (𝑡) for 𝑡 ≠ 0. We have an isomorphism of Hodge
structures

𝐻∗(L, F;C) � 𝐻∗(Σ𝑃;C) (−1). (11)

Indeed, the left-hand side can be regarded after retraction as

𝐻∗(P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ Σ𝑃;C)

which is isomorphic to the (−1)-shifted cohomology of Σ𝑃 by the Thom isomorphism

𝐻∗(P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ Σ𝑃;C) � 𝐻∗(Σ𝑃;C) (−1). (12)

Equation (11) suggests that the orbifold cohomology 𝐻 𝑝,𝑞
id (L𝐻 , F𝑃,𝐻 ;C) is related to the orbifold

cohomology of Σ𝑃,𝐻 . However, due to the age shift, the argument above does not yield an isomorphism
in orbifold cohomology. In fact, the two isomorphisms

𝐻∗(L𝐻 , F𝑃,𝐻 ;C) � 𝐻∗(P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ Σ𝑃,𝐻 ;C) � 𝐻∗(Σ𝑃,𝐻 ;C) (−1) (13)

may not respect the orbifold cohomology bidegree. However, Jan Nagel and the first author proved
that the first and the third term of equation (13) match in orbifold cohomology with their respective
bigrading even when the second isomorphism (the ordinary Thom isomorphism) does not hold in
orbifold cohomology. For these reasons, we regard the special case where 𝑔 = id

𝐻∗
id(L, F;C) � 𝐻

∗
id(Σ𝑃;C) (−1)

as the correct formulation of Thom isomorphism in orbifold cohomology.

Theorem 12 (the orbifold Thom isomorphism, [13]). For any 𝐻 ⊆ Aut𝑃 containing 𝑗𝑃 , for any g in
Aut𝑃 and for any 𝑝, 𝑞 ∈ Q, we have

𝐻 𝑝,𝑞
𝑔 (L𝐻 , F𝑃,𝐻 ;C) � 𝐻 𝑝,𝑞

𝑔 (Σ𝑃,𝐻 ;C) (−1). (14)

Before proving the statement, we illustrate it with a simple example allowing us to describe the two
cases of the proof.

Example 13. We provide an elementary and yet very rich example of a Calabi–Yau orbifold embedded
in a non-Gorenstein P(𝑤𝑤𝑤).

The isomorphism above matches the orbifold cohomology of a hypersurface Σ𝑃 and the relative
cohomology of (L, F). Therefore, on the one side, we consider the hypersurface Σ𝑃 defined by 𝑃 =
𝑥3 + 𝑥𝑦 = 0 in P(1, 2). There are two components in the ambient orbifold P(1, 2): the untwisted sector
(labelled with u) attached to the identity and the twisted sector (labelled with t) attached to the nontrivial
symmetry (−1, 1).

Within the untwisted sector P(1, 2)𝑢 = P(1, 2), the equation 𝑥3 + 𝑥𝑦 = 0 cuts out a codimension-
one hypersurface which can be described as the disjoint union of an ordinary point, the G𝑚-orbit
𝑝 = (−𝜆, 𝜆2) and a point with nontrivial 𝜇𝜇𝜇2-automorphism: the locus where the first coordinate vanishes
(𝑥 = 0) � P(2).

Within the twisted sector P(1, 2)𝑡 = P(2), the equation 𝑥3 + 𝑥𝑦 = 0 identifies a hypersurface which is
not transversal toP(2). In other words, the twisted sector ofΣ𝑃 is the entire twisted sectorP(1, 2)𝑡 = P(2).

These two conditions, Σ𝑃,𝛽 � P(𝑤𝑤𝑤𝛽) and Σ𝑃,𝛽 = P(𝑤𝑤𝑤𝛽), play two different roles in the orb-
ifold Thom isomorphism as we illustrate in this example and detail further in general in the proof.
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The right-hand side of the orbifold Thom isomorphism reads 𝐻∗
orb (Σ𝑃;C) (−1) (for 𝑔 = id) and can

be easily computed in this example: C⊕3(−1). This happens because the inertia stack consists of three
points

𝐼 (Σ𝑃) = Σ𝑃,𝑢 � Σ𝑃,𝑡 = (2 pts) � P(2), (15)

(the labels u and t stand again for untwisted and twisted). The age-shift plays no role for a zero
dimensional stack (the tangent bundle vanishes). We get

𝐻∗
orb (Σ𝑃;C) (−1) � C⊕3 (−1). (16)

The left-hand side of the orbifold Thom isomorphism above reads 𝐻∗
orb (L, F𝑃;C), which, unlike

the orbifold cohomology group 𝐻∗
orb (P(1, 2), P(1, 2) \ Σ), matches equation (16). We compute both

𝐻∗
orb (P(1, 2), P(1, 2) \ Σ) and 𝐻∗

orb (L, F𝑃;C).
For 𝐻∗

orb (P(1, 2), P(1, 2) \ Σ), we have 𝐼 (P(1, 2)) = P(1, 2)𝑢 � P(1, 2)𝑡 = P(1, 2) � P(2). Using
equation (15) and writing P(𝑤𝑤𝑤) = P(1, 2) for short, we get

𝐻∗
orb(P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ Σ) = 𝐻

∗(P(𝑤𝑤𝑤)𝑢 , P(𝑤𝑤𝑤)𝑢 \ Σ𝑃,𝑢) ⊕ 𝐻
∗(P(𝑤𝑤𝑤)𝑡 , P(𝑤𝑤𝑤)𝑡 \ Σ𝑃,𝑡 ) (−

1
2 )

= 𝐻∗(P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ {2 pts}) ⊕ 𝐻∗(P(2),∅)(− 1
2 )

= 𝐻∗(2 pts) (−1) ⊕ 𝐻0(P(2)) (− 1
2 )

= C⊕2 (−1) ⊕ C(− 1
2 ).

On the other hand, for 𝐻∗
orb (L, F), the ambient orbifold L induces an extra 1

2 age-shift on the twisted
sector because the stabilizer of P(2) acts nontrivially in the direction of the fibre of the line bundle
L→ P(1, 2). Therefore, we get

𝐻∗
id(L, F) = C

2(−1) ⊕ 𝐻∗(P(2)) (−1) � C⊕3 (−1)

as in equation (16).

Proof. We study 𝐻∗
𝑔 (L, F;C), 𝐻∗

𝑔 (P(𝑤𝑤𝑤), P(𝑤𝑤𝑤) \ Σ𝑃;C), and 𝐻∗
𝑔 (Σ𝑃;C) (−1) sector-by-sector, i.e., by

restricting to each symmetry 𝛽 = 𝑔(𝜆𝑤0 , 𝜆𝑤1 . . . , 𝜆𝑤𝑛 ) operating on C𝑛+1 diagonally. We distinguish
two cases: (1) the ordinary sectors where Σ𝑃,𝛽 is a codimension-1 hypersurface in P(𝑤𝑤𝑤𝛽) (this happens,
for instance, for the untwisted sector in Example 13); (2) the case where P(𝑤𝑤𝑤𝛽) and Σ𝑃,𝛽 coincide (as
in the twisted sector of Example 13). The two cases above may also be distinguished as follows: In
case (1) we consider diagonal automorphisms 𝛽 fixing points of Σ𝑃 and the fibre of the normal bundle
𝑁Σ𝑃/P(𝑤𝑤𝑤) (𝛽 fixes the points of P(𝑤𝑤𝑤𝛽)); in case (2) we consider automorphisms 𝛽 fixing points of Σ𝑃 and
operating nontrivially on the normal bundle 𝑁Σ𝑃/P(𝑤𝑤𝑤) . Notice also the following simple reformulation;
since the restriction of L = OP(𝑤𝑤𝑤) (𝑑) to Σ𝑃 is dual to the normal bundle of Σ𝑃 within P(𝑤𝑤𝑤), in case
(1) we have Σ𝑃,𝛽 � P(𝑤𝑤𝑤𝛽) � L𝛽 and each inclusion has codimension 1, whereas in case (2) we have
Σ𝑃,𝛽 = P(𝑤𝑤𝑤𝛽) = L𝛽 .

For ordinary sectors where Σ𝑃,𝛽 � P(𝑤𝑤𝑤𝛽) � L𝛽 , we have 𝐻∗(P(𝑤𝑤𝑤𝛽), P(𝑤𝑤𝑤𝛽) \ Σ𝑃,𝛽;C) �
𝐻∗(Σ𝑃,𝛽;C) (−1) and the age shift of P(𝑤𝑤𝑤𝛽) coincides with that of Σ𝑃,𝛽 since 𝛽 acts trivially on the
normal bundle 𝑁Σ𝑃,𝛽/P(𝑤𝑤𝑤𝛽) . No age-shift difference occurs also when we pass to L𝛽 , which is a vector
bundle on P(𝑤𝑤𝑤𝛽): The age-shifted classes of 𝐻∗(L𝛽 , F𝛽) match those of 𝐻∗(P(𝑤𝑤𝑤𝛽), P(𝑤𝑤𝑤𝛽) \Σ𝑃,𝛽) and,
by the above argument, those of 𝐻∗(Σ𝑃,𝛽;C) (−1).

For the remaining sectors, when Σ𝑃,𝛽 = P(𝑤𝑤𝑤𝛽) = L𝛽 , the cohomology classes of the sectors labelled
by 𝛽 within L, P(𝑤𝑤𝑤) and Σ𝑃 match via the trivial identities
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𝐻∗(L𝛽 , F𝛽) = 𝐻
∗(P(𝑤𝑤𝑤𝛽), P(𝑤𝑤𝑤𝛽) \ Σ𝑃,𝛽;C)

= 𝐻∗(P(𝑤𝑤𝑤𝛽),∅;C)
= 𝐻∗(P(𝑤𝑤𝑤𝛽);C)
= 𝐻∗(Σ𝑃,𝛽;C).

Hence, in ordinary cohomology, the desired equation (14) holds without any (−1)-shift on the right-
hand side. The (−1)-shift arises when we compare the age-shifts of the sector L𝛽 and that of Σ𝑃,𝛽; i.e.,
when we compare the age of the action of 𝛽 on the normal bundles 𝑁Σ𝑃,𝛽/Σ𝑃 and 𝑁L𝛽/L restricted to
L𝛽 = Σ𝑃,𝛽 . Let 𝑞 ∈]0, 1[ be the nontrivial character of the action of 𝛽 on the normal bundle 𝑁Σ𝑃/P(𝑤𝑤𝑤) .
In these cases, we have 𝐻∗

orb (P(𝑤𝑤𝑤𝛽), P(𝑤𝑤𝑤𝛽) \ Σ𝑃,𝛽;C) � 𝐻∗
orb (Σ𝑃,𝛽;C) (−𝑞). Since the restriction of

L = OP(𝑤𝑤𝑤) (𝑑) to Σ𝑃 is dual to the normal bundle 𝑁Σ𝑃/P(𝑤𝑤𝑤) , the age of 𝛽 acting on L at a point p
of Σ𝑃,𝛽 = L𝛽 differs from the age of the representation on the tangent bundle 𝑇Σ𝑃 , 𝑝 by 𝑞 + (1 − 𝑞).
We have

𝐻∗(L𝛽 , F𝛽;C) (𝔞L) � 𝐻∗(Σ𝑃,𝛽;C) (𝔞Σ − 𝑞 − (1 − 𝑞)) = 𝐻∗(Σ𝑃,𝛽;C) (𝑎Σ − 1)

as desired (we wrote 𝔞L and 𝔞Σ for the locally constant age functions on the orbifolds L and Σ𝑃). �

Remark 14. The previous result is proven in [13, Prop. 3.4] in the more general setup of complete
intersections. Notice, however, that the present setup of g-orbifold cohomology required an independent
treatment.
Remark 15 (definition of ambient and primitive cohomology). For a hypersurface Σ within a projective
space P, we usually refer to the Poincaré dual of the image of the homology of Σ within the homology
of P as the ambient cohomology of Σ. In orbifold cohomology, we say that the ambient cohomology of
Σ𝑃,𝐻 is Poincaré dual to the image of the homology of 𝐼𝑔 (Σ𝑃,𝐻 ) within the homology of 𝐼𝑔 (P(𝑤𝑤𝑤)). The
identification above allows us to provide another description. We may regard the ambient cohomology
of Σ𝑃,𝐻 as the image of the morphism

𝐻𝑟
𝑔 (L𝐻 , F𝑃,𝐻 ;C) → 𝐻𝑟

𝑔 (L𝐻 ;C). (17)

Similarly, we can consider the primitive cohomology, which is the kernel after Poincaré duality of
the direct image mapping the homology of Σ within the cohomology of P. In orbifold cohomology, the
primitive cohomology of Σ𝑃,𝐻 is the kernel of the morphism (17) in 𝐻∗(Σ𝑃,𝐻 ;C) (1). We summarize
these notations as follows.
Definition 16.

𝐻𝑟
𝑔,amb(Σ𝑊 ,𝐻 ;C) (−1) = im

(
𝐻𝑟
𝑔 (L𝐻 , F𝑃,𝐻 ;C) → 𝐻𝑟

𝑔 (L𝐻 ;C)
)
,

𝐻𝑟
𝑔,prim(Σ𝑊 ,𝐻 ;C) (−1) = ker

(
𝐻𝑟
𝑔 (L𝐻 , F𝑃,𝐻 ;C) → 𝐻𝑟

𝑔 (L𝐻 ;C)
)
.

