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ON THE HENSTOCK STRONG 
VARIATIONAL INTEGRAL 

BY 

B. S. THOMSON 

The theory of integration in division spaces introduced by Henstock ([3], [4]) 
serves to unite and simplify much of the classical material on nonabsolute integra
tion as well as to provide a new approach to Lebesgue integration. In this paper 
we sketch a simplified approach to the division space theory and show how it can 
lead rapidly to the standard Lebesgue-type theory without a substantial departure 
from the usual methods; some applications to integration in locally compact 
spaces are briefly developed. No attempt has been made to state the best possible 
or most general results obtainable: our attention is fixed throughout on the strong 
variational integral for functions with values in a normed linear space. 

1. Elementary theory of division spaces. The theory presented here is a special 
case of that in [4] but which should be adequate for most purposes. Let T be a set 
and 3 a collection of pairs (/, x) (I £ T, xe T). A finite subset §> of 3 is said to be 
a division if the sets in {/: (7, x) e §>} are disjoint. For a division §> we write 
o(®)—\J{I: (/, x) e §>} and we call any set E=a(§>) an elementary set and £> a 
division of E. 

If X c T and S £ 3 the following subsets of S are defined : 

(1) S ( I ) = { ( / , x ) e S : / ç I } 

(2) S[X] = {(I,x)eS:xeX}. 

DEFINITION 1. The ordered triple (T, 21, 3) is said to be a division space provided 

(i) 21 is a collection of subsets of 3 such that every S e 21 contains a division of 
each elementary set; 

(ii) 21 is directed by set inclusion (i.e. if Si and S2 belong to 21 there is an S e 21 
with S g Si n Sa). 

The division space (T, 21, 3) is said to be additive if 
(iii) for every S G 21 and each elementary set E there is an S* e 21 such that 

S* c S(£) u S(\£). (Note that this implies that the collection of elementary sets 
forms a ring.) 

The division space (T, 21, 3) is said to be decomposable if 
(iv) for every sequence {Xk} of disjoint subsets of T and each {SJ S 21 there is 

an S G 21 such that S[Xk] £ Sk[Xk] for each index k. 
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The division space {T9 51, 3) is said to be fully decomposable if 
(v) for every family {S* G 5(: x G T} there is an S e 51 such that S[{x}] s Sx[{x}]9 

(xeT). 

For the reader unfamiliar with ([2], [3], [4]) and the term "division spaces" 
(which the referee has suggested would be better rendered as "partition spaces") 
we indicate the special example in §3 below and the following: Let T=Rn («-dimen
sional Euclidean space) and let 3 be the collection of all pairs ([a, b), x) where 
x G Rn and [a9 b) is a half-closed rectangle in Rn. For every positive number S we 
define Sô £ 3 by {[a9 b)9 x) e Sô if and only if x e [a, b] and [a, b) is contained in 
the closed sphere centered at x with radius 8. Then, if $1={SÔ: 8>0}, (Rn, 51, 3) is 
the division space normally associated with the Riemann integral. 

If we modify the above by permitting S to depend on x (i.e. S is a positive func
tion on Rn) then the resulting division space is fully decomposable and leads to a 
theory of integration which is more far reaching than even Lebesgue theory in 
Euclidean space. It is precisely this seemingly trivial modification which underlies 
the whole theory and which has returned attention to the classical idea of Riemann 
partitions of sets as a basis for integration. 

Let h be a function defined on 3 and with values in a normed linear space E. 
We define the variation of h with respect to a collection S(S £ 3) : 

(3) n*,S) = sup(«>)2l|A(/̂ )ll 
where the supremum is taken over all divisions §>(§> ç S) and (§>) 2 denotes a 
summation over all (I, x) e §>, an empty sum by convention being zero. 

If 51 is a family of subsets of 3 then the variation of h with respect to 51 is also 
defined: 

(4) V(h, 51) = inf { V(h9 S) ; S G 51}. 

The following properties of the variation are fundamental and easily proved. 

LEMMA I. If E is an elementary set and S* s S(E) u S(\E)(S9 S* Ç 3) then 
V(h9 S*)< V(h9 S(E))+V(h9 S(\E))< V{h9 S). 

