NEURORADIOLOGY (CSNR)

E.1

Clinical outcomes of ischemic stroke in indigenous populations – a systematic review and metaanalysis

R Trivedi (Winnipeg)* J Dian (Winnipeg) J Linton (Winnipeg) J Shankar (Winnipeg)
doi: 10.1017/cjn.2023.95

Background: The burden and outcome of stroke in indigenous populations is less well understood. This review evaluates ischemic stroke outcomes in indigenous populations as compared to the general population in the context of recent advances in ischemic stroke therapy. Methods: The OVID Medline and EMBASE databases were searched for this review. Clinical outcome was measured using standardized outcome scale (eg. mRS) at 90 days following stroke intervention in indigenous as compared to non-indigenous adult populations. Results: 897 studies were identified, with 4 studies included in the final analysis. A total of (n=68895) patients were included who underwent thrombolysis. Study populations from Australia, New Zealand, United States and Canada comprised of (n=2012) indigenous patients. Mortality was significantly higher in indigenous populations as compared to non-indigenous (Odds Ratio-1.28, 95% CI-1.12; 1.46). The odds ratios of atrial fibrillation (1.26, 95% CI-1.12; 1.41), diabetes (1.43, 95% CI-1.27; 1.62), hypertension (1.33, 95% CI-1.17; 1.51) and IHD (0.71, 95% CI-0.62; 0.81) in indigenous patients was significantly higher in non-indigenous patients. Conclusions: Indigenous populations undergoing stroke therapy are at a significantly increased risk of mortality as compared to non-indigenous populations. Comorbidities including diabetes, atrial fibrillation and hypertension are more prevalent in indigenous populations.

E.2

Predictors of successful endovascular thrombectomy for M2 occlusion in acute ischemic stroke

A Rizwan (Kingston)* D Tampieri (Kingston)
doi: 10.1017/cjn.2023.96

Background: There remains lack of data in regards to factors influencing successful endovascular reperfusion of isolated occlusion of the M2 segment of the middle cerebral artery (MCA). In this study, we set out to investigate the variables that affect the successful endovascular reperfusion of isolated M2 segment occlusion. Methods: M2 segment occlusion was defined as isolated clot anywhere within the M2 segment of the MCA. A prediction model of successful endovascular reperfusion defined as modified Thrombolysis in Cerebral Ischemia (mTICI) score of 2b, 2c and 3 and unsuccessful endovascular reperfusion defined as mTICI score of 0, 1 and 2a was developed from demographics (age, sex), clinical factors (NIHSS at the time of presentation to hospital), imaging characteristics (ASPECTS, ICA occlusion, presence of Intracranial arterial disease (ICAD), computed tomodography perfusion (CTP)-based ischemic core and mismatch volume estimation), and treatment (alteplase/tenecteplase use and periprocedural complications) variables from 64 patients who underwent endovascular thrombectomy (EVT) at Kingston Health Science Centre between December 24, 2018 and October 18, 2022. Results: The only statistical significant predictor of successful endovascular reperfusion was CTP-based ischemic core volume (smaller core volume) (p<0.05). Conclusions: The CTP-based ischemic core volume is the most important predictor of successful endovascular reperfusion for M2 occlusion.

E.3

Imaging of subdural hematoma

S Devgan (Winnipeg)* J Shankar (Winnipeg)
doi: 10.1017/cjn.2023.97

Background: Radiologic imaging has become integral in not only the detection and diagnosis of subdural hematoma, but also in guiding potential treatment options. Particularly, in the arena of chronic subdural hematoma, which has conventionally been managed via surgical drainage, although is shifting toward procedural intervention with embolization of the middle meningeal artery. This paper aims to review the imaging manifestations of subdural hematoma as a function of chronicity, standardized methods of measurement, and identifying the middle meningeal artery and its clinically significant variant anatomy as it pertains to embolization planning. Methods: A literature search using key terms and titles was conducted for articles containing imaging characteristics of subdural hematoma, approaches to measurement, and middle meningeal artery anatomy as the primary focus. Results: The expected evolution of subdural hematoma over time encompasses a broad array of imaging characteristics. Attempts at standardizing hematoma measurements include width, volume, and midline shift. Given the implication of the middle meningeal artery in potential therapeutic embolization, familiarity with its anatomy is vital not only for mapping access, but also for delineating possible dangerous collaterals. Conclusions: Equipped with a more comprehensive approach to characterizing subdural hematoma, the radiologist will be able to curate findings of greater utility to the clinician.

E.4

Hippocampal subfield thickness measurements evaluated using HippUnfold in patients with mild cognitive impairment and Alzheimer’s disease

doi: 10.1017/cjn.2023.98

Background: Alzheimer’s disease (AD) is an emerging public health crisis and biomarkers are playing a large role in AD research. Magnetic Resonance Imaging (MRI) holds advantages over existing biomarkers for AD. This project aims to measure subfield thickness throughout the hippocampal long axis using HippUnfold, a novel open-source automated hippocampal segmentation software. Methods: High resolution (0.39x0.39x2mm) Hippocampal MR Images [control, n= 16, mild cognitive