We now turn to the LG side, where the image of the analogue morphism allows us to describe the so
called ‘narrow’ and ‘broad’ sectors.

5.3. Jacobi ring

The Jacobi ring

Jac 𝑃 = 𝑑𝑥0 ∧ · · · ∧ 𝑑𝑥𝑛C[𝑥0, . . . , 𝑥𝑛]/(𝜕0𝑃, . . . , 𝜕𝑛𝑃),

regarded as a C-vector space, has dimension
∏

𝑗
𝑑−𝑤𝑗
𝑤𝑗

(due to the nondegeneracy of the polynomial P)
and is isomorphic to 𝐻∗(C𝑛+1, 𝑀𝑃;C). The natural monodromy action of 𝜇𝜇𝜇𝑑 = 〈 𝑗〉 from equation (4),
and more generally the action of any diag(𝛼0, . . . , 𝛼𝑛) ∈ Aut𝑃 ,
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diag(𝛼0, . . . , 𝛼𝑛) ·
���

𝑛∏
𝑗=0
𝑥
𝑏 𝑗−1
𝑗

𝑛∧
𝑗=0
𝑑𝑥 𝑗

��� =
𝑛∏
𝑗=0
𝛼
𝑏 𝑗
𝑗

���
𝑛∏
𝑗=0
𝑥
𝑏 𝑗−1
𝑗

𝑛∧
𝑗=0
𝑑𝑥 𝑗

���,
allows us to write

[Jac(𝑃) 𝑗𝑃 ]𝑝,𝑞 = 𝐻 𝑝,𝑞 (V;F),

where the subscript 𝑝, 𝑞 denote the subgroup spanned by elements of the form

���
𝑛∏
𝑗=0
𝑥
𝑏 𝑗−1
𝑗

𝑛∧
𝑗=0
𝑑𝑥 𝑗

��� with (𝑝, 𝑞) =

(
𝑛 −

∑
𝑗

𝑏 𝑗
𝑤 𝑗

𝑑
,
∑
𝑗

𝑏 𝑗
𝑤 𝑗

𝑑

)
.

The above claim is due to Steenbrink [30] in the present weighted homogenous setup; see also [11,
Appendix A].

Remark 17. The action of Aut𝑃 on Jac(𝑃) is well defined because any automorphism diag(𝛼0, . . . , 𝛼𝑛)
operates on each monomial in 𝜕𝑖𝑃 by multiplication by 𝛼−1

𝑖 . This happens because diag(𝛼0, . . . , 𝛼𝑛)
fixes 𝑥𝑖𝜕𝑖𝑃 since it fixes P.

Furthermore, the grading (𝑝, 𝑞) is well defined simply because deg(𝑥𝑖) = 𝑤𝑖
𝑑 yields a Q-grading on

C[𝑥0, . . . , 𝑥𝑛], which descends to a Q-grading of Jac(𝑃) because the Jacobi ideal (𝜕0𝑃, . . . , 𝜕𝑛𝑃) is
homogeneous (each monomial in 𝜕𝑖𝑃 has degree 𝑑 − 𝑤𝑖

𝑑 ).

We can introduce the following slight generalization of the FJRW state space.

Definition 18. For a quasi-homogenous polynomial P of degree d and weight 𝑤0, . . . , 𝑤𝑛 and for any
𝐻 ⊆ Aut𝑃 containing 𝑗𝑃 , the g-orbifolded Landau–Ginzburg state space is

H𝑃,𝐻 ,𝑔 =
⊕
ℎ∈𝑔𝐻

(Jac 𝑃ℎ)𝐻 (− age(ℎ)),

where, for any diagonal symmetry ℎ ∈ 𝐻, we consider the Jacobi ring Jac 𝑃ℎ ,where 𝑃ℎ is the restriction
of P to the ring of polynomials in the h-fixed variables (and the age is given by equation (3)).

Remark 19. Notice that, as a consequence of the nondegeneracy of P, the restriction 𝑃𝑔 is still a
nondegenerate polynomial.

Remark 20. When g is the identity we recover the FJRW state space H𝑃,𝐻 .

Remark 21. We have

H𝑝,𝑞
𝑃,𝐻 ,𝑔 = 𝐻 𝑝,𝑞

𝑔 (V𝐻 ;F𝑃,𝐻 ). (18)

Indeed for 𝐻 = 〈𝐽𝑃〉 this is the well-known identification between the middle cohomology of the fibre
F and the monodromy invariant part of the cohomology of the Milnor fibre (see, for instance, [16]). The
general statement follows from taking the invariant classes on the two sides with respect to the action
of the finite group 𝐻0 = 𝐻/〈 𝑗𝑃〉.

Remark 22 (definition of narrow and broad sectors). The elements h for which no variables are fixed
yield a summand Jac(𝑃ℎ) = C; these are special elements in the FJRW state space; they span the
subspace of the so-called narrow classes. In FJRW theory, the remaining summands are referred to as
broad classes (see [22]). In complete analogy with the notation for ambient and primitive cohomology,
we can identify the narrow and broad classes to the image and the kernel of the morphism

𝐻𝑟
𝑔 (V𝐻 , F𝑃,𝐻 ;C) → 𝐻𝑟

𝑔 (V𝐻 ;C).
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Definition 23. We have

H𝑟 ,nar
𝑃,𝐻 ,𝑔 = im

(
𝐻𝑟
𝑔 (V𝐻 , F𝑃,𝐻 ;C

)
→ 𝐻𝑟

𝑔 (V𝐻 ;C)),

H𝑟 ,broad
𝑃,𝐻 ,𝑔 = ker

(
𝐻𝑟
𝑔 (V𝐻 , F𝑃,𝐻 ;C

)
→ 𝐻𝑟

𝑔 (V𝐻 ;C)).

5.4. Landau–Ginzburg/Calabi–Yau correspondence

The above equations (14) and (18) add up to a simple proof of the so-called Landau–Ginzburg/Calabi–
Yau correspondence based on Yasuda’s theorem and K-equivalence (ensured by the Calabi–Yau
condition).

Theorem 24 ([10, 13]). For any nondegenerate quasi-homogeneous polynomial P of Calabi–Yau type,
for any group 𝐻 ⊆ Aut𝑃 containing 𝑗𝑃 and for any 𝑔 ∈ Aut𝑃 , we have

Φ : 𝐻 𝑝,𝑞
𝑔 (Σ𝑃,𝐻 ;C) (−1) ∼

−−→ H𝑝,𝑞
𝑃,𝐻 ,𝑔 .

Proof. Let us consider the case 𝐻 = 〈 𝑗〉 for simplicity first. In the statement, the right-hand side is
isomorphic to 𝐻∗

𝑔 (L, F) and the left-hand side is isomorphic to 𝐻∗
𝑔 (V, F); hence, we only need to

define an isomorphism 𝐻∗
𝑔 (V) → 𝐻∗

𝑔 (L) making the diagram (10) commute. The relative cohomology
sequence allows us to split 𝐻∗

𝑔 (V) and 𝐻∗
𝑔 (L) into two direct summands:

𝐻∗
𝑔 (𝐴) = coker(𝐻∗

𝑔 (𝐴, F) → 𝐻∗
𝑔 (𝐴)) ⊕ ker(𝐻∗

𝑔 (𝐴) → 𝐻∗
𝑔 (F)),

for 𝐴 = V andL. We show that there is a bidegree-preserving isomorphism matching the above cokernels
within 𝐻∗(V) and 𝐻∗(L). Since any extension on the kernel of the restriction morphism makes equation
(10) commute, the claim follows.

We need to treat separately two cases depending on whether the isomorphism 𝛾 =
𝑔(𝜆−𝑑 , 𝜆𝑤0 , 𝜆𝑤1 , . . . , 𝜆𝑤𝑛 ) yields an empty sector F𝛾 or not. If F𝛾 is empty, then the restrictions mor-
phisms 𝐻𝑟 (V𝛾) → 𝐻𝑟 (F𝛾) and 𝐻𝑟 (L𝛾) → 𝐻𝑟 (F𝛾) vanish. Therefore, these sectors only contribute to
the above mentioned kernel of the restrictions morphisms mapping to 𝐻∗

𝑔 (F).
In the remaining cases, as argued in the proof of Theorem 12, the sector Σ𝑃,𝛾 of Σ𝑃 is a codimension-

1 subspace of the 𝛾-fixed coordinate subspace P(𝑤𝑤𝑤𝛾) and L𝛾 is the bundle O(−𝑑) over P(𝑤𝑤𝑤𝛾). In these
cases, the restriction morphism is nonzero only on the fundamental classes ofV𝛾 andL𝛾 (these vanishing
property are obvious for V𝛾 , whereas for L𝛾 we may refer to a more detailed study of the Lefschetz
hyperplane theorem in this setup in [13, Lem. 3.6]). We notice that, in these cases, the fundamental
classes of V𝛾 and L𝛾 share the same bidegree (age(𝛾), age(𝛾)).

The existence of a bidegree-preserving isomorphism 𝐻∗
𝑔 (V) � 𝐻

∗
𝑔 (L), alongside with the bidegree-

preserving identification 111V𝛾 ↦→ 111L𝛾 (for F𝛾 ≠ ∅), which matches the cokernels within 𝐻∗
𝑔 (V) and

𝐻∗
𝑔 (L), ensures the existence of an isomorphism Φ : 𝐻∗

𝑔 (V) � 𝐻
∗
𝑔 (L) extending 111V𝛾 ↦→ 111L𝛾 on the

kernels of the restriction morphisms. By construction Φ is compatible with equation (10), and, as a
consequence, there exists a bidegree-preserving isomorphism 𝐻𝑑

𝑔 (V, F;C) � 𝐻𝑑
𝑔 (L, F;C).

The complete statement involves a more general group action with H replacing 〈 𝑗〉. This is a minor
generalization. Indeed, we note that F can be regarded as the generic fibre of the two morphisms induced
by the polynomial P:V→ C and L→ C. If we consider any group 𝐻 ⊆ Aut𝑃 containing j, we can apply
the above claim to V𝐻 = [V/𝐻0], L𝐻 = [L/𝐻0] and F𝑃,𝐻 = [F/𝐻0]. We get 𝐻 𝑝,𝑞

𝑔 (V𝐻 , F𝑃,𝐻 ;C) �
𝐻 𝑝,𝑞
𝑔 (L𝐻 , F𝑃,𝐻 ;C), for any 𝑝, 𝑞 and for any 𝑔 ∈ Aut𝑊 . The above dichotomy distinguishing two

types of sectors applies without changes to isomorphisms of the form 𝑔(𝜆−𝑑 , 𝛼0𝜆
𝑤0 , . . . , 𝛼𝑛𝜆

𝑤𝑛 ), for
𝛼𝑖 , 𝜆 ∈ G𝑚. �

Remark 25. A shortcoming of the above approach is the lack of a preferred isomorphism. Since the
above isomorphism follows from K-equivalence, it is not explicitly given. In [10], we provide an explicit
isomorphism, generalized in [13] to complete intersections. In [12], we make the isomorphism explicit
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in dimension two at the level of ordinary cohomology classes of the (crepant and minimal) scheme-
theoretic resolution of L.

Finally, let us point out that, by a slight abuse of notation, we adopt the same notation Φ for the
isomorphism in the statement as well as for Φ : 𝐻∗

𝑔 (V;C) → 𝐻∗
𝑔 (L;C) from equation (9).

6. Unprojected mirror symmetry

6.1. Mirror duality

In this section, we review the mirror construction due to Berglund and Hübsch [5]. The mirror con-
struction appeared first in the form given below in Krawitz [26]. Other key references are to Berglund
and Henningson [4] for the group duality, Kreuzer and Skarke [27] for a systematic study and Borisov
[7] for a reinterpretation of the setup and further generalizations in terms of vertex algebræ.

The Berglund–Hübsch mirror construction [5] applies to nondegenerate polynomials P of invertible
type, i.e., having as many monomials as variables. Up to rescaling the variables, these polynomials are
entirely encoded by the exponent matrix 𝐸 = (𝑚𝑖, 𝑗 ) and are paired to a second polynomial of the same
type

𝑃(𝑥0, . . . , 𝑥𝑛) =
𝑛∑
𝑖=0

𝑛∏
𝑗=0
𝑥
𝑚𝑖, 𝑗
𝑗 , 𝑃∨(𝑥0, . . . , 𝑥𝑛) =

𝑛∑
𝑖=0

𝑛∏
𝑗=0
𝑥
𝑚 𝑗,𝑖
𝑗 ,

by transposing the matrix of exponents E.

Remark 26. The square matrix E is invertible because the vector (𝑤𝑖/𝑑)
𝑛
𝑖=0 is uniquely determined

as a consequence of the nondegeneracy condition. The inverse matrix 𝐸−1 = (𝑚𝑖, 𝑗 ) allows a simple
description of Aut𝑃: The columns express the symmetries

𝜌 𝑗 = [𝑚0, 𝑗 , 𝑚1, 𝑗 , . . . , 𝑚𝑛, 𝑗 ]

spanning Aut𝑃 . It is also easy to see that the columns of E express all the relations
∑
𝑖 𝑚𝑖, 𝑗 𝜌𝑖 among these

generators. Naturally, the rows of 𝐸−1 provide an expression for the symmetries 𝜌𝑖 generating Aut𝑃∨

under the relations provided by the rows
∑

𝑗 𝑚𝑖, 𝑗 𝜌 𝑗 of E. In particular, we have a canonical isomorphism

Aut𝑃∨ = (Aut𝑃)∗,

where (𝐺)∗ denotes the Cartier dual Hom(𝐺,G𝑚). The identification matches the symmetry
[𝑞0, . . . , 𝑞𝑛] to the homomorphism mapping 𝜌𝑖 to exp(2𝜋i𝑞𝑖) ∈ Q/Z. Based on this identification, for
any subset 𝑆 ⊆ Aut𝑃 , we set 𝑆∨ ⊆ Aut𝑃∨ as follows

𝑆∨ = {𝜑 ∈ (Aut𝑃)∗ | 𝜑 |𝑆= 0}.

