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Abstract

We study the problem of dynamically allocating flexible workers to stations in tandem
or serial manufacturing systems. Workers are trained to do a subset of consecutive tasks.
We show that the optimal policy is often LBFS (last buffer first-served) or FBFS (first
buffer first-served). These results generalize earlier results on the optimality of the pick-
and-run, expedite, and bucket brigade-type policies. We also show that, for exponential
processing times and general manufacturing networks, the optimal policy will tend to
have several workers assigned to the same station.
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1. Introduction

Increasing the flexibility of workers through cross-training or work sharing, and effectively
deploying flexible workers, has become more important as companies strive to reduce cycle
times while maintaining high utilization. The use of flexible workers permits a manufacturing
system to balance itself by dynamically shifting workloads (or, equivalently, shifting workers)
in response to changes in demand, machine availability, congestion points, etc., even when
there may be a large variation in worker speeds and task completion times. The self-balancing
capability in turn results in lower inventory levels. Worker flexibility may also have positive
effects on worker morale and ergonomics, quality, and system coordination. We develop a
general framework for studying the dynamic assignment of flexible workers in open and closed
tandem or serial manufacturing systems. Of course, for the most general models, optimal
policies will be difficult to find and impractical to implement. We characterize particular
models and objective functions for which easily implementable policies are optimal, at least
within a subsystem of the general system. These policies provide partial characterizations of
the optimal policy in more complicated systems, and can be used to develop heuristics.

Most of our results apply to tandem systems in which jobs consist of n tasks that must be
done in sequence. Jobs ready and waiting for task j to be performed are said to be at station j ,
or in buffer j , where buffers have infinite capacity. We are able to give a few results for general
independent processing times, as well as stronger results for deterministic and exponential
processing times. Arrivals of jobs may be either independent of the system state but otherwise
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arbitrary (an open system), or such that the completion of a job may trigger an immediate new
job arrival (a closed, or CONWIP, system). There are w workers, or servers, and they are cross-
trained, so that they can do multiple tasks and tasks can be done by more than one worker. We
assume that each worker has a ‘zone’of capability, or is sequentially cross-trained, so that worker
i can do tasks ki, ki + 1, . . . , li for some ki and li , and that ki and li are increasing (nonstrictly)
in i, with k1 = 1 and lw = n. If some worker i is the only one that can do a set of tasks, we call
those tasks worker i’s fixed tasks (cf. [15]). Tasks that can be done by more than one worker are
called shared tasks. The zone approach to cross-training is practical for linear and U-shaped
layouts, and is consistent with both the moving worker modules and the dynamic assembly-line
balancing models of worksharing for tandem or assembly-line systems, as described in [6].

Moving worker module systems (see, e.g. [11]) have fixed machines for each task, and
workers may move from one machine to another. In dynamic assembly-line balancing systems,
introduced in [23], machines are generally assumed to be flexible, workers stay with machines,
and some tasks may be done at more than one flexible machine. These systems are designed
so that workers can easily help adjacent workers when they fall behind, by working on shared
tasks. In dynamic assembly-line balancing systems there may be additional constraints on the
flow of jobs. For example, it may be that, once a worker starts working on a job that was taken
from an upstream worker, the job is considered ‘handed off’ to the former worker and later tasks
for that job cannot be done by upstream workers. These constraints are not included in our
model. We assume that switching times between tasks, or walking times between stations, are
insignificant, as are hand-off times from one worker to another, and that preemption is generally
permitted. If there are multiple jobs at a station, multiple workers can work on them. Most of
our results assume a noncollaborative model, so that multiple workers cannot work on the same
job, though we have a few results that apply when workers can collaborate on the same job,
where their processing rates are added. Workers may have random failures (or go on breaks)
and repairs (returns).

In many situations an FBFS (first buffer first-served) or LBFS (last buffer first-served) policy
is optimal. By FBFS and LBFS we mean that every worker works on the job that is in the earliest
or, respectively, latest buffer (or station) among the buffers it is qualified to serve, that service
is FCFS (first-come–first-served) within each buffer, and that, when there is contention among
workers for the same job, the worker that can do the corresponding task the fastest (on average)
is given priority. Many policies in the literature can be recast as FBFS or LBFS policies. For
example, for some task service time distributions, the shortest expected remaining processing
time policy for jobs is equivalent to the LBFS policy in our tandem model. Also, in certain
situations, LBFS is equivalent to the pick-and-run, expedite, and (a variant of the) bucket brigade
policies described below.

Much of the research on dynamic worker assignment has focused on two-stage systems
with only one flexible worker (or ‘floater’) and with holding and switching costs [12], [13],
[16], [18], [27]. In these models the optimal policy typically has a monotone switching curve
structure. Pandelis [24], [25] considered a two-stage system with both flexible and dedicated
workers and also showed a switching curve structure for the optimal policy. Gel et al. [15]
and Sennott et al. [27] considered both two- and three-stage systems with one flexible worker.
Gel et al. showed conditions under which a ‘fixed before shared’policy maximizes the long-run
throughput. Under their assumptions, the fixed before shared policy corresponds to a LBFS
policy; we give related results where the fixed before shared policy is optimal for two or more
stages when processing times are deterministic or exponential.

There is also a sizable literature on two-stage systems in which all workers are fully trained,
processing times depend on the task and not the worker, and there are no switchover costs or
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times for workers to switch tasks or jobs to switch workers. Ahn et al. [2] considered a two-
station model with two flexible workers, Poisson arrivals, exponential service times, holding
costs, and preemption. They considered both the cases when the workers can collaborate and
the cases when they cannot, and their objective was to minimize the long-run average cost.
They showed that, in states where both workers can be assigned to either station, assigning
both to the same station is always optimal. They gave conditions under which it is optimal to
serve one of the stations exhaustively (i.e. either FBFS or LBFS). Ahn et al. [3] considered a
similar nonpreemptive, nonidling model without arrivals. Pandelis and Teneketzis [26] studied
a nonpreemptive, noncollaborative two-station model with multiple fully trained workers, no
arrivals, and holding costs. Jobs that complete the first task require the second task with prob-
ability p; otherwise, they leave immediately. Pandelis and Teneketzis gave conditions under
which the FBFS policy is optimal for general task-dependent service times. Javidi et al. [19]
considered a similar model with Poisson arrivals and exponential services. Jobs that complete
the first task create k jobs requiring the second task with probability p; otherwise, they leave
immediately. Javidi et al. gave optimality conditions for FBFS and for LBFS where the objective
is to minimize the time until the system first empties.

Andradöttir et al. [4] studied a finite-buffer system with fully trained workers that can
collaborate on jobs and where service times are general and may depend on both the task
and the worker. Their objective was to maximize the steady-state throughput. Preemption is
permitted, and there are an infinite number of jobs at the first station. They showed that if
service times are stochastically identical for all tasks, or for all workers, then any nonidling
policy is optimal. For two stations, two workers, and exponential service times with rate µij

for worker i processing task j , where µ11µ22 ≥ µ12µ21, it is optimal to assign worker one to
1-tasks and worker two to 2-tasks when that assignment is nonidling; otherwise, the workers
should collaborate on tasks in the nonempty buffer.

Van Oyen et al. [28] considered a system in which workers are identical, fully trained, and
can collaborate on tasks. They showed that when job completions must be in FCFS order from
the last station, the expedite policy (that all workers should work on the most downstream job,
following it to completion) minimizes the completion time for all jobs and sample paths. Note
that the expedite policy is the same as the LBFS policy. For closed queueing networks and
exponential processing times, the expedite policy minimizes the mean cycle time. They also
studied the pick-and-run policy when workers cannot collaborate. In the pick-and-run policy
workers follow jobs to completion before starting a new job, so this policy is equivalent to LBFS
when workers are identical and service times are exponential. In this case they showed that the
pick-and-run policy minimizes the mean cycle time. They quantified the advantage, in mean
cycle time, of having fully cross-trained workers over the best static allocation of workers.