LEMMA 2. If(T, 5(, 3) is an additive division space then 

(5) V(h, 51) = V(h, 5l(£)) + V(h, 5l(\£)) 

for every elementary set E. 
Here and elsewhere we define 

Qi(X) = {S(X) : S G 51} and %[X] = {S[X] : S G 51} ( I ç T). 

LEMMA 3. If(T, 51, 3) is an additive division space and S G 51 with 

V(h,S) < V(h9 51)+ e < +oo 

for some £>0, then V(h9 S(E))<V(h9 <2l(E)) + efor every elementary set E. 
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Proof. By Lemma 1 

V(h, S(E)) < V(h, S ) - V(h, S{\E) < V(h, tt) + e- V(h, %(\E)) 

so that (5) gives the result. Note that Lemma 2 is the only use of the additivity 
hypothesis here. 

The variation gives rise to a set function, an outer measure on T in most cases, 
which serves as the only contact the present theory need have with formal measure 
theory. 

DEFINITION 2. If A is a function on 3 with values in a normed linear space the 
A-variation, A*, is defined by 

(i) V(h, S; X) = V(h, S[X]) ( S ç S J ç r ) 

(ii) h*(X) = V{K %;X)= V(h, H[X]) (X ç T). 

Theorem 1 states the properties of the variation function which are the key 
points of the theory. 

THEOREM 1. Let (T, 21, 3) be a division space and h a function on 3 with values 
in a normed linear space. Then : 

(6) /**(<£) = 0 and 0 < h*(X) < +oo (X £ T); 

(7) h*(Xx u X2) < h%X,) + h%X2) (Xl9 X2 c T); 

(8) h*{Xx) < h\X2) (Xx^X2^n 

If(T, 21, 3) is decomposable and {Xj} is a sequence of subsets of T then 

(9) h* (0 x) < 2 h*(X,). 
\j = 1 / ;' = 1 

If(T, 21, 3) is decomposable and Xl9 X2, X3,... is an increasing sequence of sub-
sets ofT with each h%Xj satisfying (5) (thus in particular if(T, 21, 0) is additive), then 

(10) h*(C) X}) = lim/**(JQ. 

Proof. The proofs of (6), (7), and (8) are elementary. For (9) let e > 0 and for 
each index j choose S ; G 21 so that 

K(A, Sy; JO) <; F(/*,2l;Xy) + £/2'. 

Without loss of generality (use (8)) we may assume that the {Xj) are disjoint and 
so take S e 21 such that S[Xy] c SyfZy] for eachy. 

Let §> c S [(Jy°=i XJ\ b e a n arbitrary division and set S>, = $>[*}]. Then 
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(*>)2W/,*)II= imlWKhx)! 
i = l 

< I V(h, S,; Z,) 
CO 

< 2 VQl9%\X,) + e 

and the result follows easily. 
For (10) let e>0 and again choose Sy e 21 such that each 

V(h9Sj;X3)< F(A,9l;*,) + */2' 

and choose S G 21 so that S t ^ ^ . J c S ;[Zy \^_!] for each/' (set *o = <W-
Let 5 > £ S [ | J " « I * J ] be an arbitrary division and write ç>j = Ç>[XJ\Xj..1]9 

E3=G(®J) and let m be the least integer for which §>,=</> {j>m). Then 
m 

(©) 2 «/>(/, *)ll= 2(s>,)2ll*tf*)ll 
; = i 

m 

< 2 K(A,S/£,);Jf,) 
; = i 

m 

< 2 F(/r,2l(£,);Xy) + e. 
J ' = l 

This last inequality follows from Lemma 3 applied to the function hxXj and the 
definition of the {S;}. But 

m m 

2 K(A, «(£,); *,) < 2 V{h,Si{E,);Xm) 
3 = 1 3 = 1 

< K(A,21;Xm). 

Thus it follows easily that 

h*(\J X,\ < lim h*(Xm) 
\j = 1 / m -* co 

which, with (8), proves the final statement of the theorem. 

DEFINITION 3. (i) A function H defined on the elementary subsets of a division 
space (T, 21, 3) and with values in a normed linear space is said to be additive on 
(T, 21, 3) if H(E) = (§>) 2 H{I) for every division $> of E9 and every elementary 
se t£ . 

With no change in notation we permit H to be defined on 3 by writing 

H(I9 x) = #(/)((/, x) e 3). 