This is a duality exchanging subgroups of Aut𝑃 and subgroups of Aut𝑃∨ ; for any group 𝐻 ⊆ Aut𝑃 , we
can write

𝐻∨ = ker(Aut𝑃 � Hom(𝐻;G𝑚)). (19)

The dual of the group generated by 𝐽𝑃 is SL𝑃∨ . The duality reverses inclusions: If 𝐻1 ⊂ 𝐻2, then
𝐻∨

2 ⊂ 𝐻∨
1 .

The unprojected state space𝑈𝑃 is defined [26] as

𝑈𝑃 =
⊕
ℎ∈Aut𝑃

Jac(𝑃ℎ) (− age(ℎ)),
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where the sum is over all diagonal symmetries and without taking any invariant [26]. For each summand
Jac(𝑃ℎ), there exists an Aut𝑃∨-grading defined by

ℓℎ : Jac(𝑃ℎ) → Aut𝑃∨∏
𝑗

𝑥
𝑏 𝑗−1
𝑗

∧
𝑗

𝑑𝑥 𝑗 ↦→
∏
𝑗

𝜌
𝑏 𝑗
𝑗 , (20)

where all the products run over the set 𝐹ℎ of labels of variables fixed by h.

Lemma 27. This grading is well-defined.

Proof. It suffices to show that 𝜕𝑖𝑃ℎ is homogeneous under this grading. To do this, we show that each
monomial in 𝜕𝑖𝑃ℎ is graded by 𝐽𝑃∨ (𝜌𝑖)

−1. Note that each monomial appearing in 𝜕𝑖𝑃ℎ𝑑𝑥𝑖 maps to the
same automorphism as each monomial appearing in P. Furthermore, the automorphism obtained in this
way is the identity by the relation

∑
𝑗 𝑚𝑖, 𝑗 𝜌 𝑗 discussed above. We can finally conclude that 𝜕𝑖𝑃ℎ

∧
𝑗 𝑑𝑥 𝑗

maps to the same automorphism as
∧

𝑗≠𝑖 𝑑𝑥 𝑗 : namely,
∏

𝑗≠𝑖 𝜌 𝑗 = 𝐽𝑃∨ (𝜌𝑖)
−1. �

In this way, the unprojected state space admits a double decomposition

𝑈𝑃 =
⊕
ℎ∈Aut𝑃

Jac(𝑃ℎ) (− age(ℎ)) =
⊕
ℎ∈Aut𝑃

⊕
𝑘∈Aut𝑃∨

𝑈𝑘
ℎ (𝑃), (21)

where𝑈𝑘
ℎ (𝑃) is the k-graded component of Jac(𝑃ℎ) (− age(ℎ)). We write

𝑈𝐾
𝐻 (𝑃) =

⊕
ℎ∈𝐻

⊕
𝑘∈𝐾

𝑈𝑘
ℎ (𝑃),

for any set 𝐻 ⊆ Aut𝑃 and 𝐾 ⊆ Aut𝑃∨ . When a subscript H or a supscript K is omitted, we assume that
H or K equal Aut𝑃 or Aut𝑃∨ . When no ambiguity may occur, we omit the polynomial P in the notation.

Proposition 28. The vector space𝑈𝐾
𝐻 is the 𝐾∨-invariant subspace of𝑈𝐻

𝑈𝐾
𝐻 (𝑃) = [𝑈𝐻 (𝑃)]𝐾

∨

.

In particular, we have

H𝑃,𝐻 ,𝑔 = 𝑈𝐻∨

𝑔𝐻 (𝑃).

Proof. By reinterpreting the definition of𝐾∨, we can see that, for any form f within Jac(𝑃ℎ) (− age(ℎ)) ⊆
𝑈𝑃 , we have ℓℎ ( 𝑓 ) ∈ 𝐾 if and only if f is invariant with respect to𝐾∨. The claim follows immediately. �

Theorem 29 (Krawitz [26], Borisov [7]). For any ℎ ∈ Aut𝑃 and 𝑘 ∈ Aut𝑃∨ , we have an explicit
isomorphism

𝑈𝑘
ℎ (𝑃) � 𝑈

ℎ
𝑘 (𝑃

∨),

yielding an explicit isomorphism

Mirror𝑃 : 𝑈𝑃 −→ 𝑈𝑃∨

mapping (𝑝, 𝑞)-classes to (𝑛 + 1 − 𝑝, 𝑞) classes.

We illustrate the isomorphism explicitly in the special case where 𝑃 = 𝑥𝑘 . It is elementary, and it
plays a crucial role in this paper.
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Example 30. Let 𝑃 = 𝑥𝑘 . Then Aut𝑃 equals Z𝑘 (because we fix a primitive kth root 𝜉). For 1 ∈ 𝜇𝜇𝜇𝑘 = Z𝑘 ,
we have 𝑃1 = 𝑃, so

Jac(𝑃1) = 𝑑𝑥C[𝑥]/(𝑥
𝑘−1) =

𝑘−1∑
ℎ=1
𝑈

𝜉 ℎ

1

with𝑈 𝜉 ℎ

1 spanned by 𝑥ℎ−1𝑑𝑥. Furthermore, for 𝑖 ≠ 0, we have 𝑃𝜉 𝑖 = 0, so

Jac(𝑃𝜉 𝑖 ) = C = 𝑈1
𝜉 𝑖

(for 𝑖 = 1, . . . , 𝑘 − 1).

By mapping 𝑥𝑖−1𝑑𝑥 ∈ Jac(𝑃1) to the generator 1𝜉 𝑖 of Jac(𝑃𝜉 𝑖 ), we have defined a map matching
(1 − 𝑖

𝑘 ,
𝑖
𝑘 )-classes to ( 𝑖𝑘 ,

𝑖
𝑘 )-classes.

If P is a polynomial which can be expressed as the sum of two invertible and nondegenerate
polynomials 𝑃′ and 𝑃′′ involving disjoint sets of variables, we clearly have Aut𝑃 = Aut𝑃′′ ×Aut𝑃′′ . This
and the theorem above imply the following crucial properties of the mirror map Mirror𝑃 .

Thom–Sebastiani. If P is a polynomial which can be expressed as the sum of two invertible and
nondegenerate polynomials

𝑃 = 𝑃′(𝑥 ′0, . . . , 𝑥
′
𝑛1 ) + 𝑃

′′(𝑥 ′′0 , . . . , 𝑥
′′
𝑛2 )

involving two disjoint sets of variables, then we have

Mirror𝑃 = Mirror𝑃′ ⊗ Mirror𝑃′′ .

Group actions. For any 𝐻, 𝐾 ⊆ Aut𝑃 , the restriction of Mirror𝑃 yields an isomorphism

Mirror𝑃 : [𝑈𝐻 (𝑃)]𝐾 � [𝑈𝐻∨ (𝑃∨)]𝐾
∨

. (22)

There are many consequences of the existence of Mirror𝑃 and of its properties with respect to group
actions. We list a few of them, starting from the first, most transparent, application. It appeared in [10],
and it should be regarded as a combination of the mirror map Mirror𝑃 of Krawitz and Borisov [26, 7]
and of the LG/CY isomorphism Φ of the first named author with Ruan [10]. There the isomorphism
is deduced by a combinatorial model. Here, we presented both sides of the correspondence in terms
of relative orbifold cohomology, and we deduced the main theorem from K-equivalence between the
ambient orbifolds. In this sense, the present setup clarifies [10].

Theorem 31 (mirror symmetry for CY models). For any invertible, nondegenerate P of Calabi–Yau
type and for any 𝐻 ⊆ Aut𝑃 satisfying 𝑗𝑃 ∈ 𝐻 ⊆ SL𝑃 , we have an isomorphism

𝐻 𝑝,𝑞
id (Σ𝑃,𝐻 ;C) � 𝐻𝑛−1−𝑝,𝑞

id (Σ𝑃∨ ,𝐻∨ ;C) (𝑝, 𝑞 ∈ Q).

Proof. Recall Definition 18:

H𝑃,𝐻 ,id =
⊕
ℎ∈𝐻

(Jac 𝑃ℎ)𝐻 (− age(ℎ)).

We get

H𝑃,𝐻 ,id = [𝑈𝐻 (𝑃)]𝐻 and H𝑃∨ ,𝐻∨ ,id = [𝑈𝐻∨ (𝑃)]𝐻
∨

Therefore, by equation (22), Mirror𝑃 gives an isomorphism Mirror𝑃 (H𝑃,𝐻 ,id) � H𝑃∨ ,𝐻∨ ,id. By as-
sumption, P satisfies the Calabi–Yau condition. We also have that 𝐻 � 𝑗𝑃 and 𝐻∨ � 𝑗𝑃∨—the latter
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follows from the assumption that 𝐻 ⊆ SL𝑃 . We can therefore apply Theorem 24 to both sides to ob-
tain the claim, at least without the grading. The fact that a (𝑝, 𝑞)-graded element is mapped to an
(𝑛− 1− 𝑝, 𝑞)-graded element follows from Theorem 29 and by the fact that the LG/CY correspondence
in Theorem 24 preserves the bidegree. �

The Thom–Sebastiani property applies to 𝑃′ = 𝑥𝑘0 and 𝑃′′ = 𝑓 adding up to

𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛).

The aim of this paper is to study the relation between the above cohomological mirror symmetry and
the symmetry 𝑠 = [ 1

𝑘 , 0, . . . , 0]. Note that 𝑠 = 𝜌0 in the notation of Remark 26.

Proposition 32. Let (𝜙, ℎ) be a monomial element

(𝜙, ℎ) =
���

𝑛∏
𝑗=0
𝑧
𝑏 𝑗−1
𝑗

𝑛∧
𝑗=0
𝑑𝑧 𝑗

���
in Jac(𝑃∨ℎ ) (− age(ℎ)). Let 𝜉 = exp(2𝜋i/𝑘). Then, 𝑠∗(𝜙, ℎ) = 𝜉𝑖 (𝜙, ℎ) if and only if Mirror𝑊 (𝜙, ℎ)

is of the form (𝜙′, ℎ′) with ℎ′ = [ 𝑖𝑘 , 𝑎1, . . . , 𝑎𝑛]. In particular, Mirror𝑊 maps invariant elements to
noninvariant elements.

Proof. This happens because s spans Aut𝑥𝑘0 , whose dual group is trivial. The claim follows by Mirror𝑊 =
Mirror𝑥𝑘0 ⊗ Mirror 𝑓 (see Example 30). �

6.2. Unprojected states and automorphisms

We study the behaviour of 𝑈𝑊 with respect to s. We begin by restricting to a conveniently large state
space H𝑊 within𝑈𝑊 .

Let us consider𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) and, as in §3.2, a subgroup 𝐾 ⊂ Aut 𝑓 satisfying

( 𝑗 𝑓 )
𝑘 ∈ 𝐾 ⊆ SL 𝑓 .

We define

H𝐾𝐾 [ 𝑗𝑊 ,𝑠] (𝑊) =
[
𝑈𝐾 [ 𝑗𝑊 ,𝑠] (𝑊)

]𝐾
=

⊕
ℎ∈𝐾 [ 𝑗𝑊 ,𝑠]

Jac(𝑃ℎ)𝐾 (− age(ℎ)). (23)

If no ambiguity arises, when the polynomial W and the group K are fixed, we write simply H.

Remark 33. We now have two important state spaces: H and H𝑃,𝐻 ,𝑔. The description of H𝑃,𝐻 ,𝑔 is
given in Definition 18; it is the Landau–Ginzburg state space which matches with the state space on the
Calabi–Yau side. H, on the other hand, is a larger space (in particular containing H) that allows us to
see the full mirror symmetry isomorphism on the Landau–Ginzburg side.

In the above setup, we have three groups: K, 𝐾 [ 𝑗𝑊 ] and 𝐾 [ 𝑗𝑊 , 𝑠]. Only 𝐾 [ 𝑗𝑊 ] satisfies the two
conditions of mirror symmetry theorems: Namely, it contains 𝑗𝑊 and is contained in SL𝑊 . Its mirror
group 𝐾 [ 𝑗𝑊 ]∨ has the same properties. The following proposition describes how K and 𝐾 [ 𝑗𝑊 , 𝑠]
behave with respect to the group duality. We omit the proof as it is identical to the proof in Proposition
6.2.2 in [12].

Proposition 34. Consider 𝐾 ∈ Aut 𝑓 satisfying ( 𝑗 𝑓 )
𝑘 ∈ 𝐾 ⊆ SL 𝑓 . Then we have

( 𝑗 𝑓 ∨)𝑘 ∈ (𝐾 [ 𝑗𝑊 , 𝑠])
∨ ⊆ SL 𝑓 ∨ and 𝐾∨ = (𝐾 [ 𝑗𝑊 , 𝑠])

∨[ 𝑗𝑊 ∨ , 𝑠] .
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Furthermore, we have a mirror isomorphism

Mirror𝑊 :
(
H𝐾𝐾 [ 𝑗𝑊 ,𝑠] (𝑊)

) 𝑝,𝑞
=

(
H
𝐾 [ 𝑗𝑊 ,𝑠]∨

𝐾∨ (𝑊∨)
)𝑛+1−𝑝,𝑞

. (24)

The unprojected state space projects to the sum of state spaces of the form H𝑊 ,𝐻,𝑔 after taking
𝑗𝑊 -invariant elements.