Bartholdi and Eisenstein [9] and Bartholdi et al. [10] studied a bucket brigade arrangement
of workers when all workers are fully trained and worker speeds are uniformly ordered (so,
for example, if one worker is on average twice as fast at one task than another worker, then it
is twice as fast at all tasks). In a bucket brigade the w workers are arranged from slowest to
fastest and the ith (fastest) worker is always working on the job that has completed the ith most
tasks, i.e. the ith furthest downstream job, among those present. When a downstream worker
completes a job or is bumped by a further downstream worker, it moves back up the line and
takes over the task of the next upstream worker. Bartholdi et al. also assumed that multiple
workers cannot work on jobs at the same station at the same time, and that upstream workers that
become blocked by downstream workers must idle. The Toyota Sewn Products Management
System operates as a bucket brigade system, except that workers in the system may be restricted
to zones and are not necessarily ordered from slowest to fastest. Bartholdi and Eisenstein [9]
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showed that, for deterministic processing times, when workers are arranged from slowest to
fastest, in the long run bucket brigades achieve the maximum possible service rate and workers
settle into ‘virtual zones’ of operation. For other worker arrangements the system may not be
stable even when the arrival rate is less than the total service rate. Bartholdi et al. [10] showed
that for exponential processing times, as the number of tasks gets large the system’s behavior
approaches that of the deterministic system.

When there is zone cross-training the problem is much harder, and most of the literature
studies heuristics using simulation models. Ostolaza et al. [23], McClain et al. [22], Askin and
Chen [6], [7], and Gel et al. [14] considered finite-buffer systems with zone cross-training in
closed dynamic assembly-line balancing models. Each worker has a fixed task that only that
worker can do, and each sequential pair of workers can do a shared task, so k1 = 1, l1 = 2,
ki = li−1 for i = 2, . . . , w, li = ki + 2 for i = 2, . . . , w − 1, and lw = kw + 1 (in [14] and [6],
w = 2 and n = 3). Once a worker passes a job down to the next worker, it cannot work on
it again. The cited authors studied heuristic rules to determine whether a worker that has just
finished its fixed task for a job should pass the job down to the next worker to do the shared task,
or do the shared task itself. These rules are typically based on the number of jobs waiting at
the downstream worker. Many of these authors also studied the effects of the amount of cross-
training and the placement of buffers on throughput. The paper of Hopp et al. [17] is similar
in spirit, but they studied both a zoned model of cross-training, where k1 = 1, l1 = D, and
ki = ki−1 + 1 and li = li−1 + 1 for i = 2, . . . , w (called D-chaining), and a nonzoned model
called cherry picking. They looked at many different heuristics for dynamically assigning
workers to tasks. Koole and Righter [20] considered zone cross-training with no shared tasks,
so k1 = 1 and ki = li−1 + 1 for i = 2, . . . , w. They showed that the LBFS policy, which in
this case is equivalent to the pick-and-run policy, is often optimal.

In the serial model with general zone cross-training, optimal policies are often complicated
and difficult to compute and implement. In this paper we attempt to identify conditions under
which simple policies will be optimal. In Section 2 we consider fixed tasks only, but otherwise
permit very general assumptions on processing times, the number of stages, arrival processes,
worker capabilities, and objective functions. We show that in these general systems it is
often optimal for workers to follow the LBFS policy for their fixed tasks (pick-and-run). To
better understand the optimal policy for shared tasks, we restrict ourselves to deterministic
or exponential processing times for the remainder of the paper. In Section 3 we assume that
processing times are deterministic and give conditions for the optimality of the FBFS and LBFS
policies, respectively. We consider exponential processing times in Section 4. We show that
under very general conditions there will be a tendency for workers to work together (either
collaboratively on the same job, if permissible, or noncollaboratively on different jobs at the
same station) under the optimal policy. We also give conditions such that, when workers are
fully trained and multiple workers are permitted at the same station (which is not generally true
for standard bucket brigades), a bucket brigade-type scheduling rule with workers arranged
from slowest to fastest maximizes the mean flowtime for the first k jobs, for any k. This rule is
equivalent to the LBFS policy with priority given to faster workers.

Throughout, we use the terms ‘larger’, ‘increasing’, etc. in the nonstrict sense.

2. Fixed tasks and general processing times

Recall that a job consists of tasks that must be done sequentially, so we think of the jobs as
moving through a tandem system of stations, or a set of buffers in tandem. Also, workers can do
some sequential subset of the tasks, i.e. worker i can work on jobs in buffers ki, ki +1, . . . , li for
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some ki and li , where ki and li are increasing in i. If the workers have different speeds then faster
workers have priority over slower ones; otherwise, an arbitrary priority order is given. Under
the FBFS policy worker i always works on the task in its first nonempty buffer that is unclaimed
by higher priority workers, i.e. it works on task j where j = arg min{k : ki ≤ k ≤ li , nk > 0}
and nk is the number of tasks in buffer k that have not been assigned to higher priority workers.
The worker idles if nk = 0 for all k, ki ≤ k ≤ li . When workers can collaborate we need not
worry about jobs being claimed by higher priority workers; they can work together on tasks in
their last nonempty buffer. The LBFS policy is similarly defined.

We call a worker an exclusive worker if it is the only one that can do some of the tasks
(though it may also be able to do some shared tasks). That is, worker i is an exclusive worker if
li−1 < ki+1 − 1, so it is the only one that can do tasks in buffers li−1 + 1, . . . , ki+1 − 1; we call
these tasks its fixed tasks. We first consider the optimal policy for the fixed tasks of exclusive
workers. For these tasks there is no overtaking, in the sense that if a worker works on one of
these tasks for a given job, then no other job can overtake the given job. Under these conditions
we can otherwise have very general assumptions on processing times and worker availabilities.
Our results extend single-server scheduling results. In particular, the LBFS policy corresponds
to the shortest expected remaining processing time policy. We give conditions for the optimality
of the LBFS policy among fixed tasks. This means, perhaps after some initial clearing, that
workers will follow jobs through their fixed tasks (pick-and-run).

Processing times may have an arbitrary distribution that might depend on both the task and
the worker. Workers may fail (e.g. go on break) and be repaired (return), with random state-
independent failure and repair times, and arrivals are state independent but otherwise arbitrary.
The system may be either open or closed. We first assume that workers cannot collaborate,
i.e. that two workers cannot work on the same job at the same time.

Let c
j
t be the number of task-j completions by time t , and let C̄

j
t = ∑n

i=j ci
t be the number

of completions of task j or those that are downstream of j by time t . We call {C̄t }∞t=0 =
{C̄1

t , C̄2
t , . . . , C̄n

t }∞t=0 the joint task completion process and {C̄1
t }∞t=0 the total task completion

process. The job completion process is therefore {cn
t }∞t=0 = {C̄n

t }∞t=0, and maximizing this
implies minimizing the number of jobs in the system, minimizing the flowtimes or cycle times
of jobs, and maximizing throughput. Note also that stochastically maximizing the joint task
completion process implies that the total reward process is also stochastically maximized. We
write r(j), which is increasing, for the reward for completion of a j -task. Maximizing the total
task completion process is equivalent to maximizing worker utilization or the proportion of time
workers are busy. For stable systems, this implies the maximization of long-run throughput.
Let h(j) be the holding cost per task per unit time for j -tasks, and assume that h is finite,
increasing (so value is added as jobs get closer to full completion), and concave. Let Ht be the
total holding cost at time t , and {Ht }∞t=0 be the holding cost process.

We say that the random variable X is larger than the random variable Y in the stochastic
ordering sense, X ≥st Y , if F(t) ≤ G(t) for all t , where F(t) and G(t) are the cumulative
distribution functions of X and Y , respectively. We say that X is larger than Y in the likelihood
ratio ordering sense, X ≥lr Y , if f (t)/g(t) is increasing in t , where f (t) and g(t) are the
densities or probability mass functions of X and Y , respectively. A random variable X is
increasing in likelihood ratio (ILR) if Xt ≤lr Xs for s ≤ t , where Xt = [X − t | X ≥ t]. Thus,
a task processing time that is ILR is getting smaller in a strong sense as the task is being served,
so there is an incentive not to preempt tasks with other tasks at the same station (i.e. to follow
FCFS) when processing times are ILR.
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Theorem 2.1. Consider a noncollaborative, open or closed tandem system.