(ii) A function h on 3 with values in a normed linear space E is said to be in
tegrate on (T9 21, 3) if there is an E-valued additive function H on (T9 21, 3) such 
that V(H—h9 21) = 0. Such an H, if it exists, is unique and so we write J h = H and 
$E h = H(E) (E elementary set). If in addition V(h9 21) < +oo, h is said to be sum-
mable. 
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The definition of the above integral (technically the strong variational integral 
[4, p. 522]) is purely descriptive. For the Riemann-type definition and the relation 
between the two (see [3], [4]) and for a detailed discussion of the same on the real 
line see [2]. Note that our definition of the integral is a little stronger than that in 
[4], but it permits us to avoid the concept of "partial set" and in most cases of 
interest yields the same theory. McShane [5] chooses to develop the theory without 
alluding to the idea of variation and so there is not a large degree of interplay 
between that memoir and the present paper. 

2. The Lebesgue spaces. Throughout this section E, F, and G will denote 
arbitrary but fixed normed linear spaces, real or complex, with the norm in each 
written as |-|. We assume there is a bilinear mapping w : E x F - > G satisfying 
\u(x,y)\<\x\ \y\(xeE,ye¥). 

Let m be a function on 3 with values in F: £E(m) is defined to be the linear space 
of all E-valued functions/on Tfor which the function/m: (/, x) -> u(f(x), m(7, x)) 
is summable with V{\f\ |m|, 2i)< +co, and £E(m) is equipped with the seminorm 

/-HI/11. = W I N , a). 
If E is simply the scalar field, then the subscript may be omitted from £E(m). 

The theory of these spaces can be developed in much the same manner as the 
usual Lebesgue theory. Here the decomposability of the division space, which has 
provided the key results in Theorem 1, plays the role usually attributed to the 
"countable additivity" hypothesis in the classical theory: this permits the proof 
of Lemma 4, showing the completeness of the spaces £E(m). Note that all our 
results follow from the properties of the variation proved in Theorem 1. For other 
approaches which provide the same conclusions, see [2], [3], or [4]. 

THEOREM 2. Let (T, 3C, 3) be a decomposable division space and suppose {fn} is 
fundamental (i.e. is a Cauchy sequence) in £E(m). Then there exists a subsequence 
{fnk} which is fundamental at every point of T excepting a set ofm-variation zero. 

Proof. For every e > 0 define the set 

XUe) = {xeT; \fm(x)-fn(x)\ > e} 

and observe that 

m*(Zmn(*)) < I V(\fn-fm\ |m|, * ; Xmn(*)) 

< - \\f -f II 

Choose an integer N(e) so that ||/n-/mllm<e2 whenever m,n>N(e) and then for 
such m, n we have m*(Ar

mn(e)) < e. Let nx < n2 < n3 < • • • be an increasing sequence of 
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integers satisfying nk>N(l/2k) for each k and define the sets Xk = Xnknk + 1(\/2
k), 

Yk={J^k Xiy and Y0 = n? Yk. 
Then, if x e T\ Ym we have 

\Ux)-fnk>M<V2k (k>m) 
and hence, in a finite number of steps, 

p 1 1 
| / n f c ( * ) - / n p ( * ) | < 2 of < ôfc^ï (P> k ~ m ) * 

Thus {fn]} is fundamental at every point of T\ Ym for each integer m and so also 
at every point of T\ Y0: it remains only to show that YQ has m-variation zero. But 
using (8) and (9), 

m*(70) < m*(^m) < 2 m * ( ^ ) < 2 os = ™=T for every integer m, 

and it follows that m*( Yo) = 0, which proves the theorem. 
As an immediate consequence we obtain 

COROLLARY 1. Let (T, 91, 3) be a decomposable division space, let E be a Banach 
space and suppose {fn} is fundamental in £E(m). Then there is a subsequence {fnfc} 
which converges at every point of T excepting a set of m-variation zero. 

The crucial theorem in Lebesgue theory is now available. We require here an 
additive division space, but this restriction can be relaxed in some circumstances. 
Note that no additional assumption whatever is needed on m. 

THEOREM 3. Let (T, 91, 9) be an additive decomposable division space and suppose 
that E and G are Banach spaces. If the sequence {/„} is fundamental in £E(m) it con
verges to a function in that space. 

