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Abstract

‘We consider coactions of a locally compact group G on a C*-algebra A, and the associated crossed
product C*-algebra A x G. Given a normal subgroup N of G, we seck to decompose A x G as an
iterated crossed product (A x G/N) x N, and introduce notions of twisted coaction and twisted
crossed product which make this possible. We then prove a duality theorem for these twisted
crossed products, and discuss how our results might be used, especially when N is abelian.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 L 55,22 D 25,22 D 35.

0. Introduction

It has been known for many years that the group C*-algebra of a semi-direct
product NXH can be decomposed as a crossed product C*(N) x H; this
observation has both motivated the study of crossed products, and influenced
the development of their representation theory, through the various extensions
of the Mackey machine (for example, [24, 7]). Applications have required
generalisations of this decomposition: the version for non-split group extensions
involves twisted crossed products rather than ordinary ones, and for inductive
arguments it is necessary to decompose crossed products as well as group
algebras. In particular, the various decompositions of a crossed product A x G
as an iterated twisted crossed product (A x N) x G/N (for example, [7, 6, 17])
have been important tools in several recent projects (for example, [7, 16, 1]).
Here we want to discuss an analogous decomposition for crossed products by
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coactions of nonabelian groups, and the appropriate family of twisted crossed
products.

Our decomposition theorem is modelled on that of Green [7, Proposition 1]
for crossed products by actions. Recall that an action 8 : G —> Aut A of a
locally compact group G is given on a closed normal subgroup N by a twisting
map if there is a strictly continuous homomorphism z : N — UM(A) satisfying
Bly = Adt and

©.1) B(t)) =Tne for s € G, neN.

A representation p = m x U of the crossed product A x4 G is said to preserve
the twist 7 if mw o T = Uly, and then the twisted crossed product A xg . G is
the quotient of A xg G by the ideal

I, = ﬂ {ker p : p is a representation of A Xz G preserving ‘L’} .

For any action @ : G — Aut A, the canonical embedding i of N in M(A x, N)
is a twisting map for the natural action 8 of G on A x, N, and Green’s de-
composition asserts that A x, G is isomorphic to the twisted crossed product
(A X N) xg 5. G. The twisted crossed product has properties like those of
ordinary crossed products by actions of G/N, so we can profitably think of this
as saying A x G = (A x N) x G/N — indeed, there is an alternative approach
which makes this precise [17].

A coaction § of G on a C*-algebra A restricts to a coaction 8| = 8|/~ of the
quotient G/ N by an amenable normal subgroup N; if G were abelian, § would be
given by an action of G, which would restrict to an action of N+ = (G/N)". We
say 4 is given by atwiston G/ N if there is a corepresentation of G/N in A, which
implements 8|, and satisfies an extra consistency condition analogous to (0.1).
Formally, this corepresentation is a unitary W € UM(A ® C’(G/N)), but
slicing it gives a homomorphism j of Co(G/N) into M (A), and the consistency
condition says that §(j(f)) = j(f) ® 1 for f € Co(G/N) . It was shown
in [12] that every representation of A x; G has the form 7 x u for some pair of
representations 7 : A — B(Jf) satisfying an appropriate covariance condition
(see Section 1), and we say 7 x p preserves the twist W if w o j = plcy/m)-
We can now let

Iy = ﬂ{kern X @7 X ppreserves W},

and define the twisted crossed product A x5 6,n.w G to be the quotient (A X
G)/Iw. Thus almost by definition it is a C*-algebra whose representations are
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given by the covariant representations of (A, G, §) which preserve W, and it
can be characterised by this property. The details of this construction are given
in Section 2, following a short preliminary section in which we set up notation
and review some key material from [12].

Suppose now that § : A - M(A ® C}(G)) is a coaction of G on A and
N is a closed normal amenable subgroup of G. We shall show that there is a
natural coaction y of G on the crossed product A x5 G /N, and that the natural
embedding j of Co (G/N) in M(A x5 G/N) defines a twist W for y on G/N.
Theorem 3.1 asserts that A x; G is isomorphic to the twisted crossed product
(A x5 G/N) x,,.6/nw G. Our proof of this is based on the universal properties
of the various crossed products, and amounts to showing they have the same
representation theory.

For our twisted crossed products to be useful, it is important that they have
properties like those of ordinary crossed products: A x, g,n,w G should resemble
A x.N. Asevidence that this is the case, we show that there is a duality theorem
like that of Katayama [10] for untwisted crossed products: every twisted crossed
product A X, ,n,w G carries a natural dual action 8 of N such that (A x ¢ nG) X
N is Morita equivalent to A. (Katayama’s theorem is slightly stronger than the
case N = G — his gives an isomorphism (4 x;G) x;G = A® K (L*(G)) —but
the Morita equivalence should suffice for most applications.) Our Theorem 4.1
follows quite easily from Mansfield’s imprimitivity theorem for crossed products
by coactions [13].

Our interest in this subject arose from the possibility of reducing questions
about crossed products by coactions of a solvable group G to twisted crossed
products in which the normal subgroup is an abelian subquotient @ of G, and
which should behave like crossed products by actions of Q In the final section
we discuss briefly how this procedure might give useful information about the K-
theory of crossed products by coactions, and consider some other questions this
analysis raises. In particular, we look at the relationship between our algebras
A X5 6/nv,w G and the twisted crossed products A x, N studied in [4, 17].

NOTATION. We denote by A or A the left regular representation of a locally
compact group G on L?(G), and by M the representation of Co(G) as mul-
tiplication operators on L2(G). The reduced group C*-algebra C(G) is the
image of the full group C*-algebra C*(G) under (the integrated form of) A. The
comultiplication 6 : C(G) — M(C}(G) ® C}(G)) is the integrated form of
the representation s — A; ® A, which factors through C*(G) because A ® A is
equivalentto A ® 1.
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If A acts faithfully on a Hilbert space ., so does its multiplier algebra
M(A), and we can identify M (A) with {T € B(J#) : TA + AT C A} (cf.
(19, Section 3.12]). A homomorphism ¢ of A into a multiplier algebra M (C) is
nondegenerate if there is an approximate identity {a;} for A such that g(q;) > 1
strictly. Every nondegenerate homomorphism ¢ extends to a strictly continuous
homomorphism of M(A) into M(C), which we still call ¢ (for example, [12,
1.1]). We shall always use 1 for the identity of an algebra, and i for the identity
mapping between algebras. If A and B are C*-algebras, A ® B will denote their
spatial or minimal tensor product,and o : AQ B — B® A the flip isomorphism.
For the definition and properties of the slice maps Sy : A® B — Afor f € B*,
we refer to [12, Section 1].