(i) Suppose that preemption and idling are permitted. Suppose that processing times for fixed
tasks are ILR, or that tasks within a fixed-task buffer must be served according to FCFS. To
maximize the job completion process, workers should never idle and exclusive workers should
follow LBFS and FCFS within a buffer for their fixed tasks. For any policy that violates these
properties, there exists an alternative policy that does not, such that {cn

t }∞t=0 is stochastically
larger for the alternative policy.

(ii) Suppose that preemption and idling are not permitted. Suppose that, for each exclusive
worker, the processing times of all fixed tasks have the same (not necessarily ILR) distribution.
To maximize the joint task completion process and minimize the holding cost process, exclusive
workers should follow LBFS for their fixed tasks. For any policy that violates this property,
there exists an alternative policy that does not, such that {C̄t }∞t=0 is stochastically larger and
{Ht }∞t=0 is stochastically smaller for the alternative policy.

Proof. (i) First suppose that processing times are ILR. We must actually show a stronger
result than the optimality of FCFS within a buffer: the task with the most-attained service
should instead have priority within a buffer. This is because, under an arbitrary policy where
preemption is permitted, at any given time there may be several jobs in the same buffer whose
tasks there have been partially completed. Note that, under the most attained service time
(MAST) policy, the first time there are no partially completed tasks, the policy corresponds to
a nonpreemptive policy (e.g. FCFS) from then on.

Let us call a policy that never idles, follows MAST within fixed buffers, and follows LBFS
for the fixed tasks for all exclusive workers, an M–L policy. We assume that time is discrete,
where the discretization can be arbitrarily small. Our proof is by induction on a finite time
horizon, T . Suppose that an M–L policy is optimal for T − 1, and consider T . (The result for
T = 1 is easy using the arguments below.) Let π be an arbitrary policy that is not an M–L
policy for time horizon T . We will construct an M–L policy π̂ that is better than π for our
objective. We may assume from the induction hypothesis that π is an M–L policy from time 1
on, since otherwise the policy that agrees with π at time 0 and then follows an M–L policy is
better than π .

Nonidling: If π idles any worker at time 0, it is easy to construct a policy that does not and
that is better than π , so let us suppose that π is nonidling.

MAST: Suppose that, at time 0 under π , an exclusive worker, l, serves a job J in one of its
fixed buffers, k, when there is a job I in buffer k that has received more service in buffer k than
has job J . Then π will not serve J again until I is served, say at time σ for the first time. Let
π̂ agree with π except in that it serves I at time 0 and J at time σ , and thereafter serves I or
J with priority to I whenever π serves I or J . We also assume that π̂ agrees with π for the
other workers besides l, with one possible small exception which will be given below. Let X

and Y be the remaining task processing times of jobs I and J at time 0, where, by assumption,
X ≤lr Y . We will couple X and Y under π with X̂ and Ŷ under π̂ , as follows.

First, generate m = min{X, Y } and M = max{X, Y } with the appropriate distribution. If
m = M = 1 then let X = X̂ = Y = Ŷ = 1, in which case the states and task completions
under π and π̂ will be the same. If 1 < m ≤ M then let X = X̂ = m and Y = Ŷ = M with
probability

p := P(X = m, Y = M | min(X, Y ) = m, max(X, Y ) = M)
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and let X = X̂ = M and Y = Ŷ = m with probability 1 − p. The states and task completions
under π and π̂ will again be the same. Finally, suppose that 1 = m < M . It is easy to show
that p ≥ 1 − p for X ≤lr Y . In this case let X = X̂ = 1 and Y = Ŷ = M with probability
1 − p, let X = X̂ = M and Y = Ŷ = 1 with probability 1 − p, and let X̂ = Y = 1 and
X = Ŷ = M with probability 2p − 1. For the first two subcases the interchange has no effect
and again the states and task completions under both policies will be the same. In the third
subcase, let us interchange the labels of jobs I and J under π̂ . Then job J completes task k at
time σ + 1 under π and at time 1 under π̂ , while all other task completions for worker l, and
the states from time σ + 1 on, are the same under both policies. If task k + 1 is not a fixed task
for l (i.e. it is shared with other workers), then under π̂ it is assumed that the other workers
cannot work on job J until time σ + 1. For our objective, π̂ will be better than π . Note that π̂

may idle a worker at time σ + 1; from the induction hypothesis we can then construct another
policy that agrees with π̂ until time σ + 1, but does not idle at that time, that is better under our
objectives.

LBFS: If, at time 0 under π , an exclusive server, l, serves a job I in fixed buffer i when
there is a job J in fixed buffer j > i, then a simple interchange will give us a better policy for
our objectives. The same interchange argument also gives us our result for non-ILR processing
times when service within a buffer is required to be FCFS.

(ii) This result also follows from a simple interchange argument.

Note that, in (i), because the optimal policy is nonpreemptive and nonidling, it will also be
optimal when preemption and idling are not permitted and when processing times are ILR and
not necessarily identical.

The optimality of LBFS for the fixed tasks of individual exclusive workers can be extended
to collaborative teams of heterogeneous workers in the following discrete-time model. Suppose
that all the workers within a team can do the same subset of tasks, and the teams have zone cross-
training. A team is called an exclusive team if it has fixed tasks, i.e. tasks that no other teams
are trained to do. (Note that now fixed tasks can be done by more than one worker, but that all
the workers that can do a fixed task must be on the same team.) Teams can work collaboratively
on the same job, but members of different teams cannot collaborate. Time is discrete (with
arbitrarily small time intervals) and γj (t) denotes the nominal hazard rate function of task j .
That is, if a job has received t service units for task j without having completed task j , and
receives one service unit for the current time slot, then it will complete with probability γj (t)

in that time slot. For a fixed team i, let wi be the number of members of the team and let
νikj be the speed, or amount of service in a time slot, of the kth team member of team i when
performing task j , where we assume that maxi,j {∑wi

k=1 νikj } ≤ 1. Then, if a subset S of team i

is collaboratively working on task j of a job with t completed service units for that task, the
probability that the task will complete in the current time slot is

∑
k∈S νikj γj (t). If it does not

complete, then it will have received a total of t + ∑
k∈S νikj service units by the end of the

slot. The argument for the following corollary is similar to that for Theorem 2.1. The corollary
generalizes a result of [28], where the expedite policy (which for fixed tasks is equivalent to
LBFS) was shown to be optimal for a single, fully cross-trained collaborative team of identical
workers when jobs within a buffer must be served according to FCFS.

Corollary 2.1. Consider a collaborative, open or closed tandem system.

(i) Suppose that preemption and idling are permitted. Suppose that processing times for fixed
tasks are ILR, or that tasks within a fixed-task buffer must be served according to FCFS. To
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maximize the job completion process, workers should never idle and exclusive workers should
follow LBFS and FCFS within a buffer for their fixed tasks. For any policy that violates these
properties, there exists an alternative policy that does not, such that {cn

t }∞t=0 is stochastically
larger for the alternative policy.

(ii) Suppose that preemption and idling are not permitted. Let Si be the set of fixed tasks of
exclusive collaborative team i, and suppose that for each team i the processing times for fixed
tasks are identically distributed in the sense that γj (t) = γl(t) for all t and all j, l ∈ Si , and
that νikj = νikl for all j, l ∈ Si and for each member k of team i. To maximize the joint task
completion process and minimize the holding cost process, exclusive workers should follow
LBFS for their fixed tasks. For any policy that violates this property, there exists an alternative
policy that does not, such that {C̄t }∞t=0 is stochastically larger and {Ht }∞t=0 is stochastically
smaller for the alternative policy.

In this section we have determined the optimal policy for fixed tasks for very general
processing times. The optimality of LBFS for fixed tasks is analogous to the optimality of
the smallest expected remaining processing time policy in single-server queueing systems.
To study good policies for shared tasks (where we have parallel servers) we specialize to
deterministic and exponential processing times in the next two sections, respectively.

3. Shared tasks and deterministic processing times

Suppose that time is discrete and that all processing times are deterministic, identical, and
of length 1. We can assume this without too much loss of generality, because we can redefine
an integer-valued processing time of length l as a series of l unit-length subtasks, though in
this case we must allow preemption of tasks. We assume that workers have identical speeds
and are always available, and that collaboration is not permitted. We also assume that idling is
permitted unless we specifically disallow it, and that preemption can only occur at integer time
points. In this section we first consider open systems where the number of arrivals in each slot
or period (at each time unit) forms an arbitrary random process that is independent of the state
of the system. For this slotted model, we assume that we first observe the state at the beginning
of the slot and then make our decision. At the end of the slot arrivals and task completions
occur and the holding cost for the slot is incurred.

