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On Direct and Inverse Interpolation by

Divided Differences.
By GLENNY SmEan, B.Se.

(Read 11th June 1920. Received 28th June 1920).

1. Introduction.

The general interpolation series, originated by Newton, has been
studied mainly for its algebraic interest, only the special case of
equidistant data being developed on the practical side. This is
justified by the simplicity of this case, and by the numerous
problems for which it suffices, but it may lead to undue simplifica-
tion of data and to restrictions on experimental and computative
methods. Thus tables of functions which are not in common use,
or which are carried to many places, must often be limited to
relatively few entries, and these might conceivably be not in
arithmetical progression, with advantage both of easier tabulation
and of more accurate interpolation.* Data from experiment or
statistics, again, are often fitted to a parabolic curve of arbitrarily
chosen degree, and on rather inadequate grounds. The formation
of a difference-table not only avoids the suppression of the original
data, but supplies at a glance a useful analysis of them—indicating
their consistency and regularity, showing with what accuracy a
parabolic curve can represent them, and supplying its expression
with minimum labour. For direct interpolation to new points
Lagrange’s formula, the usual alternative, fails in this respect and,
when applied to unfamiliar data, is very apt to mislead. It is
wasteful of labour and more liable to error, and cannot easily be
extended to include fresh terms.

As the only discussion of divided differences known to me
(included in T. N. Thiele’s Interpolationsrechnung)t is incomplete

* ¢f. the rules of Tchebichev, Gauss, etc., on ohoice of pointe for inter-
polation and integration. Also Professor Steggall’s suggestions for economy
of entries in ordinary tables (Napier Tercentenary Memorial Volume (1915),
p- 319).

+ Teubner (1909). Some early suggestions were contained in Gauss’
Lectures, published by Encke (Berliner Astron. Jahrb. (1830) ; Abhandlungen
L.); these are reproduced in the Encycl. des Sc. Maths. (T. 1, Vol. 4
pp. 130-7) See also Encyc. Brit., Interpolation.
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and further development is needed, I propose to give a short
discussion of the necessary theory and to illustrate the working
by examples. My results were arrived at independently of Thiele’s
work, but they are in generally close agreement, and I have adopted
some of his ideas. It will be seen that the theory as such has value
both algebraically and in relation to the differential calculus, while
the remarkable flexibility of the series throws much light on the
use of the ordinary difference-table, and gives divided differences
the preference on occasion even when the data are equidistant.

2. Parabolic Interpolation.

Assuming that the function which is defined by the given
values f, at the point «,(r=0, 1, 2...») can be represented with
sufficient accuracy by a power-series in x (a simple transformation
such as taking logarithms or reciprocals of z, sometimes suffices to
ensure this), we may write

S (@)= + 0, (2 - ) + 0 (&~ o) (€= 2) + ...
+a,(x—x)(w—2)...(x-2,,)+ ...,
where a,, a, ... a, are determinable in £, £ ... f, on condition that
the remainder of the series be negligible. A fresh point z, ., would
enable us to add another term a,,, (x — ) (x — z,)...(x ~ ,)) without
affecting the previously calculated coeflicients because it vanishes
at all the points on which they depend. Hence we may write

S(@) = ¢ (@) +.(2 - @) (@ - 21)..(x - @) ¥ (2),
where ¢ () is the interpolation-series of the n' order, and the
remainder-term measures the correction which would be made by
using an unlimited number of additional data. The nature of the
coefficients of ¢ (x), the “divided differences,” is shown clearly by
building up the series in the following way.*