1. Crossed products and covariant representations

Let G be a locally compact group and A a C*-algebra. A coaction of G on
A is, roughly speaking, a homomorphism § of A into M (A ® C*(G)) which
is comultiplicative. While there are several ways to make this precise, they do
apparently lead to the same crossed products (c.f. [22]), and we shall therefore
stick with the conventions of [12]. However, we shall want to exploit the point
of view of [22], where the crossed product is characterised as a C*-algebra
whose representation theory is the covariant representation theory of the system
(A, G, §), and we shall show how Theorem 3.7 of [12] allows us to do this.

A coaction of G on A is a nondegenerate homomorphism § of A into
M (A ® C,*(G)) such that :

11) ®i)od=(®z)0d
(1.2) 8@ ®Ar(z)) e A®C/(G) forall A(z) € C/(G), a € A.

(Here “nondegenerate” replaces condition 2.6(a) of [12], and condition (1.2)
says the range of § lies in the subalgebra MA® Cr(G)) of [12].) Let wg
denote the bounded strictly continuous function s — §; of G into UM(C*(G)),
and view it as a multiplier of Co(G, C*(G)) = Cop(G) ® C*(G) — note that the
operator Wi € U(L*(G x G)) of [12] is M ® A(wg). As in [22], a covariant
representation of (A, G, 8) is a pair (7, u) of nondegenerate representations
7 : A— B(), u: Co(G) > B(H) satisfying

7 ®i(d(a) =Ad(u®A(w) (@) ®1) in M(K(H#)®C}(G));

https://doi.org/10.1017/51446788700035539 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035539

324 John Phillips and Iain Raeburn [5]

equivalently, (;r, £ ® A(wg)) is a covariant representation in the sense of [12,
3.5]. If § is a coaction of G on A, and A C B(5¥), the crossed product A x5 G
is defined in [12] as the C*-subalgebra of B(J# ® L*(G)) generated by

(5@ ®M)): f € Co(G), a e A},

but it can be characterised as follows.

THEOREM 1.1. ([12]) Leté: A - M(A ® C}(G)) be a coaction of G on a
C*-subalgebra A of B(3¥), and define j, = 8, jc) =1Q® M. Then ja, jee)
are nondegenerate homomorphisms into M(A x; G) satisfying

(@ ja®i(d(a)) = Ad(jce) ® Ac(we))(jala) ® 1) fora € A;
(b) for every covariant representation (m, i) of (A, G, 8) there is a nondegen-
erate representation m X  of A x; G such that
(w x p)o ja=mand (w x u)o jee = WK;
(c) theset{ja(@)jc(f) : a € A, f € Co(G)} spans a dense subspace of
A XxsG.

PROOF. That § and 1 ® M are nondegenerate homomorphisms into M (Ax;G)
is provedin [12,2.5], and the proof of that result also establishes (c). Equation (a)
is essentially the coaction identity:

Jja®i(d(a)) =8 ®i(8(a)) =i ®g(8(a))
=Ad(1® Ws)(8(a) ® 1)
=Ad(1 @M Q@ Ac(we))(8(a) @ 1)
= Ad(jco) ® Ac(we))(Jala) ® 1).

If (7, ) is covariant, the proof of [12, 3.7] shows there is a nondegenerate
representation 7 x @ of A x; G such that

7 x u(8(@)(1 @ M(f))) = m(a)u(f),
which implies (b).
COROLLARY 1.2. Let § be a coaction of G on A. Suppose B is a C*-algebra
andk, : A - M(B), k¢ : Co(G) — M(B) are nondegenerate homomorph-

isms satisfying (the analogues of) (a), (b) and (c) of Theorem 1.1. Then there is
an isomorphism ¢ of A x5 G onto B suchthat g o ju, = ks and ¢ o ey = ke(c)-
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PROOF. Put B on Hilbert space; then (k4, kc()) is a covariant representation
of (A, G, 8), which by (b) induces a representation ¢ = k4 X k¢ of A x5 G.
Condition (c) implies that ¢ maps A x; G onto B and satisfies

% (jA(a)jC(G)(f)) = kA(a)kC(G)(f)-

Reversing the roles of A x; G and B gives an inverse j4 X jc(g) for ¢.

We shall frequently be restricting a coaction § of G to a quotient G/N.
Roughly, 8lg,~ (or just 3]) is the composition of § with the canonical map
i®q: A®CHG) - AQ®C(G/N), but in order for this map to be well-
defined on the reduced group C*-algebras, we need to assume N is amenable.
If so, 8| is a coaction of G/N on A [13, Lemma 4].

2. Twisted coactions and twisted crossed products

Throughout this section, § : A — M (A ® C}(G)) will be a coaction and N
a closed normal amenable subgroup of G.

DEFINITION 2.1. A rwist for § relative to G/N is a unitary W € UM(A ®
C?(G/N)) such that

@ WRDio(WR1) =i®dgn(W),
b) 8la)=W@Q 1)W*fora € A;
© RIW)=i®d(W® lc: ).

We shall also refer to the pair (8, W) as a twisted coaction of (G, G/N) on A.