In the last section we showed that, for exclusive workers, i.e. those that have tasks that only
they can do (their fixed tasks), it is optimal to follow LBFS for the fixed tasks. Recall that
worker i can work on jobs in buffers ki, ki + 1, . . . , li for some ki and li , where ki and li are
increasing in i, and that worker i is an exclusive worker if li−1 < ki+1 − 1, meaning that it is
the only one that can do tasks in buffers li−1 + 1, . . . , ki+1 − 1 (its fixed tasks). For these tasks
there is no overtaking. We now wish to study the optimal policy for shared tasks, i.e. those that
more than one worker can do and for which there is the possibility of overtaking. Suppose that
worker i is an exclusive worker (li−1 < ki+1 − 1) and that it has at least one shared task before
its fixed tasks (ki ≤ li−1, so the zones for workers i − 1 and i overlap). Then the last shared
task before its fixed tasks is task li−1. In the case of deterministic processing times, we can
extend the optimality of LBFS for exclusive workers to the last shared task before their fixed
tasks, i.e. LBFS is optimal for worker i for tasks li−1, li−1 + 1, . . . , ki+1 − 1.

Lemma 3.1. To maximize the joint task completion process, workers should never idle, exclu-
sive workers should follow the LBFS policy among their fixed tasks, and the fixed tasks for each
exclusive worker should have priority over the last shared task before its fixed tasks. For any
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policy that violates these properties, there exists an alternative policy that does not, such that
{C̄t }∞t=0 is stochastically larger for the alternative policy.

Note that if an exclusive worker has only one shared task, and it is before its fixed tasks,
then this policy is consistent with the fixed before shared policy of [15].

3.1. Two workers with shared and fixed tasks

To investigate good policies for shared tasks, we simplify our model to describe two always-
available workers: worker one can do the first two tasks and worker two can do the last n − 1
tasks (or, equivalently, can do a third task of length n−2), so task 2 is a shared task. Arrivals may
be arbitrary and random, but are independent of the state of the system. Thus, the workstation
consisting of these two workers and their n tasks may be part of a larger stochastic network. Let
ni be the number of tasks in buffer i. For this system, when we say that a policy is nonidling,
we assume that when n2 = 1 and ni = 0 for i > 2 the second worker works on the 2-task (and
the first worker works on 1-tasks, if any).

Theorem 3.1. When there are two always-available workers, worker one can do the first
two tasks and worker two can do the last n − 1 tasks (n > 2), the nonidling LBFS policy
stochastically maximizes the joint task departure process. If idling is not permitted, the LBFS
policy stochastically minimizes the total holding cost process.

Proof. From Lemma 3.1, we need only show the optimality of LBFS for worker one. Our
proof is by induction on a finite time horizon, T . Suppose that the result holds for T − 1, and
consider T . (The result for T = 1 is trivial.) It is easy to show that if n2 = 1 and ni = 0 for
i > 2 (or, equivalently,

∑n
i=3 ni = 0), then the second worker should serve the 2-task.

Let π be an arbitrary policy that disagrees with LBFS for time horizon T . We will construct a
policy π̂ that agrees with LBFS and that is better than π for our objectives. We may assume from
the induction hypothesis that π agrees with the LBFS policy from time 1 on, since otherwise
we can construct such a policy that is better than π . We may also assume that π agrees with
the LBFS policy from time 0 on for worker two. Therefore, suppose that under π worker one
serves a 1-task at time 0 when a 2-task is available, so we can rule out the case n2 = 0, as well
as the case with n2 = 1 and

∑n
i=3 ni = 0. Thus, n2 > 1 or

∑n
i=3 ni > 0 and n2 = 1. Then,

at time 1 under π , worker one will serve a 2-task (possibly generated by the 1-task served at
time 0) and worker two will also have a task to serve. Let π̂ have worker one serve the 2-task
at time 0 and the 1-task at time 1. Let us couple the arrival processes so that they are the same
under both policies.

First, suppose that n2 > 1,
∑n−1

i=3 ni > 0, or nn > 1. Then we can let π̂ agree with π on the
decisions made at times 0 and 1 for worker two, and for all decisions made after time 1. The
states will be the same at time 2 under both policies, and, with obvious extensions of our earlier
notation, C̄t = Ĉt and Ht = Ĥt for all t �= 1, ĉ1

1 = c1
1 − 1, ĉ2

1 = c2
1 + 1, ĉ

j
1 = c

j
1 for j �= 1, 2,

and Ĥt = Ht + h(1) − 2h(2) + h(3) < Ht from concavity.
Now suppose that n2 = nn = ∑n

i=3 ni = 1. Then, under policy π , worker two will serve
the n-task at time 0, the 2-task at time 1, and the corresponding 3-task at time 2. Let π̂ have
worker two serve the n-task at time 0, the 3-task (generated by worker one serving the 2-task
at time 0) at time 1, and the 2-task (generated by the 1-task served by worker one at time 1) at
time 3. Then the states will be the same under both policies from time 4 on, and before that
time π̂ will be better than π , arguing as before.

Note that π̂ agrees with LBFS at time 0, but may not agree with it thereafter. By the induction
hypothesis, the LBFS policy will be better than π̂ .
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Note that, under this policy, both workers will pick-and-run, with worker two following a
job through all of its tasks, starting with task 2 or 3, and worker one starting a job with task 1
and then doing task 2 for the same job, unless worker two would be idle. Thus, this policy
satisfies the additional constraints that worker one cannot resume a job that it hands off to
worker two, and worker two cannot preempt a job. Therefore, the policy is still optimal when
these additional constraints are imposed, as in some dynamic assembly-line balancing systems.

If worker one can do the first l > 2 tasks and worker two can do the last n − l + 1 tasks (so
both workers can do task l), we know from Lemma 3.1 that LBFS is optimal for worker two
and that, for worker one, LBFS is optimal for the first l − 1 tasks. However, there will be
situations in which worker one should give priority to earlier tasks over l-tasks. Moreover, the
LBFS policy is no longer optimal if worker one can do all tasks or if both workers can do all
tasks (even when there are only two tasks). Consider the system with two fully trained workers,
n = 3, n1 = 0, n2 = 1, n3 = 2, and no arrivals. Under the LBFS policy, both workers will do
3-tasks at time 0, and then one worker will idle at times 1 and 2 while the other does a 2-task
and then a 3-task. If at time 0 one worker does the 2-task while the other does a 3-task, then
both can work on 3-tasks at time 1 and the system will be empty at time 2.

3.2. Fully trained workers

When all workers can do all tasks, FBFS for all workers is optimal in the more restricted
sense of stochastically maximizing the total number of task completions (and keeping the
workers busy). Therefore, it also stochastically minimizes the total remaining work in the
system. Workers may now be randomly unavailable during a time slot, and we assume that a
worker is either available or unavailable for the entire slot and that its availability is known at
the beginning of the slot.

Theorem 3.2. For systems with multiple fully trained workers and randomly unavailable
workers, the nonidling FBFS policy stochastically maximizes the total task completion process,
{C̄1

t }∞t=0.

Proof. We again use induction on the time horizon, T . Suppose that the result holds for
T − 1, and consider T . (The result for T = 1 is trivial.) It is easy to show that the optimal
policy is nonidling.

Let π be an arbitrary policy that disagrees with FBFS for time horizon T , though as before
we may assume that it agrees with FBFS from time 1 on. Suppose that at time 0 policy π serves
job J in buffer j and not job I in buffer i, where i < j . From time 1 on, π (and FBFS) will not
serve J at a given time without also serving I at that time until I is served alone at least once.
Thus, under π , at some time t job I will be served alone and between times 1 and t job J will
not be served alone. Let π̂ agree with π except in that at time 0 it serves I and at time t it serves
J . Then, at time t + 1, the states will be the same under both policies, and the task completion
and work processes will also be the same. It may be that at time t a worker is idle under both
π and π̂ (if J has completed by time t under π ), in which case a policy π̃ that serves I at time
t and otherwise agrees with π̂ will be better than π̂ . By the induction hypothesis, FBFS will
be better than π̃ .