Corollary 35. We have

H 𝑗𝑊 =
𝑘−1⊕
𝑏=0

H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 .

In particular, if W is Calabi–Yau, we have

H 𝑗𝑊 =
𝑘−1⊕
𝑏=0
𝐻∗
𝑠𝑏
(Σ𝑊 ,𝐾 [ 𝑗𝑊 ] ;C),

where ( 𝑏𝑘 + 𝑝, 𝑏𝑘 + 𝑞)-classes in 𝐻∗
𝑠𝑏
(Σ𝑊 ,𝐾 [ 𝑗𝑊 ] ;C) match ( 𝑏𝑘 + 𝑝, 𝑏𝑘 + 𝑞)-classes in H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 for

any 𝑝, 𝑞 ∈ Z.

Proof. Tracking through the definition,

H𝐾𝐾 [ 𝑗𝑊 ,𝑠] (𝑊) =
⊕

ℎ∈𝐾 [ 𝑗𝑊 ,𝑠]

Jac(𝑃ℎ)𝐾 [ 𝑗𝑊 ] (− age(ℎ)),

which is precisely

𝑘−1⊕
𝑏=0

H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 .

Now we can apply equation (22) to obtain the claim. The statement about grading follows from the age
shift. �

6.3. The twist and the elevators

Throughout this section, the polynomial W and the group K will be fixed; we simplify the notation and
write

H := H𝐾𝐾 [ 𝑗𝑊 ,𝑠] (𝑊), 𝑗 := 𝑗𝑊 , H∨ := H𝐾 [ 𝑗𝑊 ,𝑠]∨

𝐾∨ (𝑊∨), 𝑗∨ = 𝑗𝑊 ∨ .

We also write M for the mirror map Mirror𝑊 .
Note that the monomial element (𝜙, ℎ) ∈ H with

𝜙 =
∏
𝑖∈𝐼

𝑥𝑏𝑖−1
𝑖

∧
𝑖∈𝐼

𝑑𝑥𝑖 and 𝐼 = {𝑖 | ℎ · 𝑥𝑖 = 𝑥𝑖}

is an eigenvector with respect to the diagonal symmetry 𝛼 = [𝑝0, . . . , 𝑝𝑛]: The eigenvalue is
exp(2𝜋i

∑
𝑗 𝑏 𝑗 𝑝 𝑗 ). It is natural to attach to each (𝜙, 𝑔) and 𝛼 the so-called 𝛼-charge of the form 𝜙

defined on the g-fixed space:

𝑄𝛼 : (𝜙, 𝑔) ↦→ 𝑄𝛼 (𝜙, 𝑔) =
∑
𝑗∈𝐽

𝑏 𝑗 𝑝 𝑗 mod Z.
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Definition 36. We define several important Q/Z-valued gradings on H. To do this, we decompose H as

H =
𝑘−1⊕
𝑎=0

𝑘−1⊕
𝑏=0

⊕
𝑔∈ 𝑗𝑎𝑠𝑏𝐾

(
Jac𝑊𝑔

)𝐾
.

The four Q/Z-valued gradings on the set of generators(
𝜙 =

∏
𝑖∈𝐼

𝑥𝑏𝑖−1
𝑖

∧
𝑖∈𝐼

𝑑𝑥𝑖 , 𝑔 = [𝑝0, 𝑝1, . . . , 𝑝𝑛] ∈ 𝑗
𝑎𝑠𝑏𝐾

)
are defined as

1. the j-charge 𝑄 𝑗 = 𝑄 𝑗 : (𝜙, 𝑔) ↦→ 𝑄 𝑗 (𝜙, 𝑔);
2. the j-degree 𝑑 𝑗 = 𝑎

𝑘 ;
3. the s-charge 𝑄𝑠 = 𝑄𝑠 : (𝜙, 𝑔) ↦→ 𝑄𝑠 (𝜙, 𝑔);
4. the s-degree 𝑑𝑠 = 𝑏

𝑘 .

We can now decompose

H =
⊕

0≤𝑎,𝑏,𝑐,𝑑≤𝑘−1

[
H | (𝑑 𝑗 , 𝑑𝑠 , 𝑄 𝑗 , 𝑄𝑠) =

1
𝑘
(𝑎, 𝑏, 𝑐, 𝑑)

]
.

The following proposition further simplifies the decomposition. By definition, the condition 𝑄𝑠 = 0
identifies the fixed space with respect to the action of s. The condition 𝑄𝑠 ≠ 0 identifies the space
spanned by the moving states. We make the following observation.

Proposition 37 (the moving subspace and the fixed subspace). For any element (𝜙, 𝑔), we have either
(i) 𝑑𝑠 = −𝑑 𝑗 mod Z, or (ii) 𝑄𝑠 ≠ 0.

Proof. This happens because 𝑄𝑠 = 0 if and only if 𝑔 · 𝑥0 = 𝑥0, i.e. 0 ∈ 𝐼. By definition of 𝑑𝑠 and 𝑑 𝑗 ,
we have 𝑔 ∈ 𝑗 𝑘𝑑 𝑗 𝑠𝑘𝑑𝑠𝐾 and 𝑔 · 𝑥0 = exp(2𝜋i(𝑑 𝑗 + 𝑑𝑠))𝑥0. We conclude that 𝑄𝑠 = 0 if and only if
𝑑𝑠 + 𝑑 𝑗 ∈ Z. �

In other words, H decomposes into an s-moving part H𝑚 (𝑄𝑠 ≠ 0) and an s-fixed part H 𝑓 (𝑄𝑠 = 0)

H = H𝑚 ⊕ H 𝑓 = [H | 𝑄𝑠 ≠ 0] ⊕ [H | 𝑄𝑠 = 0],

and the first summand is [H | 𝑑 𝑗 + 𝑑𝑠 = 0]; hence, the three parameters 𝑑 𝑗 , 𝑄 𝑗 , 𝑄𝑠 suffice for decom-
posing H𝑚, and the three parameters 𝑑 𝑗 , 𝑑𝑠 , 𝑄 𝑗 suffice for decomposing H 𝑓 . We write

H𝑚 =
⊕

0≤𝑋,𝑌<𝑘
0<𝑍<𝑘

[
H | (𝑑 𝑗 , 𝑄𝑠 −𝑄 𝑗 , 𝑄𝑠) =

1
𝑘
(𝑋,𝑌, 𝑍)

]
=

⊕
0≤𝑋,𝑌<𝑘

0<𝑍<𝑘

H𝑚𝑋,𝑌 ,𝑍 ,

H 𝑓 =
⊕

0≤𝑋,𝑌<𝑘
0<𝑍<𝑘

[
H | (𝑑 𝑗 ,−𝑄 𝑗 , 𝑑 𝑗 + 𝑑𝑠) =

1
𝑘
(𝑋,𝑌, 𝑍)

]
=

⊕
0≤𝑋,𝑌<𝑘

0<𝑍<𝑘

H
𝑓
𝑋 ,𝑌 ,𝑍 ,

where the choice of the three parameters in {0, . . . , 𝑘 − 1} modulo 𝑘Z are given by

𝑋 = 𝑘𝑑 𝑗 , 𝑌 =

{
𝑘 (𝑄𝑠 −𝑄 𝑗 ) in H𝑚

𝑘 (𝑄𝑠 −𝑄 𝑗 ) = −𝑘𝑄 𝑗 in H 𝑓
, 𝑍 =

{
𝑘𝑄𝑠 in H𝑚

𝑘 (𝑑 𝑗 + 𝑑𝑠) in H 𝑓 .
(25)

Note that the definition of Z depends on the sector. These choices are motivated by the following
proposition.
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Proposition 38 (twist). For 𝑍 = 1, . . . , 𝑘 − 1, we have an isomorphism

𝜏 : H𝑚𝑋,𝑌 ,𝑍 → H
𝑓
𝑋 ,𝑌 ,𝑍

(𝑥𝑍−1
0 𝑑𝑥0 ∧ 𝜙, 𝑔) ↦→ (𝜙, 𝑠𝑍𝑔)

transforming (𝑝, 𝑞)-classes into (𝑝 − 1 + 2𝑍/𝑘, 𝑞)-classes.

Proof. Indeed, the above homomorphism exchanges 𝑑 𝑗 +𝑑𝑠 with𝑄𝑠 and preserves 𝑑 𝑗 and𝑄𝑠−𝑄 𝑗 . Note
that 𝜏 only affects the 𝑥0 part of W: The fact that 𝜏 is an isomorphism follows from the Thom–Sebastiani
principle and the simple description of the state space for 𝑃′ = 𝑥𝑘0 . �

There are natural isomorphisms matching H 𝑓
𝑋 ,𝑌 ,1 � H

𝑓
𝑋 ,𝑌 ,2 � · · · � H 𝑓

𝑋 ,𝑌 ,𝑘−1 and H𝑚𝑋,𝑌 ,1 �
H𝑚𝑋,𝑌 ,2 � · · · � H𝑚𝑋,𝑌 ,𝑘−1. We refer to them as ‘elevators’.

Proposition 39 (elevators). For any 0 ≤ 𝑋,𝑌 < 𝑘 and 0 < 𝑍 ′ < 𝑍 ′′ < 𝑘 , we have the isomorphisms

𝑒𝑚𝑍 ′,𝑍 ′′ : H𝑚𝑋,𝑌 ,𝑍 ′ → H
𝑚
𝑋,𝑌 ,𝑍 ′′ 𝑒

𝑓
𝑍 ′,𝑍 ′′ : H 𝑓

𝑋 ,𝑌 ,𝑍 ′ → H
𝑓
𝑋 ,𝑌 ,𝑍 ′′

(𝜙, 𝑔) ↦→ (𝑥𝑍
′′−𝑍 ′

0 𝜙, 𝑔) (𝜙, 𝑔) ↦→ (𝜙, 𝑠𝑍
′′−𝑍 ′

𝑔),

with 𝑒𝑚𝑍 ′,𝑍 ′′ and 𝑒 𝑓𝑍 ′,𝑍 ′′ transforming (𝑝, 𝑞)-classes into classes whose bidegrees equal (𝑝 − (𝑍 ′′ −

𝑍 ′)/𝑘, 𝑞 + (𝑍 ′′ − 𝑍 ′)/𝑘) and (𝑝 + (𝑍 ′′ − 𝑍 ′)/𝑘, 𝑞 + (𝑍 ′′ − 𝑍 ′)/𝑘), respectively. �

For 0 < 𝑍 ′ < 𝑍 ′′ < 𝑘 , we set 𝑒𝑚𝑍 ′′,𝑍 ′ = (𝑒𝑚𝑍 ′,𝑍 ′′ )
−1 and 𝑒 𝑓𝑍 ′′,𝑍 ′ = (𝑒

𝑓
𝑍 ′,𝑍 ′′ )

−1.
Proposition 34 specializes to the following statement.

Proposition 40. The mirror isomorphism M yields isomorphisms

𝑀 : H 𝑓
𝑋 ,𝑌 ,𝑍

∼
−→ (H∨)𝑚𝑌 ,𝑋,𝑍 , 𝑀 : H𝑚𝑋,𝑌 ,𝑍

∼
−→ (H∨)

𝑓
𝑌 ,𝑋,𝑍 .

Proof. Let us consider M as a morphism mapping 𝑈𝑊 to 𝑈𝑊 ∨ . For 𝑊 = (𝑥0)
𝑘 + 𝑓 , we have 𝑊∨ =

((𝑥0)
𝑘 )∨ + 𝑓 ∨ = (𝑥0)

𝑘 + 𝑓 ∨. Using equation (21) and Thom–Sebastiani, every state of the form
(𝜙, 𝑔) ∈ 𝑈𝑊 can be regarded as an element of

(𝜙, 𝑔) ∈ 𝑈𝑏1
𝑎1 ⊗ 𝑈𝑏2

𝑎2

with 𝑎1 ∈ Aut(𝑥0)𝑘 = Z/𝑘 , 𝑏1 ∈ Aut( (𝑥0)𝑘 )∨ = Z/𝑘 , 𝑎2 ∈ Aut 𝑓 and 𝑏2 ∈ Aut 𝑓 ∨ . Example 30 shows
that there are only two possibilities: (1) 𝑏1 is the identity element or (2) 𝑎1 is the identity element. More
precisely, in case (1), (𝜙, 𝑔) is in H 𝑓 , it is fixed by s, 𝑏1 is the trivial symmetry 1 ∈ Aut(𝑥0)𝑘 and 𝑎1 is
the nontrivial character corresponding to 𝑘𝑑𝑠 ∈ Z/𝑘 \ {0}. In case (2), (𝜙, 𝑔) is in H𝑚, it is not fixed by
s and 𝑎1 is trivial whereas 𝑏1 is the nontrivial character 𝑘𝑄𝑠 ∈ Z/𝑘 \ {0}. Since M exchanges 𝑎1 and
𝑏1, this proves that M exchanges H𝑚 and H 𝑓 and preserves the coordinate Z which coincides with 𝑘𝑑𝑠
and 𝑘𝑄𝑠 within H𝑚 and H 𝑓 .