Proof. Let {/nJ, {Ym}, and Y0 be constructed from {fn} as in the proof of Theorem 
2 and define 

/(*) = lim fnk(x) (x E T\ Y0) and /(*) = 0 (x e Y0). 
k-*cc 

Set gk=zfnk—f for each index k and observe that {gk} is "fundamental" in the sense 
that lim f̂c^oo V(\gk—gj\ |m|, 9() = 0. From this it follows that 

v{X)= lim V{\gk\\m\,^,X) 
k-> oo 

exists uniformly for X £ T, and hence that the set function v inherits property (10). 
Define the sets Atj~{x: \fi(x)\ > 1//} and note that, since by hypothesis 

V(\fi\ |m|, 91) < +oo, each V(m, 91; Atj)< +co. From the construction of the sets 
{Ym} and the definition of the sequence {gk} we obtain 

V(\gk\ |m|, 91; Atj\Ym) < 1/2* " ^ ( m , 91; A„) (k > m) 
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so that each 

KA^YJ = lim V(\gk\ |m|, 21; Ai3\Ym) = 0. 
fc->oo 

Applying (10) to v we obtain 

Mih = K^Wo) = lim (Au\Ym) = 0. 
m-»oo 

A further application of (10) along with the finite subadditivity of v shows v(AQ) 

=0 (^0=Ur=i U"=i 4/)- Hence finally 

lim V(\fnk-f\ \m\, 21) = lim V(\fnk-f\ \m\, 21: ^0) 
te-+oo k-*oo 

= K^o) = o. 

Since {fn} is fundamental it then easily follows that limn_>oo V(\fn—f\ |m|, 21) = 0. 
Define ir

n=J/nm: for each elementary set E then, since each Fn is additive, 

\Fn{E)-FJE)\ < V(Fn-Fn,V) < ||/B-/»IU 

and lim^o, Fn(E)=F(E) exists in the Banach space G. 
Moreover F is clearly additive and satisfies limn_oo V(Fn—F, 51)=0. Thus for 

all n, 

V(F-fm, 21) < V(F-Fn, *)+V(Fn-fnm, 2() + K ( | / a - / | |m|, 21), 

from which it follows that V(F—fm9 21) = 0 and hence that F=$fm. 
Since also 

K(|/ | |m|, 21) = lim V(\fn\ |m|, 21) < +oo, 
n->ao 

we have that/belongs to £E (m) and, as 

ll /n-/Hm=K(l/»"/IM,90->O asw^o) , 

{/n} converges to / i n the space £E(m), which completes the proof of the theorem. 
Note that the only use made of the additivity of the division space was an 

application of (10) to the function \gk\ |m|. 
The remainder of this section follows the usual exposition of the Lebesgue theory, 

permitting the proof of the "dominated convergence theorem" to rest on the com
pleteness of the space £E(m)- In our context this can be stated in a more revealing, 
though not more general, form. 

DEFINITION 4. Let {hn} be a sequence of functions defined on S and with values 
in a normed linear space. The mixed variation of the sequence is defined as 

V({hn}, S) = sup (*>) 2 ||/W,*)(/, *)|| (S S 3) 

where the supremum is with respect to all divisions §> £ S and all functions n 
on §> with positive integer values. 
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If (T, 21, 9) is a division space we define 

V({hn},îl) = mf{V({hn},S):Se%} 

and say that {hn} has finite mixed variation on (T, 21, 9) if this is finite. 

LEMMA 4. Le/ (T, 21, 3) &e an additive decomposable division space, let p be a 
nonnegative function on 9 and let {fn} be a sequence of nonnegative functions in 2(H) 
such that {fui*} has finite mixed variation. 

(a) tfifn} is an increasing sequence then the function / (x) = limn_ «, fn(x) (if this 
is finite, and zero otherwise) belongs to 2(fj) and {fn} converges to fin 2(IJL). 

(b) The function f(x) = supnfn(x) (if this is finite, and zero otherwise) belongs to 
%(p) and WfW^svpn \\fn\\u. 

Proof. The proofs are standard: in (a) one shows that {fn} is fundamental in 
2(n) and applies Theorem 3. For (b) one combines (a) and integrability theorems 
for the maximum of functions [4, p. 525] or [2, pp. 43-46] in the usual way. 