If the arrival rate λ is less than the total service rate (w/n), then FBFS results in a stable system
and achieves the maximal overall throughput (rate of completions of n-tasks) of λ. However,
it will not achieve maximal overall throughput (of w/n) for unstable systems, because servers
will be kept busy at earlier buffers and jobs will tend not to be completed. In the extreme case
of an infinite supply of jobs at station 1, the overall throughput is 0 under FBFS (though the
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servers will always be busy). Indeed, it is easy to show that, for an infinite supply of jobs
(or a closed system), the LBFS (pick-and-run) policy for fully trained workers stochastically
maximizes the joint task completion process and stochastically minimizes the job holding cost
process {Hk}∞k=1, where Hk is the total holding cost for the first k jobs to depart.

With a general arrival process and fully trained workers, we can improve upon the nonidling
FBFS policy under the more general objectives of maximizing the joint task completion process
and minimizing the holding cost, without reducing the total task completion process. Let
FBFS/LBFS be the nonidling policy whereby w−1 workers follow the FBFS policy (call them
the F-workers) and have priority over one of the fully trained workers, which follows the LBFS
policy (call it the L-worker). The L-worker at the end of the line is an anchor worker who is
fully cross-trained, as in a bucket brigade.

Theorem 3.3. When workers are fully trained and always available, the FBFS/LBFS policy
has a stochastically larger joint task completion process and a stochastically smaller holding
cost process than does the FBFS policy.

Proof. We again use induction on the time horizon, T (and the T = 1 case is trivial).
Let the L-worker be the one with lowest priority under the FBFS policy, so all other workers

are either upstream of the L-worker or at the same station. Denote by I , in buffer i, the task that
the L-worker serves at time 0 under FBFS, and denote by J , in buffer j , the job that is in the
latest nonempty buffer. Suppose that i �= j (otherwise, the policies coincide at time 0). Let π

agree with FBFS at time 0 and, again without loss of generality from the induction hypothesis,
let it agree with FBFS/LBFS from time 1 on. Thus, under π the L-worker serves I at time 0
and J at time 1. Also, I will not be served by the F-workers at time 1, because each of them
will serve a job in an earlier buffer or will continue serving the same job it served at time 0.
Thus, we can do a simple interchange, letting π̂ have the L-worker serve J at time 0, serve I at
time 1, and otherwise agree with π . Thus, under π̂ , {C̄t }∞t=0 will be larger and {Ht }∞t=0 smaller,
because of the concavity of holding costs. Again, by induction, the FBFS/LBFS policy at all
times will be even better than π̂ . (Note that {C̄1

t }∞t=0 is the same under both π and π̂ .)

Now let us consider closed systems. It is not hard to see that Lemma 3.1 and Theorem 3.1
still hold. Indeed, for closed systems Theorem 3.1 can be extended to show that LBFS is
optimal when worker one can do the first l tasks and worker two can do the last k tasks, with
l + k ≥ n. As indicated earlier, for fully trained workers LBFS stochastically minimizes the
joint task completion process and the job holding cost process.

4. Shared tasks and exponential processing times

In this section we consider both open and closed systems, and for open systems we assume
that the arrival process is a general Markov arrival process. That is, there is an environmental
continuous-time Markov chain with transition rates αxy from state x to state y, such that arrivals
occur at x-to-y transitions with probability βxy . Such processes are dense in the class of arbitrary
arrival processes [8]. We assume that

∑
y αxy is bounded by some ᾱ for all x. Workers may

fail (or become unavailable): worker k fails after working for an exponential time with rate
νk and its repair (or return) time is exponential with rate υk . The processing time of task i by
worker k, assuming that worker k is trained to do task i, is exponentially distributed with rate
µkηi . Idling and preemption of tasks are permitted, unless otherwise stated. Let us add an
additional task, � , with rate η� = 0, corresponding to idling, and assume there are an infinite
number of dummy jobs at station � . We will use uniformization, with a uniformization rate
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ρ = ᾱ + ∑c
k=1 µkη + ∑c

k=1(νk + υk), where η = maxi ηi , and we scale time so that ρ = 1.
Thus, decision epochs occur according to a Poisson process with rate 1; we will call these
decision epochs time points, where the initial time point is 0. Let s be the initial state, which
consists of the conditions of all the workers (working or failed), the state of the environment,
and the number of jobs at all the stations.

4.1. General systems

Here we may have arbitrary, not necessarily tandem, deterministic routeing of jobs through
tasks, and arbitrary, not necessarily sequential or zoned, training of workers. The holding
cost rate for each job at station j , h(j), now is arbitrary, i.e. we relax the condition that it
is increasing and concave, though it is still assumed to be finite. For each worker i, we also
permit the worker’s speed, µi , and competencies, Si , to change according to a Markov process
Xt . Here Si is the set of tasks that worker i can do, including idling (task � ), so Si = �
corresponds to a failed, or unavailable, worker. Therefore, the state s now also includes the
state of Xt , and we write µi(s) and Si(s), although µi and Si depend only on the Xt part of the
state. We include both the maximal rate of change in Xt and the maximal values of µi(s) in the
uniformization rate ρ. For these general exponential systems, optimal policies will tend to have
workers working at the same station, as long as the objective function is such that optimality
can be achieved. Note that the Markov process Xt allows us to model training, for example, to
change the set of tasks a worker can perform or the speed at which it can perform them.

Let us first consider the case when collaboration is not permitted.
For an arbitrary state s, let V π

t (s) be the total holding cost under some policy π for the next
t decision epochs starting in state s. Note that V π

t (s) is a random variable. We first suppose
that there exists a stochastically optimal policy π∗, i.e. one such that V π∗

t (s) ≤st V π
t (s) for all

t and s; let Vt (s) ≡ V π∗
t (s) be its total holding cost. Later we discuss the case of minimizing

the expected total holding cost when stochastic minimization is not possible.
Let sk be a state that is the same as s except in that a job in buffer k has finished its kth task

(so s� = s), and let Jk be a Bernoulli random variable with P(Jk = 1) = ηk/η. Let g(s) be the
total holding cost from time 0 to time 1 when the state is s. Let wi(s) be the number of workers
that can do task i and let ni(s) be the number of jobs in buffer i in state s. The results below
follow from [1]. They tell us that the optimal policy follows a state-dependent index rule and
that there will be a tendency for workers to work together.

Theorem 4.1. For state s, suppose that tasks i and j are such that

Ji[Vt−1(si) − Vt−1(s)] ≤st Jj [Vt−1(sj ) − Vt−1(s)].
If a worker, worker one say, can do both tasks i and j in state s, then it will not be optimal to
assign worker one to a job in buffer j while leaving a job in buffer i unassigned. If two workers,
workers one and two say, can do both tasks i and j in state s, and if µ1(s) ≥ µ2(s), then it will
not be optimal to assign worker one to a job in buffer j and worker two to a job in buffer i.

If a stochastically optimal policy does not exist, the result still holds, replacing random
variables with their expected values.

Corollary 4.1. Suppose that our objective is to minimize the expected holding cost. For state s,
suppose that tasks i and j are such that

ηi[E Vt−1(si) − E Vt−1(s)] ≤ ηj [E Vt−1(sj ) − E Vt−1(s)].
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If a worker, worker one say, can do both tasks i and j in state s, then it will not be optimal
to assign worker one to a job in buffer j while leaving a job in buffer i unassigned. If both
workers one and two can do both tasks i and j in state s, and if µ1(s) ≥ µ2(s), then it will not
be optimal to assign worker one to a job in buffer j and worker two to a job in buffer i.

In general it will be hard to compute E Vt (s) or to order Ji[Vt−1(si) − Vt−1(s)], but the
following corollaries, especially Corollaries 4.4 and 4.6, help to reduce the number of states
that we need to consider. In these corollaries we assume that a stochastically optimal policy
exists. The corresponding results for minimizing expected holding costs also hold, with E V

replacing V and η replacing J .

