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ApoE is a key protein in lipid metabolism with three major isoforms. ApoE allele frequencies
show non-random global distribution especially in Europe with high apoE €3 frequency in the
Mediterranean area, whereas the apoE €4 genotype is enriched in Northern Europe. The apoE
€4 genotype is one of the most important genetic risk factors for age-dependent chronic dis-
eases, including CVD and Alzheimer’s disease (AD). The apoE polymorphism has been shown
to impact on blood lipids, biomarkers of oxidative stress and chronic inflammation, which all
may contribute to the isoform-dependent disease risk. Studies in mice and human subjects
indicate that the apoE €3 but not the apoE €4 genotype may significantly benefit from dietary
flavonoids (e.g. quercetin) and n-3 fatty acids. Metabolism of lipid soluble vitamins E and D is
likewise differentially affected by the apoE genotype. Epidemiological and experimental evi-
dence suggest a better vitamin D status in apoE €4 than €3 subjects indicating a certain
advantage of €4 over €3. The present review aims at evaluation of current data available on
interactions between apoE polymorphism and dietary responsiveness to flavonoids, fat soluble
vitamins and n-3 fatty acids. Likewise, distinct geographic distribution and chronic disease risk

of the different apoE isoforms are addressed.

ApoE genotype: CVD: n-3 fatty acids: Vitamin D: Flavonoids

ApoE

ApoE is a prominent constituent of plasma and brain
lipoproteins mediating cellular cholesterol uptake by inter-
action with cell surface receptors including LDL-receptor,
LDL-receptor-related proteins and VLDL-receptor''?.
ApoE also binds to cell surface located glycosamino-
glycans such as heparin sulphate proteoglycans to facilitate
lipoprotein uptake™. In addition to regulation of extra-
hepatic cholesterol metabolism apoE is centrally involved
in chylomicron clearance through uptake of remnants by
the liver'”. The apoE protein is produced in various tissues
with particular high concentrations in liver, brain, kidney,
lymphocytes and adipose tissue. Beyond its known func-
tion in lipid and cholesterol metabolism apoE is believed

to modulate many aspects of ageing in brain and artery
walls®,

ApoE allelic variation

The human apoE gene is polymorphic with two major SNP
(rs429358C>T, rs7412C>T) in the coding region of exon
4. The two nucleotide exchanges are revealed at the protein
level as amino acid substitution (Arg—Cys) at positions
112 and 158 of the mature apoE protein®. There are three
major protein isoforms (E2, E3 and E4) arising from the
three possible genetic variants €2, €3 and e4. Although
other mammals express apoE, allelic variation was only
found in human subjects. Sequence analysis revealed that

Abbreviations: AD, Alzheimer’s disease; ALA, o-linolenic acid.
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Fig. 1. Correlation of (a) apoE €4, (b) apoE €3 and (c) apoE €2 allele frequencies in Europe with respective latitudes. Data
on allele frequency and latitude were adapted from Singh et al.'® and Rodrigues et al.('®. Linear regression of apoE
allele frequency and latitude was calculated applying Pearson’s correlation analysis and is given as regression coefficient

R with corresponding P-values.

primate apoE is identical to human apoE €4 at the sites
coding for Arg at positions 112 and 158”. Therefore,
apoE €4 is considered as the ancestral human allele that,
after the human and primate lineages split, was modified
by single successive mutations breeding the €3 and €2
alleles™. As a result of combination of the allelic variants
three homozygous (€2/€2, €3/e3 and €4/e4) and three het-
erozygous (e2/e3, €2/e4, €3/e4) genotypes emerge with
varying frequency throughout human populations. ApoE €4
is always the minor allele when compared with apoE' €3,
whereas apoE €2 is least common and even absent in par-
ticular aborigine populations.

Geographic distribution of apoE genotypes

Distribution of the three major apoE alleles varies world-
wide (Table 1); however, the €3 variant is most abundant
in all human populations and ranges between 0-968 in
Indians and 0-356 in Papuans"'”. Highest apoE €4 fre-
quencies are found in Central Africa (including Pygmies
(0-407)® and Tutsi (0-385)"'?”); Oceania (including
Papuans (0-368) and Australian Aborigines (0-260)) and in
Saami people (0-310)®. Particularly low apoE €4 fre-
quencies are found in Mediterranean and several Asian
populations (<0-10). The €2 allele is rare or absent in
Inuits, South Americans, Siberians and Mongolians, but
relatively frequent in sub-Saharans, Malaysian and
Papuans''?. At the continental level, allele frequencies of
apoE €3 and €4 are inversely correlated in Europe, Africa

i.org/10.1017/50029665112000249 Published online by Cambridge University Press

Table 1. Allelic variation of apoE at the transcript and protein level
and ranges of worldwide allele frequencies

Transcript variation Protein variation

Allele
388 487 112 158 frequency*
apoE 4 T T Arg Arg 0-:052-0-407
apoE 3 C T Cys Arg 0-553-0-911
apoE 2 C C Cys Cys 0-0-145

*Data from Corbo and Scacchi(®.

and North America. In Asian and Oceanian populations,
both €2 and €4 frequencies rise, when €3 is less abundant.
Of particular importance is the non-random north-to-south
gradient of €4 and €3 alleles in Europe as shown in Fig. 1.
The frequency of apoE €4 increases with increasing
latitude, whereas the €3 allele frequency is negatively
correlated with latitude. The occurrence of apoE €2 is
independent of the European latitude. The significant pat-
tern in latitudinal apoE €4 and €3 allele distribution is also
found in North but not in South America and Asia''?.
Although in China existence of a south-to-north gradient in
e4 frequency was reported' V. A more recent study addi-
tionally modelled a curvilinear relationship where world-
wide €4 allele frequencies first decrease with distance from
the equator and then increase again at absolute latitudes
higher than 35°. Importantly the population variation in
apoE €4 frequency was suggested to be shaped by natural
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residues that distinguish between the isoforms. Arg112 facilitates bridge formation (Arg61-Glu255) leading to domain
interaction in the apoE4 isoform. Mutation at position 158 in apoE2 (Arg—Cys) changes domain charge from positive to
negative (oval marking) and interferes with receptor binding. Additional oval marking of the C-terminal region that is
responsible for apoE protein structure, self-association and ability to bind lipids and lipoprotein particles differentially

organised in apoE4 and apoES3.

sele?ltzi?n and not due to underlying population struc-
ture” .