THEOREM 4. Let (T, 21, 9) be an additive decomposable division space and let 
E and G be Banach spaces. Suppose that a sequence {fn} in £E(m) converges at every 
point, excepting a set ofm-variation zero, to a function f and that {\fn\ |m|} has finite 
mixed variation where each \fn\ belongs to £(|m|). Then f belongs to £E(m) and {fn} 
converges to fin that space. 

Proof. As in [1, pp. 135-136] for example one shows that {fn} is fundamental 
and applies Theorem 3 to obtain the result. 

Note that the condition here that {\fn\ |m|} have finite mixed variation is actually 
equivalent to the existence of a function Fin £(|m|) satisfying \fn(x)\ <F(x) every
where in T excepting a set of m-variation zero (simply take F(x) = supn\fn(x)\ if 
finite and zero otherwise and apply Lemma 4(b)). 

3. Integration in locally compact spaces. Let T be a locally compact Hausdorff 
space: a division space (T, % 9) is defined as follows. Let £ be the ring generated 
by the compact subsets of T and let 9 denote the collection of all pairs (/, x) 
(I e £ and x e T). If N is an arbitrary function which assigns to each point xeT a 
neighborhood N(x) of x we shall write SN = {(I, X ) G 3 ; / Ç N(X)}. Then (7; 21, 9) 
is a fully decomposable division space where 51 denotes the collection of all SN for 
arbitrary neighborhood functions N. 

However (T, % 9) is not in general additive so that if E, F, G, and m are as in 
the previous section then 2E(m) may not satisfy Theorem 3. Let m be an F-valued 
additive function on the ring £ then it is easy to show that every function h of the 
form h(I, x) =f(x)m(I) (f(x) e E) satisfies (5) and so the proof of Theorem 3 holds 
in this case without modification. 

To obtain further results we must impose certain restrictions on m. 
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DEFINITION 5. An F-valued function m on 3 is said to be V-regular if for every 
compact set K £ T and every e > 0 there is an open set U 2 K such that 
V(m,Qi(U\K))<e. 

DEFINITION 6. By a simple E-valued function we shall mean any function of the 
form (£>) 2 exXi (ex e E) where £> is a division. <£E(J) will denote the linear space 
of all simple E-valued functions and $E ( r ) the linear space of all compactly sup
ported continuous E-valued functions. 

THEOREM 5. Let m be an Tï-valued additive V-regular function such that m* is 
finite on compact sets. Then £E(m) contains <£E(T). 

Proof. Suppose e e E and that K £ T is compact: we show that f=exK is in 
£E(m). The extension to an arbitrary element of <£E(m) then follows by linearity. 

For every elementary set E (Ee<£) define H(E) = em (K n E) so that H is an 
additive G-valued function on £. For any e>0 choose a neighborhood £/ of K so 
that F(m, A{U\K)<s and a neighborhood function N so that N(\K) n 7̂ T=̂  and 
#(£/) c £/. Then if S> c SiV is a division 

(*>) 2 |ff(/)-/(*)m(/)| < ( T O ) I \e\ |m( /n 7Q-m(/) | 
+ m\K])Z\e\\m(InK)\. 

By the construction of N the second sum must vanish; since m is additive we have 

m(/\A:) = m(I)-m(InK) 

and if (/, x) e $>[K] then (I\K, x) e S*(17\X), so that 

(*>) 2 | / / ( /)- /(x)m(/) | < |e| F(m, S*(£/\K)). 

From this we can argue that 

V(H-fm9 91) < k| F(m, 9t(£/\A-)) < \e\ e. 

As |e|<+oo and £>0 is arbitrary this proves that fm is integrable. Also 
V{\f\ |m|, 90 < |e| m*{K)< +oo so that/belongs to £E(m) as required which com
pletes the proof of the theorem. 

If E and G are Banach spaces and m is an F-valued additive F-regular function 
with m* finite on compact sets then Theorems 3 and 5 lead in the usual manner to 
several useful results. In particular £E(m) includes both &E(T) and ^E(T), &E(T) 
and $E(T) have the same closures in £E(m) ([5, p. 43] discusses the situation in 
which this is the whole of £E(m)) and both closures include functions of the form 
X S / ( / e^ E (T ) and Ee<£). These statements will be used in the next section 
without further reference. 