Corollary 4.2. At time t in state s, order (relabel) the nonempty buffers (including the idling
buffer � ) in increasing stochastic order of Jk[Vt−1(sk) − Vt−1(s)]. If wi(s) ≤ ni(s) for all i,
then assigning each worker to the lowest-indexed task it is capable of doing stochastically
minimizes the total holding cost.

Corollary 4.3. At time t in state s, order the jobs according to the buffer they are in (including
w dummy jobs that are in the idling buffer � ) in increasing stochastic order of Jk[Vt−1(sk) −
Vt−1(s), and order the nonfailed workers in decreasing order of µi . If the workers are fully
trained, then assigning the ith available worker to the ith job, for all available workers,
stochastically minimizes the total holding cost.

Let κ(s) be the number of nonempty buffers in state s and let n(i)(s), i = 1, . . . , n, be a
reordering of the nonempty buffers such that

n(1)(s) ≤ n(i)(s) ≤ · · · ≤ n(κ)(s).

In state s, let n̄(s) be the total number of jobs and let w(s) be the number of nonfailed workers.
The following corollary is immediate from Corollary 4.3. It allows us to significantly reduce
the number of candidates for optimal assignments, for any state. In the corollary, when we say
that available workers have adjacent speeds, we mean that when they are ordered according to
their speeds they have consecutive indices.

Corollary 4.4. For fully trained workers under the optimal policy, workers will be assigned to
at most b(s) buffers in state s, where

b(s) = min

{
j :

j∑
i=1

n(i)(s) ≥ min{n̄(s), w(s)}
}
.

Thus, if mini{n(i)(s)} ≥ w(s) then the workers will all be assigned to the same station. Also,
under the optimal policy, there will be at most one buffer i such that the number of workers
assigned to it is strictly between 0 and min(w(s), ni). Finally, when multiple workers are
assigned to the same station, they will have adjacent speeds.

For example, two fully trained workers will be assigned to the same station in all states such
that ni �= 1 for all i. That is, for such states, when both workers are available the number of
possible optimal actions is reduced from κ2 to κ . For three available, fully trained workers,
if there is at most one buffer with a single job, then servers will be assigned to at most two
different stations, and the slowest and fastest will be assigned to the same station only if all
three are assigned to that station.

When collaboration is permitted we have the results below, which also follow from [1].
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Corollary 4.5. Suppose that workers can collaborate but are not necessarily fully trained.
Order (relabel) the nonempty buffers (including the idling buffer � ) in increasing order of
Jk[Vt−1(sk)−Vt−1(s). The optimal assignment is to assign each worker to the lowest-indexed
task it is capable of doing.

Corollary 4.6. When a subset of workers can do the same subset of tasks and can collaborate,
they always work as a team.

A consequence of Corollary 4.6 is that, for a subset of workers that can do the same subset
of tasks and can collaborate, we may assume, without loss of generality, that they are a single
worker.

As noted earlier, if there is no stochastically optimal policy then all the results in this section
still hold, except with the random variables replaced by their means (e.g. with E V instead of V ,
ηk instead of Jk , etc.), and our objective is to minimize the expected holding cost. The results
also easily extend to the infinite-horizon problem when the expected average cost criterion or
the expected discounted cost criterion is considered, assuming that optimal solutions exist.

Andradöttir et al. [5] have shown that a generalized round robin policy for the type of model
we consider here arbitrarily closely approximates the maximal achievable capacity.

4.2. Tandem systems with partial cross-training

We now return to our original, tandem, model. We make the same assumptions regarding
server failures and the Markov arrival process (or a closed system) as in the previous section, but
here assume that processing times depend only on the workers, not on the tasks (thus, ηi ≡ η).

4.2.1. Systems with exclusive workers. It is easy to strengthen Theorem 2.1 to show that an
exclusive worker should follow LBFS when choosing among its fixed tasks and its last shared
task before its fixed task (as in Lemma 3.1 for deterministic processing times). If an exclusive
worker has only one shared task, and it is before its fixed task, then the policy for that worker
is fully specified and is consistent with the fixed before shared policy of [15]. Note that for
collaborative systems, from Corollary 4.6, any subset of workers that can do the same subset
of tasks can be thought of as a single worker, and the team can therefore be thought of as an
exclusive worker if it serves tasks that can be served by no other workers.

Lemma 4.1. For open or closed systems, with or without collaboration, to maximize the joint
task completion process, workers should never idle, exclusive workers should follow the LBFS
policy among their fixed tasks, and the fixed tasks for each exclusive worker should have priority
over the last shared task before its fixed tasks. For any policy that violates these properties,
there exists an alternative policy that does not, and {C̄t }∞t=0 is stochastically larger for the
alternative policy.

Proof. We again use induction on the time horizon, in this case the number of remaining
‘uniformized’ decision epochs, T . The result is easy for T = 1, so suppose that it holds for
T − 1 remaining decision epochs, and consider T . We also again show that any policy π that
does not follow LBFS for fixed tasks at time 0, but follows LBFS for those tasks thereafter,
can be stochastically improved. Suppose that, at time 0, policy π has worker l serve job I in
fixed buffer i, when job J is in l’s fixed buffer j > i. Let π̂ agree with π at time 0 except
in that worker l serves job J . Let us couple events under the two policies so that if a worker
completes a task under π , then it also completes the task under π̂ ; the arrivals and server failure
processes are similarly coupled. If the next event in the uniformized process is something other
than l completing its task, then, upon letting π̂ agree with π from then on, both policies have
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the same states and joint task completion processes. If the next event is a task completion for
worker l, then under π̂ let worker l serve job I whenever it serves J under π , until π completes
the j -task of job J . Note that π will not serve I again until the j -task of job J completes.
Then task j of job J under π will complete at the same time as task i of job I under π̂ , when
the states will be the same, and all other task completions will be the same under both policies.
Hence, π̂ will be better than π in terms of its joint task completion process.

We can fully characterize the optimal policy for the following two-worker partial-cross-
training models. The systems may be either open or closed, and collaboration may or may not
be permitted. From Lemma 4.1 we have the following corollary, and the subsequent theorem
is easy to show.

Corollary 4.7. If there is one flexible (fully trained) worker and the other worker can only do
task 1, then the nonidling LBFS policy stochastically maximizes the joint task departure process.
If idling is not permitted, then the LBFS policy stochastically minimizes the total holding cost
process for open systems.

Theorem 4.2. If there are one flexible (fully trained) worker and two tasks, and the other
worker can only do task 2, then the nonidling FBFS policy stochastically maximizes the total
task completion process, {C̄1

t }∞t=0.

4.2.2. Collaborative workers and nested zones. We now suppose that workers can collaborate
and that zones are nested in the sense that team i can do tasks {1, . . . , li} (so ki = 1 for all
workers i and lw = n, where w is the number of teams of workers with the same skill set).
These types of zones may occur, for example, when all newly hired employees first learn task 1,
then task 2, etc. Nested zones are an example of a hierarchical cross-training structure. See [15]
for real-world examples of such cross-training. We also suppose that, when two different teams
work on the same task, they work collaboratively. We know from Corollary 4.5 that, for a
holding cost objective, all teams should work on the lowest-indexed task they can and workers
on the same team will always collaborate. We will show that, for the nested zone model of
this section, to stochastically maximize {C̄t }∞t=0, ‘lowest indexed’ always corresponds to ‘latest
buffer’ and LBFS is again optimal.

Theorem 4.3. For open or closed tandem systems with collaborative workers and nested zones,
the (nonidling) LBFS policy stochastically maximizes the joint departure process, {C̄t }∞t=0.

Proof. We again use induction on T , and show that any policy π that does not follow LBFS
at time 0, but follows LBFS thereafter, can be stochastically improved. Suppose that, at t = 0,
policy π assigns a subset of workers � to a job I in buffer i although there is a job J in buffer
j > i that would be assigned to the workers in � under the LBFS policy. Let π̂ agree with π

at time 0 except in that workers in � serve J at time 0. If the task the workers in � are working
on at time 0 does not complete at time 1, then the states will be the same under both policies
at time 1, and, upon letting π̂ agree with π from time 1 on, they will have the same joint task
completion processes. If the task does complete then the states will be the same at time 1,
except that under π job I will be in buffer i + 1 instead of in i and job J will be in buffer j

instead of in j + 1. Let π̂ agree with π from time 1 until task j of job J completes under π ,
except in that the workers that serve J under π serve I under π̂ (which is possible because
of the structure of the nested zones). Then the states under the two policies will be the same,
except for the relative position of jobs I and J , until task j of job J completes under π . Note
that, before job J completes task j , job I cannot overtake job J under π (i.e. under LBFS). It
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is possible for I to enter buffer j before J leaves it, if li = j −1 for some i, but at that point we
may, without loss of generality, assume that only job J is served (collaboratively). Therefore,
when task j of job J completes under π , the states under each policy will be the same. Before
that time, π̂ has a larger joint departure process than does π , and afterwards, upon letting π̂

agree with π , the joint departure processes will be the same.

