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Abstract

In this paper some important properties of the generalized Pólya process are derived and
their applications are discussed. The generalized Pólya process is defined based on the
stochastic intensity. By interpreting the defined stochastic intensity of the generalized
Pólya process, the restarting property of the process is discussed. Based on the restarting
property of the process, the joint distribution of the number of events is derived and
the conditional joint distribution of the arrival times is also obtained. In addition, some
properties of the compound process defined for the generalized Pólya process are derived.
Furthermore, a new type of repair is defined based on the process and its application to
the area of reliability is discussed. Several examples illustrating the applications of the
obtained properties to various areas are suggested.
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1. Introduction

A stochastic process {N(t), t ≥ 0} is said to be a counting process ifN(t) represents the total
number of ‘events’ that occur by time t . Counting processes (point processes) are useful tools
for modelling random recurrent events. Recently, there has been a rapidly increasing literature
concerning modelling and analysis of recurrent events, with a wide range of applications in,
e.g. reliability analysis of repairable items, queueing analysis, insurance risk analysis, biology,
and telecommunications.

The range of applications for counting processes is very wide. A few outline examples
illustrate the breadth of potential applications. Emissions from a radioactive source occur in an
irregular sequence in time in the area of physics. As another example, in the area of electronic
engineering, the occurrences of peak signals of electrical energy define a sequence of points in
time. In road traffic studies, one may consider the sequence of time points at which vehicles
pass a reference point. Notably, almost all stochastic problems of operational research involve
a point process. See also Cox and Isham (2000) for more examples of applications in different
areas.

Traditionally, the most commonly used counting processes for modelling random recurrent
events are renewal processes and nonhomogeneous Poisson processes (NHPPs), including the
homogeneous Poisson process (HPP) as a special case in both models. The simplest but one
of the most important counting processes is the HPP. The HPP can be characterized by the
independent and identically distributed interarrival times with an exponential distribution. It is
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Characterization of the generalized Pólya process 1149

well known that the HPP possesses both the independent increments and stationary increments
properties. A renewal process is a counting process where the interarrival times are independent
and identically distributed with arbitrary distribution and nonnegative support (see Cox (1962)).
The NHPP differs from the HPP in that the rate of occurrence varies with time rather than being
constant, dropping the stationary increments property of the HPP. However, as the NHPP still
possesses the independent increments property, it leads to nice closed-form results in many
applications (see Cha and Finkelstein (2009), (2011a)).

To date, much effort has been invested into generalizing the basic counting processes stated
above to more generalized counting processes. The generalization of the HPP or the NHPP
may include the compound, filtered, two-dimensional, and marked Poisson processes (see Kao
(1997)). Recently, semi-Markov processes were intensively studied and employed as one of
the generalized counting processes in many applications (see Limnios and Oprişan (2001) and
Barbu and Limnios (2008)). While the semi-Markov processes are a natural generalization
of Markov processes, the renewal processes can also be regarded as a particular case of the
semi-Markov processes.

In this paper we will characterize a new counting process called the ‘generalized Pólya
process’ (GPP) suggested in Konno (2010). The GPP can be viewed as a further generalization
of the NHPP which possesses neither the independent increments nor the stationary increments
property. While only the marginal distribution of the number of events in (0, t] was obtained
in Konno (2010) based on differential equations, further detailed characterization of the GPP
will be performed in this paper by deriving various properties which can usefully be used
in many applications. Even though the GPP has neither the independent increments nor the
stationary increments property, it will be shown that the GPP possesses very ‘nice’ properties
which may yield closed-form results in various applications. Furthermore, one of the most
important contributions to the area of reliability will be that the GPP allows us to define a ‘new
repair type’ and a ‘new failure process’. This will eventually contribute to the development of
a variety of new maintenance models and related topics in the area of reliability.

The organization of this paper is as follows. In Section 2, some fundamental properties
of the GPP are discussed. The ‘restarting property’ of the GPP is primarily discussed based
on the stochastic intensity of the counting process. Based on the restarting property of the
GPP, the joint distribution of the number of events in arbitrary, nonoverlapping intervals is
derived. In Section 3, the conditional joint distributions of the arrival times in an arbitrary
interval are derived. An example which illustrates the utility of the obtained results is provided.
In Section 4, the compound process for the GPP is defined and useful results are derived. In
Section 5, based on the GPP, a new repair type is defined and the effect of the defined repair is
discussed. We show that, depending on the parameters of the GPP, the ‘degree of the repair’ can
be modelled continuously. A replacement model is considered and the optimal replacement
problem is studied as an illustration of application. Finally, in Section 6, some concluding
remarks are given and potential areas to which the GPP can be applied are discussed.

2. Fundamental property

Let {N(t), t ≥ 0} be an orderly point process, and let Ht− ≡ {N(u), 0 ≤ u < t} be
the history (internal filtration) of the process in [0, t), i.e. the set of all point events in [0, t).
Observe that Ht− can equivalently be defined in terms of N(t−) and the sequential arrival
points of the events 0 ≤ T1 ≤ T2 ≤ · · · ≤ TN(t−) < t in [0, t), where Ti is the time from 0 until
the arrival of the ith event in [0, t). A convenient mathematical description of point processes
follows from using the concept of the stochastic intensity λt , t ≥ 0 (the intensity process) (see
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Aven and Jensen (1999), (2000)). As discussed in Cha and Finkelstein (2011b), the stochastic
intensity λt of an orderly point process {N(t), t ≥ 0} is defined as the limit

λt ≡ lim
�t→0

P(N(t, t +�t) = 1 | Ht−)
�t

= lim
�t→0

E[N(t, t +�t) | Ht−]
�t

, (1)

where N(t1, t2), t1 < t2, represents the number of events in [t1, t2). Then the above stochastic
intensity has the heuristic interpretation

λt dt = E[dN(t) | Ht−], (2)

which is very similar to the ordinary failure rate or hazard rate of a random variable (see Aven
and Jensen (1999)). A clear understanding of the definition of the stochastic intensity given in
(1) and the heuristic interpretation in (2) is crucial to deriving the fundamental properties of
the GPP in this and the subsequent sections. A classical example of λt is the intensity process
generated by the renewal process

λt =
∞∑
n=0

λ(t − Tn) 1(Tn < t ≤ Tn+1), T0 ≡ 0,

where λ(t) is the failure rate function of the distribution of interarrival times in the renewal
process. Another standard example is the ‘deterministic stochastic intensity’λt = λ(t), t ≥ 0,
which defines the NHPP with intensity function λ(t). It is then clear that, in the NHPP, the future
process (i.e. the process after time t) does not depend on the process history Ht−, but depends
only on the process ‘age’ t . Note that the renewal process and the NHPP can be interpreted as
the ‘perfect repair process’and the ‘minimal repair process’ in reliability applications (see Aven
and Jensen (2000), and Finkelstein and Cha (2013)), and this type of repair-based interpretation
of the point process is important in reliability applications (see Section 5).

Now the GPP is formally defined in terms of the stochastic intensity.

Definition 1. (Generalized Pólya process.) A counting process {N(t), t ≥ 0} is called the
generalized Pólya process (GPP) with parameter set (λ(t), α, β), α ≥ 0 and β > 0, if

(i) N(0) = 0;

(ii) λt = (αN(t−)+ β)λ(t).

Note that the GPP with (λ(t), α = 0, β = 1) reduces to the NHPP with intensity function
λ(t) and, accordingly, the GPP can be understood as a generalized version of the NHPP.
Obviously, the GPP with α > 0 does not possess the independent increments property. In
the following discussions, we will implicitly assume that α > 0, unless otherwise specified.