4. Representation of operators. Let T be a locally compact Hausdorff space and 
let (T, 91, 3) be the associated division space as constructed in the previous section. 

7—C.M.B. 
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Suppose that E, F, and G are Banach spaces with F = £(E, G) (the space of all 
continuous linear transformations from E into G) and that ®E(T) is the linear space 
of all compactly supported continuous functions on T with values in E. The prob
lem discussed in the present section is that of representing certain linear operators 
from ®E(T) into G by an appropriate integral with respect to an F-valued set 
function. This problem, motivated originally by the Riesz-Kakutani theorem, has 
received some attention in the literature (see [1, p. 416]). We show that a certain 
class of operators (those that are dominated), introduced to simplify the problem, 
serves to characterize in a sense the strong variational integral. 

DEFINITION 7. Let T be a linear mapping from $E(T) into G. We define 

lll^lll = sup 2 |r(A)| {A s D 
fc=i 

where {fk: k= 1 , . . . , n) denotes an arbitrary finite sequence of functions in $ (T) 
such that \f{x)\ |/fc(*)| =0 OV£) and \fk(x)\<XA(x) for all xeT. 

If A -» Ilir^HI is finite on compact sets then V is said to be dominated [1, p. 383]. 

THEOREM 6. Let m be an additive V-regular function with values in £(E, G) and 
which has finite variation on compact sets. Then M:f->$Kif)fm (#( / ) = supp/) is 
a dominated linear mapping from ®E(T) into G such that |||MG||| <m*(G)for every 
open set G. 

Proof. The integral is defined in the sense of §2 with F = £(E, G) and u as the 
canonical mapping from E x F into G. 

The remarks in §3 show that M is defined on ®E(T) and linearity is obvious ; it 
is sufficient then to prove the inequality m*(G)> |||MG||| (G open) for then the fact 
that M is dominated follows from the assumed finiteness of m* on compact sets. 

To this end let G be open and let {fk; k— 1, 2 , . . . , n) be a sequence of functions 
satisfying the conditions of Definition 7 with A = G. Set Gk —fk

 1(\{0}) so that {Gk} 
is a sequence of disjoint relatively compact open sets; construct a neighborhood 
function N so that each N(Gk) £ Gk and set/=2fc=i/fc- Then 

V(m,SN;G)> V(\f\\m\,SN; G) 

* 2 V(\fk\\m\,SN;Gk) 
J C = I 

^ i \M(fk)\ 
fc=i 

and so V(m, SN; G)>\\\MG\\\i from which the final assertion of the theorem now 
follows. 

LEMMA 5. IfT: ®E(T) ~>G is a dominated linear mapping then the function 

y(£) - in f{ | | | r 0 | | | ;Gopen ,£sG> 

https://doi.org/10.4153/CMB-1971-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-016-7


1971] HENSTOCK STRONG VARIATIONAL INTEGRAL 97 

defined for all elementary sets E is nonnegative, additive, and V-regular and has 
finite variation on compact sets. Moreover |T(/)| < V(fy, 21) for every fe^E(T) 
and y*(G) < 111TG\ \ \ for every open set G. 

Proof. If we set /(v4) = inf {|||rG|||; G open, A ^ G} for every set A (A ^ T) 
then the arguments of [1, pp. 383-387] can be applied to show that y is a regular 
Borel (outer) measure in the usual sense. Thus y, which is the restriction of y 
to the ring £, can be shown to have the properties stated in the lemma. We also 
obtain that y*{E) < y(E) (E e €) : in fact if G ^ E, G open, and N is a neighborhood 
function with N(G) ç G then for every division S> ç SN[E] we have E' = CT(S>) C G 
and so 

(©) 2 y(/) = * * ' ) £ ll|r0|||. 

From this we obtain y*(E)< || |rG | | | and so 

y*(E) < inf || |rG | | | = y(E). 