Furthermore, M maps 𝑈𝑏2
𝑎2 ( 𝑓 ) to 𝑈𝑎2

𝑏2
( 𝑓 ∨) with 𝑎2 ∈ SL 𝑓 [ 𝑗 𝑓 ] and 𝑏2 ∈ SL 𝑓 ∨ [ 𝑗 𝑓 ∨]. We recall that

𝑗 𝑘𝑓 ∈ SL on both sides; therefore, det 𝑎2 and det 𝑏2 are 𝜇𝜇𝜇𝑘 -characters. The claim (𝑋,𝑌, 𝑍) ↦→ (𝑌, 𝑋, 𝑍)
follows from

det 𝑎2 = −𝑘𝑑 𝑗 , det 𝑏2 = −𝑘𝑄𝑠 + 𝑘𝑄 𝑗 ,

where 𝜇𝜇𝜇𝑘 -characters are identified with elements of Z/𝑘 . The first identity is immediate: 𝑎2 is related to
(𝜙, 𝑔) ∈ 𝑈𝑊 by 𝑎2 = 𝑔 |𝑥0=0. The identity follows from det( 𝑗 |𝑥0=0) = 𝜉−1

𝑘 by the Calabi–Yau condition.
The second identity follows from the definition of

ℓ𝑎2 : Jac( 𝑓𝑎2) → Aut( 𝑓 ∨),
∏
𝑗

𝑥
𝑏 𝑗−1
𝑗

∧
𝑗

𝑑𝑥 𝑗 ↦→
∏
𝑗

𝜌
𝑏 𝑗
𝑗
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Figure 1. Two blocks (with elevators) representing the coordinates of the moving subspace H𝑚 and of
the fixed subspace H 𝑓 . The condition 𝑄 𝑗 = 0 defines a plane cutting the diagonal D of the left-hand
side face of the moving block; D represents the moving part of 𝐻∗

id(Σ𝑊 ,𝐻 ;C). On the fixed block, the
same condition𝑄 𝑗 = 0 defines the face on the right-hand side; within it, the diagonal 𝐷 ′ is symmetrical
to D and represents the fixed part of 𝐻∗

id(Σ𝑊 ,𝐻 ;C).

from equation (20): The determinant of 𝜌 𝑗 is 𝜉𝑤𝑗𝑑 ; hence, det(
∏

𝑗 𝜌
𝑏 𝑗
𝑗 ) is identified with the 𝑗 𝑓 -charge

𝑄 𝑗 𝑓 of the form 𝜙 restricted to (𝑥0 = 0). This yields an identification between det 𝑏2 and the 𝜇𝜇𝜇𝑘 -character
𝑘𝑄 𝑗 − 𝑘𝑄𝑠 . �

In view of the above proposition, mirror symmetry operates as a plane symmetry exchanging the two
blocks; see Figure 1.

Remark 41. For Fermat potentials, all the above discussion can be carried out more explicitly because
the group elements 𝑎𝑎𝑎 =

∏𝑛
𝑖=1 𝜌

𝑎𝑖
𝑖 coincide with 1

𝑑 [𝑎1𝑤1, . . . , 𝑎𝑛𝑤𝑛]. By adopting this notation, the
space𝑈𝑏

𝑎 (𝑊) may be regarded as the one-dimensional space spanned by(
𝜙 =

∏
𝑏𝑖>0

𝑥𝑏𝑖−1
𝑖

∧
𝑏𝑖>0

𝑑𝑥𝑖 , 𝑎𝑎𝑎 =
𝑛∏
𝑖=0
𝜌𝑎𝑖𝑖

)
,

where

𝑎𝑖 = 0 ⇔ 𝑏𝑖 ≠ 0. (26)

Mirror symmetry is simply an exchange of the 𝑤Z/𝑑Z-valued vectors 𝑎𝑎𝑎 and 𝑏𝑏𝑏. By unravelling Definition
23, the bidegree (𝑝, 𝑞) is given by(

#(𝑏𝑏𝑏) −
𝑛∑
𝑖=0
𝑏𝑖
𝑤𝑖
𝑑

+

𝑛∑
𝑖=0
𝑎𝑖
𝑤𝑖
𝑑
,

𝑛∑
𝑖=0
𝑏𝑖
𝑤𝑖
𝑑

+

𝑛∑
𝑖=0
𝑎𝑖
𝑤𝑖
𝑑
,

)
,

where #(𝑏𝑏𝑏) is the number of elements i such that 𝑏𝑖 ≠ 0. Notice that 𝑄𝑠 is 𝑏0/𝑘 and 𝑑𝑠 + 𝑑 𝑗 is 𝑎0/𝑘;
therefore, the equivalence in Proposition 37 reads 𝑏0 = 0 is a special case of equation (26). Furthermore,
we have

(𝑋,𝑌, 𝑍) =

{
(𝑎0 − |𝑎𝑎𝑎 |, 𝑏0 − |𝑏𝑏𝑏 |, 𝑏0) on the moving side,
(𝑎0 − |𝑎𝑎𝑎 |, 𝑏0 − |𝑏𝑏𝑏 |, 𝑎0) on the fixed side.
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It is now clear that M exchanges the moving side with the fixed side, (𝑋,𝑌, 𝑍) with (𝑌, 𝑋, 𝑍) and (𝑝, 𝑞)
with (𝑛 + 1 − 𝑝, 𝑞).

In view of Proposition 35, we obtain the j-invariant contribution by setting𝑄 𝑗 = 0. By equation (25),
this amounts to imposing 𝑌 = 𝑍 within H𝑚 and 𝑌 = 0 within H 𝑓 . We get

����
⊕

0≤𝑋<𝑘
0<𝑍<𝑘

H𝑚𝑋,𝑍 ,𝑍

���� ⊕
����

⊕
0≤𝑋<𝑘
0<𝑍<𝑘

H
𝑓
𝑋 ,0,𝑍

����
We get a picture of the j-invariant state space H𝑊 ,𝐾 [ 𝑗𝑊 ],id by setting 𝑋 = 0 within H𝑚 and 𝑋 = 𝑍

within H 𝑓

H𝑊 ,𝐾 [ 𝑗𝑊 ],id =

( ⊕
0<𝑡<𝑘

H𝑚0,𝑡 ,𝑡

)
⊕

( ⊕
0<𝑡<𝑘

H
𝑓
𝑡 ,0,𝑡

)
(we refer to Figure 1). More generally, the (𝑑𝑠 = 𝑏)-part of H 𝑗𝑊 is the state space H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 (see
Proposition 35). By equation (25), we obtain it by setting 𝑋 = −𝑏 within H𝑚 and 𝑍 = 𝑋 + 𝑏 within H 𝑓

H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 =

( ⊕
0<𝑡<𝑘

H𝑚−𝑏,𝑡 ,𝑡

)
⊕

����
⊕

0≤𝑡<𝑘
𝑡+𝑏≠0

H
𝑓
𝑡 ,0,𝑡+𝑏

����. (27)

Notice that the second summand only depends on H 𝑓
0,0,1 and H 𝑓

1,0,1, . . .H
𝑓
𝑘−1,0,𝑘−1 since, for 𝑏 ≠ 0, it

equals

H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 =

( ⊕
0<𝑡<𝑘

H𝑚−𝑏,𝑡 ,𝑡

)
⊕

����𝑒
𝑓
1,𝑏 (H

𝑓
0,0,1) ⊕

⊕
0<𝑡<𝑘
𝑡+𝑏≠0

𝑒
𝑓
𝑡 ,𝑡+𝑏 (H

𝑓
𝑡 ,0,𝑡 )

����, (28)

with the convention (𝑒
𝑓
𝑖, 𝑗 ) = (𝑒

𝑓
𝑗 ,𝑖)

−1 if 𝑗 < 𝑖. By Proposition 35, the above data correspond to
𝐻∗
𝑠𝑏
(Σ𝑊 ,𝐾 [ 𝑗𝑊 ] ;C) under the Calabi–Yau condition.

Proposition 9 relates it to the cohomology of an 𝑠𝑏-fixed locus within a crepant resolution. Using
this geometric picture, we can predict some vanishing conditions, which we prove in general, without
relying on any Calabi–Yau condition in the next proposition. The first guess is immediate: Since 〈𝑠〉
operates trivially on an s-fixed locus, it is natural to expect thatH𝑚

−1,𝑡 ,𝑡 vanishes for all t. More generally,
since 〈𝑠𝑏〉 operates trivially on an 𝑠𝑏-fixed locus, we expect that H𝑚

−𝑏,𝑡 ,𝑡 vanishes if 𝑡𝑏 ≡ 0 mod Z. We
prove that this holds true regardless of any Calabi–Yau condition or existence of crepant resolution.

Proposition 42. Let 𝑏 ∈ {0, . . . , 𝑘 − 1}. We have

H𝑚𝑏,𝑡 ,𝑡 = 0,

unless t is a multiple of 𝑘/gcd(𝑏, 𝑘) in 𝑘Z.

Proof. We prove that

H𝑚𝑏,𝑡 ,𝑡 ≠ 0
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implies 𝑏𝑡 ∈ 𝑘Z. Recall that 𝑡
𝑘 equals𝑄𝑠 −𝑄 𝑗 . ForH𝑚𝑏,𝑡 ,𝑡 ≠ 0, we can compute𝑄𝑠 −𝑄 𝑗 explicitly using

(𝜙, 𝑗𝑏𝑔) ∈ H𝑚𝑏,𝑡 ,𝑡 with 𝑔 ∈ Aut 𝑓 and 𝜙 a g-invariant form

𝜙 = 𝑥𝑘𝑄𝑠−1
0

∏
𝑙∈𝐼 ′

𝑥𝑏𝑙−1𝑑𝑥0 ∧
∧
𝑙∈𝐼 ′

𝑑𝑥𝑙

with 𝐼 ′ = {𝑙 ≥ 1 | 𝑗𝑏𝑔 · 𝑥𝑙 = 𝑥𝑙} ⊆ {1, . . . , 𝑁}. Using 𝑤0/𝑑 = 1/𝑘 , we get

𝑄𝑠 −𝑄 𝑗 = 𝑄𝑠 − 𝑘𝑄𝑠
1
𝑘
−

∑
𝑙∈𝐼 ′

𝑏𝑙
𝑤𝑙
𝑑

= −
∑
𝑙∈𝐼 ′

𝑏𝑙
𝑤𝑙
𝑑
.

Let us write g as [0, 𝑝1 . . . , 𝑝𝑛] ∈ Aut 𝑓 ; then we have 𝑙 ∈ 𝐼 ′ if and only if

𝑏
𝑤𝑙
𝑑

+ 𝑝𝑙 ∈ Z.

Now note that

𝑏
𝑡

𝑘
= −𝑏

∑
𝑙∈𝐼

𝑏𝑙
𝑤𝑙
𝑑

= −
∑
𝑙∈𝐼

𝑏𝑙𝑏
𝑤𝑙
𝑑
.

Up to an element of Z, this is ∑
𝑙∈𝐼

𝑏𝑙 𝑝𝑙 ∈ Z,

where the last relation holds since 𝜙 is g-invariant. So k divides 𝑏𝑡. �

6.4. Mirror symmetry on the Landau–Ginzburg side

In this section, we derive an interpretation of Proposition 40 in terms of the Landau–Ginzburg state
space. This amounts to expressing both sides of the isomorphism H𝑚𝑋,𝑌 ,𝑍 � H

𝑓
𝑌 ,𝑋,𝑍 in terms of 𝑗𝑊 -

invariant spaces.
Consider the 𝑗𝑊 -invariant summands

H𝑚𝑋,𝑌 ,𝑌 ⊂ H𝑚 and H 𝑓
𝑋 ,0,𝑍 ⊂ H 𝑓 .

Their mirrors (i.e., their image under M) are (H∨)
𝑓
𝑌 ,𝑋,𝑌 and (H∨)𝑚0,𝑋 ,𝑍 and lie in the 𝑗𝑊 -invariant part

if and only if 𝑋 = 0 and 𝑋 = 𝑍 . This happens if and only if we consider the mirror of [H | 𝑄 𝑗 = 𝑑𝑠 = 0]
(imposing 𝑋 = 0 in H𝑚 and 𝑋 = 𝑍 in H 𝑓 is the same as requiring 𝑑𝑠 = 0).

We obtain the first consequence of Proposition 40. Let[
H𝑊 ,𝐻,id

] 𝑝,𝑞
𝜒𝑠=𝑖

be the eigenspace on which s operates as the character 𝑖 ∈ Z/𝑘Z. For any 𝐻 ∈ Aut𝑊 containing 𝑗𝑊 , we
have

𝑀 :
[
H𝑊 ,𝐻,id

] 𝑝,𝑞
𝜒𝑠=0

�
−−−→

𝑘−1⊕
𝑖=1

[
H𝑊 ∨ ,𝐻∨ ,id

]𝑛+1−𝑝,𝑞
𝜒𝑠=𝑖

, (29)

where 𝐻 = 𝐾 [ 𝑗].
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We now study H 𝑓
0,0,𝑖 . By Proposition 40, the subspace (H∨)

𝑓
0,0,𝑖 mirrors H𝑚0,0,𝑖 under M. By applying

the twist 𝜏 from Proposition 38, we land again on (H∨)
𝑓

0,0,𝑖 which is a part of the j-invariant state space
H𝑊 ∨ ,𝐻∨ ,𝑠𝑖 .