It is clear that, from Definition 1, the GPP possesses the Markovian property. In many
applications, in addition to the Markovian property, the following restarting property makes the
stochastic analysis much simpler.

Definition 2. (Restarting property.) Let t > 0 be an ‘arbitrary’ time point. If the conditional
future stochastic process from t , given the history until time t , follows the same type of
stochastic process with a possibly different set of process parameters, then the process is said
to possess the restarting property. A stochastic process with the restarting property is called
the restarting process.
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Note that the Markovian property does not imply the restarting property. A counter example is
theYule process, which has the Markovian property but does not possess the restarting property.
Observe that the ordinary renewal process does not possess the restarting property as it restarts
only at each renewal point. However, let us consider the delayed renewal process {N(t), t ≥ 0}
with the first interarrival time distribution (F (v + t) − F(v))/(1 − F(v)) and the common
remaining interarrival times distribution F(t), i.e. the ‘initial age’ of the first interarrival time
distribution in this case is v. Then this delayed renewal process is characterized by the set of
parameters (v, F (t)) and, at an arbitrary time u > 0, given TN(u−) = x∗, the conditional future
process {Nu(t), t ≥ 0}, where Nu(t) ≡ N(u+ t)−N(u), is also the delayed renewal process
with parameter set (u − x∗, F (t)). The simplest restarting process is obviously the HPP. For
the NHPP with intensity function (process parameter) λ(t), at an arbitrary time u > 0, the
conditional future process {Nu(t), t ≥ 0} is the NHPP with process parameter λ(u+ t), t ≥ 0.
Note that, for the HPP and NHPP, the restarting parameters do not depend on the given history.
From Definition 1, it is now clear that the GPP has the restarting property, which we state in
detail in the following proposition.

Proposition 1. Let {N(t), t ≥ 0} be the GPP with parameter set (λ(t), α, β). At an arbitrary
time u > 0, given {N(u−) = n, T1 = t1, T2 = t2, . . . , Tn = tn}, the conditional future
process {Nu(t), t ≥ 0}, where Nu(t) ≡ N(u+ t)−N(u), is also the GPP with parameter set
(λ(u+ t), α, β + nα), t ≥ 0.

Throughout the rest of the paper, the restarting property stated in Proposition 1 will be critical
in deriving the properties of the GPP.

We will now discuss the distribution of the number of events. The following first ‘general
result’, along with some important marginal and conditional distributions of the number of
events, gives the joint distribution of the number of events in an arbitrary number of consecutive,
nonoverlapping time intervals. From this result, it will be shown that all other joint and
conditional distributions for the number of events in different time intervals can also be obtained.
In the following, we define �(t) ≡ ∫ t

0 λ(u) du.

Theorem 1. Let t > 0 and 0 ≡ u0 < u1 < u2 < · · · < um. Then

(i) P(N(t) = n) = �(β/α + n)

�(β/α)n! (1 − exp{−α�(t)})n(exp{−α�(t)})β/α;
(ii) P(N(u2)−N(u1) = n)

= �(β/α + n)

�(β/α)n!
(

1 − exp{−α[�(u2)−�(u1)]}
1 + exp{−α�(u2)} − exp{−α[�(u2)−�(u1)]}

)n

×
(

exp{−α�(u2)}
1 + exp{−α�(u2)} − exp{−α[�(u2)−�(u1)]}

)β/α
;

(iii) P(N(ui)−N(ui−1) = ni, i = 1, 2, . . . , m)

=
m∏
i=1

[
�(β/α + ∑i

k=1 nk)

�(β/α + ∑i−1
k=1 nk)ni !

(1 − exp{−α[�(ui)−�(ui−1)]})ni

× (exp{−α[�(ui)−�(ui−1)]})
∑i−1
k=1 nk+β/α

]
,

where
∑i−1
k=1 nk ≡ 0 when i = 1;
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(iv) P(N(u2)−N(u1) = n2 | N(u1) = n1)

= �(β/α + n1 + n2)

�(β/α + n1)n2! (1 − exp{−α[�(u2)−�(u1)]})n2

× (exp{−α[�(u2)−�(u1)]})n1+β/α.

Proof. See Appendix A.

Remark 1. (i) The marginal and conditional distributions in Theorem 1 follow negative bino-
mial distributions.

(ii) The joint distribution of the number of events in separate time intervals and related con-
ditional distributions could be obtained using Theorem 1(iii) and following the procedures
described in the proof of Theorem 1 in Appendix A. For example, the joint distribution of
(N(u4) − N(u3), N(u2) − N(u1)) can be obtained from the joint distribution of (N(ui) −
N(ui−1), i = 1, 2, 3, 4).

(iii) The restarting property of the GPP can be usefully used to characterize the conditional
future process of theYule process with parameter λ and no individual at time 0 (i.e.N(0) = 0).
Specifically, givenN(u−) = n, the future process follows the GPP with parameter set (λ, 1, n).

It was stated in Proposition 1 that, givenN(u−), the conditional future process {Nu(t), t ≥
0} in the GPP is also the GPP. It was also mentioned that the HPP and the NHPP possess the
restarting property. However, it is important to understand that the future processes in the HPP
and the NHPP are ‘unconditionally’ the HPP and the NHPP, respectively. That is, without any
information on the history of the processes, the future processes can be perfectly described in
the same manner in the cases of the HPP and the NHPP. This type of stronger property makes
the relevant analysis much simpler in many applications.

How about the GPP? If the future process from an arbitrary time point u is ‘unconditionally’
the GPP as in the cases of the HPP and the NHPP, then this property could be usefully used in
many applications. For example, one may start to observe the GPP from time u without any
information on the history of the process before u (see also Section 3). Now let us see whether
or not the future process from an arbitrary time point u in the GPP is ‘unconditionally’ the GPP.

Let us fix u > 0, and, as before, define Nu(t) ≡ N(u + t) − N(u). Then {Nu(t), t ≥ 0}
represents the future process from the time point u. Let Tui be the time from 0 until the
arrival of the ith event in (u,∞), u ≤ Tu1 ≤ Tu2 ≤ · · · . In order to characterize the process
{Nu(t), t ≥ 0}, it is sufficient to specify the stochastic intensity of the future process λut , which
is defined by

λut ≡ lim
�t→0

P(Nu(t, t +�t) = 1 | H[u,u+t))
�t

= lim
�t→0

E[Nu(t, t +�t) | H[u,u+t)]
�t

,

where Nu(t1, t2), t1 < t2, represents the number of events in [u + t1, u + t2) and H[u,u+t)
is the history of the process in [u, u + t). Note that H[u,u+t) can be completely defined by
the number of events and the sequential arrival times in the interval [u, u+ t). The following
theorem implies that, ‘unconditionally’, the future process of the GPP is also the GPP.

Theorem 2. The stochastic intensity λut is given by

λut = (α[N((u+ t)−)−N(u−)] + β)ψ(t, u),
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where

ψ(t, u) ≡ λ(u+ t) exp{α�(u+ t)}
1 + exp{α�(u+ t)} − exp{α�(u)} ,

and, thus, the future process of the GPP, {Nu(t), t ≥ 0}, is ‘unconditionally’ the GPP with
parameter set (ψ(t, u), α, β).

Proof. See Appendix B.