REMARK 2.2. If we represent A on a Hilbert space %, condition (a) says
that W is a corepresentation of G/N on ¢ and hence there is a nondegener-
ate representation j of Co(G/N) on J# such that W = j ® Ag/n(wg,n) and
J(f) = S¢(W) for f € A(G/N) (12, 3.1] and [15, Appendix]. The formula
J(f) = S;(W) implies that j takes values in M(A), and, since we might as
well use the universal representation of A, it follows from [18, 1.3] that j is
also nondegenerate as a homomorphism into M (A). Now (b) says that (i, j) is
a covariant representation of (A, G/N, é8|), and (c) that §(j (f)) = j(f)® 1 —
or, in other words, that j(f) is a fixed point for the coaction &.
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REMARK 2.3. In various special cases, these are familiar objects. When
N = {e}, the twisted coactions of (G, G) are precisely the unitary coactions
of [12, 2.3(3)] and [20, Section 6], and when N = G, the identity is a twist
for every coaction of G. When G is abelian, the coaction § is determined by
an actiona: G — AutA: fora € A, d(a) is the function y — «,(a) in the
subalgebra C,(G, A) of M(A® Co(G)) = M(AQ CX(G)) (cf. [12,2.2(4)]). If
« is given on (G/N)" = N* by a Green twisting map 7 : (G/N)" — UM(A),
then the strictly continuous function y — 1, determines a multiplier W of
A ® C*(G/N), which is a twist for § relative to G/N: condition (a) says T is a
homomorphism, (b) that ¢|s/n) = Ad 7, and (c) reduces to (0.1).

EXAMPLE 2.4. A coaction € of N on A induces a twisted coaction (5, 1 ® 1)
of (G, G/N) on A. To see this, we note that the integrated form of the represent-
ationn — Ag(n) of N gives a nondegenerate injection C of C*(N) = C*(N) in
M (C?(G)). (For a quick proof that C is injective, observe that C(z) = 0 implies
0= (C(2), f) = (z, f|n) for f € B(G), and hence in particular (z, g) = 0 for
allg € A(N) = A(G)|y [8].) Now we candefine § = (i ®C)oe, and the identity
(C®C)oby = 8goC almost immediately implies that § is a coaction. The unitary
W = 1®1 trivially satisfies conditions (a) and (c) of Definition 2.1, and, once we
observe that the compositiong o C : C*(N) - M(CX(G)) = M(C:(G/N))
is given on L!(N) by

qoC(z) = (/ z(n)dn) lc;(G/N) = (1, )»(Z))lc:(c;/lv),
we have

8l(@)=(®q)o (i ®C)e(@) = S$i(€(@) @ lcygmy =a®1,

so (b) is trivially true too.

DEFINITION 2.5. Let (8, W) be a twisted coaction of (G,G/N) on A. A
covariant representation (7, i) of (A, G, 8) preserves the twist W if

1 ® Aoy (woyn) =7 @ i(W).

REMARK 2.6. Let j : Co(G/N) — M(A) be the homomorphism determined
by the twist W, as in Remark 2.2. Then (7, i) preserves W if and only if
7o j = lcyayn- (Note that both here and in the definition, we can freely apply
w to functions on G/N because u is nondegenerate and Cy(G/N) sits naturally
inside M(Co(G)) = Cp(G).)
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REMARK 2.7. One justification for the consistency condition (c) in Defini-
tion 2.1 is to make it possible for a reasonable number of covariant repres-
entations (i, u) to preserve W. For suppose (8, W) satisfy (a) and (b) of
Definition 2.1, and (7, ) is a covariant representation of (A, G, §) satisfying
1R A(wg,n) =1 @ i(W). Then

T®IiRIi(6Qi(W))
= Ad(u ® Ao(wg) ® 1)(i ® (7 ® i(W) ® 1))
= Ad(u R rg(we) ® l) (i Qo(u ® Ag/n(we/n) @ 1))
=iQ0 (1 ® Ag/n(wen) @ 1) (Co(G) is commutative!)
=rQ®iQII®c(W®IL)).
Thus if there are to be enough representations (;r, 1) preserving W to separate
points of A, then condition (c) must be satisfied.

Iy = ﬂ {kern XM (A, G, §) which preserves W

The twisted crossed product is the quotient A x; G/Iw; we denote it by
A X5.6/nw G, or just A xg,v G if no confusion seems likely.

DEFINITION 2.8. Let (8, W) be a twisted coaction of (G, G/N) on A, and let
(m, ) is a covariant representation of }

Of course, the idea is that A x g,y G should be a C*-algebra whose represent-
ations are given by the covariant representations which preserve the twist, and
we shall now make this precise. The next lemma provides the basic ingredient,
and will also be useful later. Recall that we denote the canonical embeddings of
Aand Co(G)in M(A x5 G) by js and jc),andletqg : A x; G —> A X568 G
be the quotient map.

LEMMA 2.9. Let (8, W) be a twisted coaction of (G, G/N) on A. Then for
f € A(G/N) we have q(jc)(f)) = q(ja(Ss(W))).
PROOF. Suppose (i, ) is covariant and preserves W, and ¢ € A x; G. Then
we have
7t % @ (e (f)e) = n(f)m x p(c)
=H (Sf(wG/N)) 7 X pu(c)
= 8; (1 ® Agn(wg/w)) 7 x p(c)
=S (@R@IiI(W))m x u(c)
=7 x pu (ja(S;(W))) 7 x pu(c),
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and hence
(jew(f) = ja(Sr(W))) c € Iy =kerq

for all ¢ € C. But according to the definition of the extension of g to
M (A x; G), this says precisely that g (jC(G)(f)) =q (jA(Sf(W))).

COROLLARY 2.10. If (&, i) is a covariant representation of (A, G, 8) with
Iy C kerm x u, then (mw, ) preserves W.

PROOF. There is a representation p of (A x; G)/Iy suchthatm x u = pogq,
andthenm = pogqo ja, L= poqo jce-

PROPOSITION 2.11. Let (8, W) be a twisted coaction of (G, G/N) on A,
and let kA =q0o jA A - M(A XG/N G), kC(G) =4qgo jC(G) : CO(G) b d
M(A xg/n G). Then

(@) ka®i(6(a)) =Ad ke Qi (wg) (ka(a) ® 1) foralla € A;

(b) ka®i(W) = k¢ ® Ag/n(wen);

(c) for every covariant representation (7, u) of (A, G, 8) which preserves W,
there is a nondegenerate representation w Xg,n it Of A Xs5.6/n.w G such
that (m Xgn p) o ka =m and (w Xg/nv 1) 0 key = s

(d) the set {ka(a)kcy(f) : a€ A, f € Co(G)} spans a dense subspace of
A xsonw G

PROOF. Conditions (a) and (d) follow immediately from the corresponding
properties of (A X; G, ja, jc)). To establish (b), we let fe A(G/N) and
compute (recalling that we identify Co(G/N) with its image in M (Cy(G)) ):

Sy (jC(G) 2y )»G/N(wG/N)) = jcw) (Sf(wG/N))
= jC(G)(f)
= ja(S;(W)) by the lemma
=5 (Ja®i(W)).

