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Abstract

Consider the random variable Ln defined as the length of a longest common subsequence
of two random strings of length n and whose random characters are independent and
identically distributed over a finite alphabet. Chvátal and Sankoff showed that the limit
γ = limn→∞ E[Ln]/n is well defined. The exact value of this constant is not known,
but various methods for the computation of upper and lower bounds have been discussed
in the literature. Even so, high-precision bounds are hard to come by. In this paper
we discuss how large deviation theory can be used to derive a consistent sequence of
upper bounds, (qm)m∈N, on γ , and how Monte Carlo simulation can be used in theory
to compute estimates, q̂m, of the qm such that, for given � > 0 and � ∈ (0, 1), we
have P[γ < q̂ < γ + �] ≥ �. In other words, with high probability the result is an
upper bound that approximates γ to high precision. We establish O((1 − �)−1�−(4+ε))

as a theoretical upper bound on the complexity of computing q̂m to the given level of
accuracy and confidence. Finally, we discuss a practical heuristic based on our theoretical
approach and discuss its empirical behavior.
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bound; large deviation theory; Monte Carlo simulation

2000 Mathematics Subject Classification: Primary 05A16; 62F10
Secondary 92E10

1. Introduction

In pattern matching, speech recognition, DNA and protein analysis, and various other
domains of application, scoring methods to decide the degree of similarity between two finite
strings play a central role; see, e.g. [31], [29], [21], [25], [12], [11], and [3]. The most widely
used family of scoring functions consists of those defined as the maximum alignment score over
a set of admissible alignments, where each alignment score is computed as the sum of scores of
individually aligned characters. Insertions and deletions are typically allowed in the admissible
alignments, subject to penalization. In most applications the actual solution of interest is the
set of alignments that are (almost) score maximizing.
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For example, if every pair of correctly aligned characters counts as a unit score, incorrectly
aligned characters are penalized by (the addition to the score of the negative amount) −δ �= and
the insertion of a gap, �, is allowed subject to penalization by −δ�, then b r o t

b a � t is an admissible
alignment of the strings ‘brot’and ‘bat’and the corresponding alignment score is 1−δ �=−δ�+1.
The similarity score Sδ�=,δ�(‘brot’;‘bat’) is obtained by computing the maximum score over all
admissible alignments of the two strings. A special case of this scoring method is obtained by
setting δ�= = ∞ and δ� = 0. In this case the similarity score of two strings x and y becomes the
length, L(x; y), of a longest common subsequence (LCS) of the two strings, where a common
subsequence is any string that can be obtained from both x and y by deleting some of their
entries.

Sequence alignment algorithms typically produce multiple near-optimal alignments, so that
practitioners are faced with the problem of deciding which of these are significant to their
specific application. In some cases it may not be possible to do this manually. Owing to
statistical fluctuations, a short sequence x will have high-scoring alignments in any sufficiently
long random sequence Y . It is thus natural to study the statistical behavior of optimal alignment
scores of random sequences; see, e.g. [30].

Let X1, . . . , Xn and Y1, . . . , Yn be independent, identically distributed random variables
with distribution ξ over a finite alphabet A, and let

Sδ�=,δ�,n := Sδ�=,δ�(X1 · · · Xn; Y1 · · · Yn)

be the similarity score of the random strings X1 · · · Xn and Y1 · · · Yn under the scoring method
defined above. We write Ln := S∞,0,n for the random length of a longest common subsequence
of these two random strings. Using a subadditivity argument, we can show that the limit

γδ�=,δ� := lim
n→∞

E[Sδ�=,δ�,n]
n

(1.1)

is well defined. Of course, the value of γδ�=,δ� also depends on the distribution ξ , which is omitted
from the notation for simplicity. The existence of γδ�=,δ� was first established by Chvátal and
Sankoff [13] in the special case γ := γ∞,0 = limn→∞ E[Ln]/n.

Arratia and Waterman [5] identified a phase transition phenomenon in the above-described
context by showing that there exists a region of pairs (δ�=, δ�) ∈ R

2+ where E[Sδ�=,δ�,n] grows
linearly in n and another region where it grows logarithmically. The case (δ�=, δ�) = (∞, 0) is
in the linear phase and the Chvátal–Sankoff constant, γ , captures the asymptotic growth rate,
whose exact value remains unknown. Let | · | denote set cardinality. Steele [26] conjectured
that

γ = 2

1 + √|A| (1.2)

when ξ is the uniform distribution over the alphabet A. However, our numerical results in
Section 5 suggest that the expression on the right-hand side of (1.2) may be too large. Chvátal
and Sankoff [13] conjectured that

lim|A|→∞
2

γ
√|A| = 1.

In other words, they conjectured that the Steele conjecture holds asymptotically when the size
of the alphabet grows to infinity. This was recently proven to be true in [19].

Although the constant γ is not known exactly, several methods have been discussed in the
literature to compute lower and upper bounds; see [13], [16], [2], [14], [24], and [9]. The
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subadditivity property used to show the existence of γ can be readily used to generate lower
bounds via Monte Carlo simulation, though some understanding of the fluctuations of Ln

about its mean is necessary to establish confidence intervals; see more on this below. Other
techniques to generate lower bounds are based on Markov chains and common subsequence
machines; see [14], [24], and [9]. The conceptually more difficult problem of generating upper
bounds can be approached via combinatorial arguments and by representing longer sequences
as concatenations of shorter pieces, which leads to ‘over-counting’. The methods of [14] and
[24] are of this kind, as is the method discussed in the present paper. Other approaches, e.g. that
of [9], are based on information theoretic ideas and the notion of Kolmogorov complexity. A
third approach, used in [2], relies on adding a guaranteed level of approximation to the lower
bound E[Ln]/n. We note that the above-mentioned algorithms comprise both deterministic
and randomized algorithms.

The circle of questions pertaining to the understanding of optimal alignments of random
sequences is sometimes referred to as the LCS problem in the longest common subsequence
context. Another of its important aspects concerns the convergence speed of (1.1) and the order
of the fluctuations that occur in Monte Carlo simulations. Waterman [30] conjectured that the
fluctuations of Sδ�=,δ�,n about its mean are of order O(

√
n). In the special case of Ln, Arratia

and Waterman [5] derived a law of large deviations for fluctuations on scales larger than
√

n,
but the exact order of the fluctuations is unknown. In fact, it is not even known if the order is
larger than a power of n. Using first passage percolation methods, Alexander [2] established
that E[Ln]/n converges at a rate O(

√
log (n)/n).

We conclude this section by pointing out some other questions related to the LCS problem and
the state of knowledge about them. An important problem that was open for decades concerns
the longest increasing subsequence of random permutations. It is suspected that insights into
the longest increasing subsequence problem can be used to study the LCS problem; see [10]
and [1]. Another problem related to the LCS problem is that of comparing sequences X and
Y by looking for longest common words; there are generalizations of this problem where the
word does not need to appear in exactly the same form in the two sequences. The distributions
that appear in this context have been studied in [6], [7], and [23]. A crucial role is played by
the Chen–Stein method for the Poisson approximation. In [7] and [4] some light was shed on
the relation between the Erdős–Rényi law for random coin tossing and the above-mentioned
problem. The authors of [7] and [4] also developed an extreme value theory for this problem.