Remark 2. Recall that, for the GPP {N(t), t ≥ 0} with parameter set (λ(t), α, β),P(N(t) =
n) was obtained as (see Theorem 1)

P(N(t) = n) = �(β/α + n)

�(β/α)n! (1 − exp{−α�(t)})n(exp{−α�(t)})β/α. (3)

Now, owing to the property described in Theorem 2, the distribution of the number of events in
an arbitrary time interval (u, u+ t],P(N(t+u)−N(u) = n), can be obtained as follows. Note
that the parameter function ψ(t, u) in {Nu(t), t ≥ 0} corresponds to λ(t) in {N(t), t ≥ 0}.
Thus, in order to use (3), we obtain∫ t

0
ψ(w, u) dw = 1

α
ln(1 + exp{α�(u+ t)} − exp{α�(u)}),

which corresponds to �(t) in (3). Therefore, using (3), we have

P(N(u+ t)−N(u) = n) = �(β/α + n)

�(β/α)n!
(

exp{α�(u+ t)} − exp{α�(u)}
1 + exp{α�(u+ t)} − exp{α�(u)}

)n

×
(

1

1 + exp{α�(u+ t)} − exp{α�(u)}
)β/α

, (4)

which is Theorem 1(ii).

3. Conditional distribution of the arrival times

In this section we derive the conditional distribution of the arrival times in an ‘arbitrary
time interval’ (u, v], given N(v) − N(u), v > u, in the GPP. If the process {N(t), t ≥ 0} is
the NHPP with intensity function λ(t) then it is well known that the conditional arrival time
distribution of T1, T2, . . . , TN(t) in (0, t], given that N(t) = n, is given by (see Ross (1996))

n!
n∏
i=1

(
λ(ti)

�(t)

)
, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t. (5)

Now we consider the conditional arrival time distribution in an arbitrary time interval (u, v],
v > u. As before, let Tui be the time from 0 until the arrival of the ith event in (u,∞),
u ≤ Tu1 ≤ Tu2 ≤ · · · . As the future process of the NHPP from an arbitrary time point u is
‘unconditionally’(i.e. without any information on the history) the NHPP with process parameter
λ(u + t), t ≥ 0, the conditional arrival time distribution of Tu1, Tu2, . . . , Tu(N(v)−N(u)) in
(u, v], v > u, given that N(v)−N(u) = n, is, using (5),

n!
n∏
i=1

(
λ(u+ (tui − u))∫ v−u
0 λ(u+ w) dw

)
= n!

n∏
i=1

(
λ(tui)

�(v)−�(u)

)
, u ≤ tu1 ≤ tu2 ≤ · · · ≤ tun ≤ v.

(6)
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In the following, we will apply a similar procedure to derive the conditional distribution of
the arrival times in the GPP.

Theorem 3. The conditional joint distribution of the arrival times

(Tu1, Tu2, . . . , Tu(N(v)−N(u)))
in (u, v], v > u, given that N(v)−N(u) = n, is

fTu1,Tu2,...,Tu(N(v)−N(u)) |N(v)−N(u)(tu1, tu2, . . . , tun | n)

= n!
n∏
i=1

(
αλ(tui) exp{α�(tui)}

exp{α�(v)} − exp{α�(u)}
)
, (7)

where u < tu1 ≤ tu2 ≤ · · · ≤ tun ≤ v.

Proof. We first obtain the conditional arrival time distribution of T1, T2, . . . , TN(t) in (0, t],
given that N(t) = n. Observe that the joint distribution of (T1, T2, . . . , TN(t), N(t)) is given
by

fT1,T2,...,TN(t),N(t)(t1, t2, . . . , tn, n)

= �(β/α + n)

�(β/α)

( n∏
i=1

αλ(ti) exp{α�(ti)}
)

exp{−(β + nα)�(t)},

whereas

P(N(t) = n) = �(β/α + n)

�(β/α)n! (1 − exp{−α�(t)})n(exp{−α�(t)})β/α.
Thus, the conditional arrival time distribution of T1, T2, . . . , TN(t) in (0, t], given thatN(t) = n,
is

fT1,T2,...,TN(t) |N(t)(t1, t2, . . . , tn | n)

= n!
n∏
i=1

(
αλ(ti) exp{α�(ti)}

exp{α�(t)} − 1

)
, 0 < t1 ≤ t2 ≤ · · · ≤ tn ≤ t. (8)

Now we consider the conditional arrival time distribution in an arbitrary time interval (u, u+
t], t > 0, based on the above result. From Theorem 2, the unconditional process {Nu(t), t ≥ 0}
is the GPP with parameter set (ψ(t, u), α, β), where

ψ(t, u) ≡ λ(u+ t) exp{α�(u+ t)}
1 + exp{α�(u+ t)} − exp{α�(u)} .

Therefore, applying (8), the conditional arrival time distribution of

(Tu1, Tu2, . . . , Tu(N(u+t)−N(u)))
in (u, u+ t], given that N(u+ t)−N(u) = n, is

fTu1,Tu2,...,Tu(N(u+t)−N(u)) |N(u+t)−N(u)(tu1, tu2, . . . , tun | n)

= n!
n∏
i=1

(
αψ(tui − u, u) exp{α ∫ tui−u

0 ψ(w, u) dw}
exp{α ∫ t

0 ψ(w, u) dw} − 1

)

= n!
n∏
i=1

(
αλ(tui) exp{α�(tui)}

exp{α�(u+ t)} − exp{α�(u)}
)

for u < tu1 ≤ tu2 ≤ · · · ≤ tun ≤ u+ t. Setting u+ t ≡ v yields the desired result.
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Remark 3. It can be seen from Theorem 3 that, given that N(v) − N(u) = n, the n random
variables Tu1, Tu2, . . . , Tun have the same distribution as the order statistics corresponding to
the n independent random variables, identically distributed according to(

αλ(x) exp{α�(x)}
exp{α�(v)} − exp{α�(u)}

)
, u < x ≤ v.

Having derived the conditional joint distribution of the arrival times in the interval (u, v],
givenN(v)−N(u), in Theorem 3, it is sometimes of interest to derive this distribution given the
event history in the previous interval (0, u], {N(u), T1, T2, . . . , TN(u)}, in addition to N(v) −
N(u). That is, the conditional joint distribution of

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

can be important in some cases (see Example 1 below). Suppose that {N(t), t ≥ 0} is the
NHPP with intensity function λ(t). Then, owing to the independent increments property of the
NHPP, it is clear that

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

d= (Tu1, Tu2, . . . , Tu(N(v)−N(u)) | N(v)−N(u)),

where ‘
d=’ stands for equality in distribution, and this conditional distribution is also given by

(6). However, as the GPP does not possess the independent increments property, the conditional
joint distribution of

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

would depend on the event history in the previous interval (0, u], {N(u), T1, T2, . . . , TN(u)},
in some way. Interpreting the definition of the GPP in Section 1 and considering the Markov
property, it should depend only onN(u) among the elements of the event history in the previous
interval, i.e.

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

d= (Tu1, Tu2, . . . , Tu(N(v)−N(u)) | N(u),N(v)−N(u)).

However, the following result shows that, givenN(v)−N(u), the conditional joint distribution
of the arrival times in the interval (u, v] does not depend on the event history in the previous
interval.