Since this holds for every f € A(G/N), it implies (b). If (7, 1) is covariant
and preserves W, then the representation m x @ of A x; G vanishes on Iy,
and hence factors through a representation & x¢,n u of A x5 G/Iy such that
(w xg/v n)oq = m x p. Thus (c) follows from the equations (w x u)o j, = m,
(T X W) o jew = K-
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REMARK 2.12. The standard arguments (cf. Corollary 1.2) show that these
properties characterise the twisted crossed product. To be precise: if (B, 14, I¢(c))
is a triple consisting of a C*-algebra B and nondegenerate homomorphisms of
A, Co(G) into M (B) satisfying (the analogues of) (a), (b), (c) and (d), then
there is an isomorphism ¢ of A X; g,y w G onto B such that ¢ o k, = /4 and
¢ okc) =lco)-

EXAMPLE2.13. If § = AdW : a — W(a ® 1)W* is a unitary coaction,
then A = A Xx;6w G. By the previous remark, it is enough to show that if
J : Co(G) — M(A) is defined by j(f) = S;(W) as in Remark 2.2, then
the triple (A, i, j) satisfies the conditions in Proposition 2.11. But (a) is the
statement § = Ad W, (b) is the equation W = j ® Ag(w¢) defining j, and (d)
holds because j is nondegenerate; to get (c), note that if (;r, i) preserves W,
then 4 = m o j (see Remark 2.6), and we can define m x u = 7.

EXAMPLE 2.14. Suppose (8, 1 ® 1) is induced from a coaction € of N, as in
Section 2.4. Then we claim that A X; 6/v,161 G = A X N. By Corollary 1.2,
it is enough to find maps k4, kcvy such that (A xg/v G, k4, kcvy) satisfies
the conditions characterising A x, N in Theorem 1.1. For k,, we take the
usual embedding of A in M(A x¢g,n G). To define k¢, we show that k¢,
factors through the quotient map Co(G) — Co(N). To see this, note that for
g € A(G/N), we have

kcwy(8) = S, (kC(G) ® A-G/N(wG/N))
=S, (kA ®i(14® 1c;(G/N)))
= g(N)lAXG/NGa
and by continuity this must also hold for any g € Co(G/N). Now a stand-
ard approximation argument shows that for f € Cy(G), fly = O implies

kcw)(f) = 0, and hence we can define k¢ by kcvy(fIn) = ke (f). To
check (a), we recall that C : C*(N) — M(C;(G)) is injective, and compute

i®Cka®i(e(a)) = ks ®i(3(a))
= Adkc) ® Ao (wg) (ka(a) @ 1)
= Adkcvy ® Ag (weln) (ka(a) ® 1)
=i ® C (Adkcw) ® Ay (wy) (ka@) ® 1)).

Next, suppose (7, i) is a covariant representation of (A, N, €), and define a
representation v of Co(G) by v(f) = w(fly). Then (m,v) is a covariant
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representation of (A, G, §) which preserves 1 ® 1, and w X,n v has the prop-
erties required of w x u in (b). The density condition (c) follows from the
corresponding property of A x¢,v G, and our claim is justified.

3. The decomposition theorem

THEOREM 3.1. Suppose § : A - M(A ® C;(G)) is a coaction of a locally
compact group G on A, and N is a closed normal amenable subgroup of G.
Then there is a twisted coaction (y, W) of (G, G/N) on A x5 G/N such that

A x5 G = (A x5 G/N) xy6/nw G;
formulas for y and W are given in Lemmas 3.3 and 3.4 below.

Most of this section is devoted to the proof of this theorem, and throughout
we shall use the notation in its statement. We first have to construct the coaction
y and the twist W. For this, we need the following simple lemma.

LEMMA 3.2. Let o denote the flip isomorphism of C}(G/N) ® C}(G) onto
C(G)® C}(G/N). Then for a € A we have

§®i(dl(a)) =i®o (8| ®i)((a))].

LEMMA3.3. Let m = (ju®i)od: A - M({(A x5 G/N) ® C}(G)) and
m = jecmy ®1: Co(G/N) > M(U(A x5 G/N) ® CX(G)). Then (m, u) is
covariant in the sense that

T ®i(8](@) = u ® Ag/n(weyn) (@) ® 1) u ® Ag/n(we/wn)*.
The resulting nondegenerate homomorphism
y=nxu:AxsG/N—> M((A x5 G/N) ®C:(G))
is a coaction of G on A X5 G/N.

PROOF. We verify the covariance of (;r, ) by computing and using Lem-
ma 3.2:

T ®i(8l(@)p ® AMwgn)
=ja®i®i(8®i(5|(a)))u ® A(we/n)
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=ja®i®i(i ®0 [(6] ®)(8(@))])i @ o (jew/n @ Mwew) ® lcxc))
=i®o [jA ®iR i(5| ®i (5(0))) (jC(G/N) ® AMwe/n) ® 1)]
=i ®0 [(jewm ® Mwew) ®1)i ®0(ja®i(3(a) ®1)]
= U ® Mwgn)(m(a) ® 1).
Itnow follows from the universal property of A x;G that there is a nondegenerate
homomorphism y = 7 x u satisftying 7 = y o ja, 4 = ¥ o jew/ny- Since
the elements of the form j4(a) jc/n)(f) span a dense subspace of A x5 G/N,
it is enough to check the coaction properties on them. First, note that for
A(z) € CX(G), we have
ALy (ja@) jewm(f))) = A®A(2))ja ® i(3(a)) (jewm(f) ®1)
= ja®i((1 ® M(2))8(a)) (jem (f) ®1)
€ ja®i (A®C,*(G))(jc(G/N)(Co(G/N))@)1)
C M ((A x5 G/N)® C}HG)).