1.1. Overview

Our paper consists of three distinct parts that contribute in different ways to the understanding
of the LCS problem.

The contribution of Section 3 is of a theoretical nature. In writing long pairs of strings as
concatenations of shorter pairs with LCS length m, fundamental links emerge between upper
bounds on the Chvátal–Sankoff constant, γ , on the one hand, and the large deviations of a
naturally defined measure ν[m] on N, on the other. If this measure were known exactly, then
the computation of upper bounds, qm, on γ would reduce to the optimization problem

qm = inf

{
q ∈ [0, 1] : there exists a t > 0 such that

∑
k∈N

et (2m/q−k)ν[m](k) < 1

}
. (1.3)

Furthermore, it is true that limm→∞ qm = γ . This yields a conceptual algorithm for the
computation of a consistent sequence of upper bounds on γ .

The importance of this result is in pointing out that large deviation theory yields a mechanism
for augmenting information gained from shorter pairs of strings to gain asymptotic information
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(as n → ∞). Thus, we are estimating a subadditive limit constant using large deviations of
a finite-m measure. Since this paper was written, this mechanism (which seems to be new in
the form presented) has turned out to be a surprisingly useful tool in analyzing the asymptotic
behavior of Ln; see [17], where it was used to bound the proportion of random sequences
where optimal alignments are locally unique, or [22], where it was used to derive bounds on
the order of the fluctuations of Ln for certain models of random sequences. Alexander [2] also
derived bounds on the order of the fluctuations using subadditivity and large deviations, but his
approach relies on first passage percolation rather than a finite-m measure.

The contribution of Section 4 is a theoretical analysis of the practical algorithm obtained
from (1.3) when the measure ν[m] is replaced by a simulated approximation ν̂[m]. Since this
approximate measure is the outcome of a random experiment, the ‘bounds’ q̂m obtained in this
framework are random variables that can actually take values below γ , but with quantifiably
small probability. We call such bounds probabilistic upper bounds. For any given confidence
level � and absolute approximation error �, we establish worst-case upper bounds on the size
of m and the number of simulations, �0, needed to guarantee that q̂m satisfies the following two
properties with probability greater than �:

(i) q̂m is indeed an upper bound on γ ;

(ii) q̂m overestimates the true value of γ by less than �.

We establish that O((1 − �)−1�−(4−ε)) is a conservative upper bound on the total complexity
of computing q̂m with these properties, where ε is a small, arbitrary constant. It turns out that
the approximation error, � = O(m−(1−ε)/2), depends only on the parameter m, and that the
confidence level, � = 1 − O(�−1

0 ), depends only on the number of simulations. The bounds
we prove are very conservative and do not reflect the true convergence speed of the algorithm.
Nevertheless, they are important in establishing that the estimators q̂m approximate the true
value of γ to arbitrary precision and confidence level in reasonable time.

Finally, Section 5 concerns a heuristic practical version of our conceptual algorithm. We
cannot claim mathematical rigor for the results presented there, because they are based on
the assumption that certain unbiased estimators of the variance of a random variable W(t, q)

are sufficiently symmetrically distributed. However, we do discuss the empirical behavior of
these estimators and argue that, when they are properly designed, the assumption is plausible.
Numerical results are reported for random sequences with various alphabet sizes.

The previously known best bounds by a randomized algorithm with confidence bounds were
obtained in [2]. The method there is based on estimating E[Ln]/n for large n and using a result
which shows that E[Ln]/n ≥ γ − C(n log(n))1/2 for some C > 0. With this method one has
to choose n = 100 000 to achieve an accuracy of � = 0.045 in the case of random sequences
obtained by fair coin tossing. Since the best algorithm for computing the LCS of two sequences
of length n takes O(n2) ‘work’, it becomes impractical to compute γ to much higher accuracy.
In contrast, to simulate the measure ν̂[m] in our method with m = 1000, it suffices to compute
the LCS of multiple pairs of sequences of lengths up to n ≈ 2000, and the accuracy achieved
with these values seems to be approximately � ≈ 0.005 (in terms of the approximation error).
We also note that in [9] tighter bounds were obtained than in [2], but without confidence bounds.

2. Some useful notation and a key inequality

Let A be a finite alphabet and A
∗ = ⋃

n∈N
A

n be the set of finite words. Recall that we
denote by |A| the cardinality of A, that is, the number of symbols in the alphabet. For x ∈ A

∗,
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denote by |x| its length, that is, the number of letters in x. Trivially, |xy| = |x| + |y| for
every pair (x, y) ∈ A

∗ × A
∗, where xy denotes the concatenation of x and y, that is, the string

consisting of the letters of x followed by the letters of y.
Let 	n be the class of increasing subsequences of the integer interval [1, . . . , n]. We denote

the cardinality of any π ∈ 	n by |π |, and its components by π(i), i ∈ [0, |π |]. For x ∈ A
∗

and π ∈ 	|x|, we use the notation xπ for the string xπ(1) · · · xπ(|π |). The main object of study
in this paper is the quantity

L(x; y) = max{k : there exist π ∈ 	|x| and σ ∈ 	|y| with |π | = k = |σ | and xπ = yσ },
that is, the length of a longest common subsequence of x and y.

Let A
N be the set of infinite sequences of elements of A. For the analysis, it is convenient to

use the set of elementary events � = A
N ×A

N endowed with the canonical product σ -algebra.
We will also sometimes identify � with (A×A)N, and we denote the points of � by ω = (x, y),
where x = (xn)N and y = (yn)N. We use the following notation for the canonical projections
defined on � : X(ω) = x, Xi(ω) = xi , Y (ω) = y, and Yj (ω) = yj . We endow � with the
probability measure P = ξN × ξN, where ξ is a probability distribution on the finite alphabet A

with ξ(a) > 0 for all a ∈ A. In other words, all entries in X and Y are independent, identically
distributed random variables with values in A and distribution ξ .

Remark 2.1. It is interesting to note that some of the results presented in this paper extend
to the situation where P is an ergodic shift-invariant measure on �. For example, the proof
of relation (2.1) below remains valid unchanged, and the relation that we will present in (2.3)
extends to the more general model via Birkhoff’s ergodic theorem. We restrict the exposition to
the simpler setup because it represents the model of interest in the vast majority of applications.

We write x[i, j ] for the string, xi · · · xj , formed by the letters between the ith and j th
coordinates of x (inclusive), and we adopt a similar notation when x is random. Any pair of
strings (x, y) ∈ A

∗ × A
∗ defines a measurable set as follows:

[[x, y]] = {ω ∈ � : X[1, |x|](ω) = x, Y [1, |y|](ω) = y}.
Extending this notation, we write [[S]] = ⋃

(x,y)∈S[[x, y]] for all S ⊆ A
∗ × A

∗.

Let {Li
j : i, j ∈ N} be the family of random variables

Li
j : � → N, ω �→

{
L(X[i, j ](ω); Y [i, j ](ω)) if i ≤ j,

0 otherwise.