Theorem 4. For the conditional joint distribution of the arrival times in the interval (u, v],
(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

d= (Tu1, Tu2, . . . , Tu(N(v)−N(u)) | N(v)−N(u)),

and, thus, the conditional joint distribution of

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

is also given by (7).
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Proof. From the proof of Theorem 2, the joint distribution of

(T1, T2, . . . , TN(u), Tu1, Tu2, . . . , Tu(N(v)−N(u)), N(u),N(v)−N(u))

is given by

fTi, 1≤i≤N(u),Tuj , 1≤j≤N(v)−N(u),N(u),N(v)−N(u)(t1, t2, . . . , tn1 , tu1, tu2, . . . , tun2 , n1, n2)

=
[
�(β/α + n1)

�(β/α)

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)
�(β/α + n1 + n2)

�(β/α + n1)

×
( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

exp{−(β + n1α + n2α)�(v)}
]
, (9)

whereas the joint distribution of

(T1, T2, . . . , TN(u), N(u),N(v)−N(u))

is given by

fTi, 1≤i≤N(u),N(u),N(v)−N(u)(t1, t2, . . . , tn1 , n1, n2)

=
[
�(β/α + n1)

�(β/α)

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)
�(β/α + n1 + n2)

�(β/α + n1)

×
∫ v

u

· · ·
∫ tu3

u

∫ tu2

u

( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

dtu1 dtu2 · · · dtun2

× exp{−(β + n1α + n2α)�(v)}
]

=
[
�(β/α + n1)

�(β/α)

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)
�(β/α + n1 + n2)

�(β/α + n1)n2!

× (exp{α�(v)} − exp{α�(u)})n2 exp{−(β + n1α + n2α)�(v)}
]
. (10)

Then the result follows from (9) and (10).

Remark 4. From Theorem 4, it can be seen that, given N(v) − N(u), {Tu1, Tu2, . . . ,

Tu(N(v)−N(u))} and {T1, T2, . . . , TN(u), N(u)} are conditionally independent.

Example 1. Suppose that each event from the GPP with parameter set (λ(t), α, β) is classified
as being either a type-1 or type-2 event, and suppose that the probability of an event being
classified as type 1 depends on the time at which it occurs. More specifically, suppose that if an
event occurs at time t then, independently of all else, it is classified as being a type-1 event with
probability p(t) and a type-2 event with probability 1 −p(t). This type of classification model
has many useful applications in reliability and queueing analysis, e.g. two types of shocks
causing the system failure or two types of customers arriving at the server, etc. (see also Cha
and Finkelstein (2009), (2011a)).

Let Ni(t), i = 1, 2, represent the number of type-i events that occur by time t . Suppose
that the event history in the previous interval (0, u], {N(u), T1, T2, . . . , TN(u)}, was observed
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and that we are now interested in obtaining the distribution of Ni(v)−Ni(u), v > u, i = 1, 2.
Consider the conditional distribution ofN1(v)−N1(u), given that {N(u) = m, T1 = t1, T2 =
t2, . . . , Tm = tm}. Observe that

P(N1(v)−N1(u) = n | T1 = t1, T2 = t2, . . . , Tm = tm, N(u) = m)

= E(N(v)−N(u) | T1=t1, T2=t2,...,Tm=tm,N(u)=m)[P(N1(v)−N1(u) = n | T1 = t1,

T2 = t2, . . . , Tm = tm,

N(u) = m, N(v)−N(u))], (11)

where ‘E(N(v)−N(u) | T1=t1, T2=t2,...,Tm=tm,N(u)=m)’ stands for the expectation with respect to the
conditional distribution of

(N(v)−N(u) | T1 = t1, T2 = t2, . . . , Tm = tm, N(u) = m).

It can be shown that

(N(v)−N(u) | T1 = t1, T2 = t2, . . . , Tm = tm, N(u) = m)
d= (N(v)−N(u) | N(u) = m),

and the expectation in (11) can be written as

E(N(v)−N(u) |N(u)=m)[P(N1(v)−N1(u) = n | T1 = t1, T2 = t2, . . . , Tm = tm,

N(u) = m, N(v)−N(u))]. (12)

Furthermore, from the assumption on the classification (i.e. the classification depends only on
the occurrence time) and the property that (see Theorem 4)

(Tu1, Tu2, . . . , Tu(N(v)−N(u)) | T1, T2, . . . , TN(u), N(u),N(v)−N(u))

d= (Tu1, Tu2, . . . , Tu(N(v)−N(u)) | N(v)−N(u)),

it holds that

P(N1(v)−N1(u) = n | T1 = t1, T2 = t2, . . . , Tm = tm, N(u) = m, N(v)−N(u) = k)

= P(N1(v)−N1(u) = n | N(v)−N(u) = k).

Now let us consider an arbitrary event that occurred in the interval (u, v]. If it had occurred at
time x ∈ (u, v] then the probability that it would be a type-1 event would be p(x). Hence, by
Theorem 3 (see also Remark 3), it follows that the probability that it will be a type-1 event is

φ(u, v) ≡
(
α

∫ v
u
p(x)λ(x) exp{α�(x)} dx

exp{α�(v)} − exp{α�(u)}
)
,

independently of the other events. Hence,

P(N1(v)−N1(u) = n | N(v)−N(u) = k) =
(
k

n

)
(φ(u, v))n(1 − φ(u, v))k−n.

On the other hand, from Theorem 1,

P(N(v)−N(u) = k | N(u) = m)

= �(β/α +m+ k)

�(β/α +m)k! (1 − exp{−α[�(v)−�(u)]})k(exp{−α[�(v)−�(u)]})m+β/α.
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Finally, from (12),

P(N1(v)−N1(u) = n | T1 = t1, T2 = t2, . . . , Tm = tm, N(u) = m)

=
∞∑
k=n

(
k

n

)
(φ(u, v))n(1 − φ(u, v))k−n �(β/α +m+ k)

�(β/α +m)k!
× (1 − exp{−α[�(v)−�(u)]})k(exp{−α[�(v)−�(u)]})m+β/α

=
∞∑
l=0

1

l! n! (φ(u, v))
n(1 − φ(u, v))l

�(β/α +m+ n+ l)

�(β/α +m)

× (1 − exp{−α[�(v)−�(u)]})n+l (exp{−α[�(v)−�(u)]})m+β/α

=
[ ∞∑
l=0

�(β/α +m+ n+ l)

�(β/α +m+ n)l! ((1 − φ(u, v))(1 − exp{−α[�(v)−�(u)]}))l
]

× �(β/α +m+ n)

�(β/α +m)n! ((φ(u, v))(1 − exp{−α[�(v)−�(u)]}))n

× (exp{−α[�(v)−�(u)]})m+β/α

= �(β/α +m+ n)

�(β/α +m)n!
×

(
φ(u, v)− φ(u, v) exp{−α[�(v)−�(u)]}

φ(u, v)+ exp{−α[�(v)−�(u)]} − φ(u, v) exp{−α[�(v)−�(u)]}
)n

×
(

exp{−α[�(v)−�(u)]}
φ(u, v)+ exp{−α[�(v)−�(u)]} − φ(u, v) exp{−α[�(v)−�(u)]}

)m+β/α
.

Note that the unconditional distribution of P(N1(v) − N1(u) = n) can also be obtained in a
similar, but much simpler, way.

4. Compound GPP

A stochastic process {W(t), t ≥ 0} is said to be a compound GPP if it can be represented
as

W(t) =
N(t)∑
i=1

Xi, t ≥ 0, (13)

where {N(t), t ≥ 0} is the GPP, and {Xi, i ≥ 1} is a family of independent and identically
distributed random variables that is independent of {N(t), t ≥ 0}. Several practical applications
of the compound process defined in (13) can be found in Ross (2003).