Now we can verify the coaction identity:

y ®i(y (ja@jewm())) =y ®i(ja ®i (@) jcwm(f) ®1)
= ja®i ®i(8 ®i(5(a))) (Jewm(f) ®1®1)
= ja®i® i(i® 5c(8(a))) (Jewm(f) ®181)
=i ® 86 (ja ® i(3@) ewm(f) ® 1)
=i ® ¢ ()/ (Ja (a)jC(G/N)(f)))

LEMMA 3.4. Let y be asin Lemma 3.3. Then W = jc ny @ Ag/n(Wg)n) IS
a twist for y relative to G/N.

PROOF. We verify properties (a), (b) and (c) of Definition 2.1. The first
is easy: we just observe that both sides of (a) are the image of the function
sN = Ag/n(sN) € M(Co(G/N) ® C}(G/N) & C;(G/N)) under the homo-
morphism je,ny ® { ® i. It is enough to check (b) on elements of the form
b= jA(a)jC(G/N)(f)I
YI®) =i ®@q(y b))

=i®q (ja®i(@)com(f)®)

= ja ®i(8l(@)eco/m(f)®1)

= jemy®ren(Weyn) (ja@)®1) jew/my®@ra/n(wen) Uewm (F)@1)
= Jje@ny @ Ao (wenXja(@) jewmy(f) @ 1jem @ Aon(wen)™,
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where the last step works because Co(G/N) is commutative. Finally, we have

yQiW)=yQ®i (jC(G/N) ® )"G/N(wG/N))
=iQ0c (jC(G/N) ® Ag/n(we/n) ® 1)
=i®o(WQ1),

s0 (c¢) holds.

PROOF OF THEOREM 3.1. Let
Iy = kAxG/N oja:A—> M((A x5 G/N) x,.6/n G);

we shall prove that ((A x5 G/N) %, ¢/n G, 14, kc(c)) is a crossed product for
(A, G, §), in the sense that it satisfies conditions (a), (b), (c) of Theorem 1.1.
First of all, we have

Ia ®i(8(a)) = kaxe/v ® i(ja ® i(5(a)))
= kaxe/n ® i()’ (jA(a)))
= ke ® | (we) (kaxa/v (Ja(@) ® 1) ke @ i (we)*,
so (a) is easy. Next suppose that (7T, 1) is a covariant representation of (A, G, §),
and let v = pc /v We want to show that (i, v) is covariant, and then that

(7t x v, u) is a covariant representation of (A x5 G/N, G, y) which preserves
W. We have

7 ®iGl@) =7 ®i(i ® 4(5(a)))
=i®q (1 ® i (we) (@) ® Nu ® Ag (ws)*)
= Ad (4 ® (g 0 Ag) (wg)) (w(a) ® 1).

Now i ® (g oAg)(wg) is the multiplier of Co(G, C(G/N)) given by the function
s = Ag/n(sN), which is constant on N-cosets; thus

1 ®(qod)(wg) =vQAgn(wen),

and we have shown that (i, v) is covariant. To show that (7 x v, ) is covariant,
we compute:

(o x v) @i (¥ (Jal@jewm(f)))
= (@ x V) ®i (ja ® (@) cm(f) ® 1)
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= Qi) (w(f)®1)

=p®i(we) (@)@ Hu®i(we) W(f)®1)
=u®i(we) (Tayw(f) ® Hu®i(we)

=p Qi (we) (7 x v(ja@jeem (N @) u®i(we)*.

It is also easy to see that (7 x v, u) preserves W:
(T x V) ®iI(W) = (r x v) ®i (jew/m ® rov(we/w))
=V ® Agn(wg/n),

which is just 4 ® Ag,ny (wg,n) by definition of v. Thus we obtain a representation
p = (m x v) xgn p of (A x G/N) x, ¢/n G, which immediately satisfies
p o kcy = 1, and also

poly=pokaxgnoja= (T XV)o ja=m.

Thus our triple ((A x G/N) xg/n G, L4, kc(c)) also satisfies (b).
It remains to check (c). We know that {ji(a)jcc,/n)(g)} spans a dense
subspace of A x G/N, and hence that the elements of the form

kaxan (Ja(@) jc@m(8)) ke (f) = 14(@kaxcn © jewmy(@kew)(f)

span a dense subspace of (A x G/N) xg,n G. Butif g € A(G/N), which is
dense in Co{(G/N), we have

Jem (@) = Jewm (Se(wayn)) = S (Jewny @ Aan(weyn)) = (W),

SO

1a(@kaxcw © Jowm @ ke (f) = 1a@kaxan (Se(W)) ke (f)
= la(@kc)(8)kc)(f)
= li(a)kc)(8f)-

Thus each of our set of generators for which ¢ € A(G/N) is in the set
{la(@)kcy(f)}, and hence the latter span a dense subspace of (A x4 G/N)
x¢/nG. We have now shown that

((A x5 G/N) Xy.G/N G, 4, kC(G))

is a crossed product for (A, G, §), and hence is isomorphic to (A x5 G, ja, je))-
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REMARK 3.5. In applications, one would hope to use this theorem inductively
to decompose a crossed product along a composition series for G: if {e} =
Ny <« N, «...a N, = G, we should have

A X G= ( . ((A X8 G/Nk__l) XG/Ney G/Nk_z) X .oo Xg/N, G) .

To justify this, we need a slightly stronger version of Theorem 3.1, in which we
start with a normal subgroup M containing N and a twisted coaction (4, Y) of
(G, G/N), and deduce that

A X5,G/M.Y G= (A X5,G/M.Y G/N) Xy.G/N.W G.

Although the notation gets a little messy, it is quite easy to extend our argument,
and we shall now outline the extra steps involved.

First, one has to verify that twisted actions can be restricted to the quotient
G/N: infact, the same Y, viewed as an element of UM(A®C; ((G/N)/(M/N))),
is a twist for §|g,n relative to M /N. The homomorphism y; = ((k4 ® i) 0 §) x
(kcio/ny ® 1) of A x5 G/N into M((A xgm G/N) ® C;(G)) preserves the
twist ¥, and induces a coaction y of G on A X4,6/m,y G/N, as in Lemma 3.3.
As before, W = k¢ /vy ® Ag/n(wg,n) is a twist for y relative to G/N, and we
prove the theorem by showing that ((A xs.6;u G/N) X, o/nw G, la, kcey)
is a twisted crossed product for (A, (G, G/M), (8,Y)). The old verifications
of (a) and (c) carry over, giving (a) and (d) of Proposition 2.11. The new
condition (b) is verified by applying its analogues to the pairs (k4, kc(/n)) and
(kaxemG/ns ke)), respectively:

Ia®i(Y) = (kaxouon ®i) o (ka ®i)(Y)
= (kaxgma/n ® i) (kca/my ® Agyn(weyn))
= ke ® Ag/n(wg/n)-
In checking (c), we now also have to show that, if (7, ) preserves Y, then
(70, tlcoia/my) Preserves the twist ¥ for 8], and (7 X v, u) preserves the twist W

for y. However, this is quite straightforward, and hence the theorem generalises
to twisted crossed products, as claimed.