* This form of the theory is due to Ampére (Ann. de Gergonne 16 (1826),
p. 329), whose work was extended by Cauchy (C.R. 11 (1840), p. 775..;
Euvres (1), 5). A similar notation was used at the same time by Legendre—
Traité des Fonctions Elliptiques, Vol. 2 (1826), p. 36. Ampére uses the term
¢ interpolation-functions,” but ¢ divided-differences” seems more suitable for
practical applications and is used by Oppermann (J. Inst. Act. 15 (1869),
p. 145), Merrifield (Brit. Assn. Report, 1880) and Thiele. For references to
other work on the properties of ‘‘interpolation functions” see E. Pascal—
Calcolo delle differenze finite, or his Repertorium der hoheren Mathematik,
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By the Mean Value Theorem
S @) =fo+ (x - 2)) (%, 2),

where (w,) denotes the function of # and x, commonly expressed
by f' {2+ 0(x-x)}, 0< 0 < 1.
Again,
(o ) = (%o ) + (& — 2,) (% X, )
(o0 30, ) = (%0 2, @) + (20 — 202) (3, 2, 20 ),
and so on. From these equations we get
S (@) =/fo+ (2 = %) (20 21) + (% — ) (% — @) (o 203 25) + ...
+(x —x) (& — ). (x — x,) (22, ... @, ),
the Newton series with remainder term. It is easily proved that
(%, ... x, x) may be written as /") (&)/(n+1)!, where & is some
point in the range.

Now the order in which the data are taken will not affect any
quantity, (x,%, ... ,) say, which appears in the process, because this
is determined uniquely by the values of f,f.../,, Hence every
divided difference is a symmetrical function of the elements on
which it depends, and may be calculated in more than one way.
From the first equation above we find

(%o ;) = (s = o) [ (1 — %o)y
(mr xl) = (/: —f;') / (xo - xr)-

From the second equation
(zo 2y %) = { (%o 2y) — (w0 21) } [ (205 — 21) 5
taking a different order we should obtain the same quantity as

and similarly

being
{ () — (o 2y) } [ (25 — )y
or
{ (z1 @) — (2o w3) } [ (%1 — 20)-
Again
(2o @) =/ [ (@ = @) + /1 [ (1 — @),
whence
_ JSo S Sa
(a:o o xﬂ) B (zo - -'”1) (xo - %) * (@, - ) (“1 - &) * (1'2 - ) (2 - ml)’

a form which shows the symmetry of the divided difference. The
corresponding expression for (x,,...x,) can be established by
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induction, or directly by tracing the coefficient of £, through the
calculation. *

We can now form a difference-table in which each column is
obtained from the preceding one by subtraction and division. The
notation may be simplified by using only subscripts, e.9. (01 2),

(012x).
% S
(01)
A (012)
(12) (0123
x S (123)
(23) :

T3 s

Each difference is the apex of a tabular triangle whose base
is in the f-column and includes the elements on which it depends,
and is unaffected by any change of order among these elements.t
Hence we can choose any order of the data which does not intro-
duce new combinations, such as (12 4), and write down ready for
calculation the corresponding series

J@)=f+(x-x)rs)+(x-2,)(x-2)(rs0)+...

The coefficients lie on a line through the table which passes
always from one column to one or other of the nearest points in the
next column. If a new table were formed with the data in thisorder,
this set would form the top diagonal line, the rest of the table being
more or less altered. If now we suppose x,, x, ... to be the order

* This expression of the divided difference shows the relation between the
Newton and Lagrange formul®. Cowmparison of coefficients of f, yields a
Newton series for the Lagrange term which might serve for a synthetic
calculation, viz., for any order of the points beginning at x, we have

(F-m)x-—:). (x-x0) _ -2 (4 X — 2, .
(or —20) (Tr —21 ) (@r — 20 ) ! +x, oy ( +x. —z d+) )