Let n o w / e $ E ( r ) and e>0: we choose a neighborhood function N so that 
\f(y)—f(x)\<e(y e N(x)) and let $>={(/fc, xk); ^ = l , 2 , . . . , « } ç S ^ b e a division 
of K=suppf and Gk be arbitrary open sets with Ik ç Gk ç N(xk). Since the 
{Gk; & = 1, 2 , . . . , «} cover the compact set A^(/) there are nonnegative continuous 
functions {<pfc; k = 1, 2 , . . . , n} such that each <pk vanishes outside Gk and 22 = i 9/cW 
= 1 (x e # ) . Then 

|r(/)| = r ( i <pkf)< i |r(^/)| 

* 2 sup |/(0| | | | r 0 j | | 

< 2 [\fM\y'(Gk) + ey'(Gk)]. 
k=l 

If we now take the infimum of the right side of this inequality for all such choices 
of {Gk} we obtain 

| IV)| <(®)2[\f(x)\y(I) + ey(I)] 

< V(fy,SN) + ey(K(f)). 

As £>0 is arbitrary and y is finite on compact sets it then follows that |T(/) | 
< V(fy, 21) as required. 

For the final assertion of the lemma let G be open, let e>0, and choose a neigh
borhood function N so that N(G) c G. We choose a division £> c Sv[<7] so that 

K(y,S*; ( ? )£ (©) 2 * / ) + «. 
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Then if E =&(%>) we have E ç G and so 

y*(G) < V(y9SN;G) < y(E) + e < \\\rQ\\\ + e. 

As e > 0 is arbitrary this completes the proof of the lemma. 

THEOREM 7. A linear mapping F of9i^{T) into G is dominated if and only if there 
is an additive V-regular function m with values in £(E, G) and which has finite varia
tion on compact sets such that 

T(f) = f fm (K(f) = supp/). 

TTze/z necessarily | | |rG | | | =m*(G)/or every open set G. 

Proof. The sufficiency has already been established in Theorem 6. Conversely 
suppose r is dominated and construct the function y as in Lemma 5. We must 
then have 8 E ( r ) c £E( r) and \T{f)\ < V(fy, 3Q= ||/||y for every/e ^ ( 7 ^ 

Now since G is complete we may extend T to a linear map T" on $ E ( r ) (the 
closure of $E(T) in £E(y)) so that the inequality \T'(f)\ < \\f\\Y continues to hold. 

For each elementary set E we define the linear mapping m(E) of E into G by 
putting m(E)e = r'(exE) (e e E). Since 

sup\r(eXE)\ < sup V(ex*y,V) < y*(E) 
\e\*l \e\ul 

we have that m(E) e £(E, G) and |jm(2T)|| <y*(E) (where || • || denotes the canonical 
norm in £(E, G)). Thus m is an additive £(E, G)-valued function and the in
equality |im(£)]| <y*(E)<y(E) shows that m has finite variation on compact sets 
and is F-regular as a result of the corresponding properties for y. 

Le t / e ®E(r), s > 0 and choose a neighborhood function N so that \f(x) —f(y)\ < e 
(y e N(xj) and so that N(K(f)) ç F where F is any compact set containing supp / 
in its interior. Set H(E) = T'(fxE) for each elementary set E: then if £> c SN is a 
division and S>'= $>[#(/)] 

(«>) 2 |#(/)-/(*)m(/)| = («>) 2 irx/x^-rx/Wx/)! 

<(^)2n(A/-/(%)y^i) 

<(s>')2>*(/) 

<(*>') 2>(/) 

< ey(F) 

As e>0 is arbitrary and y(F) is finite we obtain finally V(H—fm, 31) = 0, so that 
iK«)fi* = H(K<J)) = T(f) as required. 
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The final assertion of the theorem follows on combining the inequalities in 
Theorem 6 and Lemma 5 to obtain 

|||r0||| < m*(G) < y*(G) < |||r0||| 

for every open set G, which completes the proof of the theorem. 

REFERENCES 

1. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967. 
2. R. Henstock, Theory of integration, Butterworth, London, 1963. 
3# 9 Linear analysis, Butterworth, London, 1967. 
4. , Generalized integrals of vector-valued functions, Proc. London Math. Soc. (3) 19 

(1969), 509-536. 
5. E. J. McShane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner, and 

stochastic integrals, Mem. Amer. Math. Soc, no. 88, 1969. 

SIMON FRASER UNIVERSITY, 

BURNABY, BRITISH COLUMBIA 

https://doi.org/10.4153/CMB-1971-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-016-7

