INVARIANT SUBSPACES OF OPERATORS RELATED TO
THE UNILATERAL SHIFT

Dedicated to the memory of Hanna Neumann

S. R. CARADUS

(Received 11 May 1972)
Communicated by J. P. O. Silberstein

Introduction

Among all non-self-adjoint operators, the shift has a special place in ques-
tions relating to invariant subspaces. It is therefore natural to attempt to use this
fact to study other operators related in some way to the shift. Examples of this
procedure are available in the work of Freeman [3] and Lim [5] where pertur-
bations of the shift are studied.

In this paper, some modest contributions are made to the invariant subspace
problem for certain classes of operators.

Let H be a separable Hilbert space with orthonormal basis \{\(e_k\)\}. Then write S to denote the shift operator $S: e_k \to e_{k+1}$, $k = 1, 2, \ldots$. Since S is an isometry,
we know that $S^*S = I$.

Now let T be a bounded linear operator. We wish to state conditions suffi-
cient to ensure that T is intransitive, i.e. that T has a non-trivial closed invariant
subspace. For this purpose, it is no loss of generality to assume that $\|T\| < 1$.

Consider the mapping defined in H as follows:

$$x \mapsto \sum_{k=1}^{\infty} (T^{k-1}x, e_1)e_k.$$

It is easy to verify that this map is well defined and gives a bounded linear operator
on H. Let H_T denote the range of this operator. In view of the theorem
which follows, it is useful to investigate whether H_T is invariant under T. If this
were the case, a simple calculation shows that this implies that, for each $x \in H$,
there must exist \tilde{x} in H such that the following conditions are satisfied:

$$(T^{k-1} \tilde{x}, e_1) = \sum_{p=1}^{\infty} (T^{p-1}x, e_1)(Te_{p+1}, e_k) \quad k = 1, 2, 3, \ldots.$$
Since it seems highly unlikely that such a condition would be satisfied, it is reasonable to conclude that in general H_T is not invariant under T.

Theorem. If H_T is not dense, then T has a non-trivial closed invariant subspace.

Proof. Write P to denote the projection $x \to (x, e_1) e_1$ so that clearly $S^*P = 0$. Define an operator Φ_T by the equation

$$\Phi_T = \sum_{k=0}^{\infty} S^k P T^k.$$

The series obviously converges in the uniform operator topology; in fact, Φ_T is compact since P is one-dimensional. Moreover, it is easy to verify that

$$S^*\Phi_T = \Phi_T T$$

so that the range of Φ_T is invariant under S^* (briefly, "*-invariant"). Now we observe that the range of Φ_T is exactly H_T. With our assumption that H_T is not dense, we will show the existence of a *-invariant subspace H_0 of H_T such that $(0) \not\subseteq H_0 \subseteq H_T$. To do this, we will work in analytic terms. Let D denote the open unit disc in the complex plane and let H^2 denote the usual Hardy class on D. Then, since H_T is not dense, H^2_T is a closed non-trivial subspace of H^2 which is invariant under S. Hence, as Beurling showed, $[1]$, $H^2_T = \theta H^2$ for some inner function θ. Let z_0 be any zero of θ. Define $H_0 = (S^* - z_0)H_T$; obviously H_0 is *-invariant and $(0) \not\subseteq H_0 \subseteq H_T$. To show that the inclusion $\overline{H_0} \subseteq \overline{H_T}$ is proper, it suffices to show that $H^2_T \not\subseteq H^2_0$. Let v be an element of H^2 such that $v(z_0) \neq 0$ and take $h(z) = \theta(z) v(z) / (z - z_0)$. Then $h \in H^2$ and, if $w_0 \in H_0$, we have

$$(h, w_0) = \left(\frac{\theta(z) v(z)}{z - z_0}, (S^* - z_0) w \right)$$

for some $w \in H_T$

$$= (\theta(z) v(z), w(z)) = 0 \text{ since } \theta v \in H^2_T.$$

Hence $h \in H^2_0$. But $h \notin H^2_T$ for otherwise, we would have $h = \theta h'$ for some $h' \in H^2$. This would imply

$$\theta h' = \frac{\theta v}{z - z_0}$$

i.e.

$$h' = \frac{v}{z - z_0}.$$

But $\frac{v(z)}{z - z_0}$ cannot be a function in H^2. Hence $H^2_T \not\subseteq H^2_0$ so that H_0 has the required properties.