For ease of notation, we write Lj for L1
j . The family {Li

j } satisfies the hypotheses of Kingman’s
subadditive ergodic theorem, which implies that

lim
n→∞

Ln

n

a.s.= sup
n≥1

E[Ln]
n

= lim
n→∞

E[Ln]
n

=: γ (2.1)

for some real number γ ; see, e.g. [20]. (By ‘
a.s.= ’ we denote almost-sure equality.) The limit

γ , trivially seen to be lying in the interval (0, 1), is, recall, the Chvátal–Sankoff constant
associated with the law P. Note that it follows from (2.1) that, for any q < γ , we have
limn→∞ P[Ln ≥ qn] = 1. Therefore, for all q ∈ (0, 1),

lim
n→∞ P[Ln ≥ qn] < 1 
⇒ q ≥ γ. (2.2)
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We write Sn
1 (q) := {(x, y) ∈ A

n ×A
n : L(x; y) ≥ qn}. Note that, with the notation introduced

above,
{ω ∈ � : Ln(ω) ≥ qn} = [[Sn

1 (q)]].
This notation will be useful in the proof of Lemma 2.1.

In the analysis in the subsequent sections we will some times need to know a lower bound
on γ . For this purpose we use the following elementary relation, where 1 denotes the indicator
function:

γ
a.s.= lim

n→∞
Ln

n
> lim

n→∞
1

n

n∑
k=1

1{Xk=Yk}
a.s.=

∑
a∈A

ξ([[a]])2 ≥ 1

|A| . (2.3)

Definition 2.1. For any string x ∈ A
∗ of length |x| ≥ 1, let x− := x1 · · · x|x|−1 be the string

obtained by removing the last of its letters. For m ∈ N, we say that a pair (x, y) ∈ A
∗ × A

∗ is
an m-match if

L(x; y) = m, L(x−; y) = m − 1, L(x; y−) = m − 1.

We write Mm for the set of m-matches in A
∗ × A

∗.

It follows immediately from Definition 2.1 that

(x, y) ∈ Mm 
⇒ min{|x|, |y|} ≥ m, (2.4)

(X[1, i], Y [1, j ]) ∈ Mm, k �= j 
⇒ (X[1, i], Y [1, k]) /∈ Mm, (2.5)

(X[1, i], Y [1, j ]), (X[1, k], Y [1, l]) ∈ Mm, k > i 
⇒ l < j. (2.6)

The following families of random variables will play an important role in all parts of this
paper:

Li,j := L(X[1, i]; Y [1, j ]),
Z

[m]
i,j := 1Mm(X[1, i], Y [1, j ]),

Z
[m]
k :=

∑
{(i,j) : i+j=k}

Zi,j .

We will use the simplified notation Z
[m]
i,j ≡ Zi,j and Z

[m]
k ≡ Zk whenever we treat m as a fixed

parameter. It follows immediately from (2.4) and (2.5) that

0 ≤ Zk ≤ (k + 1 − 2m)+, (2.7)

that is, Zk ≡ 0 for k < 2m.

Definition 2.2. The following measure on N plays a fundamental role in our analysis. For
k ∈ N, let

ν[m](k) ≡ ν(k) := E[Zk],
and let this measure be extended to subsets of N by σ -additivity. (The equivalent notation holds
in the same situation as above.)

In Lemma 3.3 we will prove that ν(N) ≤ |A|m. Furthermore, the following trivial identity
is sometimes useful:

ν(k) =
∑

{(i,j) : i+j=k}
P[Li,j = m, Li−1,j = m − 1, Li,j−1 = m − 1]. (2.8)
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We are now ready to prove one of the key inequalities behind our approach. For any z ∈ R, let
�z� and �z� denote the integers obtained by rounding z down and, respectively, up.

Lemma 2.1. Let m ∈ N and q ∈ [0, 1], and let ν∗�qn/m� be the �qn/m�-fold convolution of
the measure ν with itself. Then

P[Ln ≥ qn] ≤ ν∗�qn/m�([0, 2n]).
Proof. The family of strings Sn

2 (q) := ⋃
{(i,j) : i+j=2n}{(x, y) ∈ A

i × A
j : L(x; y) ≥ qn}

contains the set Sn
1 (q) defined above. Let us furthermore define

S
n,m
3 (q) :=

{
(x1 · · · x�qn/m�r1, y1 · · · y�qn/m�r2) :

(xi, yi) ∈ Mm for all i ∈ [1, �qn/m�], r1, r2 ∈ A
∗,

�qn/m�∑
i=1

|xi | +
�qn/m�∑

i=1

|yi | + |r1| + |r2| = 2n

}
.

We claim that Sn
2 (q) ⊆ S

n,m
3 (q). In fact, for any pair (x, y) ∈ Sn

2 (q), there exist two strictly
increasing maps, π : [1, �qn�] → [1, |x|] and σ : [1, �qn�] → [1, |y|], such that xπ = yσ , and
it is possible to choose π and σ to be minimal in the sense that, for each pair (π̂, σ̂ ) ∈ 	|x|×	|y|
that satisfies |π̂ | = |σ̂ | = �qn�, xπ̂ = yσ̂ , and

π̂(i) ≤ π(i), σ̂ (i) ≤ σ(i), i ∈ [1, �qn�],
we have π̂ = π and σ̂ = σ . It is easy to see that, when π and σ are minimal in this sense,

(xi, yi) := (xπ(m(i−1))+1 · · · xπ(mi), yσ(m(i−1))+1 · · · yσ(mi))

is an m-match for all i ∈ [1, �qn/m�]. Therefore, (x1 · · · x�qn/m�r1, y1 · · · y�qn/m�r2) ∈
Sn

3 (q), where r1 := xπ(�qn/m�)+1 · · · x|x| and r2 := yσ(�qn/m�)+1 · · · y|y|. This shows that
Sn

2 (q) ⊆ S
n,m
3 (q), as claimed above.

It is now useful to introduce the index set

� (q, n, m) =
{
κ = (κ1, . . . , κ�qn/m�) ∈ N

�qn/m� :
�qn/m�∑

i=1

κi ≤ 2n

}
.

For κ ∈ � (q, n, m), we define

S
n,m
3 (q, κ) := {(x1 · · · x�qn/m�r1, y1 · · · y�qn/m�r2) ∈ S

n,m
3 (q) :

|xi | + |yi | = κi for all i ∈ [1, �qn/m�]},
so we can write S

n,m
3 (q) = ⋃

κ∈� (q,n,m) S
n,m
3 (q, κ). It follows that

P
[
[[Sn,m

3 (q)]]
]

≤
∑

κ∈� (q,n,m)

P
[
[[Sn,m

3 (q, κ)]]
]

≤
∑

κ∈� (q,n,m)

∑
Sn

3 (q,κ)

P
[
[[(x1 · · · x�qn/m�r1, y1 · · · y�qn/m�, r2)]]

]

≤
∑

κ∈� (q,n,m)

∑
{(xi ,yi )∈Mm : |xi |+|yi |=κi ∀i∈[1,�qn/m�]}

�qn/m�∏
i=1

P
[
[[xi, yi]]

]
.
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Since

ν∗�qn/m�([0, 2n]) =
∑

κ∈� (q,n,m)

�qn/m�∏
i=1

ν(κi) (2.9)

and
�qn/m�∏

k=1

ν(κk) =
∑

{(xi ,yi )∈Mm : |xi |+|yi |=κi ∀i∈[1,�qn/m�]}

�qn/m�∏
i=1

P
[
[[ak, bk]]

]
,

we conclude that
P
[
[[Sn,m

3 (q)]]
]

≤ ν∗�qn/m�([0, 2n]). (2.10)

The claim of the lemma now follows from the relation

{ω ∈ � : Ln(ω) ≥ qn} = [[Sn
1 (q)]] ⊆ [[Sn

2 (q)]] ⊆ [[Sn,m
3 (q)]].