In the following discussions, instead of the basic compound process defined in (13), we will
consider a more general case. Let us consider a compound process in an arbitrary time interval
(u, u+ t], t ≥ 0:

Wu(t) =
Nu(t)∑
i=1

Xi, t ≥ 0.

Here, as before,Nu(t) ≡ N(u+ t)−N(u). First we will obtain some unconditional properties
of Wu(t) and then we will consider some of its conditional properties.

LetMX(s) ≡ E[esXi ]. The following result gives the moment generating function, the mean,
and the variance of Wu(t).
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Theorem 5. The moment generating function of Wu(t), denoted by MWu(t)(s), is given by

MWu(t)(s) = (1 − [exp{α�(u+ t)} − exp{α�(u)}](MX(s)− 1))−β/α,

and the mean and variance of Wu(t) are given by

E[Wu(t)] = β

α
(exp{α�(u+ t)} − exp{α�(u)})E[X]

and

var[Wu(t)] = β

α
(exp{α�(u+ t)} − exp{α�(u)})E[X2]

+ β

α
([exp{α�(u+ t)} − exp{α�(u)}]E[X])2.

Proof. From Theorem 2, the process {Nu(t), t ≥ 0} is the GPP with parameter set (ψ(t, u),
α, β), where

ψ(t, u) ≡ λ(u+ t) exp{α�(u+ t)}
1 + exp{α�(u+ t)} − exp{α�(u)} .

By conditioning on Nu(t),

MWu(t)(s) =
∞∑
n=0

E[exp {sWu(t)} | Nu(t) = n]P(Nu(t) = n)

=
∞∑
n=0

E[exp {s(X1 +X2 + · · · +Xn)} | Nu(t) = n]P(Nu(t) = n)

=
∞∑
n=0

E[exp {s(X1 +X2 + · · · +Xn)}]P(Nu(t) = n)

=
∞∑
n=0

(MX(s))
n �(β/α + n)

�(β/α)n!
( exp{α�(u+ t)} − exp{α�(u)}

1 + exp{α�(u+ t)} − exp{α�(u)}
)n

×
(

1

1 + exp{α�(u+ t)} − exp{α�(u)}
)β/α

= (1 − [exp{α�(u+ t)} − exp{α�(u)}](MX(s)− 1))−β/α. (14)

Differentiating (14) yields

MWu(t)(s)
′ = β

α
[exp{α�(u+ t)} − exp{α�(u)}]MX(s)

′

× (1 − [exp{α�(u+ t)} − exp{α�(u)}](MX(s)− 1))−β/α−1

and

MWu(t)(s)
′′ = β

α
[exp{α�(u+ t)} − exp{α�(u)}]MX(s)

′′

× (1 − [exp{α�(u+ t)} − exp{α�(u)}](MX(s)− 1))−β/α−1

+ β

α

(
β

α
+ 1

)
([exp{α�(u+ t)} − exp{α�(u)}]MX(s)

′)2

× (1 − [exp{α�(u+ t)} − exp{α�(u)}](MX(s)− 1))−β/α−2.

Finally, E[Wu(t)] and var[Wu(t)] can be obtained from MWu(t)(s)
′|s=0 and MWu(t)(s)

′′|s=0.
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In the above discussion we considered the ‘unconditional’ compound process {Wu(t),

t ≥ 0}. Now we will consider the ‘conditional’ compound process given the process history in
the previous interval (0, u], {N(u), T1, T2, . . . , TN(u)}. The conditional property of {Wu(t), t ≥
0} is more important in some situations. For example, Wu(t) can be understood as the
accumulated claims during the interval (u, u+ t] in insurance applications and one may have
observed the occurrences of these events during the previous interval (0, u]. Note that if the
counting process {N(t), t ≥ 0} is the NHPP then the conditional compound process has the
same stochastic property as the unconditional compound process since the NHPP possesses
the independent increments property. For the GPP, we have the following property for the
conditional compound process.

Theorem 6. The conditional moment generating function of Wu(t), given that {N(u) = n,

T1 = t1, T2 = t2, . . . , Tn = tn}, denoted by MWu(t) | T1=t1, T2=t2,...,Tn=tn, N(u)=n(s), is given by

MWu(t) | T1=t1, T2=t2,...,Tn=tn, N(u)=n(s)
= (exp{α[�(u+ t)−�(u)]} −MX(s)(exp{α[�(u+ t)−�(u)]} − 1))−(β/α+n),

and the conditional mean and variance of Wu(t) are given by

E[Wu(t) | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n]
=

(
β

α
+ n

)
(exp{α[�(u+ t)−�(u)]} − 1)E[X]

and
var[Wu(t) | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n]

=
(
β

α
+ n

)
(exp{α[�(u+ t)−�(u)]} − 1)E[X2]

+
(
β

α
+ n

)
([exp{α[�(u+ t)−�(u)]} − 1]E[X])2.

Proof. From Proposition 1, the conditional future process {Nu(t), t ≥ 0} is the GPP with
parameter set (λ(u+ t), α, β + nα), t ≥ 0. Then, similar to the proof of Theorem 5,

MWu(t) | T1=t1, T2=t2,...,Tn=tn,N(u)=n(s)
= E[exp{sWu(t)} | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n]

=
∞∑
m=0

E[exp{sWu(t)} | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n, Nu(t) = m]

× P(Nu(t) = m | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n)

=
∞∑
m=0

E[exp{s(X1 +X2 + · · · +Xm)}]

× P(Nu(t) = m | T1 = t1, T2 = t2, . . . , Tn = tn, N(u) = n)

=
∞∑
m=0

(MX(s))
m�(β/α + n+m)

�(β/α + n)m! (1 − exp{−α[�(u+ t)−�(u)]})m

× (exp{−α[�(u+ t)−�(u)]})n+β/α
= (exp{α[�(u+ t)−�(u)]} −MX(s)(exp{α[�(u+ t)−�(u)]} − 1))−(β/α+n).
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Then, following the same procedures as those described in the proof of Theorem 5, the desired
result is obtained.

5. Reliability application

In the reliability area many different types of repair have been suggested and applied. When
the failure rate of the item is increasing, the performance of the item deteriorates with time.
This eventually results in a low efficiency of the item and, at the same time, a high operational
cost. In order to maximize the item efficiency or minimize the operational cost, various repair
and replacement policies have been studied and thoroughly discussed in the literature. Surveys
on various maintenance models from a practical point of view can be found in, e.g. Sherif and
Smith (1981), Valdez-Flores and Feldman (1989), Wang (2002), and Tadj et al. (2011). An
overview on the maintenance theory from a theoretical point of view can be found in Nakagawa
(2005). More theoretical and sophisticated models have also been developed (see Mi (1994),
Ebrahimi (1997), Aven (1996), Aven and Jensen (2000), Cha (2001), (2003), and Badía et al.
(2001)).

It is important to understand that one counting process corresponds to one repair type and
vice versa in reliability applications. The most basic, but important, types of repair are ‘perfect’
and ‘minimal’ repairs. In a perfect repair, the system is returned to a state that is as good as new.
This implies that the interfailure times in this case are independent and identically distributed,
and, accordingly, the failure process of the repairable system with perfect repair is described
by the renewal process. On the other hand, in a ‘minimal repair’, the state of the item after the
repair is restored to the as-bad-as-old condition. More precisely, if the system with survival
function F̄ (t) has failed at time x then this type of repair implies that the survival function of
the repaired system is given by

F̄x(t) ≡ F̄ (x + t)

F̄ (x)
= exp

{
−

∫ t

0
r(x + u) du

}
,

where r(t) is the failure rate function of the system. Thus, this type of repair restores our system
to the state it had prior to the failure. It is well known that the failure process of the repairable
system with minimal repair is the NHPP with intensity function

λ(t) = r(t) = − d

dt
ln(F̄ (t)).