4. Duality for twisted crossed products

THEOREM 4.1. Let G be a locally compact group, N a closed normal amen-
able subgroup, and (6, W) a twisted coaction of (G, G/N) on a C*-algebra A.
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There is an action of N on A x56/nw G such that

8, (ka(@ke) () = ka(@ke) (0.(f)) fora e A, f e Co(G),
and then (A x5 /nw G) x5 N is Morita equivalent to A.

Let B = A x;,6/n,w G, and denote by o; the automorphism of Cy(G) defined
by o,(f)(t) = f(ts). As in [22, 2.14], one verifies that, for any s € G,
(B, k4, ke 0 0;) is a crossed product for (A, G, 8), and it is easy to check
that, for n € N, the pair (kA,kC(G) oa,,) preserves W. Thus the existence
of 8, follows from the uniqueness of the crossed product (Section 2.12). The
continuity of the action o on C,(G) implies that § is a strongly continuous action
of N on B.

The imprimitivity bimodule will be the quotient of the (A x; G) x; N — A x
G/N bimodule X of Mansfield [13] corresponding to the ideal

_ (r, i) is a covariant representation of
Iy = ﬂ {kern X H (A, G/N, §)) preserving W

in A x G/N. This gives an equivalence between the quotient (A x G/N)/Iy =
A X6,y G/N, which is isomorphic to A, and a quotient of (A x; G) x5 N, which
we shall have to identify with (A X8 G) x N. The key observation is that
Mansfield’s inducing process is compatible with the twists.

If (or, ) is a covariant representation of (A, G/N, §|), we shall denote by
Ind**%  x u the representation of A x ; G induced via Mansfield’s bimodule X,
and by Ind® 7 x u the corresponding induced representation of the imprimitivity
algebra E = (A x5 G) x3 N. Since the original action of A x; G on the
bimodule X agrees with that obtained from the canonical embedding of A x; G
in M(E) = B(X) (c.f. [13, Section 5]), there is a unitary representation V of N
such that

Ind®*7 x pu = (Ind*%7 x pu) x V.

LEMMA 4.2. Suppose (m, 1) a covariant representation of (A, G/N, §|).
Then (7, 1) preserves W (as a twist for 8|) if and only if Ind**°m x u preserves
w.

PROOF. The bimodule X is constructed in [13] as the completion of a subal-
gebra Z of A x; G, which roughly speaking consists of norm limits of sums of
elements of the form 8(S,(6(a)))(1 ® My), where v € A (G) is fixed and the
support of f € C.(G) lies in a fixed compact subset E of G. (For convenience,
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we use here notation like that of [13], so that A x; G is defined concretely as
an algebra of operators on J£® L*(G), and j4 = &, jey = 1 ® M.) To define
the induced representation Ind**® 7 x u we need the A x G/N-valued inner
product on &, and we recall how it was constructed in [13, Section 4]. We view
A x5 G/N as an algebra of operators on S#® L*(G) via the representation
(wr ®i)od x (1R Mg) (c.f. [13, Proposition 7]), so that §|(b)(1 ® Mg,n(f)) is
carried into §(b) (1 ® M (f)); in [13], this image algebra is denoted A x; G/N.
Mansfield then proves that the map

W :8(8,(a)) 1 ®M(f)) — 8(8,(a)) (1 @ M(p(f))),

where o(f)(sN) = f f(xn)dn and 8,(a) = S,(8(a)) extends to a well defined
map of 2 into a subalgebra Py of A x; G/N [13, Proposition 16]. He also
gives an alternative characterization of ¥ as a map from Zto M(A x; G/N):
for x, y € &, we have

\ll(x)y=f3,.(X)ydn, y‘I’(x)=/ ¥8a(x) dn
N N

[13, Lemma 18]. From this characterization we can deduce that ¥ satisfies
¥ (x*) = ¥(x)*, and hence has the following expectation-like properties:

“4.1) W (8(5,(a))x) =80, (a))¥(x) forae A, uce A.(G)
4.2) V((IOMENx) =1 M(@E)H¥(x) forgeC.(G/N).

(The adjoint of (4.2) holds because ¢( fg) = ¢(f)g if g is constant on N-orbits.)
Finally, the inner product on 2 is defined by

(x,y) = px*y),

but we have to remember that the latter really belongs to the concrete realisation
A x5 G/N of A x5, G/N on 5£® L*(G).

Now suppose (i, i) is a covariant representation of (A, G/N). The induced
representation Ind4*¢ 7t x w acts, via left multiplication on 2, in the completion
of 2 © J%, in the norm defined by the inner product

(x®& | y®n) = (7 x u((y, x)EM),

and we therefore have

(Ind7 x w()(Y®E) | z@n) = (7 x u (Y (z*xy)) Eln)
forx e 2C A x;5G.
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This induced representation preserves the twist W when
Indzw x u(@(j(f))) =Indm x u(1® Mg(f)) for f € Co(G/N).

Note that, since 8(j(f)) = j(f) ® 1, we can write j(f) = 8,(j(f)) for any
u € A.(G) satisfying u(e) = 1, and hence we can apply the expectation property
(4.1) witha = j(f). To verify that two operators S, T on J#.ax, are equal, it
is enough to show

(SO®8)1z0n)=(T(y®E&) |z®n)

for z of the form (1 ® M (k))s (8,(a)), and hence Ind r x u preserves W if and
only if

X (W EG,(@)AIM KNS ()Y) =7 x u(W (S, (@) (1®M (kf))y)).
The expectation properties of W show that this is equivalent to

T X u(8(8v(a))j Hvd e M(")))’))
=7 x u(8@,@)1MUMNTA® M(K)y)).