Generally apoE €4 is more present in people either with
dark skin pigmentation or living in regions with low inso-
lation, while lower presence is found in people with mod-
erate melanin pigmentation but exposed to relatively high
solar irradiation. Therefore, the capability of better enduring
low UV concentrations may be an advantage of the ancestral
apoE €4 compared with the new €3 genotype The evolution
of apoE €3 about 200 000 years ago™® was accompanied by
the establishment of more agricultural communities, as
distinguished from simple hunters and gatherers, and sub-
sequent emigration of the modern Homo sapiens from
Africa"®. However, it is uncertain precisely when and why
apoE €3 began to expand in frequency and supersede the
ancestral €4. Furthermore, emergence of the recent €2 allele
cannot be dated exactly yet. Due to the fact that apoE €2 is
absent in people coming from north Asia settled in Arctic
regions and America 40 000-10 000 years a%{o €2 may likely
first have emerged subsequent to this event

ApoE protein isoforms

The mature apoE protein (34 kDa, 299 amino acids) com-
prises two structural helical domains, a bigger amino (N)-
terminal (1-191) and a carboxyl (C)-terminal (216-299)
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region that are connected by a non-helical hinge region.
The region responsible for receptor binding is determined
in the N-terminal domain known to be rich in basic amino
acids, whereas the region spanning residues 261-272 of
the C-terminus determines lipoprotein and lipid-binding
properties of apoE"'>. In the apoE4 isoform, the positive
charge of Argll2 facilitates a domain interaction within
the protein determined by a salt bridge formation between
residues Arg61 and Glu255. The Arg61-Glu255 salt bridge
is not present in apoE3 and apoE2 as Arg is substituted by
Cys at position 112 (Fig. 2). Due to the domain interaction
(Arg61-Glu255), the C-terminal domain is organised dif-
ferentially in apoE4 compared with apoE3 and apoE2 and
therefore, lipoprotein-binding affinity is also altered'®.
ApoE4 prefers binding VLDL and intermediate density
lipoproteins, while apoE3 and apoE2 display a preference
for cholesterol-rich HDL particles"'”. In the apoE2 iso-
form, the mutation at position 158 (Arg—Cys) causes a
salt bridge formation revealing conformational changes
that affect its LDL-receptor-binding domain"®. Interest-
ingly, although primate apoE holds an Arg residue at posi-
tion 112 (similar to apoE4), there is a Thr at position 61
(instead of Arg in human apoE) preventing the interaction
with the C-terminal domain. Therefore, primate apoE is in
terms of function more related to human apoE3 than
apoE4.
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ApoE genotype and disease risk

Beyond genotype-dependent effects on blood lipids, which
will be reviewed in the following section, the apoE poly-
morphism is associated with age-related chronic as well as
infectious diseases. Risk of CVD is dramatically increased
in apoE €4 carriers with 40% increased incidence as
compared with the €3 genotype®”. This has been attrib-
uted to modestly elevated LDL-cholesterol in the €4 geno-
type, although mechanisms underlying apoE €4-CVD-risk
associations may be more complex. Several lines of evi-
dence suggest that apoE €4 potentiates adverse effects of
CVD-related risk factors such as smoking and physical
inactivity(2]’22). In Alzheimer’s disease (AD) association
of apoE €4 and disease prevalence is even more striking.
Presence and number of apoFE €4 alleles increased AD risk
(OR of 3-2 (e4/e3) and 149 (e4/e4) relative to £3/e3)>
with each additional €4 allele shifting disease onset to
younger age®. Poor neuronal repair, increased amyloid
plaque burden and higher susceptibility towards oxidative
insults have been suggested to underlie the positive as-
sociation of apoE €4 and AD development® 2", In con-
trast apoE €2 appears to be protective compared with €3
both in CVD and AD®"*?.

There is increasing body of evidence that apoE may
modulate susceptibility to viral infections in an isoform-
dependent manner (extensively reviewed in Kuhlmann
et al.®®). ApoE4 increases fusion rate and cell entry of the
HIV resulting in faster disease progression relative to
apoE3, though the risk of ac%uiring HIV infection is
independent of the apoE isoform®”. Risk of herpes labialis
and development of herpes simplex-associated AD is
potentiated in apoE €4 carriers®%?". In contrast apoE4
protects against hepatitis C-induced liver damage and
increases virus clearance attenuating chronic infection risk
compared with apoE3%%3%_ Although data are scarce, it
was suggested that apoE4 may also reduce heavy burden of
early childhood diarrhoea and improve disease outcome in
children in the first 2 years®®.

Overall the apoE €4 genotype is associated with
increased morbidity and mortality in the elderly and the
allele frequency is significantly declining from 85 years of
age®>*®_ The influence of the e4 allele on mortality is
even increasing in advanced age (92-103 years)®”.
Adverse effects of apoE4 may be attributed to altered lipid
metabolism, but may also be mediated by differences in
biomarkers of oxidative stress, inflammation and nuclear
factor (erythroid-derived 2)-like 2-signalling.

Metabolic and molecular mechanisms of apoE isoforms
Lipid metabolism

Prospective cohort studies and human intervention studies
have shown that the apoE polymorphism has a substantial
effect on plasma lipids and lipoproteins (Table 2). Speci-
fically, the apoE phenotypes have been associated with
the variability of plasma total cholesterol concentrations
and contribute to 4-12% of the variability of LDL-
cholesterol concentrations in several populations®®. In ad-
dition, a recent comprehensive meta-analysis demonstrated
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approximately linear relationships of apoE genotypes
(when ordered €2/€2, €2/e3, €2/e4, €3/e3, €3/e4 and e4/e4)
with LDL-cholesterol concentrations and with CHD
risk®”. The LDL-cholesterol concentrations were ap-
proximately 30% lower in people with €2/¢2 than with €4/
€4 genotypes, a difference comparable with that produced
by ‘statin’ therapy.