We will now define a new repair type based on the GPP. From Definition 1, recall that the
stochastic intensity of the GPP is given by

λt ≡ lim
�t→0

P(N(t, t +�t) = 1 | Ht−)
�t

= (αN(t−)+ β)λ(t). (15)

To define a new repair type from the GPP, we interpret the ‘event’ as the ‘failure’ and define
N(t) as the number of ‘failures’ in the time interval (0, t]. Suppose that the failure process of
the system is the GPP with parameter set (λ(t), α, β). Then the survival function of the time
to the first failure is given by

F̄ (t) = exp

{
−

∫ t

0
βλ(u) du

}
, t ≥ 0. (16)

Therefore, from (16), the failure rate of our system is given by r(t) = βλ(t). Now suppose that
this system has failed at time x1 (the first failure) and has instantly been repaired according to
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the repair type which corresponds to the stochastic intensity in (15). Then the survival function
of the repaired system is given by

F̄ [1]
x1
(t) ≡ exp

{
−

∫ t

0
(βλ(x1 + u)+ αλ(x1 + u)) du

}

= exp

{
−

∫ t

0
(r(x1 + u)+ αλ(x1 + u)) du

}
,

where the notation F̄ [n]
s (t) stands for the (residual) survival function of the system which has

been repaired at time s for the nth time, n = 1, 2, . . .. Suppose now that the above repaired
system has failed at time x2, x2 > x1, for the second time and has been repaired according to
the repair type which corresponds to the stochastic intensity in (15). Then the survival function
of the repaired system is given by

F̄ [2]
x2
(t) ≡ exp

{
−

∫ t

0
(βλ(x2 + u)+ 2αλ(x2 + u)) du

}

= exp

{
−

∫ t

0
(r(x2 + u)+ 2αλ(x2 + u)) du

}
.

In a similar fashion, we can generally define F̄ [n]
s (t):

F̄ [n]
s (t) ≡ exp

{
−

∫ t

0
(βλ(s + u)+ nαλ(s + u)) du

}

= exp

{
−

∫ t

0
(r(s + u)+ nαλ(s + u)) du

}
.

In the following discussions, for convenience, we will call this type of repair a ‘GPP repair’.
Furthermore, we define (α, β) as the set of parameters of the GPP repair defined above. Then
the failure process {N(t), t ≥ 0} for the system with failure rate r(t) under the GPP repair with
parameter set (α, β) is the GPP with parameter set (r(t)/β, α, β). Clearly, the GPP repair is
a worse than minimal repair as the survival function of the system on each repair is smaller
than that of the system on which the minimal repair is applied. Note that the parameters α
and β determine the degree of the repair. Specifically, the case in which α = 0 corresponds
to the minimal repair, whereas α > 0 implies that the repair is a worse than minimal repair.
Furthermore, as α increases and β decreases to 0, the repair becomes worse and worse.

Now we will consider a simple replacement policy employing the GPP repair defined above.
A system with failure rate r(t) starts its operation at time 0 and is GPP repaired on each failure.
We assume that the distribution of the lifetime of the system is proper, i.e.

∫ ∞
0 r(t) dt = ∞,

and without loss of generality that limt→∞ r(t) > 0. The system is replaced by an identical
new system when its age reaches T , and the repair and replacement process is repeated again
and again. The cost for a GPP repair is cGPP > 0 and that for a replacement is cr. Then, in this
case, the expected number of GPP repairs in one renewal cycle is, from Theorem 1,

E[N(T )] = β

α
(exp{α�(T )} − 1),

where λ(t) = r(t)/β and, thus, �(t) = ∫ t
0 r(u) du/β. From the renewal reward theorem (see,

e.g. Ross (1996)), the long-run average cost rate function C(T ), as the function of T , is given
by

C(T ) = β(exp{α�(T )} − 1)cGPP/α + cr

T
= β(exp{αR(T )/β} − 1)cGPP/α + cr

T
, (17)

https://doi.org/10.1239/aap/1418396247 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396247


Characterization of the generalized Pólya process 1163

whereR(t) ≡ ∫ t
0 r(u) du. The problem is to find the optimal T ∗ which minimizesC(T ) in (17).

The property of the optimal T ∗ is given in the following theorem.

Theorem 7. If r(t) satisfies

r ′(t)+ α

β
r2(t) > 0 for all t > 0, (18)

then there exists a unique optimal T ∗ ∈ (0,∞), which is the solution of the equation

T r(T ) exp

{
αR(T )

β

}
− β

α
exp

{
αR(T )

β

}
−

(
cr

cGPP
− β

α

)
= 0.

Proof. Differentiating C(T ) we obtain

C′(T ) = cGPP

T 2

[
T r(T ) exp

{
αR(T )

β

}
− β

α
exp

{
αR(T )

β

}
−

(
cr

cGPP
− β

α

)]
.

Let


(T ) ≡ T r(T ) exp

{
αR(T )

β

}
− β

α
exp

{
αR(T )

β

}
−

(
cr

cGPP
− β

α

)
.

Then we have 
(0) = −cr/cGPP < 0 and limT→∞
(T ) = ∞. Furthermore, if condition
(18) is satisfied then


′(T ) = T r ′(T ) exp

{
αR(T )

β

}
+ α

β
T r2(T ) exp

{
αR(T )

β

}

= T exp

{
αR(T )

β

}[
r ′(T )+ α

β
r2(T )

]
> 0 for all T > 0.

Thus, 
(T ) is strictly increasing with limT→∞
(T ) = ∞. Therefore, there is a unique
solution T ∗ ∈ (0,∞)which satisfies
(T ∗) = 0. It is now clear that this T ∗ satisfiesC′(T ∗) =
0 with C′(T ) < 0 for T < T ∗ and C′(T ) > 0 for T > T ∗. Therefore, this T ∗ is the optimal
replacement time for the replacement policy.

Remark 5. Suppose that r(t) is increasing. Then it is obvious that condition (18) is satisfied
and, thus, there exists a unique optimal T ∗. However, condition (18) does not necessarily
require that r(t) should be increasing. Even decreasing r(t) can satisfy condition (18).

Suppose now that the failure rate function r(t) is decreasing. If the repair type performed
on each failure of the system is the minimal repair then the long-run average cost rate function
C(T ) is simply given by

C(T ) = cmR(T )+ cr

T
,

where cm is the cost for a minimal repair. When the failure rate function r(t) is decreasing, it can
be shown that the cost functionC(T ) is strictly decreasing and that the optimal replacement time
in this case is T ∗ = ∞. However, when the repair type performed on each failure of the system
is the GPP repair, the situation dramatically changes as illustrated in the following example.
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Figure 1: The long-run average cost rate C(T ).

Example 2. Suppose that the failure rate function of the system is given by

r(t) =
{

1
4 (t − 2)2 + 1 if 0 ≤ t < 2,

1 if t ≥ 2.

Therefore, the failure rate function is decreasing. Suppose further that the repair performed on
the system is the GPP repair with parameter set (α = 0.8, β = 1). The parameters for the
costs are given by cGPP = 0.8 and cr = 1.0.