Recall that the elevator maps for 𝑡 ≠ 0, 𝑘 − 𝑖

𝑒
𝑓
𝑡 ,𝑡+𝑖 : H 𝑓

𝑡 ,0,𝑡 −−−→ H
𝑓
𝑡 ,0,𝑡+𝑖

can be viewed as mapping into components of H𝑠
𝑊 ,𝐻 ,𝑠𝑖

(see equation (27)). We can conclude from
equation (28) that the homomorphism

𝑒𝑙𝑖 :=
⊕

𝑡≠0,𝑘−𝑖
𝑒
𝑓
𝑡 ,𝑡+𝑖 :

⊕
𝑡≠0,𝑘−𝑖

H
𝑓
𝑡 ,0,𝑡 −−−→

[
H𝑊 ,𝐻,𝑠𝑖

] 𝑠 (30)

has cokernel H 𝑓
0,0,𝑖 . Here 𝑡 + 𝑖 is understood to be mod k. This means that the effect of the map on

grading can be described as

im(𝑒𝑙𝑖) (
𝑖
𝑘 ) �

⊕
0<𝑡<𝑘−𝑖

H
𝑓
𝑡 ,0,𝑡 ⊕

⊕
𝑘−𝑖<𝑡<𝑘

H
𝑓
𝑡 ,0,𝑡 (1).

We write 𝑒𝑙∨𝑖 for the same construction on the mirror. We conclude

𝑀 :

[
H𝑊 ,𝐻,𝑠𝑖 (

𝑖
𝑘 )

𝑠

im(𝑒𝑙𝑖) (
𝑖
𝑘 )

] 𝑝,𝑞
�

−−−→

[
H𝑊 ∨ ,𝐻∨ ,𝑠𝑖 (

𝑖
𝑘 )

𝑠

im(𝑒𝑙∨𝑖 ) (
𝑖
𝑘 )

]𝑛−𝑝,𝑞
, (31)

where the bidegrees have been computed using H( 𝑖𝑘 )
𝑝,𝑞 = H𝑝+𝑖/𝑘,𝑞+𝑖/𝑘 , the fact that 𝑀𝑊 transforms

(𝑝, 𝑞)-classes to (𝑛 + 1 − 𝑝, 𝑞)-classes and the twist 𝜏 maps (𝑝, 𝑞)-classes to (𝑝 − 1 + 2𝑖
𝑘 , 𝑞)-classes.

Note that using equation (29) (recalling that 𝑑 𝑗 and 𝑑𝑠 switch under mirror symmetry) we can write

[im(𝑒𝑙∨𝑖 ) (
𝑖
𝑘 )]

𝑛−𝑝,𝑞 =
⊕

0< 𝑗<𝑘−𝑖

[
H𝑊 ,𝐻,id (1, 0)

] 𝑝,𝑞
𝜒𝑠= 𝑗

⊕
⊕

𝑘−𝑖< 𝑗<𝑘

[
H𝑊 ,𝐻,id (0, 1)

] 𝑝,𝑞
𝜒𝑠= 𝑗
.

Write H𝑔 for H𝑊 ,𝐻,𝑔 and H∨
𝑔 for H𝑊 ∨ ,𝐻∨ ,𝑔 .We obtain

𝑀 : [H𝑠𝑖
(
𝑖
𝑘

)
]
𝑝,𝑞
𝜒𝑠=0 ⊕

⊕
𝑗<𝑘−𝑖

[Hid(1, 0)] 𝑝,𝑞𝜒𝑠= 𝑗
⊕

⊕
𝑗>𝑘−𝑖

[Hid(0, 1)] 𝑝,𝑞𝜒𝑠= 𝑗
�

−−−→

[H∨
𝑠𝑖

(
𝑖
𝑘

)
]
𝑛−𝑝,𝑞
𝜒𝑠=0 ⊕

⊕
𝑗<𝑘−𝑖

[
H∨

id(1, 0)
]𝑛−𝑝,𝑞
𝜒𝑠= 𝑗

⊕
⊕
𝑗>𝑘−𝑖

[
H∨

id(0, 1)
]𝑛−𝑝,𝑞
𝜒𝑠= 𝑗

,
(32)

where 0 < 𝑗 < 𝑘. Finally, we focus on the moving part of H𝑊 ,𝐾 [ 𝑗𝑊 ],𝑠𝑏 which, by equation (28) can be
written as

⊕
0<𝑡<𝑘 H

𝑚
𝑘−𝑏,𝑡 ,𝑡 . This is the decomposition of H𝑊 ,𝐾 [ 𝑗 ],𝑠𝑏 into eigenspaces corresponding

to the s-action operating as the character 𝑡 ∈ Z/𝑘 . By applying the mirror map 𝑀𝑊 , the twist 𝜏−1 and
the elevator 𝑒 𝑓𝑡 ,𝑘−𝑏 we get

H𝑚𝑘−𝑏,𝑡 ,𝑡
𝑀𝑊

−−−−→ (H∨)
𝑓
𝑡 ,𝑘−𝑏,𝑡

𝜏−1

−−−−→ (H∨)𝑚𝑡,𝑘−𝑏,𝑡

𝑒𝑚𝑡,𝑘−𝑏
−−−−−−→ (H∨)𝑚𝑡,𝑘−𝑏,𝑘−𝑏 .

Therefore, we have [
H𝑊 ,𝐻,𝑠𝑏

(
𝑏
𝑘

)] 𝑝,𝑞
𝜒𝑠=𝑡
�

[
H𝑊 ∨ ,𝐻∨ ,𝑠𝑡

(
𝑘−𝑡
𝑘

)]𝑛−𝑝,𝑞
𝜒𝑠=𝑘−𝑏

. (33)
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Notice that the map on the bidegrees is the composite of

1. a shift (𝑝, 𝑞) ↦→ (𝑝 + 𝑏/𝑘, 𝑞 + 𝑏/𝑘),
2. mirror symmetry (𝑝, 𝑞) ↦→ (𝑛 + 1 − 𝑝, 𝑞),
3. 𝜏−1 yielding (𝑝, 𝑞) ↦→ (𝑝 + 1 − 2𝑡/𝑘, 𝑞),
4. the elevator yielding (𝑝, 𝑞) ↦→ (𝑝 + (𝑏 − (𝑘 − 𝑡))/𝑘, 𝑞 + (𝑏 + (𝑘 − 𝑡))/𝑘),
5. a shift backwards (𝑝, 𝑞) ↦→ (𝑝 − (𝑘 − 𝑡)/𝑘, 𝑞 − (𝑘 − 𝑡)/𝑘),

inducing (𝑝, 𝑞) ↦→ (𝑛 − 𝑝, 𝑞).
We now are almost ready to state the theorem, which will follow from applying equations (29), (32)

and (33) to the geometric interpretation (18) of the Landau–Ginzburg state space in terms of relative
cohomology of (V𝐻 , F𝑊 ,𝐻 ) (provided in §5.3).

Let 𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) be a quasi-homogeneous nondegenerate polynomial of degree d and
weights 𝑤1, . . . , 𝑤𝑛. Assume 𝑗𝑊 ∈ 𝐻 ⊆ SL𝑊 (in particular,

∑
𝑗 𝑤 𝑗 is a positive multiple of 𝑑N).

Then W descends to V𝐻 = [V/𝐻0] → C and its generic fibre is F𝑊 ,𝐻 . Consider the automorphism
𝑠 = [ 1

𝑘 , 0, . . . , 0] : V𝐻 → V𝐻 , the orbifold cohomology groups 𝐻∗
id(V𝐻 , F𝑊 ,𝐻 ) and 𝐻∗

𝑠 (V𝐻 , F𝑊 ,𝐻 ).
For 0 < 𝑖 < 𝑘 , define 𝐻∗

id,𝑖 (V𝐻 , F𝑊 ,𝐻 ) to be the bigraded vector space⊕
𝑗<𝑘−𝑖

[
𝐻∗

id(V𝐻 , F𝑊 ,𝐻 ) (1, 0)
]
𝜒𝑠= 𝑗

⊕
⊕
𝑗>𝑘−𝑖

[
𝐻∗

id(V𝐻 , F𝑊 ,𝐻 ) (0, 1)
]
𝜒𝑠= 𝑗

;

here 𝑗 ∈ {1, . . . , 𝑘 − 1}. This is the padding needed to state the mirror theorem.

Theorem 43 (mirror theorem for Landau–Ginzburg models). Let 𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) be a quasi-
homogeneous, nondegenerate, invertible polynomial and H a group of symmetries satisfying 𝑗𝑊 ∈ 𝐻 ⊆

SL𝑊 . As above, the polynomial W descends to V𝐻 = [V/𝐻0] → C, and its generic fibre is F𝑊 ,𝐻 .
Then, for b and 𝑡 ≠ 0, we have

1. 𝐻 𝑝,𝑞
id (V𝐻 , F𝑊 ,𝐻 )𝜒𝑠=0 �

⊕𝑘−1
𝑖=1 𝐻

𝑛+1−𝑝,𝑞
id (V𝐻∨ , F𝑊 ∨ ,𝐻∨)𝜒𝑠=𝑖;

2. Let F := F𝑊 ,𝐻 and F∨ := F𝑊 ∨ ,𝐻∨ .
For 0 < 𝑖 < 𝑘 ,[

𝐻 𝑝,𝑞

𝑠𝑖
(V𝐻 , F)

(
𝑖
𝑘

) ] 𝑠
⊕ 𝐻

𝑝,𝑞
id,𝑖 (V𝐻 , F) �

[
𝐻𝑛−𝑝,𝑞

𝑠𝑖
(V𝐻∨ , F∨)

(
𝑖
𝑘

) ] 𝑠
⊕ 𝐻

𝑛−𝑝,𝑞
id,𝑖 (V𝐻∨ , F∨);

3. 𝐻 𝑝,𝑞

𝑠𝑏
(V𝐻 , F𝑊 ,𝐻 )

(
𝑏
𝑘

)
𝜒𝑠=𝑡
� 𝐻𝑛−𝑝,𝑞

𝑠−𝑡
(V𝐻∨ , F𝑊 ∨ ,𝐻∨)

(
𝑘−𝑡
𝑘

)
𝜒𝑠=−𝑏

.

Proof. Since H equals 𝐾 [ 𝑗𝑊 ] for a suitable 𝐾 ⊆ SL 𝑓 containing 𝑗 𝑘𝑊 , we can conclude that H𝑝,𝑞
𝑃,𝐻 ,𝑔 =

𝐻 𝑝,𝑞
𝑔 (V𝐻 ;F𝑃,𝐻 ). Using this result, we can translate the results derived above into the form stated in

the theorem. More precisely, equation (29) directly gives the first part, equation (32) the second and
equation (33) the third. �

7. Geometric mirror symmetry

If W is of Calabi–Yau type, via the Landau–Ginzburg/Calabi–Yau correspondence of Theorem 24 based
on Φ : 𝐻∗(V;C) → 𝐻∗(L;C), we provide an equivalent statement on the Calabi–Yau side.

The existence of the isomorphism Φ is guaranteed by the Calabi–Yau condition (ensuring
K-equivalence). As before, for 0 < 𝑖 < 𝑘 , define 𝐻∗

id,𝑖 (Σ𝑊 ,𝐻 ) to be the bigraded vector space⊕
𝑗<𝑘−𝑖

[
𝐻∗

id(Σ𝑊 ,𝐻 ) (1, 0)
]
𝜒𝑠= 𝑗

⊕
⊕
𝑗>𝑘−𝑖

[
𝐻∗

id(Σ𝑊 ,𝐻 ) (0, 1)
]
𝜒𝑠= 𝑗
, (34)

where again, j runs between 1 and 𝑘 − 1. Then we have the following statement.
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Theorem 44 (mirror theorem for CY orbifolds with automorphism s). Let𝑊 = 𝑥𝑘0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) be a be
a quasi-homogeneous, nondegenerate, invertible, Calabi–Yau polynomial and H a group of symmetries
satisfying 𝑗𝑊 ∈ 𝐻 ⊆ SL𝑊 . Let Σ = Σ𝑊 ,𝐻 and Σ∨ = Σ𝑊 ∨ ,𝐻∨ . Then the following holds for 𝑏, 𝑡 ≠ 0.

1. Let 𝑑 = 𝑛 − 1. Then 𝐻 𝑝,𝑞
id (Σ)𝜒𝑠=0 �

⊕𝑘−1
𝑖=1 𝐻

𝑑−𝑝,𝑞
id (Σ∨)𝜒𝑠=𝑖;

2. Let 𝑑 = 𝑛 − 2. For 0 < 𝑖 < 𝑘 ,[
𝐻 𝑝,𝑞

𝑠𝑖
(Σ)

(
𝑖
𝑘

) ] 𝑠
⊕ 𝐻

𝑝,𝑞
id,𝑖 (Σ) �

[
𝐻𝑑−𝑝,𝑞

𝑠𝑖
(Σ∨)

(
𝑖
𝑘

) ] 𝑠
⊕ 𝐻

𝑑−𝑝,𝑞
id,𝑖 (Σ∨);

3. Let 𝑑 = 𝑛 − 2. Then 𝐻 𝑝,𝑞

𝑠𝑏
(Σ)𝜒𝑠=𝑡

(
𝑏
𝑘

)
� 𝐻𝑑−𝑝,𝑞

𝑠−𝑡
(Σ∨)

(
𝑘−𝑡
𝑘

)
𝜒𝑠=−𝑏

.

Proof. This follows immediately from Theorem 43 and the LG/CY correspondence (Theorem 24). �

Remark 45. In the theorem, d denotes the maximum of the dimensions of the components of the inertia
stack considered in each case.