3. A large deviations-based upper bound on γ

In this section we apply large deviation techniques to find the exponential rate of the
bound (2.10). Since ν is not a probability measure in general, we derive the relevant results
from first principles. Using measure-theoretic notation, we have

(∫
N

et (2m/q−x) dν(x)

)�qn/m�
=

∑
κ∈N�qn/m�

exp

(
t

�qn/m�∑
i=1

(
2m

q
− κi

)) �qn/m�∏
i=1

ν(κi)

≥
∑

κ∈� (q,n,m)

exp

(
t

�qn/m�∑
i=1

(
2m

q
− κi

)) �qn/m�∏
i=1

ν(κi)

≥ e−2mt/qν∗�qn/m�([0, 2n]),

where the last inequality holds since every κ ∈ � (q, n, m) satisfies the relation

�qn/m�∑
i=1

(
2m

q
− κi

)
≥ −2m

q
.

Equation (2.9) therefore implies that

ν∗�qn/m�([0, 2n]) ≤
(∫

N

et (2m/q−x) dν(x)

)�qn/m�
e2mt/q . (3.1)

This leads to the following theorem, providing the main tool for the construction of our upper
bounds on γ .

Theorem 3.1. Let q ∈ [0, 1]. If there exists a t > 0 such that
∑

k∈N
et (2m/q−k)ν(k) < 1, then

γ < q.

Proof. If the stipulated condition holds then, for all sufficiently large n, the right-hand side
of (3.1) is less than 1. The result then follows from Lemma 2.1 and (2.2).
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Definition 3.1.

qm := inf

{
q ∈ [0, 1] : there exists a t > 0 such that

∑
k∈N

et (2m/q−k)ν(k) < 1

}
. (3.2)

This quantity will be studied in the remainder of this section.
Theorem 3.1 revealed that γ ≤ qm for all m ∈ N. We now set out to prove that (qm)N is a

consistent sequence of upper bounds on γ in the sense that limm→∞ qm = γ ; see Theorem 3.2.
The analysis that leads to this result also serves as a basis for understanding the practical Monte
Carlo methods of Section 4. We start by recalling the following large deviation inequality.

Lemma 3.1. (Azuma–Hoeffding.) Let t ∈ N, let F = ⋃
s∈N0

Fs be a filtration, and let
V0, V1, . . . , Vt be an F -adapted martingale such that V0 = 0. Let a > 0 and � > 0, and
let us assume that, for all s ∈ [0, t − 1], we have |Vt − Vt+1| ≤ a almost surely. Then the
following inequality holds:

P[Vt ≥ �t] ≤ e−t�2/(2a2).

Lemma 3.1 is due to Azuma [8] and Hoeffding [18]. A modern proof can be found in,
e.g. [28, Section 11.1.4]. We now use Lemma 3.1 to show that Li,j decays exponentially.

Lemma 3.2. For all � ≥ 0, we have

P

[
Li,j ≥ i + j

2
(γ + �)

]
≤ e−(i+j)�2/8.

Proof. If σX and σY denote the respective left-shift operators on the X and Y components of
(X, Y ), then Li+j,j+i ≥ Li,j + Lj,i ◦ (σ i

X, σ
j
Y ). Since Li,j and Lj,i ◦ (σ i

X, σ
j
Y ) are identically

distributed, this implies that E[Li+j,j+i] ≥ 2 E[Li,j ]. Since subadditivity furthermore implies
that E[Li+j,j+i] ≤ γ (i + j), we obtain E[Li,j ] ≤ γ (i + j)/2 and, hence,

P

[
Li,j ≥ i + j

2
(γ + �)

]
≤ P

[
Li,j ≥ E[Li,j ] + (i + j)

2
�

]
. (3.3)

Let us next consider a fixed path � : [0, i + j ] → Z
2 that leads from �(0) = (0, 0) to

�(i + j) = (i, j) by moving one unit in the positive direction of either coordinate in each step.
Let r(k) and s(k) be defined by �(k) = (r(k), s(k)), let F0 := {R, ∅} be the trivial σ -algebra
on R, and let

Fk := σ(Xu, Yv : u = 1, . . . , r(k), v = 1, . . . , s(k)), k = 1, . . . , i + j.

Here and elsewhere the notation extends in a natural way to the case where an index set is
empty. For example, if r(k) = 0 then Fk = σ(Y1, . . . , Ys(k)). For all k ∈ [0, i + j ], let
us define Vk := E[Li,j − E[Li,j ] | Fk]. Then the sequence V0, V1, . . . , Vi+j is a martingale
that satisfies the conditions of Lemma 3.1 with a = 1. By applying the lemma, we obtain the
inequality

P

[
Li,j − E[Li,j ] ≥ (i + j)

�

2

]
≤ e−(i+j)�2/8.

Combined with (3.3), this yields the result.
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Remark 3.1. By applying the Azuma–Hoeffding lemma to the martingale (−V0, . . . ,−Vi+j ),
where Vk is as defined in the proof of Lemma 3.2, we find the similar inequality

P

[
Li,j − E[Li,j ] ≤ − (i + j)

2
�

]
≤ e−(i+j)�2/8. (3.4)

As a consequence of Lemma 3.2, we can now bound ν(k) for small k.

Corollary 3.1. For k ≤ 2m/γ and �′
k = 2m/k − γ , we have

ν(k) ≤ 2m|A|e−(�′
k)

2k/8.

Proof. For k ≤ 2m/γ we have �′
k ≥ 0. By applying (2.8) and Lemma 3.2, we obtain

ν(k) ≤
∑

{(i,j) : i+j=k}
P[Li,j ≥ m]

=
∑

{(i,j) : i+j=k}
P

[
Li,j ≥ i + j

2
(γ + �′)

]

≤ 2m

γ
e−(�′

k)
2k/8.

The claim now follows from (2.3).

Next we show that ν is a finite measure.

Lemma 3.3. For every m ∈ N,
∑

k≥1 ν(k) ≤ |A|m.

Proof. Let m ∈ N be fixed, so that the measure ν is well defined. The relations Z0 ≡ 0
and Zm := min{k ≥ 0 : Z

[m]
m,k = 1} define an increasing sequence, (Zm)N, of random variables,

where Z
[m]
i,j is as defined in Section 2. In particular, we have Z1 = min{k ≥ 1 : Yk = X1} and

P[Z1 = k] =
∑
a∈A

ξ(a)(1 − ξ(a))k−1ξ(a),

whence E[Z1] = |A|. Furthermore, Zk+1 − Zk is independent of Zl , l < k, and distributed
identically to Z1, which implies that E[Zm] = m E[Z1] = m|A|. It now follows from (2.4),
(2.5), and (2.6) that

∑
k≥1

ν(k) = E

[ ∑
i,j>0

Zi,j

]
≤ E[Zm − m] (3.5)

≤ m(|A| − 1).