+ An alternative form of difference-table was suggested by E. McClintock
(Amer. J. Mth. 2 (1879), p. 307) in which every difference bears reference to
the initial point x, ; the firat column contains (01), (02), (08)..., the second
(012), (013)... The calculation is claimed to be simpler, but the table is
available only for the one order of the data, that of tabulation, or at most for
Ty o T1 X2 ..o s
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of ascending algebraical magnitude we can choose an order,
beginning with any one, z,, and preceeding in ascending numerical
magnitude of z - x,, which will be suitable for a point x in the
neighbourhood of .. In this form of table the differences of higher
order contain on the whole larger divisors, and the choice of order
of the «’'s for the calculation ensures that each new muitiplier is
less than the corresponding divisor. Considered algebraically, any
other route which ends at a given point, and starts within the base
of the corresponding triangle, would yield identically the same
result, but in practice the * central-difference” type of formula is
least affected by the inaccuracy of the differences and by the
remainder-term. There is perfect freedom of choice within the
same scheme of calculation to suit any peculiarities of the data,
and in some cases more than one route may be combined with
advantage, thus obtaining a diminution in certain multipliers or
coeflicients of the series.

The formulae used with the equidistant table are particular
cases of the general Newton series, and can be written down from
the order of the data.* Thus from a table formed with the points
...=2 -1 01 2... we obtain the Gauss formula

S@)=fo+28f; +x(xz-1)&f/2!1+...
by using the order 0,1, -1, 2, —2... Combining this with the
corresponding formula for the order 0, -1, 1, -2, 2 ... gives
Stirling’s central-difference formula
S(@)=fo+zpdfi+a®8 s/ 21+...
In practice the equidistant table is formed without using the
divisors, which are equal along a column, hence these appear

explicitly in the formulae. Thus (x,2,...w,) becomes A"f,/n!,
while the remainder-term may be written

z(x-1)(@=-2)...(x - n) A f(x) [ (n+1)!

8. Differentiation and Repeated Data.

We have assumed that the given points and the new point «
are all distinct. If we suppose z, to approach x,, (2,%,) or (00)

* Compare D. C. Fraser’s diagram of formule for the equidistant table—
J. Inst. Act. 43 (1909), pp. 235, 442. Also W. F. Sheppard—J. I, 4. 50
(1816), p. 85; R. Todhunter—do., p. 133.
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becomes the symbol for _I_;t (f (@)= f(we))} | (@— ), ie [’ ().

Given the value of this, no difficulty arises in completing the table,
the formulae for calculation of differences such as (001 2), for
instance, all yielding definite values. Now consider a new point x
close to z,, and let f(x) be calculated from the set of equations

S (@) =/o+ (z-2)(02)
Oz)=(01)+(x—=)(01x)

beginning with the last. What actually happens is that we assume
a value for the unknown quantity (0 1 2...r — 1 2), either supposing
it equal to (0 12...r) or making some allowance for the neglected
remainder-term. Thence we calculate successively (01 2...r — 2 x),
(012...r -3x)..., (0 L z), (0 z), and finally f(x) itself. At no stage
will any difficulty be introduced if we suppose = equal to z,, except
that of course we stop at (0x), which becomes (0 0). The value of
S’ (=) is thus obtained from the table by the same process as a
value of f(x). More generally, let z have any value near to, but
distinct from, x,, and suppose f(x) already calculated as described.
Its value and the quantities (0«), (01=)...(012... 7 — 1) can be
written down as an additional diagonal line of the table, and we
can calculate /' (x) now as we did /' (¢;). The result of this double
process is of course a lesser accuracy in f'(x) than in f(2) or in
S (x;). The new set of differences obtained is shown in the
equations

(zx)=(02)+(x-x,) (0xx)
(Ozz)=(0lz)+(x—=)(01xx)
(012. .7 = 8za)=(012...r — 2 J+(x — x,_5) (012...7 — 2z )] ...... (B)

the value of (012...r - 2z z) being again assumed. Similarly, we
may calculate (2« «) and any other. The following table illustrates
the inclusion of a derivation and the growth by accretion of new
points.
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x / (x)
(wx)

x S(=x) (xxx)
(x ) Oz xx)

x J () (0 x x) Olxxx)
(0 x) Olazx)

z S (01x) 012zxx)
01) 0122)

oz A (012) (0122x)
(12) (0122

z, S (122 (01223)
22 (1223)

A (223) (12234)
23) (2234)

5 A (234)
(34)

Ly Ji

It remains to point out the meaning of (x x x) and similar symbols.