For 𝑘 = 2, the second equation of the statement of Theorem 44 can be stated as a mirror symmetry
statement involving the cohomology groups 𝐻∗

𝑠 . Notice that the first statement says that Berglund–
Hübsch mirror symmetry exchanges invariant (𝑝, 𝑞)-classes for Σ𝑊 ,𝐻 and anti-invariant (𝑛− 1− 𝑝, 𝑞)-
classes of Σ𝑊 ∨ ,𝐻∨ (and vice versa). Finally, the third statement is trivial because both sides vanish by
Proposition 42. In this way, we recover the main theorem of [12].

Corollary 46. Let 𝑊 = 𝑥2
0 + 𝑓 (𝑥1, . . . , 𝑥𝑛) be a be a quasi-homogeneous, nondegenerate, invertible,

Calabi–Yau polynomial and H a group of symmetries satisfying 𝑗𝑊 ∈ 𝐻 ⊆ SL𝑊 . Then, we have

𝐻 𝑝.𝑞
id (Σ𝑊 ,𝐻 )± � 𝐻𝑛−1−𝑝,𝑞

id (Σ𝑊 ∨ ,𝐻∨)∓;

𝐻 𝑝,𝑞
𝑠 (Σ𝑊 ,𝐻 )

(
1
2

)
� 𝐻𝑛−2−𝑝,𝑞

𝑠 (Σ𝑊 ∨ ,𝐻∨)
(

1
2

)
.

Example 47. Let us consider 𝐸 = (𝑥6 + 𝑦3 + 𝑧2 = 0) within P(1, 2, 3) with its order-6 symmetry
𝑠 = [ 1

6 , 0, 0]. In this case, the ‘Calabi–Yau orbifold’ is represented by an elliptic curve. The cohomology
groups 𝐻∗

𝑠𝑏
describe the cohomology of the 𝑠𝑏-fixed loci 𝐸𝑏 , shifted by ( 𝑏6 ,

𝑏
6 ). Furthermore, the mirror

of E coincides with E because the defining equation is of Fermat type and J equals SL (the order of
SL is 𝑤𝑥𝑤𝑦𝑤𝑧/deg and equals the order deg of J). This example allows us to test H as a state space
computing the cohomology of E and the cohomology of its fixed spaces satisfying 𝐸1 = 𝐸2 ∩ 𝐸3 and
𝐸2 = 𝐸4. Since E is the elliptic curve with order-6 complex multiplication, 𝐸1 is the origin and the
fixed spaces 𝐸3 (= 𝐸 [2]) and 𝐸2 are, respectively, a set of four points and three points intersecting at
the origin. Clearly, 𝐸3 \ 𝐸1 is the unique order-3 orbit and 𝐸2 \ 𝐸1 is the unique order-2 orbit.

The bth row in the table below represents the ranks of contributions of H[𝑑𝑠 = 𝑏
6 ], whereas the

ath column represents the contributions to the state space of H[𝑑 𝑗 = 𝑎
6 ]. Notice that, by means of the

elevators, all rows are identical except for the antidiagonal entries of the form H[𝑑 𝑗 + 𝑑𝑠 = 0], which
we underlined.

dim(𝐻id) = 2 1 0 0 0 1

dim(𝐻𝑠) = 0 1 0 0 0 0
dim(𝐻𝑠2 ) = 0 1 0 0 1 1
dim(𝐻𝑠3 ) = 0 1 0 2 0 1
dim(𝐻𝑠4 ) = 0 1 1 0 0 1
dim(𝐻𝑠5 ) = 0 0 0 0 0 1

The 0th row is the four-dimensional cohomology of the elliptic curve E organised in its two-
dimensional primitive part (spanned by the forms 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 and 𝑥4𝑦𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧) and its two-
dimensional ambient part arising in the state space H[𝑑𝑠 = 0, 𝑑 𝑗 = 𝑎/6] for 𝑎 = 1 and 𝑎 = 5 (j and 𝑗5
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correspond to the only narrow sectors of the state space, i.e., the only powers of [ 1
6 ,

1
3 ,

1
2 ] fixing only the

origin). On the row corresponding to𝐻∗
𝑠 , there is a single contribution for 𝑑 𝑗 = 1/5. This happens because

𝐸1 is a point. Furthermore, H[𝑑 𝑗 = 5/6, 𝑑𝑠 = 1/6] = H[𝑑 𝑗 = 1/6, 𝑑𝑠 = 5/6] vanish by Proposition 42.
The remaining antidiagonal terms are H[𝑑 𝑗 = 4/6, 𝑑𝑠 = 2/6] = H[𝑑 𝑗 = 2/6, 𝑑𝑠 = 4/6] = 〈𝑥2𝑑𝑥 ∧ 𝑑𝑧〉
and H[𝑑 𝑗 = 3/3, 𝑑𝑠 = 3/3] = 〈𝑥𝑦𝑑𝑥 ∧ 𝑑𝑦, 𝑥3𝑑𝑥 ∧ 𝑑𝑦〉.

The above mirror symmetry statement (1) involves the first row and claims that all fixed cohomology
classes appearing for 𝑑 𝑗 = 1

6 , . . . ,
5
6 match the classes of H[𝑑 𝑗 = 0, 𝑑𝑠 = 0]; we already noticed that this

identifies two two-dimensional spaces of ambient and primitive cohomology. Statement (2), for 𝑖 = 1,
says that the one-dimensional space H[𝑑𝑠 = 0, 𝑞 𝑗 = 1, 2, 3, 4] (spanned by the class 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧)
matches the cohomology class spanned by 𝑥4𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧.

Statement (3) is a map 𝑀 : 𝑥𝑦𝑑𝑥∧𝑑𝑦 ↦→ 𝑥2𝑑𝑥∧𝑑𝑧 ∈ H[𝑑 𝑗 = 2
6 , 𝑑𝑠 =

4
6 ] and a map 𝑀 : 𝑥3𝑑𝑥∧𝑑𝑦 ↦→

𝑥2𝑑𝑥 ∧ 𝑑𝑧 ∈ H[𝑑 𝑗 = 4
6 , 𝑑𝑠 =

2
6 ]. In this way,

𝑀 : H
[
𝑑 𝑗 =

3
6
, 𝑑𝑠 =

3
6

]
�

−−−−−→ H

[
𝑑 𝑗 =

2
6
, 𝑑𝑠 =

4
6

]
⊕ H

[
𝑑 𝑗 =

4
6
, 𝑑𝑠 =

2
6

]
.

In geometric terms, mirror symmetry matches the order-2 orbit to the order-3 orbit. More precisely, the
mirror statement (3) claims that there are as many eigenvectors of eigenvalue (𝜒6)

2 and (𝜒6)
4 in the

cohomology of 𝐸3 as eigenvectors of eigenvalue (𝜒6)
3 in the cohomology of 𝐸2 and of 𝐸4.

Example 48. We consider the genus-3 curve C defined by the degree-4 Fermat quartic 𝑥4
1+𝑥

4
2+𝑥

4
3 = 0 in

P2. The 4-fold cover of P2 ramified on C is a K3 surface defined as the vanishing locus of the polynomial
𝑊 = 𝑥4

0 + 𝑥
4
1 + 𝑥

4
2 + 𝑥

4
3. In this example, the Calabi–Yau orbifold Σ𝑊 is again representable and we can

treat the cohomologies 𝐻∗
id and 𝐻∗

𝑠 as ordinary cohomologies of the K3 surface and of the ramification
locus. As in the previous example, we display the cohomological data in a table. The bth row in the
table below represents the ranks of contributions of H[𝑑𝑠 = 𝑏

4 ], whereas the ath column represents the
contributions to the state space of H[𝑑 𝑗 = 𝑎

4 ].

dim(𝐻id) =
0

6+7+61 1

0

0

00 0

1

0

10 0

0

1

00 0

0

dim(𝐻𝑠) = 0

0
3 3

1

0
0 0

0

1
0 0

0

0
0 0

dim(𝐻𝑠2) =
0

0
3 3

1

0
0 0

0

0
0 0

0

1
0 0

dim(𝐻𝑠3) =
0

0
3 3

1

0
0 0

1

0
0 0

0

1
0 0

The colors in the table refer to the weight of s: Cohomology in red has character 1, blue has character
2 and green has character 3. Statement (2) involves, on one side, the cohomology of the curve C (𝐻𝑠)
and the moving cohomology of the K3 surface with weights 1 and 2. The total cohomology on one side
of statement (2) is thus

1

1
3+1 3+13

.

We notice that the only SL-invariant broad cohomology classes in the entire unprojected state space
𝑈 (𝑊) are contained in 𝑈 (𝑊)id; this implies 𝑈 (𝑊)SL

𝑠𝑔 = 0. Hence, 𝐻∗
prim,𝑠 vanishes. One can compute

the mirror table as
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dim(𝐻id) =
0

0+1+11 1

0

0

60 0

1

0

70 0

0

1

60 0

0

dim(𝐻𝑠) = 3

3
0 0

1

6
0 0

0

7
0 0

0

0
0 0

dim(𝐻𝑠2 ) =
3

3
0 0

1

6
0 0

0

0
0 0

6

1
0 0

dim(𝐻𝑠3 ) =
3

3
0 0

0

0
0 0

7

0
0 0

6

1
0 0

From this, we see that the mirror s-fixed locus is four projective curves and 12 isolated fixed points.
The mirror Hodge diamond for statement (2) is

4

16
0+1 0+1

.

Note that despite being an order-2 automorphism, the Hodge diamonds of the fixed loci of 𝑠2 do not
mirror each other.

Clearly, mirror symmetry should also yield a relation between the quantum invariants of the primitive
classes of the curve and the orbifold quantum invariants of these sectors.

The structure of the of the above example is shared by all K3 orbifolds of this type with order-4
automorphism. Combining the mirror theorem with the fact that s and 𝑠3 have the same fixed locus (and
hence cohomology of the same dimension), we can see that, for any 𝑊 = 𝑥4

0 + 𝑓 (𝑥1, 𝑥2, 𝑥3) and group
G, the table for Σ𝑊 ,𝐺 is given by

dim(𝐻id) =
0

𝑎−1+𝑏+𝑎−11 1

0

0

𝑎∨−10 0

1

0

𝑏∨0 0

0

1

𝑎∨−10 0

0

dim(𝐻𝑠) = 𝑔∨

𝑔∨

𝑔 𝑔

1

𝑎∨−1
0 0

0

𝑏∨

0 0
0

0
0 0

dim(𝐻𝑠2) =
𝑔∨

𝑔∨

𝑔 𝑔

1

𝑎∨−1
0 0

𝑐

𝑐
𝑐∨ 𝑐∨

𝑎∨−1

1
0 0

dim(𝐻𝑠3) =
𝑔∨

𝑔∨

𝑔 𝑔

0

0
0 0

𝑏∨

0
0 0

𝑎∨−1

1
0 0

.

The table for the Σ𝑊 ∨ ,𝐺∨ is obtained from this table by replacing 𝑥 ↦→ 𝑥∨.
Using this table, we can find relationships between the topological invariants of the fixed loci of

crepant resolutions of 𝔛 := Σ𝑊 ,𝐺 and its mirror 𝔛∨. Example 11 shows that there is an isomorphism
between the 𝑠3-orbifold cohomology of 𝔛 and the cohomology of the s fixed locus in the resolution
𝑋 . Recall that this is because for K3 surfaces, the age function is constant (of 3/4) on the 𝑠3-orbifold
cohomology of the resolution. By similar reasoning, the 𝑠2-orbifold cohomology of 𝑋 also has a constant
age function (of 1/2).

Now consider the following invariants for 𝑖 = 1, 2:

◦ 𝑓𝑖 , the number of isolated fixed points of 𝑠𝑖;
◦ 𝑔𝑖 , the sum of the genera of the fixed curves of 𝑠𝑖;
◦ 𝑁𝑖 , the number of curves in the fixed locus of 𝑠𝑖 .

A superscript ∨ indicates the invariants of the mirror K3.
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Corollary 49. We have
1. 𝑁1 = 𝑔∨1 + 1;
2. 𝑁2 + 𝑔2 + 𝑓1 = 20 − 𝑁∨

2 − 𝑔∨2 − 𝑓 ∨1 .

Proof. The table above implies that 2𝑎 + 𝑏 + 2𝑎∨ + 𝑏∨ = 24 and that 𝑔1 = 𝑔, 𝑁1 = 𝑔∨ + 1, and
𝑓1 = 𝑎∨ + 𝑏∨ − 2. The statements for the mirror invariants are obtained by 𝑥 ↔ 𝑥∨: For example,
𝑁∨

1 = 𝑔 + 1.
Similarly, 𝑁2 − 𝑔

∨
2 = (𝑔∨ + 𝑐 + 𝑎∨) − (𝑔∨ + 𝑐) = 𝑎∨, which implies the statement. �

The same analysis also works for K3 surfaces with prime order automorphisms. Let W be a Calabi–
Yau polynomial of the form𝑊 = 𝑥𝑝0 + 𝑓 (𝑥1, 𝑥2, 𝑥3) for p prime. Then the Landau–Ginzburg state space
breaks down as

dim(𝐻id) =
0

(𝑝−1)𝑎−21 1

0

0

𝑎∨−10 0

1 · · ·

0

𝑎∨0 0

0 · · ·

1

𝑎∨−10 0

0

dim(𝐻𝑠) = 𝑔∨

𝑔∨

𝑔𝑔

1

𝑎∨−1
00

· · · 0

𝑎∨

00
· · · 0

0
00

dim(𝐻𝑠2) =
𝑔∨

𝑔∨

𝑔𝑔

1

𝑎∨−1
00

0

𝑎∨

00
· · · 0

0
00

𝑎∨−1

1
00

...
...

dim(𝐻𝑠𝑝−1 ) =
𝑔∨

𝑔∨

𝑔𝑔

0

0
00

𝑎∨

0
00

· · · 𝑎∨

0
00

𝑎∨−1

1
00

The following lemma follows immediately from considering this table.
Lemma 50. Suppose Σ𝑊 ,𝐻 is a K3 orbifold with𝑊 = 𝑥𝑝0 + 𝑓 (𝑥1, 𝑥2, 𝑥3). Then 𝑝 − 1|24.