When all workers are fully trained, the LBFS policy corresponds to the expedite policy
of [28].

A consequence of our result is a result by Mandelbaum and Reiman [21]. They considered
a restricted form of collaboration, or resource pooling, in Jackson queueing networks. They
compared steady-state sojourn times for a system with dedicated (exclusive) servers for each
node in a network with those in one in which a single server with combined service rate
can serve at all the queues. However, in their model, when service is pooled there can be
no preemption and jobs are processed in FCFS order, so the pooled system operates as an
M/PH/1 queue. Under these constraints the pooled model may have worse performance than
the exclusive-server model. In the special case of tandem systems, Mandelbaum and Reiman
showed that pooling is always better. This result follows from ours because, assuming that
optimal policies are always followed, a system that permits collaboration and preemption and
in which all servers can do all tasks (system 1, say) will perform better than a system that
requires collaboration, does not permit preemption, and in which all servers can do all tasks
(the M–R pooled system). System 1 will also perform better than a system that does not permit
collaboration and in which each server can only do one task (the M–R dedicated-server system).
From Theorem 4.3, the optimal policy for system 1 is the LBFS policy, which is equivalent to
the nonpreemptive single-server policy when all servers can do all tasks. Hence, for tandem
queues, the performance of the M–R pooled system is as good as that of system 1 and, hence,
is better than that of the M–R dedicated-server system.

4.3. Tandem systems with full cross-training

Let us now suppose that the c workers are fully cross-trained, do not collaborate, and do not
fail. The problem is much more difficult when workers cannot collaborate, and we must make
stronger assumptions and use a weaker objective function to obtain our results. We assume that
there is an infinite supply of jobs at the first station, or that the system is closed with m jobs. (It
is obvious, and follows from our results, that for the closed system we can assume there to be
min{m, w} jobs and workers, where, for w > m, the slowest workers are not used.) Preemption
and idling are permitted. It is intuitively clear, and easy to show, that with preemption it will
never be optimal to idle. Our objective is to minimize the flowtime, or cumulative departure
time, Fk , for the first k jobs to depart, for any k. That is, we minimize Fk = ∑k

i=1 Di , where
Di is the departure time from the system of the ith job to depart. (In the closed system, we say
that a job departs when it leaves buffer n and is fed back to buffer 1.) We show that the LBFS
policy is optimal, meaning that the fastest worker is assigned to the task in the latest buffer, the
next fastest to the next latest, etc. Faster workers have priority over slower workers if there are
fewer jobs than there are workers. Our result provides some theoretical support for the value
of a bucket brigade-type worker assignment system, as described in Corollary 4.8, below.

Theorem 4.4. Assume that there are an infinite number of jobs at the first station or that the
system is closed, and that workers are fully trained and cannot collaborate. The nonidling
LBFS policy minimizes the mean flowtime process, {E Fk}∞k=0, when w = 2, n = 2, or µi ≡ µ

for any n and w.
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Proof. We first assume that w = 2, so potential service completions occur according to a
Poisson process with rate µ1 + µ2, where we assume, without loss of generality, that µ1 ≥ µ2
and the uniformization rate is µ1 + µ2 = 1. We again use induction on the time horizon,
or remaining number of decision points, T . At the time horizon we suppose that all jobs
immediately depart. To show that no worker should idle is easy. Suppose that, at time 0, the
optimal policy π has worker one, say, serve job I in buffer i, and that job J in buffer j is not
served, where i < j and j is the largest such buffer. Then, again without loss of generality,
under π , J will be served at time 1. Let π̂ have worker one serve J at time 0; as before, we
need only construct such a π̂ with a smaller flowtime process than π . If worker one does not
complete service at time 1, then the states will be the same under both policies (case (a), below).
If worker one completes service and J departs (j = n), we have case (c), and if worker one
completes service and J does not depart (j < n), we have case (b). Refer to Figures 1, 2, and 3,
which show, for policies π and π̂ and for each of the cases given below, the positions of jobs I

and J and others that are treated differently under the two policies.

(a) The states are the same and, upon letting π̂ agree with π , all future job departures will be
the same.

(b) The states are the same except for jobs I and J : the downstream job J will have completed
one more task under π̂ than under π , and the upstream job I will have completed one more
task under π than under π̂ . Let π̂ agree with π from time 1 until either (i) job I ‘passes’ job J

under π , i.e. job I is in the buffer after job J , (ii) job J completes its final task under π̂ , or
(iii) we reach the time horizon. In case (i) under π̂ job I will be in the same buffer that job J

is under π , and vice versa, so the states will be the same because jobs are indistinguishable
except for the tasks they have completed. That is, case (i) is the same as case (a). If we reach
the time horizon (case (iii)) then all flowtimes are the same under the two policies. Case (ii) is
the same as case (c), below.

(c) The state under π̂ is the same as the state under π , except π has an extra job, J , in its last
buffer, and job I has completed one more task under π than under π̂ . At this point, under
π worker one will serve job J and worker two will serve job K , where K is the job that has
completed the most tasks after J under π ; this is also the job that has completed the most tasks
under π̂ (let K = I if there is a tie). Let π̂ agree with LBFS at this time, so that under π̂

worker one serves job K and worker two serves job L, where L is the job that has completed
the second-greatest number of tasks under π̂ . Let us couple the processing times such that if
K completes under π then it also completes under π̂ , and if J completes under π then either
K completes under π̂ , with probability µ1 − µ2, or L completes under π̂ , with probability µ2.
In the first case, when K completes under both policies, if K = I and it is in the last buffer
under π , then the states are the same under each policy (case (a)), with job J in the last buffer
under π and job I in the last buffer under π̂ . Note that the first of the two jobs I and J to depart
under the two policies does so earlier under π̂ ; all other departures occur at the same time. If
K �= I and K completes under both policies then the relative states under π and π̂ are still in
case (c), and we continue the same coupling until J completes under π or the time horizon is
reached. When J completes under π and I completes under π̂ (it is either job K or job L),
the states will be the same under each policy (case (a)), the flowtimes for all jobs except J are
the same, and the flowtime for job J is shorter under π̂ . If J completes under π and the job
that completes under π̂ is not job I , but is a job in a later buffer than is I (either K or L; see
diagram (c-i) of Figure 2 for the job positions just before completion), then the relative states
under π and π̂ are the same as in case (b) or case (c) with job K or job L replacing job J , and
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Figure 1: Job positions in cases (a) and (b).
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Figure 3: Job positions in cases (b′) and (c′).

we continue the argument as before from that point, noting the fact that the flowtime for job J

(and possibly for job K or job L if one of them completes its last task) is shorter under π̂ than
under π . Therefore, suppose that job J completes under π and that the job that completes under
π̂ is a job in a strictly earlier buffer than is job I (so K = I and L completes; see diagram (c-ii)
of Figure 2 for the job positions just before completion); we call this case (b′). Note that J

completes earlier under π̂ than under π , and that all other job completion times are the same
up to this point.