This lemma allows us to extend Corollary 3.1 and bound ν(k) for all k.

Corollary 3.2. For all a ∈ A, let η(a) := (1 − ξ(a))1/m. Then, for all k ∈ N, we have

ν(k) ≤
(

max
a∈A

η(a)
)k−2 ∑

a∈A

mξ(a)
k − (k − 1)η(a)

(1 − η(a))2 . (3.6)
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Proof. We continue to use the notation in the proof of Lemma 3.3 and the facts derived there.
For k < m we have ν(k) = 0 and (3.6) is trivially true. For k ≥ m, (2.6) shows that Z

[m]
k > 0

implies k ≤ Zm. Therefore,

ν(k) = E[Z[m]
k ] =

∞∑
r=1

P[Z[m]
k ≥ r]

=
∞∑

s=m

s∑
r=1

P[Z[m]
k ≥ r | Zm = s] P[Zm = s]

≤
∞∑

s=k

s P

[ ∞∑
i=1

(Zi − Zi−1) ≥ s

]

≤
∞∑

s=k

s

m∑
i=1

P

[
Zi − Zi−1 >

s − 1

m

]

=
∞∑

s=k

sm
∑
a∈A

ξ(a)(1 − ξ(a))�(s−1)/m�

≤
∑
a∈A

mξ(a)

η(a)

∞∑
s=k

sη(a)s−1

=
∑
a∈A

η(a)k−2mξ(a)
k − (k − 1)η(a)

(1 − η(a))2 .

Our next result is instrumental in proving the consistency of the bounds qm.

Lemma 3.4. Let � > 0 be such that q := � + γ ≤ 1. Then, for any value of t such that
0 < t ≤ �/(8|A|2) and any value of m such that m ≥ max{q2/(�(1 − q2)), q/(2 − �q)}, we
have ∞∑

k=1

et (2m/q−k)ν(k) ≤ (m|A| + 4m2|A|2)e−t�m. (3.7)

Proof. It follows from the hypotheses that 1/γ = �/(γ q) + 1/q. Thus, 1/γ ≥ � + 1/q

and

a := 2m

q
+ m� <

2m

γ
< 2m|A|, (3.8)

where the last inequality follows from (2.3). Since 2m/q − k ≤ 2m/q − a = −�m for all
k ≥ a, we have ∑

k≥a

et (2m/q−k)ν(k) ≤ e−t�m
∑
k≥a

ν(k) ≤ m|A|e−t�m, (3.9)

where the second inequality follows from Lemma 3.3. Next, note that (2.4) implies ν(k) = 0
for all k < 2m. Together with (3.8) and Corollary 3.1, this implies that

∑
k<a

et (2m/q−k)ν(k) ≤ 2m|A|
�a−1�∑
k=2m

et (2m/q−k)e−(�′
k)

2k/8

≤ 2m|A|
a−1∑

k=2m

et (2m/q−k)e−(�′
k)

2m/4, (3.10)
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where, recall, �′
k = 2m/k − γ . Introducing the new variable k̄ := a − k, and using the fact

that
�a� − k − m� = �2m/q + m�� − m� − k ≥ 2m/q − k,

we find that

�a−1�∑
k=2m

et (2m/q−k)e−(�′
k)

2m/4 ≤ e−tm�

�a�−2m∑
k̄=1

et k̄e−(�′′
k̄ )

2m/4, (3.11)

where

�′′
k̄ := 2m

�a� − k̄
− γ = 2m

�a�
1

1 − k̄/�a� − γ ≥ 2m

�a� − γ + 2mk̄

�a�2 .

Because of the hypothesis on m, we have

2m

�a� − γ ≥ 2m

a + 1
− γ = q

1 + (q/2)(� + 1/m)
− γ

≥ q

(
1 − q

2

(
� + 1

m

))
− γ = � − q2

2

(
� + 1

m

)

≥ �

2
,

and combined with (3.8) this yields

(�′′
k̄)

2 ≥
(

�

2
+ k̄

2m|A|2
)2

>
�k̄

2m|A|2 . (3.12)

Substituting (3.12) into (3.11), we obtain

�a−1�∑
k=2m

et (2m/q−k)e−(�′
k)

2m/4 (3.12)≤ e−tm�

�a�−2m∑
k̂=1

et k̄−�k̄/(8|A|2) ≤ e−tm�(�a� − 2m)

(3.8)
< 2m|A|e−tm�,

where the second inequality is a consequence of the hypothesis on t . The result now follows
from (3.10) and (3.9).

We are finally ready to establish the consistency of the sequence (qm)N, defined in (3.2).

Theorem 3.2. limm→∞ qm = γ .

Proof. Because of Theorem 3.1 we already know that qm ≥ γ for all m ∈ N. The result
will thus be shown if we can establish that

lim sup
m→∞

qm ≤ γ. (3.13)

For a fixed ε > 0, let us choose � and t as functions of m, as follows: � := m−1/(2+ε) and
t := �/(8|A|2). Then, for all sufficiently large m, the conditions of Lemma 3.4 are satisfied.
Moreover, we have

e−t�m = exp

(
−mε/(2+ε)

8|A|2
)

,
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meaning that, again for sufficiently large m, (m|A| + 4m2|A|2)e−t�m < 1. Lemma 3.4 thus
implies that there exists an m0 ∈ N such that, for all m ≥ m0,

∞∑
k=1

et (2m/q−k)ν(k) < 1

and, thus, by (3.2), qm ≤ γ + � = γ + m−1/(2+ε), showing that (3.13) is indeed true.

4. Monte Carlo simulation

Recall that Theorem 3.1 revealed that the inequalities 0 ≤ q ≤ 1, t > 0, and∑
k∈N

et (2m/q−k)ν(k) < 1 (4.1)

imply that q is an upper bound on the Chvátal–Sankoff constant, γ . This led to a conceptual
algorithm to compute a sequence of consistent upper bounds, (qm)N. In order to use this tool in
a practical algorithm, the measures ν[m] have to be approximated via Monte Carlo simulation.
In this section we derive theoretical bounds on the convergence rates of this approach.

We continue to use the notation of Sections 2 and 3, and we introduce the random variables

W(t, q) :=
∑
k>0

et (2m/q−k)Zk, (4.2)

such that E[W(t, q)] = ∑
k>0 et (2m/q−k)ν(k) is the expression of interest in (4.1). Equa-

tions (2.4)–(2.6) imply that the series in (4.2) contains only finitely many terms for every
ω ∈ �. As in previous sections, we drop the dependence on m from the notation, for simplicity.

Let {X�
i : i, � ∈ N} and {Y �

j : j, � ∈ N} be two sets of independent random variables with
common distribution ξ on A, and let

Z�
i,j := 1Mm(X�[1, i], Y �[1, j ]),
Z�

k :=
∑

i+j=k

Z�
i,j ,

W�(t, q) :=
∑
k>0

et (2m/q−k)Z�
k.