The impact of the different apoE isoforms on blood
concentrations of lipids and lipoproteins has been
explained by several mechanisms including (i) receptor-
binding affinities of the different apoE-containing lipopro-
teins, (ii) dietary fat clearance, (iii) differences in the
clearance of LDL apoB, and (iv) differences in the effi-
ciency of intestinal cholesterol absorption (for review,
see® ’50)).

In addition to the lower blood concentration of LDL-
cholesterol (discussed earlier), the €2 allele is associated
with lower blood concentrations of apoB and increased
concentrations of TAG and apoE when compared with the
€3 allele®V. Similarly, apoE €2/e2 and €2/e3 are associated
with lower concentrations of LDL-cholesterol when com-
pared with £3/63%. The increased concentrations of TAG
and apoE are consistent with an impaired clearance of
remnant particles®®. The metabolic explanation for the
reduced LDL-cholesterol concentrations is less clear.
Individuals with the €2/e2 genotype can develop a type III
hyperlipoproteinemia. This is characterised by an accu-
mulation of remnants of TAG-rich lipoprotein particles in
plasma. It has been associated with several genetic
abnormalities affecting lipoprotein metabolism including
hepatic lipase deficiency and defects in the lipoprotein
remnant receptor(52’54). However, it should be noted that
although the apoE €2/¢2 genotype is present in about 1%
of the general population, less than 5% of individuals with
€2/e2 develop a type III hyperlipoproteinemia. Several
secondary factors may thus promote type III hyperlipo-
proteinemia in individuals with €2/e2 genotype such as a
hormonal disturbance (e.g. hypothyroidism, oestrogen
withdrawal and pregnancy), environmental factors (e.g.
positive energy balance leadin§ to obesity) or changes
associated with increasing age®*>®.

Higher LDL-cholesterol, low TAG and apoE con-
centrations typically occur in individuals with e4/e3
and e4/e4 genotypes compared with £3/e3 individuals®®.
The low TAG is consistent with the fact that carriers of the
€4 allele clear circulating chylomicron remnants into the
liver more rapidly than €3/¢3 individuals and twice as fast
as €3/e2 individuals®>. ApoE is not a constituent of LDL
particles, but it seems to have an indirect influence on
LDL-cholesterol concentrations. In the fasting state, most
plasma apoE resides in HDL particles. After intake of
dietary fat, apoE shifts from HDL to postprandial particles.
In e4/¢3 individuals, VLDL and HDL are enriched in apoE
protein®®. ApoE4 preferentially associated with VLDL
is removed from the circulation more rapidly than
apoE3©". Accordingly, it is supposed that individuals with
the €4 allele may more efficiently and rapidly deliver
dietary fat to the liver. Faster hepatic clearance of dietary
fat in apoE €4/¢3 subjects could cause the down-regulation
of LDL-receptors and an increase in plasma LDL-
cholesterol®”.
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Table 2. The impact of apoE isoform on serum/plasma concentrations of lipids and lipoproteins in human subjects fan
S
Reference Subjects E2 (mmol/L) E3 (mmol/L) E4 (mmol/L) Significant inter-group differences
Almeida et al.4® 285 postmenopausal women; HRT +: HRT +: HRT +: HRT +: NS
HRT +: mean age 56 (sp 6-7) years; TAG 1-5 (sp 0-02) TAG 1-22 (sp 0-01) TAG 1-45 (sp 0-02)
LDL-C 3:04 (sp 1-07) LDL-C 3-35 (sp 0-74) LDL-C 3:56 (sp 0-72)
HDL-C 1-62 (sp 0-33) HDL-C 1-60 (sp 0-36) HDL-C 1-57 (sp 0-36)
HRT —: mean age 58 (sp 9-8) years HRT —: HRT —: HRT —: HRT —: LDL-C serum concentrations were higher in
TAG 1-33 (sp 0:02) TAG 1-41 (sp 0-02) TAG 1-53 (sp 0-02) €4 carriers than in E2 and E3 groups.
LDL-C 3:66 (sp 0-96) LDL-C 3-87 (sp 0-94) LDL-C 4-49 (sp 1-05)
HDL-C 1-29 (sp 0-44) HDL-C 1-24 (sp 0-29) HDL-C 1-21 (sp 0-29)
Carvalho-Wells et al.“" 251 healthy adults; TAG 1-74 (sp 0-12) TAG 1-49 (sp 0-06) TAG 1-88 (sp 0:12) 4 carriers had higher plasma TAG concentrations
mean age 53 (sp 1) years LDL-C 3:51 (sp 0-16) LDL-C 3:70 (sp 0-08) LDL-C 3:82 (sp 0-12) compared to the e3/e3 group; €4 carriers had higher
HDL-C 1-33 (sp 0-06) HDL-C 1-32 (sp 0-03) HDL-C 1-31 (sp 0-06) plasma LDL-C concentrations compared to the E2
group.
Corella et al.“? 1014 healthy men and Men: Men: Men: Both male and female subjects with the £2 allele had
Framingham Offspring Study 1133 healthy women; TAG 1-99 (sp 1-43) TAG 1-71 (sp 1-22) TAG 1-87 (sp 1-31) lower plasma LDL-C concentrations than subjects
mean age 54 years LDL-C 2:92 (sp 0-86) LDL-C 3-37 (sp 0-77) LDL-C 3-43 (sp 0-83) with the €3 or ¢4 allele. No differences in means
HDL-C 1-14 (sp 0-32) HDL-C 1-14 (sp 0-29) HDL-C 1-08 (sp 0-28) were observed between subjects with the €3 and &4
Women: Women: Women: alleles.
TAG 1-51 (sp 0-74) TAG 1-46 (sp 0-87) TAG 1-61 (sp 1-17)
LDL-C 2:88 (sp 0-90) LDL-C 3-25 (sp 0-85) LDL-C 3:35 (sp 0-82)
HDL-C 1-51 (sp 0:43) HDL-C 1-47 (sp 0-39) HDL-C 1-43 (sp 0-40)
Corella et al.*® 272 CHD cases and 496 controls; CHD cases: CHD cases: CHD cases: In both incident CHD cases and controls, plasma
nested case-control study in mean age 54 years TAG 1-89 (sp 0:65) TAG 1-75 (sp 1-37) TAG 1-93 (sp 1-41) LDL-C in €4 carriers >3 carriers >e2 carriers. 2]
the Spanish EPIC cohort LDL-C 3:58 (sp 1-01) LDL-C 4-05 (sp 0-86) LDL-C 4-43 (sp 0-92) les)
HDL-C 1-20 (sp 0-25) HDL-C 1-28 (sp 0-39) HDL-C 1-24 (sp 0-40) ]
Controls: Controls: Controls: -
TAG 1-21 (sp 1-0) TAG 1-36 (sp 0-78) TAG 1-51 (sp 1-0) 2
LDL-C 3:18 (sp 0-88) LDL-C 3-71 (sp 0-82) LDL-C 3:84 (sp 0-77) =8

Dietrich et al.“*

(45)

Egert et al.