Then it is clear that inequality (18) is satisfied for t ≥ 2. For t ∈ (0, 2),

r ′(t)+ α

β
r2(t) = 1

20
((t − 2)4 + 8(t − 2)2 + 10(t − 2)+ 16)

= 1

20

(
(t − 2)4 + 8

[
(t − 2)+ 5

8

]2

+ 103

8

)
> 0 for all t ∈ (0, 2).

Therefore, condition (18) is satisfied. It is now clear that the optimal T ∗ is given by the unique
solution of the equation

T r(T )− 1.25 = 0,

and T ∗ cannot be greater than 2.0. Accordingly, there exists the optimal replacement time T ∗
in the interval (0, 2.0). The long run average cost rate C(T ) is given in Figure 1.

It is generally known that, when the failure rate function is decreasing, preventive mainte-
nance of the system is not necessary. This is true if the repair type performed on each failure
is the minimal repair. However, as shown in this example, if the repair type is the GPP repair,
it may be necessary to apply the preventive maintenance policy even if the failure rate function
is decreasing.

6. Concluding remarks

In this paper we have characterized the GPP by deriving some of its properties. Even
though the GPP has neither the independent increments nor the stationary increments property,
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it possesses very ‘nice’properties, which simplifies relevant analysis in many applications. The
most important characteristic of the GPP is the ‘restarting property’ discussed in this paper.
With the help of this property, many properties of the GPP have been successfully derived. This
important property can also be used in many applications to simplify the analysis.

As illustrated in the introduction, counting processes have been applied in many areas, such
as reliability, queueing analysis, insurance risk analysis, biology, and telecommunications. As
illustrated in detail in this paper, the results could be directly applied to various stochastic
models in queueing and insurance. In the reliability area, numerous new repair types have been
suggested, generalizing the ‘minimal repair’. However, few repair types yield mathematically
tractable results in relevant studies on maintenance policy. On the contrary, the repair type
based on the GPP given in this paper allows a clear interpretation of the effect of the repair
and yields mathematically tractable results. This will be a crucial contribution of this work
especially in the area of reliability.

Appendix A. Proof of Theorem 1

We first derive P(N(t) = n). Let Ti, i = 1, . . . , N(t), be the sequential arrival times of the
events in (0, t]. Then the joint distribution of (T1, T2, . . . , TN(t), N(t)) is given by

fTi, 1≤i≤N(t),N(t)(t1, t2, . . . , tn, n)
= [βλ(t1) exp{−β�(t1)}(β + α)λ(t2) exp{−(β + α)[�(t2)−�(t1)]}

× (β + 2α)λ(t3) exp{−(β + 2α)[�(t3)−�(t2)]}
× · · · × (β + (n− 1)α)λ(tn) exp{−(β + (n− 1)α)[�(tn)−�(tn−1)]}
× exp{−(β + nα)[�(t)−�(tn)]}]

=
[
β

α

(
1 + β

α

)(
2 + β

α

)
· · ·

(
(n− 1)+ β

α

)
× αλ(t1) exp{α�(t1)}αλ(t2) exp{α�(t2)} · · ·αλ(tn) exp{α�(tn)}
× exp{−(β + nα)�(t)}

]

= �(β/α + n)

�(β/α)

( n∏
i=1

αλ(ti) exp{α�(ti)}
)

exp{−(β + nα)�(t)},

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t . Thus, the marginal distribution of N(t) can be obtained as

P(N(t) = n) =
∫ t

0
· · ·

∫ t3

0

∫ t2

0
fTi, 1≤i≤N(t),N(t)(t1, t2, . . . , tn, n) dt1 dt2 · · · dtn

=
[
�(β/α + n)

�(β/α)

∫ t

0
· · ·

∫ t3

0

∫ t2

0

( n∏
i=1

αλ(ti) exp{α�(ti)}
)

dt1 dt2 · · · dtn

× exp{−(β + nα)�(t)}
]

= �(β/α + n)

�(β/α)n! (exp{α�(t)} − 1)n exp{−(β + nα)�(t)}
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= �(β/α + n)

�(β/α)n! (exp{α�(t)} − 1)n(exp{−α�(t)})n+β/α

= �(β/α + n)

�(β/α)n! (1 − exp{−α�(t)})n(exp{−α�(t)})β/α. (19)

We now obtain the conditional distribution of P(N(u2) − N(u1) = n2 | N(u1) = n1).
From Proposition 1, given thatN(u1) = n1, the future process {Nu1(t), t ≥ 0} is the GPP with
parameter set (λ(u1 + t), α, β + n1α). Therefore, by replacing β in (19) with β + n1α and
�(t) with

∫ u2−u1
0 λ(u1 + s) ds = �(u2)−�(u1), we have

P(N(u2)−N(u1) = n2 | N(u1) = n1)

= �(β/α + n1 + n2)

�(β/α + n1)n2! (1 − exp{−α[�(u2)−�(u1)]})n2

× (exp{−α[�(u2)−�(u1)]})n1+β/α. (20)

Next we derive the marginal distribution of N(u2) − N(u1). Observe that, for r > 0 and
0 < q < 1,

∞∑
k=0

(
k + r − 1

k

)
qk = (1 − q)−r . (21)

Then it is clear that

P(N(u2)−N(u1) = n2)

=
∞∑
n1=0

P(N(u2)−N(u1) = n2 | N(u1) = n1)P(N(u1) = n1)

=
∞∑
n1=0

�(β/α + n2 + n1)

�(β/α + n2)n1! (exp{−α[�(u2)−�(u1)]} − exp{−α�(u2)})n1

× �(β/α + n2)

�(β/α)n2! (1 − exp{−α[�(u2)−�(u1)]})n2(exp{−α�(u2)})β/α.

= �(β/α + n2)

�(β/α)n2!
(

1 − exp{−α[�(u2)−�(u1)]}
1 + exp{−α�(u2)} − exp{−α[�(u2)−�(u1)]}

)n2

×
(

exp{−α�(u2)}
1 + exp{−α�(u2)} − exp{−α[�(u2)−�(u1)]}

)β/α
.

Now the joint distribution of P(N(ui)− N(ui−1) = ni, i = 1, 2, . . . , m) will be derived.
From (19) and (20), the joint distribution of P(N(u1) = n1, N(u2)−N(u1) = n2) is given by

P(N(u1) = n1, N(u2)−N(u1) = n2)

= �(β/α + n1)

�(β/α)n1! (1 − exp{−α�(u1)})n1(exp{−α�(u1)})β/α �(β/α + n1 + n2)

�(β/α + n1)n2!
× (1 − exp{−α[�(u2)−�(u1)]})n2(exp{−α[�(u2)−�(u1)]})n1+β/α.

From the GPP property, we have

P(N(u3)−N(u2) = n3 | N(u1) = n1, N(u2)−N(u1) = n2)

= P(N(u3)−N(u2) = n3 | N(u2) = n1 + n2),
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and, by Proposition 1, given that N(u2) = n1 + n2, the future process {Nu2(t), t ≥ 0} is the
GPP with parameter set (λ(u2 + t), α, β + (n1 + n2)α). Thus, the conditional distribution of
P(N(u3)−N(u2) = n3 | N(u1) = n1, N(u2)−N(u1) = n2) is given by

P(N(u3)−N(u2) = n3 | N(u1) = n1, N(u2)−N(u1) = n2)

= �(β/α + n1 + n2 + n3)

�(β/α + n1 + n2)n3! (1 − exp{−α[�(u3)−�(u2)]})n3

× (exp{−α[�(u3)−�(u2)]})n1+n2+β/α.