The random variable Z�
k counts the number of m-matches of length k that occur starting from

the first letters in the �th pair of random sequences (X�, Y �). With these conventions,

ν̂k := 1

�0

�0∑
�=1

Z�
k (4.3)

is an unbiased estimator of ν(k) for all �0 ∈ N and

1

�0

�0∑
�=1

W� =
∑
k>0

et (2m/q−k)ν̂k

is an unbiased estimator of the left-hand side of (4.1).
The main result of this section is the following theorem, which gives us a tool with which to

determine the value of the parameter m and the number, �0, of simulations necessary to obtain
an estimator, q̂m, of γ to within a specific precision and at a given confidence level.
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Theorem 4.1. Let α, δ ∈ (0, 1) and �0 ∈ N be fixed, and for all m ∈ N let

�m := m−α/2,

tm := �m

16|A|2 ,

q̂m := �m + inf

{
q > 0 :

∞∑
k=1

etm(2m/q−k)ν̂k < 1

}
. (4.4)

Then there exists a number, m0 ≡ m0(α, ξ, δ), such that, for all m ≥ m0,

P[γ ≤ q̂m ≤ γ + 2�m] ≥ 1 − e−�0(1−δ)2/2 − 2/�0. (4.5)

Furthermore, we have

m0 < max

{
O

((
1 − γ

2

)−2/α)
, O

((
|A|4 log

(
2

δ

))(1+ε)/(1−α)[
1 − log

(
min
a∈A

ξ(a)
)])}

,

where ε > 0 is a small, arbitrary number.

In (4.5) it is interesting to note that, for fixed α, δ, and ξ , the approximation error, 2�m, is a
function of m only; hence, the only way to approximate the true value of γ to higher precision
is to increase m. On the other hand, the confidence level is solely a function of the number, �0,
of Monte Carlo simulations.

We prepare the proof of Theorem 4.1 via three preliminary results. The first lemma shows
that when m is large enough, an m-match of moderate length occurs with high probability.

Lemma 4.1. Let α and �m be as defined in Theorem 4.1 and consider the event

B := {there exist i and j such that Zi,j = 1 and i + j ≤ 2�m/γ + m�m/2�}. (4.6)

Then there exists a number, m1 ≡ m1(α, ξ), such that, for all m ≥ m1,

P[B] ≥ 1 − exp

(
−m1−α|A|−4

256

)
.

Proof. Alexander [2] proved the existence of a constant, C > 0, such that 0 ≤ γ −
E[Ln]/n ≤ C

√
log(n)/n for all n ≥ 1, independently of ξ and A. A more quantitative

version of this result is obtained as follows: by choosing λ = 2 and θ = 3 in Proposition 2.4
of [2], a relaxation of Equation (2.13) of [2] shows that

0 < γ − E[Ln]
n

< 7

√
log n

n
for all n ≥ 16. (4.7)

Let k′ = m/γ + m�m/2 and n′ = �k′�. Then, having m ≥ 16 implies that

n′ ≥ k′ > m ≥ 16. (4.8)

Moreover, if m ≥ m2(α, ξ) := inf{y > 0 : log x < x1−α/(2 × 562|A|3) for all x ≥ y},
then (2.3) implies that

log m <
m1−αγ 3

2 × 562 . (4.9)
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Finally, if m ≥ m3(α, |A|) := (2 × 562|A|3 log(|A| + 1
2 ))1/(1−α), then (2.3) implies that

log

(
1

γ
+ 1

2

)
<

m1−αγ 3

2 × 562 . (4.10)

For m ≥ m4(α, |A|) := max{m2(α, |A|), m3(α, |A|)}, we thus have

log k′ = log(m/γ + m�m/2)

= log m + log
(
1/γ + 1

2

)
(4.9),(4.10)

<
m1−αγ 3

562

<
m−αγ 4

562

(
m

γ
+ m × m−α/2

2

)

=
(

�mγ 2

8

)2
k′

72 . (4.11)

Equations (4.7), (4.8), and (4.11) now show that, for m ≥ m5(α, ξ) := max{16, m4}, we have

0 < γ − E[Ln′ ]
n′ < 7

√
log n′

n′ ≤ 7

√
log k′

k′ <
�mγ 2

8
. (4.12)

With the notation γn′ := E[Ln′ ]/n′, (4.12) and (2.3) imply that

γ − γn′ − �mγ 2

4
≤ −�mγ 2

8
≤ −�m|A|−2

8
. (4.13)

Now note that if the event D := {Ln′ ≥ m} occurs, then an m-match of total length less than
or equal to 2n′ must have appeared within (X[1, n′], Y [1, n′]). Hence, D ⊆ B and it follows
that

P[� \ B] ≤ P[� \ D] = P

[
Ln′

n′ − γn′ <
m

n′ − γn′
]
. (4.14)

Let us now assume that m ≥ 22/α , whence �mγ/2 < m−α/2/2 < 1
4 , and observe that for

x ∈ [0, 1
4 ] we have 1/(1 + x) ≤ 1 − x/2. Applying this inequality to x = �mγ/2, we find that

m

n′ − γn′ ≤ m

k′ − γn′ = γ

1 + �mγ/2
− γn′ ≤ γ − γn′ − �mγ 2

4
.

Substituting this into (4.14) yields

P[� \ B] ≤ P

[
Ln′

n′ − γn′ ≤ γ − γn′ − �mγ 2

4

]
. (4.15)

Since (4.13) and (4.15) hold for m ≥ m1(α, ξ) := max{m5, 22/α}, we obtain

P[� \ B] ≤ P

[
Ln′

n′ − E[Ln′ ]
n′ ≤ −�m|A|−2

8

]

≤ exp

(
−n′ �2

m|A|−4

256

)
(4.16)

≤ exp

(
−m1−α|A|−4

256

)
, (4.17)

where (4.16) follows from (3.4) and (4.17) from n′ > m and �m = m−α/2.
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Our second lemma shows that if m is sufficiently large then the probability of finding an
estimator value q̂m significantly below γ is exponentially small in the number of Monte Carlo
simulations.

Lemma 4.2. Let α, δ, �m, and tm be as defined in Theorem 4.1, and ν̂k as defined in (4.3).
Then there exists a number, m6 ≡ m6(α, ξ, δ), such that, for all m ≥ m6, t ≥ tm, and
q ∈ (0, γ − �m),

P

[ ∞∑
k=1

et (2m/q−k)ν̂k < 1

]
≤ e−�0(1−δ)2/2.

Proof. Since q, γ < 1, the assumption |γ −q| ≥ �m implies that |2m/γ −2m/q| ≥ 2m�m.
This shows that if q ≤ γ − �m and k ≤ 2�m/γ + m�m/2�, then 2m/q − k ≥ m�m − 2. It
follows that

∞∑
k=1

et (2m/q−k)Zk ≥
2�m/γ+m�m/2�∑

k=1

et (2m/q−k)Zk ≥ et (�mm−2) 1B, (4.18)

where 1B denotes the indicator function of the event B, defined in (4.6). By definition, we have

∞∑
k=1

et (2m/q−k)ν̂k = 1

�0

�0∑
�=1

∞∑
k=1

et (2m/q−k)Z�
k.