‘We have seen that (0 0) is the limit of (0 1) as x—> z,, and we

may regard (0 1) as an intermediate stage between (00) and (1 1).

This we must use to determine I;t; {(11) - (00)} / (2, - ), which
T =2 Ty

is " (%) ; for

S (@) =Lt {(11) - (01)} / (w1 - 20) + L. {(01) - (00)} / (=, — o)
=Lt. {(011) +(001)} = 2 (000).

There are thus two intermediate stages (001) and (011) between
(000) and (111), and in general (zxx) is £ (x) / 2.

Similarly the difference of »* order (wxzwx...x) is f™ (&) /n!,
while any other difference with repeated data can be expressed
similarly, e.g.

(01zzx)is d*/da*(01z) /21, (0112)is|d/de(022)],..
We thus arrive at the differential calculus as the special case of
interpolation with repeated data, and are enabled to use alterna-
tively Newton’s or Taylor’s series for the expression of the function
concerned. Further, we can use any combination of the two,
such as

JS(@)=f+ (@ -m) (01) + (z - ) (x - x,) (011)
+(x - ) (& - ,)? (0112) + ...,
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which is partly a Taylor’s expansion about the point ,, and partly
a Newton expansion about the set of points #,, @, %,.... This is
the theoretical aspect of the flexibility which permits us practically
to combine differences and differential coefficients in the one table
and procedure of computation.

4. Preparation and Use of the Difference-Table.

The procedure in a numerical problem is then as follows:
tabulate the given values in order of magnitude of the independent
variable @, complete the difference-table, choose an order of the
data proceeding outwards from the required point «, and trace the
corresponding route through the table, e.g. with a pencil. For
convenience of description we may label this order as x;, «,, ... ;
if there is any doubt at a glance which of two points comes next,
the choice matters little except at the end of the series. The route
thus traced will be a wavy line, beginning at f; and moving upwards
or downwards always in agreement with the passage from «, to a,
to x,, and so on. If the data are fairly regularly distributed, the
line will correspond to a Gauss series in the ordinary table, but in
general is likely to make wider oscillations. Considerations such
as are familiar to workers with the equidistant table will guide the
choice of route, or of a combination of routes, and particularly at
the end the decision at which order of differences to stop, and what
allowance to make for neglected orders.*

The following data are taken from Saxelby's Practical Mathe-
matics, = being the percentage of lead in an alloy with zinc, 6 the
melting point of the alloy in degrees Centigrade.tf The choice of
independent variable is often decided by greater simplicity of
divisors in one case, or by such conventions as the customary use
of time as independent variable; in other cases we may choose to

* A valuable discussion of the ordinary table will be found in two papers
by W. F. Sheppard—Proc. L. Mth. Soc., 4 (1906), p. 320 ; 10 (1911), p. 139.

t A graphical analysis of these data is given in J. Lipka— Graphical and
Mechanical Computation (Wiley 1918), p. 146. By plotting first differences
of 6 as a straight line he obtains the formula §=141'4+0620 x+0:0130 a2,
while the tables suggest as most suitable x=a+b60+c +d 6. Theaccuracy
of the data is not sufficient for proper comparison of methods, but the differ-
ence in the value of the derivative is considerable.

4 Vol. 38
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suit the problem. The relation assumed between the variables
differs in the two cases, so that one table may be more convergent
than the other. Hence methods both of direct and of inverse-
interpolation are ndeded. For comparison I give in this case both
tables. The calculation may be done with tables, sliderule, or
otherwise, taking care to retain sufficient accuracy in the successive
orders of differences. It is sometimes necessary to prevent the
numbers becoming unwieldy by a change of unit.