Finally, we recall that the identification of A x5 G/N with A x; G/N carries
8|(b) into 8(b), and hence this in turn is equivalent to

7 (8, (@) w(j (N7 x u (V{1 M(k))y))
=7 (8(@) u(H)m x n (Y((1 @ M(k))y)) .

Thus Ind 7w x p preserves W if and only if 7 (j (f)) = p(f) for f € Co(G/N),
that is, if and only if (ir, 1) preserves W.

PROOF OF THEOREM 4.1. We now let

Jw=ﬂ{kerva

and let J be the ideal in (A x G) x N corresponding via Mansfield’s bimodule
X to the ideal Iy in A x G/N; in other words,

(p, v) is a covariant representation
of (A, G, §) preserving W

J= ﬂ {kerInd” p : p is a representation of A x G/N with p(Iy) = 0}

= ﬂ {ker Indf 7 x u (7, ) is a covariant representation

of (A, G/N, §|) preserving W
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We claim that J = Jy x N.

To see that Jyw x N C J, we have to show Ind? 7 x u(Jw x N) = 0 whenever
(7, ) preserves W. But the lemma says that then Ind**¢ & x pu also preserves
W, and hence vanishes on Jy,, which in turn implies that

Indf7 x = Ind**°m x u) x V

vanishes on Jyy x N. To see that J C Jy x N, we recall that Jyy x N is the
kemel of the natural homomorphism

q:(AX;G)x3 N — ((AxsG)/Jw) x; N

[7, Proposition 12]. If we now take a faithful representation of ((AxG)/Jw)xN,
and compose it with g, we obtain a representation 8 x U of (A x G) x N with
ker xU = Jw x N andker@ = Jy. (Any faithful representation of an ordinary
crossed product B x N is automatically faithful on B.) Now the imprimitivity
theorem implies that # x V = Ind® 7 x u for some covariant representation
(m, ) of (A, G/N), and since ker® O Jy implies that the representation
0 = Ind**® & x u preserves W (Corollary 2.10), it follows from Lemma 4.2
that (mr, u) preserves W, Thus J C kerf x U = Jy x N, and the claim is
established.

It now follows from [23, Section 3}, [7, Proposition 12] and Example 2.13
that

((A X5 G) X; N) /(Jw x N) = ((A x5 G)/Jw) x N = (A Xs5.6/n.w G) X5 N
is Morita equivalent to (A x5 G/N)/Iyy = A xgn G/N = A.

REMARK 4.3. As we pointed out in the introduction, the case N = G is not
quite as strong as Katayama’s duality theorem [10], which gives an isomorphism
of (A x5 G) x3 G onto A ® ¥ (L*(G)). While our Morita equivalence, or the
stable isomorphism which can be deduced from it using [3], should be enough
for most purposes, it would definitely be preferable to have a duality theorem
like Katayama’s. However, his theorem appears to be intrinsically spatial (see
the comments in [21, 22]), and we have been unable to extend it because we
lack a concrete regular representation for A X,y G. We do know, from our
proof of Theorem 4.1, how to construct one abstractly: given a representation
7 of A on J# we also have a representation w Xg/n (7w © j) of A Xg,y G/N
on J#(see Example 2.13), and then Lemma 4.2 says that Mansfield’s induced
representation Ind w x (7 o j) factors through a representation of A xg,n G,
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which should be our analogue of the regular representation induced from . It
may not be possible to directly generalise Katayama’s theorem until we have
a more manageable construction of induced representations, and this would
certainly be of considerable independent interest.

5. Concluding remarks

Section 5(a). One of our main reasons for wanting to decompose crossed
products by coactions was to study their K-theory. If, for example, N is abelian,
we can use duality and standard facts about K-theory for crossed products by
actions of N to compare K,(A x; G) and

(5.1) K.((Ax;G)xN) =K, (((AxG/N)xgwG)xN) = K,(Ax5G/N).

Thus we would hope that, for solvable groups at least, an inductive procedure
will yield information about K,(A x; G) in terms of K,(A). While we still
believe this to be a potentially useful approach, we must point out that similar
information can often be obtained by first using nonabelian duality, and then
decomposing the dual crossed product — indeed, we have been quite surprised
at just how often this works.

Consider, for example, the crossed product A x; G by a coaction of a simply-
connected solvable Lie group G. Such a group is an iterated semidirect product
by copies of R, and thus we can apply (5.1) repeatedly with N = R. Connes’
Thom isomorphism [5] asserts that K,((A x; G) x N) is then isomorphic
to K., (A x5 G), and hence we can deduce that K.(A x; G) = K,_, .(A).
Alternatively, we can first apply Katayama’s duality theorem [10]

(A x5G) x; G = A® K (LXG)),

then decompose the dual crossed product into ones by actions of R, and use
Connes’ theorem repeatedly to obtain

KA ZKAOX)ZK.(Ax;G) x;G) = --- =K, , (A x;G).

(The last two steps are just Connes’ proof of [5, Corollary 7].) Since K-theory
is periodic of order 2, the conclusion is the same.

On the face of it, the first argument is more general, since it does not depend
on the splitting of the successive group extensions (that they do split for simply-
connected solvable Lie groups is a well-known theorem of Iwasawa [9, 3.6]).
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However, even if the decomposition of (A x; G) x; G required twisted crossed
products, K-theory could not tell the difference: every twisted crossed product
A x,, G is stably isomorphic to an ordinary one of the form (A® X" ) x5 G [17,
Corollary 3.7], and hence has the same K-theory. The potential advantage of our
new decomposition is that it allows us to exploit the existence of nice subgroups,
whereas the dual approach works when there are well-behaved quotients (see
Example 5.3 below).