Huebbe et al.*®

Minihane et al.*”

Miltiadous et al.*®

Scuteri et al.“®)

274 healthy adults;
mean age 469 (sp 13-0) years

Ninety-three patients with
metabolic syndrome traits;
mean age 45 (sp 10-5) years
699; general German population sample;
mean age 63 (sp 7) years

50 males with an atherogenic
lipoprotein phenotype;

mean age 56 (sp 1) years

200 normolipidaemic individuals;

mean age 36 years

306 healthy men;
mean age 58 years

HDL-C 1-47 (sp 0-40)

TAG 1-85 (sp 0-60)
LDL-C 385 (sp 0-92)
HDL-C 1-27 (sp 0-16)

TAG 2-41 (sp 0-16)
LDL-C 4-23 (sp 0-33)
HDL-C 1-02 (sp 0-08)

HDL-C 1-39 (sp 0-35)
TAG 1-28 (sp 0-79)
LDL-C 3-36 (sp 0-95)
HDL-C 1-08 (sp 0-29)
TAG 2-:01 (sp 1-05)
LDL-C 3-35 (sp 0-94)
HDL-C 1-47 (sp 0:47)
no APOE4

LDL-C 3-64 (spb 0-94)
HDL-C 1-79 (sp 0-47)
TAG 256 (sb 0-21)
LDL-C 4-35 (sp 0-17)
HDL-C 1-00 (sp 0-03)
Non-E4

TAG 1-54 (sp 1-3)
LDL-C 3-52 (sp 1-3)
HDL-C 1-23 (sp 0-5)
Non-E4

TAG 1-30 (sp 0-84)
LDL-C 3-09 (spb 0-79)
HDL-C 1-11 (sp 0-27)

HDL-C 1-30 (sp 0-33)
TAG 1-37 (sp 0-80)
LDL-C 3-59 (sp 1-12)
HDL-C 1-07 (sp 0-37)
TAG 2-89 (sp 1-36)
LDL-C 3-40 (sp 0-86)
HDL-C 1-36 (sp 0-47)
APOE4

LDL-C 3-88 (sp 0-97)
HDL-C 176 (sp 0-51)
TAG 2-42 (sp 0-19)
LDL-C 4-72 (sp 0-22)
HDL-C 0-91 (sp 0-03)
E4

TAG 1-36 (sp 1-7)
LDL-C 3-48 (sp 1-0)
HDL-C 1-15 (sp 0-4)
E4

TAG 1-35 (sp 0-81)
LDL-C 3-27 (s 0-90)
HDL-C 1-08 (sp 0-27)

NS

Higher serum TAG concentrations in the APOE4
group compared with the E3 group.

NS

Lower plasma HDL-C concentrations in the APOE4
group compared with the APOE2 and APOE3

group.
NS

NS

Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; HDL-C, HDL-cholesterol; HRT, hormonal replacement therapy; HRT +, postmenopausal women HRT users; HRT —,
postmenopausal women HRT non-users; LDL-C, LDL-cholesterol.
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Table 3. The impact of apoE isoform on biomarkers of inflammation in human subjects

Significant inter-group

Reference Subjects Compared apoE isoforms Biomarker differences
Golledge et al."® 1278 men Non-E4 v. E4 Serum CRP Non-E4>E4
Hubacek et al.®®) 6108 randomly selected E3 v. E4 Plasma CRP E3>E4
adults
Miles et al.®" 312 healthy adults E2 v. E3 v. E4 Plasma CRP E2>E3>E4
Plasma IL-6 NS
Plasma IL-10 NS
Plasma TNFa NS
Kravitz et al.®? 227 people aged 90 years ~ Non-E4 v. E4 Serum CRP Non-E4 = E4
and older
Ojala et al.® 39 (26 AD, 4 vascular E3/E3 v. E4/E(2/3) Brain IL-18 NS
dementia, 9 control) v. E4/E4
Angelopoulos et al.®® 117 healthy adults E2/E3 v. E3/E3 v. E3/E4 Serum CRP E2/E3>E3/E4
Gronroos et al.®® 1221 randomly selected E3/E2 v. E4/E2 v. E3/E3 Serum CRP Childhood:
Finns v. E4/E3 v. E4/E4 E3/E2>E4/E2 = E3/E3>
E4/E3>E4/E4
Adulthood:
E3/E2>E4/E2 = E4/E3>
E4/E4
Haan et al.®® 1398 Latinos aged non-E4 v. E4 Blood CRP Non-E4>E4
between 60-101 years
Park et al.®” 394 adults (275 stroke non-E2 v. E2 Serum CRP Stroke: NS
cases 119 controls) Control: NS
Serum MMP-9 Stroke: non-E2<E2
Control: NS
Serum TIMP-1 Stroke: (non-E2<E2)*
Control: NS
Non-E4 v. E4 Serum CRP, MMP-9 Stroke and control: NS
and TIMP-1
Eiriksdottir et al.®® 2251 adults Non-E4 v. E3/E4 v. E4/E4

Blood CRP

Kahri et al.®®

Mooijaart et al.®®

Ravaglia et al.®"

Tziakas et al.®®

Tziakas et al.®?