6 x
181 36-9
1-63 0612
0-0228 197 467 -0-00306
-0-00037 2:24 0-447 0-0,28
-00,7 0-0077 235 63-7 - 000060 -00.6
-0-00071 2:48 0403 00,22
-00,5 -0-0187 270 77-8 0-00154 -00,1
0-00271 2:10 0477 -00,83
0-0485 283 840 -0 00400
2-57 0-389
292 875

Let it be required to find an alloy which will melt at 214°C.
(steam pressure 300 lbs./sq. in.). In the right-hand table trace
by pencil a line starting at 467 and passing through 0-447,
~- 000306, 0-0, 28 (i.e. 0:000028), —00,6. Either table shows that
the 292° point does not agree well with the others.
be used, written in chain-form,* is

S(0)=46T+ (0 - 197) {0-447 + (6 — 235) { — 000306

+(0-181) {0-0,28 + (6 - 270) { - 0:0,6} }...},
and the calculation is best carried out by the synthetic method, as
in equatlons (A) and (B). 1' The mult;lphers are 17, — 21, 33, - 56,

The series to

*W. Veltmann Zeitschr. f Mth u. Phys., 44 (1899), p. 303—suggests a
notation analogous to a continued fra.ctlon.

—Xo Z x 1
Sl@)=ao + ==
+ az +

the double line denoting multlpllcatlon in place of division.

t Horner’s algorithm for solution of numerical equations is a special case
when the data are all coincident, The procedure for interpolation is found in
Legendre—loc. cit. in § 2.
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a difference (012...r 6) being multiplied by (6~ 6,). For a single
interpolation the work is conveniently arranged in columns, and
symbols have been added to identify the new differences. The old
ones may be copied down as an initial column if preferred, or
simply read off the pencil-line.

-6  -00,6 (01236)  -00,6 (012 66)
33 00,31  (0126) 00,29  (0166)
-2l -000204 (016) -0:00265 (0 66)
17 0490 (0 6) 0445 (69)
550 (6)

Thus 00,31 is the result of (56 x 0-0, 6) + 0-0,28, For the (66)
column the multiplier - 56 is not needed, and we use the (6)
column as base, e.g. 0-0,29 is (- 33 x 0-0, 6) + 0-C,31. For 6=214°
we have therefore x =550, and da/d6=0445. Even when only
J'(0) is required it is probably better to proceed in this way than
to attempt direct determination. In particular,

-00,6 (01230)

-73 0-0, 32 (0120)

- 38 -0:00428  (010)
16 0-543 (00)

at one of the given points f” (6) is obtained by a single column, e.g,
for /' (197) the order of data is 197, 181, 235, 270, and the
result 0-543.

As an example of the use of a combined formula Jet us find 6
when x = 60, by the left-hand table. It will be convenient to com-
bine the two orders 63-7, 46-7, 77:8, 36'9, 84-0 and 63-7, 77-8, 46-7,
84-0, 369, giving a formula of Stirling type,

S(x)=235+(x-637) {286+ (x - 62:25)0-0077}

—(x-63T)(x~467) (x - 77-8) {0°00054 + (xx - 60-45)0 0,7}
where 6225 is the mean of 467 and 77 8, 0:00054 is a mean of two
differences, and so on. In the calculation we first correct each
mean difference (of odd order) by the small multiple of the next
difference, and then use the multipliers in pairs. Equations (A)
become :

S (@) =fo+(x - x) (02).
(02) = {3 (01) +(02) + (2 - § &, + @) (012)} + (2 ~ ;) (z - 2,) (012 )
(012z) = {4 (0123) + (0124) + (x - } =, + z,) (01234)}
+{(x - my) (x - x,) (01234 x)

....................................................................
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Similarly, for the derivative,
S (@) =(zz) = (0 ) + (x — 2) (0 = x)
(Ozz)={(012)+2(x -}z +x) (012)}
(@ —m) @ - z) (012 0 )
(B).
Here the original differences of even order are corrected by small
multiples of the new differences of next order.

-00,7 -00,7 (012zx)
178\ -000054 -000054 (012z)
133 0-0101 00118 (0 zz)
—37 2-34 2-49 0 z) 245  (wa)
235 2258 (z)

The first column contains thé multipliers, the second the corrected
differences ; the latter can in general be completed only after f(z)
has been calculated.