For example, consider the case where G has a normal subgroup isomorphic
to T. For any action 8 of T on B, there is a six-term exact sequence relating
K.(B x T) and K,(B), dual to the usual Pimsner-Voiculescu sequence [2,
Section 10.6]. From this and the isomorphism (5.1), we obtain:

PROPOSITION 5.1. Let & be a coaction of a locally compact group G on a
C*-algebra A, and suppose G has a normal subgroup N isomorphic to T. Then
there is an exact sequence

K()(A X3 G/N) —> Ko(A X5 G/N) —> KO(A X5 G)

1 +
KI(A X G) <« Kl(A X5 G/N) <« K](A X3 G/N)

Ordinarily, the exact sequence for crossed products by T is less useful than
the Pimsner-Voiculescu sequence, because it involves K, (A x T) twice. For us,
this problem arises when we apply (5.1) and the Pimsner-Voiculescu sequence
to a subgroup N = 7.

Here are some examples illustrating these points.

EXAMPLE 5.2. Let G be the quotient of the real Heisenberg group by the
central copy of Z: thatis, G = R x R x T with product

(xla yl’ Zl) ¢ (X2, )’2, 22) = (xl + X2, }’1 + )’2, 212 exp(znixl)’Z))~

We take N = Z(G) = T, so that G/N = R?, and, for any coaction § of G,
K.(A x5 G/N) = K.(A x5 [Rz) = K.,(A). Thus Proposition 5.1 yields a six-
term exact sequence relating K,(A x; G) to K,(A). Here similar information
could be obtained by decomposing the dual crossed product, as discussed above.

EXAMPLE 5.3. Let G be the integer Heisenberg group: that is, G = Z° with
product

(my, ny, p1)(ma, ny, p2) = (my +my, ny + ny, py + p2 +miny).
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Again, we take N = Z(G) = Z. Now G/Z = 77, s0 A x5 G/Z is isomorphic
to a crossed product by an action & of T?, and the Pimsner-Voiculescu sequence
for the dual action of Z yields

Ko(Ax;G) —> Ko(Ax;G) —> Ko(A x, T

0 1
KiAx, T «— Ki(Ax;G) «— Ki(Ax;G).

(For this sequence to be useful, we should probably view it as giving information
about K, (A x, T?) when « is an action which extends naturally to a coaction
of G.) We note that in this case dualising first gives

A®N = (Ax;G)%x;G=((AxsG) x2) x 22,

so the central copy of Z is buried, and the Pimsner-Voiculescu sequence is not
directly applicable.

Section S(b). We want to think of a twisted crossed product A xg,y G as
being like a crossed product of A by a coaction of N, and hence, if N is abelian,
like an ordinary crossed product of A by an action of N. The duality theorem
helps justify this: A xg,v G carries a dual action of N from which we can
recover A, just as a crossed product A x4 N does. Indeed, at least for separable
algebras, we can deduce from the Takai duality isomorphism

(A x3.6/8 G) ® K (LA(N)) = (A X568 G) x; N) x; N,

our Theorem 4.1, and [3], that A x,x G is stably isomorphic fo a crossed
product of A ® ¢ by an action of N. Now every twisted crossed product
A Xgu N in the sense of [17] has the same property [17, 3.7], and hence it is
natural to wonder whether every A X,y G has the form A x,, N for some
twisted action (c, #). In fact, this is not the case, so that even for abelian N we
are dealing with a genuinely new construction.

To see this, consider the decomposition of the trivial crossed product Co(G) =
C x G as Co(G/N) x, w G. We claim that Co(G) cannot always be a twisted
crossed product Co(G/N) X, N. First of all, since Co(G) is commutative,
a = Adiy would have to be trivial. The unitary group UM(Cy(G/N)) is the
Polish group C(G/N, T), and the isomorphism class of Co(G/N) X, , N depends
only on the cohomology class of the cocycle u € ZX(N, C(G/N,T)). IfN =Z,
for example, the group H%(Z, C(G/N, T)) is trivial (the corresponding Polish
extension of Z by C(G/N, T) [14] must split), and hence every twisted crossed
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product Co(G/N) x;, N is isomorphic to Co(G/N) x; N = Co(G/N x T).
However, G = U(2) has a normal subgroup N = Z(G) = T1 isomorphic to T,
and G is not homeomorphic to (U(2)/N) x T = PU(2) x T, so Cyp(G) cannot
be isomorphic to any twisted crossed product of the form Co(PU(2)) X4, Z

It is also natural to ask when one of our twisted crossed products A xg,y G
is isomorphic to an ordinary crossed product of A by a coaction of N. In the
case of actions, if G is a semidirect product N X H, any twisted crossed product
A X4 n, G is isomorphic to an ordinary crossed product A xz H. (This follows,
for example, from [17, 5.1], since we can choose a section ¢ : H — G which
is a homomorphism.) We do not know whether there is an analogous result for
our twisted crossed products by coactions of semidirect products. Indeed, we
had to work to verify that, if G is a direct product N x H, thenevery A Xy G
is isomorphic to some A x, N. (In this case, the map (n, 1) — n extends
to a nondegenerate homomorphism 6 : C*(G) — CY(N), and we can take
y =(®6)03)

Section 5(c). To finish, we point out that we have considered an analogue
of only one of the competing theories of twisted crossed products for actions,
namely that of Green [7]. Technically, Green’s has the advantage that the twisted
crossed product is a quotient of the usual one, allowing an intrinsically C*-
algebraic theory. The cocycle-based versions of [4, 17] inevitably involve Borel
functions with values in multiplier algebras, which can be a rather clumsy mixed-
mode, but they do have the advantage of extra generality (see [17, Section 5]),
and appear to be the more natural setting for some purposes (for example, [17,
Section 3]). The (scalar-valued) “dual cocycles” used to classify ergodic actions
in [11, 25] are unitary elements of the von Neumann algebra L(G) ® L(G) just
as Borel cocyclesin Z 2(G T) determine unitary elements of L°°(G)®L°°(G)
L(G) ® L(G) in the abelian case. But whereas one can easily make sense of C*-
algebra-valued Borel functions, it is not immediately clear how to characterise
a tensor product M (A) ® L®(G) ® L*(G) these live in, and which could then
be transported to the dual setting. It would be very interesting to develop such
a cocycle-based theory, at least far enough to get a stabilisation theorem like
that of [17, Section 3], but this does promise to be a major undertaking. Indeed,
since the scalar-valued cocycle theory has only been worked out for compact
groups [11, 25], even carrying out the analogous program for coactions of
locally compact groups on von Neumann algebras will likely involve substantial
technical difficulties.
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