Paschos et al.®®

Austin et al.®¥

Marz et al.®®

Pertovaara et al.®®

Non-E4>E3/E4
Non-E4>E4/E4

368 adults (211 low-HDL-C  E3 v. E4 Serum CRP E3>E4
subjects; 157
normolipidemic subjects) Serum VCAM-1, | NS
CAM-1 and
E-selectin
546 adults aged 85 years E2/E2 v. E2/E3 v. E2/E4 Plasma CRP NS
v. E3/E3 v. E3/E4
v. E4/E4
671 adults aged 65 years Non-E4 v. E4 Serum CRP NS
and older
70 chronic stable angina E2/E3 v. E3/E3 v. E3/E4 Serum CRP E3/E3>E3/E4
patients Serum IL-10 (E2/E3>EB3/E4)*
E2/E3 = E3/E3
E2/E3>E3/E4
E2/E3>E3/E3
(E3/E3>EB3/E4)*
166 patients with acute E2/E3 v. E3/E3 v. E3/E4 Serum CRP E2/E3 = E3/E3>E3/E4
coronary syndrome Serum IL-10 E3/E3>E3/E4
(E2/E3>EB3/E4)*
E2/E3 = E3/E3
50 dyslipidemic men E2/E3 v. E3/E3 v. E3/E4 Serum CRP, IL-6, NS
MCFS, SAA
552 Japanese Americans E2 v. E3 v. E4 Plasma CRP E2>E4
1309 adults (571 controls E2 v. E3 v. E4 Serum CRP E2>E4
738 cases of coronary E3>E4
artery disease) E2 =E3
63 pSS patients Non-E4 v. E4 Plasma CRP, NS
IL-6, TNFo
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Table 3 (Continued)

Significant inter-group

Reference Subjects Compared apoE isoforms Biomarker differences
Sun et al.®” 141 ‘probable AD’ Non-E4 v. E4 Plasma IL-6 NS
Plasma TNFa (non-E4<E4)*
Plasma MCP-1 NS
CSF IL-6 and MCP-1 NS
Drabe et al.%® 22 patients undergoing Non-E4 v. E4 Plasma IL-8 Non-E4<E4
cardiopulmonary bypass Plasma TNFo Non-E4<E4
Manttari et al.®® 272 adults (136 myocardial ~ E3/E2 v. E3/E3 v. E4/E2 Serum CRP E3/3>E3/2>E4/3>
infarction or coronary v. E4/E3 v. E4/E4 E4/2>E4/4
death; 132 controls)
Egert et al.“®) 93 patients with metabolic ~ E3 v. E4 Serum CRP E3>E4

syndrome traits

AD, Alzheimer's disease; CRP, C-reactive protein; CSF, cerebrospinal fluid; ICAM-1, intercellular adhesion molecule 1; MCFS, macrophage colony-stimulating
factor; MCP-1, monocyte chemoattractant protein; MMP: matrix metalloproteinase; pSS, primary Sjégren’s syndrome; SAA, serum amyloid A; TIMP-1, tissue

inhibitor of metalloproteinase-1; VCAM-1, vascular cell adhesion molecule-1.

*Trend (0-05< P<0-1).

Oxidative stress, antioxidant defence and chronic
inflammation

The first evidence that apoE may protect against oxidative
stress was found in apoE-deficient mice with increased
susceptibility of plasma lipoproteins to in vitro oxidation
compared with wild-type mice®®. Miyata and Smith®”
then postulated that antioxidative activity of apoE would
be isoform dependent and that E4 was least and E2 most
effective. The authors suggested different metal-binding
capacities of the individual apoE isoforms that were pos-
sibly involved in the observed antioxidant effects. The
presence of Argll12 rather than the absence of any cystei-
nyl groups in the protein appears to contribute to the
increased oxidative susceptibility (due to altered protein
stability) of agoE4 compared with apoE3 and its associated
lipoproteins‘®*Y. Neuronal cells cultured in apoE4 con-
ditioned medium were more susceptible towards oxidative
stress-induced cytotoxicity than in apoE3 conditioned
medium®”. Furthermore, innate immune cells produce
higher levels of reactive oxygen or nitrogen species in the
presence of apoE4 than apoE3**%. Biomarkers of oxi-
dative stress are elevated in apoE €4 carriers notably in
subjects suffering from AD or CVD“*%>7%®) Expression of
anti-atherogenic paraoxonase 1, which inhibits and rever-
ses LDL-oxidation, is also lower in apoE4 than apoE3-
targeted replacement mice®”. Recent evidence suggests
that the apoE €4 genotype is associated with lower ex-
pression of the antioxidant enzyme heme oxygenase 1 and
other nuclear factor (erythroid-derived 2)-like 2 target
genes’?. Although data are sometimes conflicting nuclear
factor (erythroid-derived 2)-like 2 may play a role in pre-
venting atherosclerosis”"”. In summary, modulation of
oxidative stress and antioxidant defence mechanisms may
be a relevant physiological function of apoE, which is
implemented in an isoform-dependent manner.

A number of studies have been conducted investigating
the role of apoE in inflammatory processes mostly in
models of neurodegeneration. Indeed chronic inflammation
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is associated with neurodegenerative disorders such as
AD?_ ApoE has been shown to modulate inﬂammator?f
response in either direction, pro- and anti-inflammatory’®.
However, expression of pro-inflammatory markers such
as cytokines and NO in stimulated microglia and
macrophages was higher in the presence of apoE4 than
apoE3*7®_ Higher pro-inflammatory response in apoE4
may be mediated by increased and prolonged activation
of the redox-sensitive transcription factor NF-xB*7.
Chronic inflammation in the brain coincides with amyloid
plaque pathology and both are more pronounced in apoE4
than apoE3 transgenic mice'””. ApoE €4 is significantly
associated with higher serum amyloid P (acute phase pro-
tein) in mice’® suggesting an elevated level of chronic
low grade inflammation which may contribute to the in-
creased chronic disease risk of €4 as compared with non-g4
carriers (Table 3).