In particular, again, /' (%,) is given by a single application of
equations (A'). Any linear combination, not necessarily a simple
mean, of two routes can be used in a similar way, provided it
simplifies the arithmetical work without increasing too greatly the
complexity of the scheme. Such formulae are not convenient,
however, when it is desired to incorporate the new values in the
table.

5. Extension of the Table and Inclusion of Derivatives.

In order that the sets of differences which appear in the
synthetic calculation of f(x) and f'(x) should take their place in
the table itself, it is necessary to rearrange this so that the line of
differences employed becomes the lowest diagonal line. Since we
are not concerned with the rest of the new table we may make this
line horizontal and add the new differences as a fresh line, the
table then taking the form.

z fo
%
z, So (01) (012) (0123) (01234) ... (012...7)

® f(x) (0x) (Olx) (012x) (0123z) ... (012...7-1lx)
& f(x) (ex) (Oxx) (Olax) (012xx) ... (012... 7 — 222)
o f&) (xx') (zxx’) (Oxxx’) (0lwxx’) ... (012 ...r_——Swa:a:').
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Another new point #' has been added, /() being calculated from
the last line above it. Thus (Qwxx’)=(0lxx)+ (' — o) (Olawa’) .
The multiplier (&'~ ,) is found from the ends of the base of the
triangle of which (0Olzzx’) is apex, i.e. it is the difference of the two
elements involved which lie furthest apart in the z-column. Theo-
retically any number of new points, repeated or not, could be thus
added in succession, but in practice this would involve accumulation
of error, and, moreover, the principle of central-differences requires
the points to lie in the same region.

To illustrate I shall take a fresh example, of a kind not
uncommon in various fields, in which one variable = occurs as a
succession of small integers. Such cases often arise through
absence of terms in a regular sequence, and it is possible to com:
plete the sequence by the methods of finite differences. This is
equivalent to the use of Lagrange’s formula and open to the same
objections, while the divided-difference table with x as independent
variable is particularly easy to construct. The sines of the angles
0°, 30°, 45°, 60°, 90° are easily remembered. Using their simple
ratios we have a table which will give the sine of any angle between
30° and 60° with considerable accuracy. For other angles the same
data can be rearranged, e.g. —45°, - 30°, 0°, 30°, 45°.

z  sinwmafl2

0 0
0-25000
2 050000 - 001429 7
0-20711 -0-00244 95
3 070711 -0:02409 5 00,13 542
015892 -0-00163 70
4 0-86603 -0-03064 3
0-06699
6 1-0

The remainder-term of the series will be
z (z-2) (x - 3) (x— 4) (x- 6) (02346x).

The value of (02346x) is that of f® (x)/5! at some point, f (x)
being sin = z/12, hence it is}0°00001. For x between 2 and 4,
x(x-2)..(x—~6) is}4, hence the error in the sine due to limita-
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tion of data is at most of order 0:00004, i.e. less than half a unit
in the fourth place. The derivative is

(/12) cosw /12, or w/12 sin (x/2 - = 2/12),

giving a method of determining x. The error of f’ (x) is greater
than that of f(x), so that the error in = may amount to a unit or
two in the third place. Taking for example the angle 86° (x=2-4)
we have :(—

0

4

3

2 0-50000 0°-20711 -0-02409 5 -0-00244 95 00,13 542
2:4 058781 0-21953 --0:02069 6 - 0-00212 45 "

2:4 0-21171 -001929 1 -0-00234 12 "

24 -0-02025 9 -0-00241 95 "

24 —-0-00236 53 ”
The Taylor series for sin#z /12 in powers of (z—-24) is

therefore

sin m /12 =058781 +0:21171 (z - 2'4) - 0:02026 (x - 2-4)*
— 000237 (x — 2:4)> - 0-000135 (z — 2:4)* +...,
the correct value being
sin 7 2/12=0-58779 + 0-21180 (x - 2'4) - 0:02014 (x - 2'4)?
~0'00244 (x—-2:4)°-0'000115 (x - 2:4)*+....
To obtain as accurate a measurement of 7 as possible, let us caleu-
late cos 45° :—

0

4

2

3 070711 020711 -0'024095 -0-0024495 0-00013542
3 0-18506 -0-022052 -0-0020433 "

whence m=12x0:18506/0-70711 =3'1406. The Stirling formula

for /' (x,) from equations (4’) takes in this case a very simple

form, viz.