It therefore follows from (4.18) that

P

[ ∞∑
k=1

et (2m/q−k)ν̂k < 1

]
≤ P

[
1

�0

�0∑
�=1

et (�mm−2) 1�
B < 1

]
, (4.19)

where (1�
B)�∈N denotes a sequence of independent, identically distributed copies of 1B . Now,

for all
m ≥ m7(α, ξ, δ) := max{22/α, 1 + 16|A|2 log(2/δ)}1/(1−α)

and t ≥ tm, we have

et (m�m−2) ≥ exp

(
m1−α − 2m−α/2

16|A|2
)

> exp

(
m1−α − 1

16|A|2
)

≥ 2

δ
. (4.20)

Furthermore, it follows from Lemma 4.1 that, for

m ≥ m8(α, ξ, δ) := max{m1, (256|A|4 log(2/δ))1/(1−α)},
we have

E[1�
B ] = P[B] ≥ 1 − exp

(
−m1−α|A|−4

256

)
≥ 1 − δ

2
. (4.21)

Equations (4.20) and (4.21) show that, for m ≥ m6 := max{m7, m8} and t ≥ tm, we have

P

[
1

�0

�0∑
�=1

et (m�m−2) 1l
B < 1

]
≤ P

[
1

�0

�0∑
�=1

1�
B <

δ

2

]

≤ P

[
1

�0

�0∑
l=1

(1l
B − E[1l

B ]) ≤ −(1 − δ)

]
. (4.22)
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Applying Lemma 3.1 with a = 1 to the martingale defined by V0 ≡ 0, F0 = {∅, R}, and

Vk =
k∑

�=1

(E[1�
B ] − 1�

B), Fk = σ(V1, . . . , Vk), k = 1, . . . , �0,

we find that

P

[
1

�0

�0∑
�=1

(E[1�
B ] − 1�

B) ≥ 1 − δ

]
≤ e−�0(1−δ)2/2.

Together with (4.19) and (4.22), this proves the claim.

The third lemma will allow us to bound var(W) in the proof of Theorem 4.1.

Lemma 4.3. Let α, �m, and tm be as defined in Theorem 4.1. Then, for all m ≥ m9(α, ξ) :=
(1 − γ )−2/α , q ∈ [γ + �m, 1], and t ∈ (0, tm], we have

E

[( ∞∑
k=1

et (2m/q−k)Zk

)2]
≤

(
34m4|A|(|A| + 1)3 + 2m|A|

mina∈A ξ(a)

)
e−2tm�m.

Proof. The condition

m ≥ m9(α, ξ) := (1 − γ )−2/α

is only necessary to guarantee that [γ + �m, 1] �= ∅. Let km := 2m/q + m. Since q > γ ≥
|A|−1, by (2.3), we have

km < 2m(|A| + 1). (4.23)

We will use the splitting

E

[( ∞∑
k=1

et (2m/q−k)Zk

)2]
≤ 2 E

[( ∑
k≤km

et (2m/q−k)Zk

)2]
+ 2 E

[( ∑
k>km

et (2m/q−k)Zk

)2]
(4.24)

and bound each term on the right-hand side separately. For k > km, we have 2m/q − k <

−m < −�mm and, hence,

∑
k>km

et (2m/q−k)Zk ≤ e−t�mm
∑
k>0

Zk

(3.5)≤ e−t�mm
m∑

k=1

(Zk − Zk−1),

where the random variables Zk , k = 0, . . . , m, are as defined in the proof of Lemma 3.3. It
follows from that proof that the random variables Zk − Zk−1 are independent and identically
distributed with moment generating function

�(s) =
∑
a∈A

ξ2(a)s

1 − s(1 − ξ(a))
.
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Since Z0 ≡ 0, this implies that, on the one hand,

E

[( ∑
k>km

et (2m/q−k)Zk

)2]
≤ e−2tm�m E

[( m∑
k=1

(Zk − Zk−1)

)2]

= e−2t�mm

(
m E[Z2

1] + 2

(
m

2

)
E[Z1]2

)
= e−tm�m(m�′′(1) + m�′(1) + m(m − 1)�′(1)2)

= e−2tm�m

(
2m

∑
a∈A

1

ξ(a)
− m|A| + m(m − 1)|A|2

)
. (4.25)

On the other hand,( ∑
k≤km

et (2m/q−k)Zk

)2

≤
( ∑

k≤km

Zk

)( ∑
k≤km

e2t (2m/q−k)Zk

)

≤ k2
m

∑
k>0

e2t (2m/q−k)Zk, (4.26)

where the first inequality follows from the Cauchy–Schwartz inequality and the second inequal-
ity follows from (2.7). Since 2t ∈ (0, 2tm] and � = �m satisfy the conditions of Lemma 3.4,
and since q ≤ 1, equations (3.7), (4.23), and (4.26) imply that

E

[( ∑
k≤km

et (2m/q−k)Zk

)2]
≤ 4m3|A|(|A| + 1)2(1 + 4|A|m)e−2tm�m. (4.27)

Using (4.24), (4.25), and (4.27),we readily obtain the result.

We are finally ready to give a proof of Theorem 4.1.

Proof of Theorem 4.1. Consider the events

Em,1 :=
{ ∞∑

k=1

etm(2m/q−k)ν̂k ≥ 1 for all q ∈ (0, γ − �m)

}
,

Em,2 :=
{ ∞∑

k=1

etm(2m/(γ+�m)−k)ν̂k < 1

}
.

Equation (4.4) shows that Em,1 ⊆ {γ ≤ q̂m} and Em,2 ⊆ {q̂m ≤ γ + 2�m}, which implies that

1 − P[γ ≤ q̂m ≤ γ + 2�m] ≤ P[� \ Em,1] + P[� \ Em,2]. (4.28)

However, Lemma 4.2 shows that, for all m ≥ m6,

P[� \ Em,1] ≤ e−�0(1−δ)2/2. (4.29)

To bound the second term in (4.28), let W(t, q) be as defined in (4.2). Then

E[W(tm, γ + �m)] =
∞∑

k=1

etm(2m/(γ+�m)−k)ν(k).
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By Chebyshev’s inequality,

P

[∣∣∣∣
∞∑

k=1

etm(2m/(γ+�m)−k)ν̂k − E[W(tm, γ + �m)]
∣∣∣∣ ≥ 1

2

]

= P

[∣∣∣∣ 1

�0

�0∑
�=1

W�(tm, γ + �m) − E[W(tm, γ + �m)]
∣∣∣∣ ≥ 1

2

]

≤ 4 E[W(tm, γ + �m)2]
�0

. (4.30)

However, for all m ≥ m9, t = tm and � = �m satisfy the conditions of Lemma 3.4, meaning
that, for all m ≥ max{m9, m10} with

m10(α, ξ) := inf{y > 0 : (x|A| + 4x2|A|2)e−x1−α/(16|A|2) ≤ 1
2 for all x ≥ y},

we have
E[W(tm, γ + �m)] ≤ 1

2 . (4.31)

Likewise, Lemma 4.3 shows that, for all m ≥ max{m9, m11} with

m11 ≡ m11(α, ξ)

:= inf

{
y > 0 :

(
34x4|A|(|A| + 1)3 + 2x|A|

mina∈A ξ(a)

)
e−x1−α/(8|A|2) ≤ 1

2
for all x ≥ y

}
,

we have
E[W(tm, γ + �m)2] ≤ 1

2 . (4.32)

Therefore,

P[� \ Em,2]
(4.31)≤ P

[∣∣∣∣
∞∑

k=1

etm(2m/(γ+�m)−k)ν̂k − E[W(tm, γ + �m)]
∣∣∣∣ ≥ 1

2

]

(4.30),(4.32)≤ 2

�0
. (4.33)

The inequalities (4.28), (4.29), and (4.33) show that the theorem holds for

m0(α, ξ, δ) = max{m6, m9, m10, m11}.
The claim concerning the order of m0 as a function of α, ξ , and δ is easy to check directly.