Responsiveness of the apoE genotype to dietary factors
Vitamin E

Vitamin E comprises eight different tocopherols and toco-
trienols, o-tocopherol being biologically the most impor-
tant vitamer (herein after referred to as vitamin E). Dietary
vitamin E is postprandially delivered to the plasma via
chylomicrons released from enterocytes or via VLDL
following hepatic secretion. Under basal conditions, vita-
min E is mainly associated with LDL particles with a
constant flux existing between the different lipoprotein
classes. Since apoE polymorphism affects concentration
and clearance of plasma lipoproteins, it is conceivable that
vitamin E metabolism is also impacted by the apoE geno-
type. Although a few studies found no difference in plasma
vitamin E levels between apoE genotypes under baseline
conditions'°*'°Y " a biokinetic approach using stable iso-
topes observed higher newly absorbed vitamin E levels
among €4 as compared with &3 carriers'’?. Extra-hepatic
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Table 4. Effects of the apoE isoform on parameters of vitamin D
and Ca status evident in apoE4 compared with apoE3 targeted
gene replacement mice*®

Parameter of vitamin D and Ca status

Serum 25-(hydroxy)-vitamin D level APOE4>APOE3
mRNA level of genes encoding
proteins involved in
Bile acid production (Cyp7af) APOE4>APOES3
Vitamin D binding in kidney (Lrp2) APOE4>APOES3
and serum (Gc)
Renal absorption of Ca from primary APOE4<APOE3
urine (Trpv6, S100g)
Bone Ca concentration APOE4>APOES3
Intestinal Ca absorption APOE4>APOES3

Cyp7a1, cholesterol-7-o-hydroxylase; Lrp2, LDL-receptor-related protein 2;
Gc, vitamin D binding protein; Trpv6, Ca transport protein 1; S100g,
calbindin D9K.

vitamin E concentration is lower in apoE4- than apoE3-
targeted replacement mice, which is most likely due to the
lower expression of LDL-receptor and related receptor
classes mediating vitamin E uptake'’®. Furthermore,
degradation of vitamin E may be increased in the apoE €4
genotype contributing to lower tissue retention and there-
fore( ];())%ssibly lower vitamin E status in peripheral tis-
sues' .

Vitamin D

Unlike vitamin E the impact of the apoE polymorphism on
vitamin D status is more pronounced. We recently pro-
vided first experimental and epidemiological evidence
suggesting the apoE €4 genotAy e is associated with higher
circulating vitamin D levels“®. In targeted gene replace-
ment, mice expressing human apoE4 serum 25-hydroxy-
vitamin D concentration was significantly higher compared
with apoE3- and apoE2-expressing mice. The observed
higher serum concentration may be a result of increased
intestinal absorption of dietary vitamin D as the mRNA
level encoding for the key enzyme in bile acid production
was higher in apoE4 than E3 and E2 mice. Elevated renal
reabsorption of vitamin D from primary urine may also
contribute to better vitamin D status as loss of vitamin D
due to renal excretion would be reduced in the apoE €4
genotype. Furthermore, a higher femoral Ca concentration
was evident in apoE4 v. apoE3 mice accompanied by rela-
tively higher dietary Ca absorption. Supportive of a better
vitamin D and Ca status, apoE4 mice showed increased
renal Ca excretion and lower mRNA levels of renal Ca
absorption genes that would have been induced upon
hypocalcaemia (Table 4). These data illustrate that apoE4
compared with apoE3 mice have a better vitamin D and Ca
status while dietary supply of both nutrients was similar
in the apoE genotype groups(46). In addition, circulating
vitamin D was assessed in two independent human samples
from northern Germany. Serum concentration of 25-
hydroxy-vitamin D was significantly higher in subjects
carrying €4 as compared with non-e4 carriers. Mean 25-
hydroxy-vitamin D concentration of both samples was
<50nmol/l suggesting a mild vitamin D deficiency
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throughout study participants. Mild vitamin D deficiency is
relatively common in people inhabiting the same geo-
graphic latitude and has been reported before"'>'%® Qur
data suggest apoE €4 as a modulator of vitamin D and Ca
status in apoE transgenic mice and in a population with
insufficient vitamin D supply, which in the light of evolu-
tionary aspects may explain non-random geographic dis-
tribution of apoE alleles (see subsection ‘Geographic
distribution of apoE genotypes’).

Flavonoids

Flavonoids are a large group of secondary plant metabo-
lites with >6000 distinct flavonoids identified to date"'*”.
Epidemiological studies, together with data from animal
models and some clinical trials, suggest a role of dietary
flavonoids in the prevention of CVD and other age-related
chronic diseases'®® ' The flavonol quercetin exhibits
a wide range of physiological effects such as inhibition
of LDL-oxidation, lowering of arterial blood pressure and
platelet aggregation, and improvement of endothelial
function as shown in animal models and in human sub-
jects! """ Furthermore, cell culture and animal studies
indicate a gotent anti-inflammatory activity of querce-
tin(116.118-120)

Current scientific evidence from human and animal stu-
dies indicates that the apoE genotype may be an important
determinant of the responsiveness to dietary quercetin. We
have recently found that overweight and obese patients
with metabolic syndrome traits carrying the apoE €3 are
highly responsive towards the blood pressure lowering
effects of dietary quercetin supplementation, whereas apoE
€4 carriers, by large, do not benefit* (Table 5). We
hypothesised that quercetin supplementation may have
resulted in higher endothelial NO levels in apoE €3 v.
apoE €4 carriers due to potential differences in the cellular
redox and inflammatory states between the two genotypes.
In addition, we found apoE genotype-specific effects
of quercetin on fasting serum concentrations of HDL-cho-
lesterol and apoAl and on the ratio of LDL:HDL-
cholesterol. Quercetin significantly decreased serum HDL-
cholesterol and ApoAl in apoE €4 allele carriers but not
in homozygous €3/¢3. Moreover, our recent findings in
apoE3- and apoE4-targeted gene replacement mice indi-
cated that apoE3 animals were more responsive to the
TNFo-lowering properties of dietary quercetin supple-
mentation compared with apoE4 animals"'®. Therefore,
the apoE genotype may in part explain the large hetero-
geneity of studies regarding potential health effects of
flavonoids in human subjects where cohorts are not geno-
typed for apoE polymorphisms.

