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Background and motivation. Having been settled around the 1950s and matured
afterwards, the theory of stochastic processes has been a common tool for describing
time-evolving randomness in various systems, with applications in a number of
disciplines, including physics, biology and finance.

Modelling the dynamics of numerous biophysical systems by stochastic processes
has attracted significant interest in recent years, due to the improvement in technology
enabling detailed and accurate observations. The most established process is Brownian
motion, discovered by Robert Brown in 1828 by observing the movement of molecules
whose mean square displacement is linear in time. Departing from the linear time
dependence of mean square displacements, anomalous diffusion has been widely
observed in many complex systems exhibiting temporal or spatial correlations. The
typical identifier of anomalous diffusion is the power-law form � Kαtα of the mean
square displacement with the diffusion exponent α and diffusion coefficient Kα,
further distinguished by subdiffusion (α ∈ (0, 1)) and superdiffusion (α ∈ (1,+∞)).

Modelling anomalous diffusion via stochastic processes has received increasing
popularity, as it has advantages compared to other mathematical frameworks, such
as fractional Fokker–Planck equations, which only describe the single-point marginal
law. One of the most widely observed anomalous behaviours is the trapping phe-
nomenon, often modelled by an Ornstein–Uhlenbeck process subordinated by a
random clock with the presence of an external harmonic force. The properties of such
a process for modelling the position information vary depending on the dimension
and the choice of the random clock process, through the lens of its probability
density function. Different sequences of applying subordination and integration to the
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Ornstein–Uhlenbeck process for modelling the corresponding position yield disparate
theoretical findings.

The other field of application of stochastic processes is the evaluation of ruin
related quantities, which has been an active field of research in insurance mathematics
and actuarial science. The compound Poisson risk process, also known as the
Cramér–Lundberg risk process or classical risk process, was introduced in 1903 to
model the risk surplus of an insurance company. Thereafter, many generalisations have
been introduced and investigated, including the Sparre Andersen risk model, Lévy risk
model and MAP risk model where the claim arrival is modelled by a Markovian arrival
process.

The typical quantities of interest include the ultimate ruin probability, the Laplace
transform of the time of ruin and the Gerber–Shiu function which provides a unified
framework for the evaluation of a variety of risk quantities. Though the primary focus
of the current literature is to find an explicit expression of the risk quantity of interest,
a numerical method is required when the explicit solution is not available, which is
common for complex risk models or problems considering additional features, such as
a finite time horizon.

This thesis consists of five chapters, with Chapters 1, 2 and 3 investigating stochastic
processes with applications in physics, and Chapters 4 and 5 in insurance mathematics.
Summaries of the motivation and contributions of each chapter are outlined as
follows.

Dimension-dependent properties of subdiffusions in harmonic force fields.
Subdiffusion categorises the transport process that is slower than Brownian motion in
the force-free limit, caused by sporadic trapping events. The stochastic representation
of the fractional Fokker–Planck equation describes the macroscopic behaviour of
test particles in a straightforward manner via the probability density function of the
stochastic process, which is the solution of the fractional Fokker–Planck equation.

A cusp at the origin, which is interpreted as a subpopulation of test particles being
immobilised near the initial position, has been observed and rigorously investigated
in one dimension. However, since more observational results are collected in multi-
dimensional systems, the corresponding higher-dimensional analysis is necessary and
meaningful for model identification and inference.

The chapter investigates several properties of the subdiffusive anomalous dif-
fusion process in harmonic force fields, modelled by a multivariate subordinated
Ornstein–Uhlenbeck process. The results reveal theoretical properties through the lens
of the probability density function of the corresponding stochastic process. The singu-
larity of the probability density function at the origin in the multidimensional domain
becomes more prominent as an explosion, rather than a cusp. Counter-intuitively, this
explosion does not diminish regardless of the choice of the random clock, unlike
the case in one dimension where the cusp becomes unobservable over time if the
random clock is inverse tempered stable with gamma subordinators. Together with
other properties including regularity everywhere except for the origin, modality and
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stationarity of the probability density function, the collected theoretical results have
great potential to serve as inference for model identification and prediction in a
multidimensional framework.

Time-squeezing and time-expanding transformations in harmonic force fields.
Using the probability density function, we investigate whether an anomalous diffusion
process is stochastic represented via subordination. Behaviour departing from the
normal diffusion leads to the question: what results from varying the time-changing
mechanisms in the subordinated process under the influence of an external harmonic
force?

To further explore the topic, two representative time-changing mechanisms, time
changing by a subordinator and an inverse subordinator, hereafter referred to as
time-squeezing and time-expanding transformations, are thoroughly examined and
contrasted [1]. We systematically derive a series of properties based upon the
Ornstein–Uhlenbeck process after time-squeezing and time-expanding transforma-
tions, including the sample path properties, the marginal probability density function,
degeneracy of increments, the stationary law, the second-order structure and mean
square displacements.