(b′) The relative states for π and π̂ are again as in case (b), except in reverse: the later job I

is one buffer further along under π , and the earlier job L is one buffer further along under
π̂ . Also, I has completed the most tasks and L has completed the second-greatest number of
tasks under both policies. Thus, upon letting π̂ agree with π , under both policies job I will be
served by worker one and job L will be served by worker two. We continue until either job L

passes job I under π̂ when the states are the same (case (a)), or until job I completes under π

(case (c′)).

https://doi.org/10.1239/aap/1158684995 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158684995


Dynamic load balancing with flexible workers 639

(c′) The relative states are as in case (c), except the roles of π and π̂ are reversed and the jobs
are respectively I and L instead of J and I , where L has completed the most tasks after job I .
Thus, under π worker one will serve job L and worker two will serve a job, M , that is in an
earlier buffer than is L, while under π̂ worker one serves job I and worker two serves job L.
We do the same coupling of the workers as we did in case (c), reversing the roles of π and π̂

and with job I taking the role of job J and job L taking the role of job I , until job I completes
under π̂ . At this point the states will either be the same (case (a)), or we will be back to case (b)
with jobs L and M taking the roles of jobs J and I , and with job L being the job with the most
task completions and job M being the job with the second-greatest number of task completions
under both policies. Note that job I completes earlier under π than it does under π̂ in this case.

We keep repeating this coupling until either the time horizon is reached or the states under
the two policies become the same. In the meantime, the relative states will alternate between
(c) and (c′), with visits to (b) and (b′) in between. Jobs will have different departure times only
when the processes go through relative states as in (c) and (c′). Let t1 be the first time we go to
a state as in (c) when I has the second-greatest number of task completions after J . Before that
time, we cannot have been in states as in (b′) or (c′), and job departure times before then are
earlier under π̂ than they are under π . After t1, until either the states become the same (case (a))
or we reach the time horizon, the departure times under π will be t1 + δ1, t2, t3 + δ3, t4, . . . ,
while π̂ will have corresponding departures at times t1, t2 + δ2, t3, t4 + δ4, . . . , where t2 is the
departure time of job I under π , t3 is the departure time of job L under π̂ , etc., and δi are
independent and identically exponentially distributed with rate µ1. Thus, the mean flowtime,
or sum of mean departure times, for the first k jobs is smaller under π̂ than it is under π .

Now suppose that at time 0, under π worker one serves job I , in buffer i, and worker two
serves job J , in buffer j , where i < j , and no other jobs are in buffers i + 1, . . . , n. Let π̂

have worker one serve J and worker two serve I . Let us couple the first event such that job I

completes under both policies with probability µ2, job J completes under both policies with
probability µ2, and job J completes under π̂ and job I completes under π with probability
µ1 − µ2. Then, at the time of the first service completion, we are in states as in one of (a), (b),
and (c), and the argument proceeds as before.

Now assume that w ≥ 2 but µi ≡ µ. The argument is the same as above, except for the
coupling in cases (c) and (c′). Let us consider case (c), to be specific. Now w − 1 of the
workers serve the same tasks under each policy, but one worker serves task J under π and
task M under π̂ . We couple all the workers directly under the two policies so that the same
worker completes under each policy. The rest of the argument is as before. The argument for
the case n = 2 is also similar to the one above; now there are no cases (b) and (b′). The reason
our argument does not work for general w, n, and µi is that, in case (c′), for general parameters,
it is possible to go from (c′) back to (b′) rather than to (b), and it is therefore possible for π to
have two departures in a row that are both earlier than the corresponding departures under π̂ .

We have constructed a policy π̂ that agrees with LBFS at time 0, and with smaller mean
flowtime than π , so the proof is complete.

Note that the LBFS policy can be implemented with a bucket brigade-type policy, where
workers are arranged from slowest to fastest, with the fastest given priority. We assume, in
contrast to Bartholdi et al. [10], that the equipment is such that multiple workers may work at
the same station (but not on the same job). Note that under the standard bucket brigade policy,
full cross-training is not required: the (n − k)th worker can never work at any of the last k

stations, and the kth worker can never work at any of the first k − 1 stations. Thus, the standard
bucket brigade operates under a type of nested zone arrangement.
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Corollary 4.8. For exponential fully trained workers and an infinite supply of jobs at the first
station or a closed system, if w = 2, n = 2, or µi ≡ µ, then a modified bucket brigade, in
which multiple workers can work at the same station, minimizes the mean flowtime process.

Theorem 4.4, though difficult to prove, is quite restrictive: the objective is minimizing the
mean flowtime process rather than stochastically minimizing a more general process, an infinite
number of jobs at the first station or a closed system is assumed, and workers must either be
homogeneous or there can be at most two workers or two tasks. However, the only existing
theoretical result for the optimality of the standard bucket brigade is that it achieves the maximal
long-run throughput. For that objective, pick-and-run is also optimal, where (recall) by pick-
and-run we mean that a worker starts a new job with its first task and then follows that job
without interruption until its last task is completed.

Theorem 4.4 also strengthens the result of [28] that, for identical exponential workers, the
pick-and-run policy minimizes the mean cycle time.

For systems with only two tasks we can show the following result, which complements a
result of Ahn et al. [3]. They showed that when there are two identical workers and two tasks,
no arrivals, and processing times depend on the tasks and not the workers, LBFS minimizes
the total mean holding cost when h(2)η2 ≥ (h(1) − h(2))(η1 + η2).

Theorem 4.5. Assume that there are an infinite number of jobs at the first station, only two tasks,
and an arbitrary number of heterogeneous, fully trained workers. Suppose that h(2) ≥ h(1)/2.
The nonidling LBFS policy stochastically minimizes the holding cost process (or weighted
flowtime), {Hk}∞k=0, where Hk is the total holding cost for the first k jobs to depart.

Proof. The initial part of the proof follows the proof of Theorem 4.4, with π serving a 1-task
at time 0 using worker S when a 2-task is not served at time 0, and then following LBFS, and
with π̂ serving the 2-task using S. At time 1 either the states are the same (case (a) above) or
π has two more 2-tasks and one fewer 1-task than π̂ (case (c)). Now, for case (c), let π̂ agree
with π from time 1 on, except in that, for two of the 2-tasks that π serves, π̂ serves two 1-tasks,
using the same workers, until one of these two workers completes, at time t , say. At that point
the states will be the same (case (a)). Between times 1 and t all other task and job departures
will be the same, and the holding cost rate under π will be higher by 2h(2) − h(1).

When our objective function is to stochastically maximize the total task completion process
(and, thus, also to maximize worker utilization and throughput for stable systems), we can
permit open systems with an arbitrary arrival process. The following can be shown with a
simpler variant of the proof of Theorem 4.4.

Theorem 4.6. For an open system with fully trained, randomly unavailable, and noncollabo-
rating workers, the nonidling FBFS policy stochastically maximizes the total task completion
process, {C̄1

t }∞t=0.

5. Conclusion

In this paper we have considered the problem of dynamic allocation of a flexible workforce
in a generalized serial queueing system. Rather than focusing on a complete characterization
of the optimal policy for each specific problem instance, our aim was to identify the properties
that optimal policies must share for many problems of similar kind. We gave a partial charac-
terization of the optimal policy for very general systems and we further refined the structure of
the optimal policy for deterministic and exponential processing times. We identified properties
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of good policies and the corresponding objective functions for which optimal policies exhibit
such properties, thereby significantly reducing the computational effort required to develop
good heuristics.

Our main results can be summarized as follows.

1. For fixed tasks, LBFS and FCFS each

(a) stochastically maximizes the job completion process, {cn
t }∞t=0, with preemption, idling,

open or closed systems, and ILR processing times; and

(b) stochastically maximizes the joint task completion process, {C̄t }∞t=0, and stochastically
minimizes the holding cost process, {Ht }∞t=0, with no preemption, no idling, open or
closed systems, and general independent, identically distributed processing times.

2. For fixed tasks and the last shared task of exclusive workers, and with no collaboration,
LBFS stochastically maximizes the joint task completion process, {C̄t }∞t=0, with idling, with
open systems, and when processing times are deterministic (no preemption) or exponential
(with preemption).

3. For exponential processing times, with idling and preemption, LBFS

(a) minimizes the mean flowtime process, {E Fk}∞k=0, when there are an infinite number of
jobs at the first buffer (or the system is closed), workers are fully trained and cannot
collaborate, and w = 2, n = 2, or µi ≡ µ; and

(b) stochastically maximizes the joint task completion process, {C̄t }∞t=0, with open or closed
systems, collaboration, and nested zones.

4. FBFS stochastically maximizes the total task completion process, {C̄1
t }∞t=0,

(a) with open systems, fully trained, randomly unavailable workers, and unit processing
times; and

(b) with open systems, fully trained, randomly unavailable, noncollaborating workers, and
exponential processing times.
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