Plant and marine n-3 fatty acids

A large body of epidemiological data and evidence from
randomised controlled human trials has demonstrated the
cardioprotective effects of the marine n-3 fatty acids EPA
and DHA"#"'?%_ For example, EPA and DHA have been
shown to improve dyslipidaemia, to lower blood pressure
and heart rate, to reduce inflammation, and to improve
vascular function'?712”. An alternative (n-3) PUFA is
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Table 5. ApoE isoform and responsiveness to flavonoid manipulation in human subjects — evidence from randomised controlled intervention studies

Reference Subjects analysed

Study design

Intervention and duration CVD biomarkers

Significant effects of intervention
(E2 v. E3 v. E4)

Atkinson et al.('®" 177 menopausal women;
mean age 55-1 years;
retrospectively
genotyped

Egert et al.“® 93 patients with metabolic
syndrome traits; mean
age 45 (sp 10-5) years;
retrospectively

genotyped

Pfeuffer et al.'®® 49 healthy male subjects;
mean age 594 (sp 0-9)
years; prospectively
recruited according to
apoE genotype

Randomised, double-blind,
placebo-controlled, parallel,
two groups

Randomised, double-blind,
placebo-controlled,
crossover, two treatments

Randomised, double-blind,
placebo-controlled,
crossover, two treatments

43-5mg/d red clover-derived
isoflavones or placebo for
12 months

150 mg/d quercetin or placebo Fasting serum Chol, LDL-C, HDL-C,

for 6 weeks separated by a
5-week wash-out period

TAG, apoB, apoA1, glucose, uric

waist circumference, body

composition, resting SBP and DBP

150 mg/d quercetin or placebo Fasting and postprandial vascular
for 8 weeks separated by a endothelial function, serum Chol,
3-week wash-out period LDL-C, HDL-C, TAG, glucose,

insulin, sVCAM, sICAM, sE-
selectin, CRP, TNFo,, plasma ox-
LDL; urinary 8-iso-PGF2q,
erythrocyte glutathione, waist
circumference, resting SBP and
DBP

Fasting serum Chol, LDL-C, HDL-C,
TAG, fibrinogen, PAI-1; SBP, DBP

acid, CRP, TNFa, plasma ox-LDL,

Interactions between apoE and
treatment for changes in Chol
and LDL-C tended to be
significant (P = 0-06 and
P = 0-05, respectively). Women
with the €2/£3 genotype
appeared to respond more
favourably to the intervention
than women with the €3/£3 or
€3/e4 genotypes.

In contrast to placebo, quercetin
decreased SBP in the apoE3
group, whereas no effect was
observed in the apoE4 group.

In the apoE4 group, quercetin

decreased HDL-C and apoAf,

whereas both variables remained
unchanged in the apoE3 group.

Quercetin reduced BMI, body
weight and waist circumference
in apoE3 but not in apoE4
subjects.

Chol, cholesterol; CRP, C-reactive protein; DBP, diastolic blood pressure; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; ox-LDL, oxidized LDL; PAI-1, plasminogen activator inhibitor type 1; SBP, systolic blood
pressure; sE-selectin, soluble endothelial-selectin; sICAM, soluble intracellular adhesion molecule; sSVCAM, soluble vascular cell adhesion molecule; urinary 8-iso-PGF2a., 8-epimer of PG F2o.
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Table 6. ApoE isoform and responsiveness to n-3 fatty acid manipulation in human subjects — evidence from randomised controlled intervention studies

Reference Subjects analysed

Study design

Intervention and duration

CVD biomarkers

Significant effects of intervention
(apoE2 v. E3 v. E4)

ALA

Paschos et al.®® 50 dyslipidaemic patients;
mean age 504 (sp 7-3)
years; retrospectively

genotyped

EPA/DHA

Caslake et al.(13?

312 healthy adults; mean
age 450 (sp 0-7) years;
prospectively recruited
according to age, sex
and apoE genotype

50 males with an
atherogenic lipoprotein
phenotype; mean age 56
(sp 1) years;
retrospectively
genotyped

Minihane et al.#”

Olano-Martin
et al.("®)

38 healthy males; mean
age 427 (spb 2-2) years;
prospectively recruited
on the basis of apoE
genotype

Dietary intervention study,
one treatment group

Randomised, double-blind,
placebo-controlled,
crossover, three
treatments

Randomised, double-blind,
placebo-controlled,
crossover, two
treatments

Randomised, double-blind,
placebo-controlled,
crossover, three
treatments

Supplementation of the
diet with 15ml/d
flaxseed oil (8-1g/d ALA)
for 12 weeks

0-7 g/d EPA/DHA or
1-8 g/d EPA/DHA or
control oil (placebo) for
8 weeks separated by
12-week wash-out
periods

6 g/d fish oil (3 g/d EPA/
DHA) or 6 g/d olive oil
(placebo) for 6 weeks
separated by a 12-week
wash-out period

3:3g/dEPA or 3-7 g/d DHA
or control oil (placebo)
for 4 weeks separated
by 10-week wash-out
periods

Fasting serum Chol,
LDL-C, HDL-C, TAG,
apoA1, apoB, SAA,
CRP, MCSF, IL-6;
LDL density

Fasting plasma Chol,
VLDL-C, LDL-C, HDL-C,
TAG, LDL and HDL
subclasses, NEFA,
glucose, apoE, apoB,
apoA1, insulin,
a-tocopherol, ox-LDL

Fasting and postprandial
plasma concentrations
of Chol, LDL-C, HDL-C,
TAG, NEFA; LPL activity

Fasting plasma Chol,
LDL-C, HDL-C, TAG,
non-HDL-C, Lp(a),
%LDL3, LDL mass,
%HDL3, HDL mass,
apoB, apoE, plasma
lipoprotein compositions

ALA decreased HDL-C and apoA1 in the e3£3
homozygotes; ALA decreased SAA and
MCSF in the subgroups €3/e3 and €3/£4; in
addition, ALA decreased CRP and IL-6 in
€3/&3 individuals.

In the group as a whole, 8 and 11% lower
plasma TAG concentrations were evident
after 0-7 EPA/DHA and 1-8 EPA/DHA,
respectively: significant sex x treatment and
sex x genotype x treatment interactions were
observed, and the greatest TAG-lowering
responses were evident in apoE4 men.