Some properties share similarities due to the presence of the external harmonic
force, such as the stationary law and weak ergodicity breaking starting from a
nonequilibrated state, with ergodicity in the equilibrated system. These two distinct
time transformations result in varied domains of anomalous diffusion, squeezing for
normal and superdiffusion and expanding for subdiffusion. Squeezed and expanded
trajectories are visually distinguished by the vertical jump discontinuities of the former
and horizontal flat periods of the latter. In addition, increments of the squeezed process
never degenerate, which is completely opposite for that of the expanded process whose
random clock is governed by an inverse stable subordinator, that is, increments of the
expanded process eventually become degenerate.

Super- and subdiffusive positions in fractional Klein–Kramers equations.
Continuing from the first and second chapters that model the position informa-
tion by a subordinated Ornstein—Uhlenbeck process, we consider integration and
subordination by an inverse stable subordinator simultaneously [3]. The different
sequences of applying the integration and subordination result in varied realistic
physical modelling and interpretations, one with the velocity occasionally paused yet
within the realm of classical physics resulting in superdiffusive positions by integrating
a subordinated Ornstein–Uhlenbeck process, and the other with the position trapped
occasionally leading the position-velocity pair out of Newton’s law of motion and
causing subdiffusive positions by subordinating an integrated Ornstein–Uhlenbeck
process. To describe various physical systems that exhibit a complex transient diffusion
pattern, we contrast the physical relevance of those two very similar yet very distinct
generalisations.
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Together with the Gaussian integrated Ornstein–Uhlenbeck process modelling the
diffusive position of a Brownian particle subject to friction force, we derive a variety
of key properties, including the second-order structure and ergodic behaviours with
all relevant states of the initial velocity. In the long run, diffusion exponents of
ensemble averaged mean square displacements distinguish the domains of anomalous
transport that sub-, normal and superdiffusive positions characterise. In the short run,
the agreement of the value of diffusion exponents and the corresponding position
processes may not hold due to the influence of the initial velocity as well as the value
of the stability index of the inverse stable subordinator. A similar distinction of time
averaged mean square displacements of three positions is sustained. Furthermore, the
three positions differ visually by their trajectories, particularly the linear growth of the
superdiffusive position and flat periods of the subdiffusive position.

Moment and polynomial bounds for ruin-related quantities in risk theory.
Various stochastic processes have been investigated for modelling the risk surplus
of an insurance company, whose vulnerability to insolvency is of particular interest
measured by several risk quantities. As a result of the growing complexity of the
models and the problem settings, numerical methods become increasingly necessary
due to the lack of analytical tractability.

Rather than approximations that most numerical methods aim to provide, the
numerical method based upon semidefinite programming discussed in this chapter
constructs deterministic upper and lower bounds for the risk quantities of interest
[2]. There are several advantages of this novel numerical method: it provides a
100%-confidence interval for the range of the unknown value, allows general collective
risk models with additional features such as dividend barriers and finite time horizon,
and requires light computational effort.

The optimisation formulations consist of two sub-frameworks, the primal moment,
providing a pointwise tighter upper or lower bound for the solution at a predetermined
point, and the dual polynomial, providing an upper or lower bounding function
uniformly over the entire problem domain. To examine the quality of the bounds
provided by the proposed method, we perform numerical experiments for both
infinite- and finite-time problems with several additional features, along with effective
techniques that improve the quality of the bounds, including domain scaling, piecewise
polynomial test functions and exponential tempering. The upper and lower bounds are
excellently tight compared with closed form solutions for infinite-time problems. For
finite-time problems where closed-form solutions are not available, our bounds can be
employed to test the efficiency and complement the existing numerical approximation
methods, for instance, assessing the validity of the 99%-confidence intervals of Monte
Carlo simulation results with statistical errors.

The Gerber–Shiu discounted penalty function: from practical perspectives. The
Gerber–Shiu function is a popular risk quantity that provides a unified framework
for the evaluation of a variety of risk quantities, including the ruin probability and
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expected dividends until ruin discussed in the previous chapter. Although the primary
focus of the existing literature is to find the explicit expression of the Gerber–Shiu
function, numerical method is necessary, particularly when the risk model or the
penalty function becomes complex.

To integrate and enhance the understanding of the Gerber–Shiu function with a
wide collection of variant formulations for various surplus processes, we provide
an exhaustive survey of the existing literature on analytical, semi-analytical and
asymptotic methods on the Gerber–Shiu function, as well as numerical methods and
statistical inference with a view towards potential application of the Gerber–Shiu
function in practice. On the basis of an exhaustive collection of 198 references, we
provide systematic categorisation, essential and representative formulae, and extra
assumptions so as to achieve a full up-to-date coverage of the existing literature on
the Gerber–Shiu function, which can also serve as a guidebook to model and method
selection.
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