From this, the corresponding joint distribution can be obtained as

P(N(u1) = n1, N(u2)−N(u1) = n2, N(u3)−N(u2) = n3)

= P(N(u3)−N(u2) = n3 | N(u1) = n1, N(u2)−N(u1) = n2)

× P(N(u1) = n1, N(u2)−N(u1) = n2).

Applying recursive procedure, we finally have

P(N(ui)−N(ui−1) = ni, i = 1, 2, . . . , m)

=
m∏
i=1

[
�(β/α + ∑i

k=1 nk)

�(β/α + ∑i−1
k=1 nk)ni !

(1 − exp{−α[�(ui)−�(ui−1)]})ni

× (exp{−α[�(ui)−�(ui−1)]})
∑i−1
k=1 nk+β/α

]
.

Appendix B. Proof of Theorem 2

Let H[0,u) ≡ Hu− be the history of the process in [0, u). Then it can be equivalently defined
in terms of N(u−) and the sequential arrival points of the events 0 < T1 < T2 < · · · <
TN(u−) < t in [0, u): H[0,u) = {N(u−), T1, T2, . . . , TN(u−)}. Similarly, the history of the
process in [u, u + t), denoted by H[u,u+t), can be specified as H[u,u+t) = {N((u + t)−) −
N(u−), Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−))}. Observe that

λut ≡ lim
�t→0

P(Nu(t, t +�t) = 1 | H[u,u+t))
�t

= EH[0,u) | H[u,u+t)

[
lim
�t→0

P(Nu(t, t +�t) = 1 | H[0,u),H[u,u+t))
�t

]
, (22)

where EH[0,u) | H[u,u+t) stands for the expectation with respect to the conditional distribution of
(H[0,u) | H[u,u+t)). Furthermore, by the definition of the stochastic intensity in (1),

lim
�t→0

P(Nu(t, t +�t) = 1 | H[0,u),H[u,u+t))
�t

= λu+t
= (α(N(u−)+ [N((u+ t)−)−N(u−)])+ β)λ(u+ t). (23)

Now, in order to take the conditional expectation in (22), we derive the conditional joint
distribution of

H[0,u) | H[u,u+t) = (T1, T2, . . . , TN(u−), N(u−) | Tu1, Tu2, . . . ,

Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−)).
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The joint distribution of

(T1, T2, . . . , TN(u−), Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N(u−), N((u+ t)−)−N(u−))
is given by

fTi, 1≤i≤N(u−),Tuj , 1≤j≤N((u+t)−)−N(u−),N(u−),N((u+t)−)−N(u−)(t1, t2, . . . , tn1 ,

tu1, tu2, . . . , tun2 , n1, n2)

= [βλ(t1) exp{−β�(t1)}(β + α)λ(t2) exp{−(β + α)[�(t2)−�(t1)]}
× (β + 2α)λ(t3) exp{−(β + 2α)[�(t3)−�(t2)]}
× · · · × (β + (n1 − 1)α)λ(tn1) exp{−(β + (n1 − 1)α)[�(tn1)−�(tn1−1)]}
× exp{−(β + n1α)[�(u)−�(tn1)]}]
× [(β + n1α)λ(tu1) exp{−(β + n1α)[�(tu1)−�(u)]}

× (β + n1α + α)λ(tu2) exp{−(β + n1α + α)[�(tu2)−�(tu1)]}
× · · · × (β + n1α + (n2 − 1)α)λ(tun2)

× exp{−(β + n1α + (n2 − 1)α)[�(tun2)−�(tu(n2−1))]}
× exp{−(β + n1α + n2α)[�(u+ t)−�(tun2)]}]

=
[
β

α

(
1 + β

α

)(
2 + β

α

)
· · ·

(
(n1 − 1)+ β

α

)

× αλ(t1) exp{α�(t1)}αλ(t2) exp{α�(t2)} · · ·αλ(tn1) exp{α�(tn1)}
]

×
[(
n1 + β

α

)(
n1 + 1 + β

α

)(
n1 + 2 + β

α

)
· · ·

(
n1 + (n2 − 1)+ β

α

)
× αλ(tu1) exp{α�(tu1)}αλ(tu2) exp{α�(tu2)} · · ·αλ(tun2) exp{α�(tun2)}
× exp{−(β + n1α + n2α)�(u+ t)}

]

=
[
�(β/α + n1)

�(β/α)

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)

× �(β/α + n1 + n2)

�(β/α + n1)

( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

× exp{−(β + n1α + n2α)�(u+ t)}
]
. (24)

From (24), the joint distribution of

(Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N(u−), N((u+ t)−)−N(u−))
is given by[

�(β/α + n1)

�(β/α)

∫ u

0
· · ·

∫ t3

0

∫ t2

0

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)

dt1 dt2 · · · dtn1

× �(β/α + n1 + n2)

�(β/α + n1)

( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

× exp{−(β + n1α + n2α)�(u+ t)}
]
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=
[
�(β/α + n1)

�(β/α)n1! (exp{α�(u)} − 1)n1

× �(β/α + n1 + n2)

�(β/α + n1)

( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

× exp{−(β + n1α + n2α)�(u+ t)}
]
.

Thus, by applying (21), the joint distribution of

(Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−))
is given by

(1 + exp{−α�(u+ t)} − exp{−α(�(u+ t)−�(u))})−(β/α+n2)

×
[
�(β/α + n2)

�(β/α)

( n2∏
j=1

αλ(tuj ) exp{α�(tuj )}
)

exp{−(β + n2α)�(u+ t)}
]
.

Finally, the conditional joint distribution of

(T1, T2, . . . , TN(u−), N(u−) | Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−))
is given by

�(β/α + n1 + n2)

�(β/α + n2)

( n1∏
i=1

αλ(ti) exp{α�(ti)}
)
(exp{−α�(u+ t)})n1

× (1 + exp{−α�(u+ t)} − exp{−α(�(u+ t)−�(u))})β/α+n2 . (25)

Note that

lim
�t→0

P(Nu(t, t +�t) = 1 | H[0,u),H[u,u+t))
�t

given in (23) contains only N(u−) among the elements of the history

H[0,u) = {N(u−), T1, T2, . . . , TN(u−)}
and, thus, the conditional expectation in (22) should be taken only with respect to the random
variableN(u−). Accordingly, from (25), we now have to obtain the conditional distribution of

(N(u−) | Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−)),
which is given by the following negative binomial distribution:

�(β/α + n2 + n1)

�(β/α + n2)n1! (exp{−α(�(u+ t)−�(u))} − exp{−α�(u+ t)})n1

× (1 + exp{−α�(u+ t)} − exp{−α(�(u+ t)−�(u))})β/α+n2 .

Finally, from (22),

λut = (α(E[N(u−) | Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−)]
+ [N((u+ t)−)−N(u−)])+ β)λ(u+ t),
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where
E[N(u−) | Tu1, Tu2, . . . , Tu(N((u+t)−)−N(u−)), N((u+ t)−)−N(u−)]

=
(
β

α
+ [N((u+ t)−)−N(u−)]

)

× exp{−α(�(u+ t)−�(u))− exp{−α�(u+ t)}
1 + exp{−α�(u+ t)} − exp{−α(�(u+ t)−�(u))} .

Therefore, we have

λut = (α[N((u+ t)−)−N(u−)] + β)ψ(t, u),

where

ψ(t, u) ≡ λ(u+ t) exp{α�(u+ t)}
1 + exp{α�(u+ t)} − exp{α�(u)} .
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