Let �̃� be a crepant resolution of 𝔛 = Σ(𝑊,𝐺) and �̃�∨ a crepant resolution of the mirror. The fixed
locus of s is a disjoint union of curves an isolated fixed points. As before, let 𝑓1 be the number of isolated
fixed points, 𝑁1 the number of curves, and 𝑔1 the sum of the genera of the curves.
Corollary 51. Suppose 𝑝 > 2. Then 𝑁1 = 𝑔∨1 + 1 and

𝑓1 + 𝑓
∨
1 + 4 =

(𝑝 − 2)
(𝑝 − 1)

24.

Proof. Using the table, it is easy to see

𝑁1 = 𝑔∨ + 1, 𝑔1 = 𝑔.

Additionally,

𝑓1 = (𝑝 − 2)𝑎∨ − 2.

Combining this with (𝑝 − 1)𝑎 + (𝑝 − 1)𝑎∨ = 24, we obtain the statement in the theorem. �

This corollary implies that Berglund–Hübsch mirror symmetry agrees with mirror symmetry for
lattice polarised K3 surfaces. We briefly recall the latter.

Given a smooth K3 surface Σ, Λ = 𝐻2 (Σ,Z) is equipped with a lattice structure via the cup product
taking values in 𝐻4(Σ;Z) = Z. Let 𝑆Σ := Λ ∩ 𝐻1,1 (Σ;C) be the Picard lattice of Σ.

Let M be a hyperbolic lattice with signature (1, 𝑡 − 1). A K3 surface Σ is called M-polarized if there
exists a primitive embedding 𝑀 ↩→ 𝑆Σ. Given a nonsymplectic automorphism s of Σ, the invariant
sublattice 𝑆(𝑠) := Λ𝑠 is in fact a primitive sublattice of the Picard lattice.
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Definition 52. Given M a primitive hyperbolic sublattice of Λ = 𝐻2(Σ,Z) of rank at most 19 such that

𝑀⊥ = 𝑈 ⊕ 𝑀∨,

𝑀∨ is defined to be the mirror lattice to M.

Recall that we have restricted to the case where s has prime order 𝑝 > 2 (we have discussed 𝑝 = 2 in
[12]). We now show that if two K3 surfaces with prime order automorphisms arise as crepant resolutions
of a mirror pair of Berglund–Hübsch orbifolds, they have mirror lattices. In this case, 𝑀 := 𝑆(𝑠) is
p-elementary. That is, 𝑀∗/𝑀 = (Z/𝑝Z)⊕𝑎, and it is completely classified by its rank r and a. Then, by
[3], the fixed locus of s is either just isolated points or a disjoint union of N curves, of which 𝑁 − 1 are
rational and the remaining one has genus g and f isolated points. Set 𝑚 = 22−𝑟

𝑝−1 . Moreover, [3] states (in
a slightly different form) that, for 𝑝 = 3, 5, 7, 13, if the fixed locus contains a curve,

◦ 𝑚 = 2𝑔 + 𝑎,−𝑔 + 𝑁 = 𝑟−11+𝑝
𝑝−1 .

Notice that these are the only prime orders we need to consider as we have shown that 𝑝 − 1|24.
Lattice mirror symmetry exchanges (𝑟, 𝑎) with (20 − 𝑟, 𝑎).

Theorem 53. Let Σ𝑊 ,𝐻 and Σ𝑊 ∨ ,𝐻∨ be mirror K3 orbifolds with prime order 𝑝 > 2 automorphisms
𝑠, 𝑠∨, and let Σ and Σ∨ be crepant resolutions with automorphisms also denoted 𝑠, 𝑠∨. Then Σ and Σ∨

are mirror as lattice polarized K3 surfaces.

Proof. Corollary 51 relates the invariants (𝑔, 𝑁, 𝑓 ) and (𝑔∨, 𝑁∨, 𝑓 ∨). It is enough to show that these
relations give the mirror relations on (𝑟, 𝑎), namely that

(𝑟∨, 𝑎∨) = (20 − 𝑟, 𝑎).

Notice that there is always a fixed curve when the K3 is a hypersurface in weighted projective space of
this form. Therefore, we see that

𝑟∨ = (−𝑔∨ + 𝑁∨)(𝑝 − 1) + (11 − 𝑝) = (−𝑁 + 𝑔 + 2) (𝑝 − 1) + (11 − 𝑝)

= (𝑝 − 1) (2 −
𝑟 − 11 + 𝑝

𝑝 − 1
) + 11 − 𝑝 = 20 − 𝑟.

Finally, this implies

𝑎∨ = 2𝑔∨ −
22 − 𝑟∨

𝑝 − 1
= 2(𝑁 − 1) −

2 + 𝑟

𝑝 − 1
.

Using that 𝑁 = 𝑟−11+𝑝
𝑝−1 + 𝑔, we obtain that

𝑎∨ = 2𝑔 −
22 − 𝑟

𝑝 − 1
= 𝑎.

�

Acknowledgements. Alessandro Chiodo is supported by the ANR project ‘Categorification in Algebraic Geometry’, CANR-17-
CE40-0014 and the ANR project ‘Enumerative Geometry’, PRC ENUMGEOM. Elana Kalashnikov is supported by Discovery
Grant RGPIN-2022-03013 from the Natural Sciences and Engineering Research Council of Canada.

Conflicts of Interest. none

References

[1] D. Abramovich, A. Corti and A. Vistoli, ‘Twisted bundles and admissible covers’, Commun. Algebra, 31(8) (2003),
3547–3618.

[2] M. Artebani, S. Boissière and A. Sarti, ‘The Berglund–Hübsch–Chiodo–Ruan mirror symmetry for K3 surfaces’, J. Math.
Pures Appl. 102 (4) (2014) 758–781.

https://doi.org/10.1017/fms.2022.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.41


34 Alessandro Chiodo and Elana Kalashnikov

[3] M. Artebani, A. Sarti and S. Taki, ‘K3 surfaces with non-symplectic automorphisms of prime order’, Math. Z. 268 (2011),
507–533.

[4] P. Berglund and M. Henningson, ‘Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus’, Nucl. Phys. B 433(2)
(1994), 311–332.

[5] P. Berglund and T. Hübsch, ‘A generalized construction of mirror manifolds’, Nucl. Phys. B 393(1–2): (1993), 377–391.
[6] C. Borcea, ‘K3 surfaces with involution and mirror pairs of Calabi–Yau manifolds’, in Mirror Symmetry II, AMS/IP Stud.

Adv. Math 1 (Amer. Math. Soc., Providence, RI, 1997) 717–743.
[7] L. Borisov, ‘Berglund–Hübsch mirror symmetry via vertex algebras’, Comm. Math. Phys. 320 (2013), 73–99.
[8] C. J. Bott, P. Comparin and N. Priddis, ‘Mirror symmetry for K3 surfaces’, Geom. Dedicata 212 (1) (2021), 21–55
[9] A. Chiodo and Y. Ruan, ‘Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transforma-

tions’, Invent. Math. 182 (2010), 117–165.
[10] A. Chiodo and Y. Ruan, ‘LG/CY correspondence: the state space isomorphism’, Adv. Math. 227 (6) (2011), 2157–2188.
[11] A. Chiodo, H. Iritani and Y. Ruan, ‘Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov

equivalence’, Publ. Math. IHÉS 119 (2014), 127–216.
[12] A. Chiodo, E. Kalashnikov and D. C. Veniani, ‘Semi-Calabi–Yau orbifolds and mirror pairs’. Adv. Math., 363 (2020), 106998.
[13] A. Chiodo and J. Nagel, ‘The hybrid Landau–Ginzburg models of Calabi–Yau complete intersections, Proc. Symp. Pure

Math. 100 (2018), 103–117.
[14] P. Comparin, C. Lyons, N. Priddis and R. Suggs, ‘The mirror symmetry of K3 surfaces with non-symplectic automorphisms

of prime order’, Adv. Theor. Math. Phys. 18(6) (2014), 1335–1368.
[15] P. Comparin and N. Priddis, ‘BHK mirror symmetry for K3 surfaces with non-symplectic automorphism’, J. Math. Soc.

Jpn. 73(2) (2021), 403-431.
[16] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext (Springer Verlag, New York, 1992).
[17] A. Dimca, ‘On the Milnor fibrations of weighted homogeneous polynomials’, Compositio Mathematica 76(1–2) (1990),

19–47.
[18] I. Dolgachev, ‘Mirror symmetry for lattice polarized K3 surfaces’, J. Math. Sci. 81(3) (1996), 2599–2630.
[19] W. Ebeling and A. Takahashi, ‘Strange duality of weighted homogeneous polynomials’, Compos. Math. 147(5) (2011),

1413–1433.
[20] W. Ebeling and S. M. Gusein-Zade, ‘Saito duality between Burnside rings for invertible polynomials’, Bull. London Math.

Soc. 44(4) (2012), 814–822.
[21] W. Ebeling and S. M. Gusein-Zade, ‘Orbifold Euler characteristics for dual invertible polynomials’, Mosc. Math. J. 12(1)

(2012), 49–54.
[22] H. Fan, T. J. Jarvis and Y. Ruan, ‘The Witten equation, mirror symmetry and quantum singularity theory’, Ann. Math. 178(1)

(2013), 1–106.
[23] B. R. Greene, D. R. Morrison and M. R. Plesser, ‘Mirror manifolds in higher dimension’, Comm. Math. Phys. 173 (3) (1995),

559–597.
[24] K. A. Intriligator and C. Vafa, ‘Landau–Ginzburg orbifolds’, Nucl. Phys. B 339(1990), 95–120.
[25] R. Kaufmann, ‘A note on the two approaches to stringy functors for orbifolds’, Preprint, 2007, arxiv:math/0703209.
[26] M. Krawitz, ‘FJRW rings and Landau–Ginzburg mirror symmetry’, Preprint, 2009, arXiv:0906.0796.
[27] M. Kreuzer and H. Skarke, ‘On the classification of quasihomogeneous functions’, Comm. Math. Phys. 150(1) (1992),

137–147.
[28] V. Nikulin, ‘Factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by

2-reflections. Algebrogeometric applications’, J. Sov. Math. 22(4) (1983), 1401–1475.
[29] The Stacks Project Authors. Stacks Project, https://stacks.math.columbia.edu.
[30] J. Steenbrink, ‘Intersection form for quasi-homogeneous singularities’, Compos. Math. 34 (1977), 211–223.
[31] J. Steenbrink, ‘Semicontinuity of the singularity spectrum’, Invent. Math. 79 (1985), 557–565.
[32] A. N. Varchenko, ‘Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective

hypersurface’, Dokl. Akad. Nauk 270 (6) (1983), 1294–1297.
[33] O. E. Villamayor, ‘Constructiveness of Hironaka’s resolution’, Ann. Sci. Éc. Norm. Supér. Ser. 4 22(1) (1989), 1–32.
[34] O. E. Villamayor, ‘Patching local uniformizations’, Ann. Sci. Éc. Norm. Supér. Ser. 4, 25(6) (1992), 629–677.
[35] C. Voisin, ‘Miroirs et involutions sur les surfaces K3’, Astérisque 218: (1993), 273–3232.
[36] E. Witten, ‘Algebraic geometry associated with matrix models of two-dimensional gravity’, in Topological Methods of in

Modern Mathematics (Perish, Houston, TX, 1993), 235–269.
[37] T. Yasuda, ‘Motivic integration over Deligne–Mumford stacks’, Adv. Math. 207(2) (2006), 707–761.
[38] T. Yasuda, ‘Motivic integration over wild Deligne–Mumford stacks’, Preprint, 2019, arXiv:1908.02932.

https://doi.org/10.1017/fms.2022.41 Published online by Cambridge University Press

https://arxiv.org/abs/0703209
https://arxiv.org/abs/0906.0796
https://stacks.math.columbia.edu
https://arxiv.org/abs/1908.02932
https://doi.org/10.1017/fms.2022.41

	1 Introduction
	1.1 Relation to previous work
	1.2 Structure of the paper

	2 Terminology
	2.1 Conventions
	2.2 Notation

	3 Setup
	3.1 Nondegenerate polynomials
	3.2 Polynomials with automorphism

	4 Variants of orbifold Chen–Ruan cohomology
	4.1 A g-orbifolded cohomology

	5 Landau–Ginzburg state space
	5.1 K-equivalence
	5.2 Thom isomorphism in orbifold cohomology
	5.3 Jacobi ring
	5.4 Landau–Ginzburg/Calabi–Yau correspondence

	6 Unprojected mirror symmetry
	6.1 Mirror duality
	6.2 Unprojected states and automorphisms
	6.3 The twist and the elevators
	6.4 Mirror symmetry on the Landau–Ginzburg side

	7 Geometric mirror symmetry