Finally, consider equation (1). Evidently, the kernel of Φ_T is invariant under T so we need only consider the case where the kernel of Φ_T is (0). Let $\tilde{H} = \Phi_T^{-1}H_0$.

We will show that \mathcal{H} is nondense and invariant under T. Firstly, if \mathcal{H} were dense, then every x in H could be written

$$x = \lim \Phi_T^{-1} h_n$$

for some sequence $\{h_n\} \subset H_0$.

But then

$$\Phi_T x = \lim h_n$$

i.e. $H_T \leq \mathcal{H}_0$ contrary to the known properties of H_0. Finally \mathcal{H} is T-invariant, for if

$$x \in \Phi_T^{-1} H_0$$

then $\Phi_T x = h_0$ for some $h_0 \in H_0$. Hence $\Phi_T Tx = S^* \Phi_T x = S^* h_0 \in H_0$

i.e. $Tx \in \mathcal{H}$. Thus the closure of \mathcal{H} is non-trivial closed invariant subspace for T.

Remark. A bounded linear operator with trivial kernel and dense range has been called a "quasi-affinity" [6]. If A and B are bounded linear operators on H and there exists a quasi-affinity Q such that $QA = BQ$, then A is said to be a "quasi-affine" transformation of B. Theorem 1, therefore, implies that either T has a non-trivial closed invariant subspace or T is a quasi-affine transformation of S^*. Sz-Nagy and Foias [6] have proved a stronger result: if T^* has a cyclic vector, then T is a quasi-affine transformation of S^*. However, in their case, the operator which implements the transformation is difficult to express in terms of the given Hilbert space.

Corollary. H_T is non-dense if and only if, for some non zero $\{x_k\}_0^\infty$ in l^2, we have

$$\sum_{k=0}^\infty |x_k|^2 = 0.$$

Proof. A vector $y = \sum_{k=1}^\infty x_k e_k$ is orthogonal to H_T if

$$\sum_{k=1}^\infty (T^{k-1} x, e_1) x_k = 0$$

for all x in H

i.e. $x, \sum_{k=1}^\infty \bar{x}_k T^{k-1} e_1 = 0$

i.e. $\sum_{k=0}^\infty \bar{x}_k T^k e_1 = 0$.

Remarks. (i) The role of e_1 in the above corollary is obviously incidental. If x is any unit vector in the kernel of $\sum_{k=0}^\infty x_k T^k$ for some $\{x_k\}$ in $l^2 \setminus \{0\}$, then we can choose the orthonormal basis with x as its first vector.

(ii) Recall that H_∞ consists of functions analytic and bounded on D. Let $u \in H_\infty$. Then we can write a Taylor series for u

$$u(\lambda) = \sum_{k=0}^\infty u_k \lambda^k$$

and since $H_\infty \subset H^2$, we know that $\sum_{k=0}^\infty |u_k|^2 < \infty$. Now recall the important class...
C₀ defined by Sz-Nagy and Foias [7]: C₀ consists of those completely non-unitary contractions T for which there exists a non-zero u in H∞ such that u(T) = 0. If T is a strict contraction (i.e. \| T \| < 1) then it is possible to define u(T) as \(\sum \alpha_k u_k T^k \). In view of these considerations, we see that if T is a strict contraction in C₀, then H_T is non-dense and so T has a non-trivial closed invariant subspace. Again, this is a known result but the methods used here are simple and explicit and, of course, the condition expressed in the corollary above is much weaker than the condition u(T) = 0.

(iii) Gohberg and Krein [4] p. 316 have defined a sequence of vectors \(\{g_k\} \) to be w-linearly independent if \(\sum \alpha_k g_k = 0 \) is not possible for \(0 < \sum \|\alpha_k\|^2 \|g_k\|^2 < \infty \). It is evident that if \(\{T^{*k} e_1\}_0^\infty \) is w-linearly independent then the condition of the corollary above fails.

ACKNOWLEDGEMENT: Thanks are due to my colleague, C. F. Schubert, for useful discussions about this work.

References

Queen's University at Kingston
Department of Mathematics
Ontario, Canada