S (3)=4(020711 +015892) + % (0-0024495 + 0-0016370) = 0-18506.
Subtabulation may be carried out systematically in this way,

but accumulation of error renders a return to the original table
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advisable at intervals. Alternatively we may calculate the sub-
differences of second or higher order directly and proceed by simple
addition.

Greater accuracy may be obtained by using more initial data,
and one way of doing this is to include the derivatives,

(w/12) cos (w x/12).

From the points 0°, 30°, 45° alone, using both sines and cosines, a
table can be formed giving at least equal accuracy to the above.

xz sin 7z/12

0 o0
0-26180

00 - 000590 0
0:25000 -0-00286 75

4 0:50000 -001163 5 0-0,6 86
022673 -0-00266 17

2 050000 -0'01962 0 00,9 72
020711 -0:00237 00

3 070711 -0:02199 0
0-18512

3 070711

The calculation differs in no way from that already described,
and higher derivatives could similarly be included. The process is
simply a modification of the ordinary series calculation of sine.
employing a combination of a Taylor and a Newton series, but
when the data are purely empirical this use of both /(%) and f* ()
in the same table is very valuable. (The Lagrange formula was
extended to this case by Hermite). It may happen that for some
point @ we are given /' (a) but not f(a). We can interpolate for
JS(a) from the other ddta and correct the result by the value of /' (a).
Let ¢ (x) denote the series used, so that

S@)=¢(x)+@—2) (x-x) ... (—2,) (012 ... r2)
S S@=9 () (- L (X —a,) (012, r2) {Z1)(x - z,)}

if we assume for the moment that (012 ... rz) is constant.
Hence

S@)=¢(a)+{f (a) - ¢' (a)}[Z1/(a - z,),
where ¢ (a), ¢’ (a) are the interpolated values. For example, to
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find sin 45° from the data 0, 0, 2, 2 alone, given the derivative

018512 ;:—

0

0

2

2 050000  0-22673  -0-011635  —0-0028675
3 070649  0-20649  — 0020237 .
3 0-18339  —0-023104 .

The remainder-term is 3.3.1.1.(00223) ... Z1/(a-=,)=2%%,
giving f(a) = 0:70649 + (3 x 0-00173)/8 = 0-70714. A further
approximation could be made by using this value of f(a) to calcu-
late (002233), and hence the term omitted in /' (x) by assuming
(012 ... rx) constant. In the present case the error in f(a) is
already within the limits of the table.

6. Inverse Interpolation.

It is not always practically advisable to arrange the data in
form for direct solution of a problem, either because the table lacks
sufficient convergence or because the reverse table is relatively
simple to construct, or already constructed. The process of deter-
mining 2 from a table of differences of f(x) is necessarily a tentative
one of the nature of successive approximation, and is equivalent to
the solution of an algebraic equation written in factorial form.
The diminishing series of coefficients makes this specially suitable
for iterative calculation, and as a rule we require only a single root
whose location is already roughly known. If f(x) lie between f,
and f; a first approximation to « is given by simple proportion,
& =, + {f(2) - /}/(v1). Writing ¢ (x) for the interpolation series
in this region and % for the given value of /(x), the equation to be
solved is ¢ (x)~k=0. The most rapid form of iterative solu-
tion is Newton’s tangent method, giving the next approximation
&' =a' - {¢ (') —k}/¢' ('), and so on. The whole calculation can
be carried through as described in the last section, using at first
only a small accuracy and returning to the original table to increase
this when the root has been located within small bounds. In place
of calculating ¢’ each time, we may calculate ¢ only and use a suit-
ably chosen and numerically simple approximation to ¢', making a
fresh choice if necessary in the course of the work. The differences
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(0x'), (x'x”)...which appear in the calculation of ¢ indicate the
value of ¢’ for this purpose. This is the general iterative solution
of form x=x+A[¢(x)—k], the points converging more slowly,
but each calculation being quicker. For example, to find the angle
whose sine is 06 :—