Individuals with an apoE2 allele displayed a
marked reduction in postprandial incremental
TAG response and a trend towards an
increase in LPL activity relative to non-E2
carriers.

In apoE4 individuals, a significant increase
in Chol and a trend towards a reduction in
HDL-C relative to the homozygous E3/E3
profile was evident.

For Chol, no treatment effects were evident;
however, a genotype by treatment interaction
emerged, with a differential response to EPA
and DHA in &4 carriers. Although the
genotype x treatment interaction for LDL-C
(P=0-089) did not reach significance, within
DHA treatment analysis indicated a 10%
increase in LDL-C (P = 0-029) in E4 carriers
with a non-significant 4% reduction in €33
individuals. A genotype-independent
increase in LDL mass was observed
following DHA intervention.

ALA, a-linolenic acid; Chol, total cholesterol; CRP, C-reactive protein; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; LPL, lipoprotein lipase; MCSF, macrophage colony stimulating factor; ox-LDL, oxidized LDL;

SAA, serum amyloid A; VLDL-C, VLDL-cholesterol.
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plant-derived o-linolenic acid (ALA), which in stable-
isotope studies in human subjects was shown to be de-
saturated and elongated to long-chain (n-3) PUFA!?®).
ALA may also protect against CHD. However, the data
concerning the protective role of ALA are less definitive
than that for the long-chain n-3 PUFA, EPA and DHA!??,

Recent evidence suggests that the apoE genotype may
predict the lipid and lipoprotein response to n-3 fatty acid
interventions (Table 6). Minihane er al.“” examined the
effect of apoE polymorphism and fish oil supplementation
on volunteers with an atherogenic lipoprotein phenotype,
which is characterised by moderate hypertriacylglycer-
olaemia, low concentrations of HDL-cholesterol and a pre-
dominance of small dense LDL3 particles. Fish oil (3 g/d
EPA and DHA) was found to lower fasting and post-
prandial TAG responses, with a tendency towards greater
responsiveness in individuals with the apoE €2 allele. In
the group as a whole there was a non-significant 7 % rise in
LDL-cholesterol following fish oil supplementation. How-
ever, in the subgroups based on apoE genotype, the great-
est responsiveness was observed in the apoE €4 carriers,
with a more atherogenic shift in the plasma lipid profile,
including a 7-4% (non-significant) decrease in HDL-
cholesterol and 3:5% increase in total cholesterol, with a
16 % increase in LDL-cholesterol. On the other hand, there
was also a 26 % reduction in the percentage of small dense
LDL in this subgroup. This study demonstrated for the first
time that the apoE genotype may in part determine the
blood lipid response to fish oil intervention, and that the
LDL-cholesterol increases may be largely evident in apoE
€4 carriers.

In a subsequent trial using a prospectively genotyped
cohort of metabolically healthy participants, Caslake
et al."?” systematically investigated the effect of apoE
polymorphism, sex and age on lipid responses to modest
fish oil supplementation (0-7 or 1-8 g/ldEPA and DHA).
In contrast with the previously described data®”, there was
no significant effect of apoE genotype on LDL-cholesterol.
It was speculated that the effect of apoE genotype on LDL-
cholesterol response may be dose dependent’*®. In ad-
dition, there was no significant effect of apoE genotype on
the responsiveness to TAG lowering by EPA and DHA.
However, there was a trend towards greater responsiveness
in carriers of the €4 allele: a significant sex X genotype X
treatment interaction was seen, and 15 and 23 % reductions
in TAG were evident in male €4 carriers, respectively. It
was speculated that the selective affinity of the E4 protein
isoform for VLDL, in contrast with the E2 and E3 iso-
forms, which have a preference for the more lipid-poor
large HDL protein, may explain the apparently greater
TAG lowering in apoE4 subjects''*”. A recent study of the
same research group systematically examined the indivi-
dual impact of EPA- v. DHA-rich oils fed separately on
plasma lipids in £3/e3 v. €3/e4 normolipidaemic males''*".
In the €3/e4 group, within-treatment group analysis showed
that DHA treatment, but not EPA, resulted in a significant
increase in LDL-cholesterol, with a non-significant de-
crease in the €3/e3 group. As this proatherogenic shift may
negate the cardioprotective actions of DHA, it was sug-
gested that EPA-rich oils may be a more suitable therapy
for apoE4 subjects"*".
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The gene—nutrient interaction between apoE poly-
morphism and ALA and their subsequent effect on lipid
metabolism and further CVD biomarkers has not been
extensively studied until now. There is only one, uncon-
trolled study (no control group) in dyslipidaemic patients
indicating that ALA may have beneficial effects on bio-
markers of inflammation in carriers of the apoE €3/¢3 and
apoE €3/e4 genotypes, but not in carriers of the apoE €2
allele®?. Owing to the limited number of €2 (7%) and &4
allele carriers (10%) these results need confirmation in
larger, well-controlled and well-powered studies in pro-
spectively genotyped participants.

Conclusions

In the present review, we have considered current data on
apoE polymorphism. We have summarized metabolic
impacts of the apoE isoforms and their responsiveness to
dietary factors possibly underlying the geographic dis-
tribution and varying disease risk of the major apoE iso-
forms. The emergence and successful distribution of apoE
€3 have been put down to decreased susceptibility to AD
and CVD in later life compared with apoE €4; however, it
could also be a result of varying responsiveness to dietary
factors already present in younger life. The beneficial
effects of quercetin and n-3 fatty acids were observed in
individuals carrying the €3 allele, but not in €4 carriers
indicating apoE3 a more flexible and responsive phenotype
than apoE4. On the other hand, due to better clearance of
dietary fat and reduced LDL uptake, the apoE €4 genotype
is associated with better vitamin D status and may provide
protection against several infectious diseases. This could
help to understand why the frequency of the €4 allele
follows a distinct pattern of geographic distribution and is
enriched in particular regions (e.g. Northern Europe with
insufficient UV-exposure in autumn and winter). Taken
together, the apoE genotype appears to be an important
determinant of individual responsiveness to dietary factors;
however, large prospectively genotyped cohorts are
required to confirm present data and to assess the clinical
relevance of apoE isoform-dependent effects.
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