3
3
2
2 0-50000 0-22673 -—0°019620 -0°0023700 0-0,972
25 0:6088 0-2175 -0-0184 - 000242 -
(2'5 0-2076  -0-0198 - 0-00247 " )

2-458 0-60000 0-21835 -0-018307 —0-0024227 ”

The first approximation is 2 + 01/0:207 = 2:5, say. Then
¢ (2:5) = 0:6088, ¢'(25) = 02076, ... next approximation is
2:5—0-088/0-208=2:458. Caiculation directly from the original
data gives f(2:458) = 0:60000, so that this value is as correct as the
table allows. The remainder-term is negligible to the fifth place, so
that  may be taken to be 2:4580, or 86" 52'-20 with possible error
of a unit in the last figure.

Extensions of Newton’s method, employing also ¢” (z), may be
used to quicken the approximation, but are seldom required in
problems where the accuracy of the data is limited. An algebraic
equation with exact coefficients may be solved to any degree of
approximation in this way, however, and with considerable
rapidity, once the roots have been located. At any stage the poly-
nomial form with new origin may be obtained, and the solution
can be expressed in Lagrange’s continued-fraction form if desired.
Transcendental equations may be thus solved also, and the most
suitable points for tabulation will not always be in arithmetical
progression.

Difficulty arises when there are two roots close together, the
approximation becoming slow and the indications uncertain. This
case is best treated by using 4" («) to separate the roots. If a root
be a, we have

k=¢@)=¢p(@)+(a~-x) ' (@) +(a-z)¢" (®)/2+....
The first two terms give Newton’s value, the first three, solved as a
quadratic, furnish approximations to both the close roots. It may
sometimes be sufficient to use three terms of the interpolation
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series, t.e. b=/, + (x - 2,) (01) + (x — z,) (x — ;) (012). Between two
such roots lies a point at which /' (z) =0, and it is often required
from the table to find where f’ (x) has this or any other given value.
This problem can be solved in the same way, though not with the
same accuracy. Thus to find the angle whose cosine is 08, we have
(xx)=087/12=0-20944. By simple proportion between f' (2) and
S’ (3)—if these were not available we could use some such approxi-
mation as (zz) = (01) + 2x -z, — ;) (012)—we get 24, say.
Calculation gives
¢ (2:4) =02118, ¢" (24) = —0-04, .. =24 —(¢' — k)[¢" = 2-46.

And so on.

7. Integration.

The Lagrange formula has the advantage of exhibiting the value
of the unknown function at any point as a linear function of the
given values. This is often useful in dealing with familiar data
and some computers prefer the Lagrange formula on this account
even for equidistant data. The same fact makes it specially valu-
able in numerical integration, since, for any given distribution of
ordinates, the result is simply a linear function of their values with
fixed coefficients. Unfortunately these are often inconvenient
numbers, and in practice substitute formulae are used, which are
either arbitrary approximations to the Cotes’ formulae or combina-
tions of more than one. When, however, the distribution of
ordinates is peculiar to the problem in question, the computation of
the coefficients is a heavy task, and the same applies to the direct
integration of the Newton series, which is often to be preferred.
Alternatively the Taylor series may be formed and integrated, but
this entails loss of accuracy when carried out in the only practicable
way. A more direct use of the difference-table is made by Thiele,
who finds relations connecting the differences of the integrated
function with those of the ordinates, and so builds up a new
table from some differences of high order assumed constant. The
procedure is rather complicated and further investigation is
needed.
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