We use the remainder of this section to give a brief discussion of the complexity of the
algorithm that is implicitly defined in the statement of Theorem 4.1: given a confidence level
� ∈ (0, 1) and an approximation error � ∈ (0, 1), we wish to simulate an estimate, q̂m,
such that

P[γ ≤ q̂m ≤ γ + �] ≥ �. (4.34)

Corollary 4.1. Let α ∈ (0, 1). In order to compute an estimate, q̂m, that satisfies (4.34), it
suffices to choose m = O(�−2/α) and to average over �0 = O(1/(1 − �)) Monte Carlo runs.
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Proof. Let us choose m ≥ max{(2/�)2/α, m0}, �0 ≥ 4/(1 − �), and

δ ≤ 1 − √
(2/�0) log(2/�0).

Then 2�m ≤ � and
e−�0(1−δ)2/2 ≤ �0/2.

Furthermore, Theorem 4.1 implies that

P[γ ≤ q̂m ≤ γ + �] ≥ P[γ ≤ q̂m ≤ γ + 2�m] ≥ 1 − e−�0(1−δ)2/2 − 2

�0
≥ 1 − 4

�0
≥ �.

We remark that the value of α that minimizes the required size of m depends on � but is
bounded away from both 0 and 1. Let us now determine an estimate of the expected number of
elementary computer operations required to compute q̂m when m and �0 are chosen as in the
proof of Corollary 4.1. For simplicity, we use a computational model that assumes a unit cost
per real-number operation. There is no a-priori upper bound on the work required to generate
the �0 independent, identically distributed pairs of sequences (X�, Y �). However, the �th pair
has to be generated only up to the finite, random length that contains the full set of m-matches
that start at the initial positions within X� and Y �. Lemma 3.3 implies that the expected number
of terms in (X�, Y �) is smaller than m(|A| + 1). Furthermore, Corollary 3.2 shows that it is
exponentially rare in m that more than O(m) terms need to be generated. Computing the (finite)
set of all m-matches contained in a pair (X�, Y �) thus requires the evaluation of a tableau of
size O(m) × O(m) in the dynamic programming algorithm of [27]. Since each entry requires
the same amount of work to evaluate, it takes O(m2) work to evaluate the tableau and extract
all the m-matches contained in the pair (X�, Y �). There are �0 of these computations, so the
total work is O(�0m

2). Computing q̂m from these data takes only O(�0m) extra time, so the
total complexity for simulating q̂m is seen to be O(�0m

2).
Corollary 4.1 now implies that computing an upper bound on γ to within an approximation

error of � and at the confidence level � takes an amount of work

O((1 − �)−1�−4/α). (4.35)

We remark that the complexity estimate (4.35) is an upper bound derived on the basis of
conservative estimates. The practical complexity seems to be considerably lower, as we will
see in the next section.

5. Monte Carlo simulation in practice

The complexity bound (4.35) is interesting mainly from a theoretical perspective, as it is
valid only for very large values of m. However, our theoretical analysis was conservative and
relied on having q̂m ≥ γ +�m. In order to use smaller values of m we need to take a statistical
approach. Let there be a given confidence level, � ∈ (0, 1). As a first step we will define
a function v̂(t, q) which is larger than var(W(t, q)) with high probability, for any fixed pair
(t, q) ∈ R

2+. We will argue that the estimate

P[v̂(t, q) > var(W(t, q))] ≥ 1 − 1 − �

2
(5.1)

is heuristically conservative, and use this bound in subsequent computations. There is strong
empirical evidence that the bound (5.1) holds, but we do not claim that the results of this
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section are rigorous mathematical conclusions; instead, the method described here should be
considered as a heuristic.

For all k ∈ N and for fixed r, s, u ∈ N, let {Zh,j
i,k : 1 ≤ h ≤ r , 1 ≤ j ≤ s, 1 ≤ i ≤ u} be

independent, identically distributed copies of Zk independent of the variables Z�
k used in the

definition of ν̂k , and for all (t, q) ∈ R
2+ let

W
h,j
i (t, q) :=

∑
k>0

et (2m/q−k)Z
h,j
i,k ,

Uh
i (t, q) := 1

s

s∑
j=1

W
h,j
i (t, q),

Ūi(t, q) := 1

r

r∑
h=1

Uh
i (t, q),

v̂i(t, q) := 1

r − 1

r∑
h=1

(Uh
i (t, q) − Ūi(t, q))2.

Then v̂i (t, q) is an unbiased estimator of var(W(t, q)). In order to render (5.1) a plausible
assumption, it is important to choose s to be not too small: the larger s is chosen to be, the more
symmetric the distribution of the estimators v̂i (t, q) becomes around their mean, var(W(t, q)).
This phenomenon occurs because the distribution tails of the random variables Uh

i (t, q) decay
faster for larger s, and averages of (Uh

i (t, q) − Ūi(t, q))2 thus converge (weakly) to a Gaussian
variable much faster. It is important to realize that, although it follows from the results of
previous sections that the distribution tails of Uh

i (t, q) decay exponentially for all choices
of s, this happens only for large values of Uh

i (t, q); thus, empirically (and for numerical
purposes), the tail decay is algebraic. This effect is illustrated in Figure 1, where the results
of 1000 independent simulations of W(t, q) are displayed for the case where ξ is the uniform
distribution over the binary alphabet, m = 100, t = 0.3, and q = 0.825. This data was used to
compute 50 samples of v̂i (t, q), first for r = 1000 and s = 1, then for r = 200 and s = 5, and
finally for r = 10 and s = 100, i.e. the same data was used but the averaging, as determined by
the value of s, is different in each case. Note that the tail decay of Uh

i (t, q) becomes steeper and
the histogram of the samples v̂i (t, q) becomes more symmetrical as the value of s increases.

Since the distribution of v̂i (t, q) is not perfectly symmetrical for any choice of s, enough
data need to be simulated in numerical experiments to make symmetry a reasonable heuristic
assumption. The criterion for symmetry used in our experiments was that the generated samples
of v̂i (t, q) not reject the null hypothesis of a Gaussian distribution when a Lilliefors test on the
5% level was applied to 10 sample points. In the method described below we will use the values
of (t, q) as the optimizers of an optimization problem: for a certain function �(t, q), we set
t (q) = arg mint≥0 �(t, q) and then compute q̂ = min{q > 0 : �(t(q), q) ≤ 1}. We thus need
to design our numerical algorithm so that v̂i (t (q̂), q̂) are distributed symmetrically enough in
the sense above described. We remark that when this criterion was satisfied, for q > q̂ the
sample variances v̂i (t (q), q) were observed to be even more symmetrically distributed, in the
sense that a Lilliefors test for normality did not reject the null hypothesis even with a higher
p-value.

Let v̂(t, q) := v̂[9](t, q) be the ninth order statistic of v̂1(t, q), . . . , v̂10(t, q). We found
strong empirical evidence that, under the above set of conditions, the latter variables are

https://doi.org/10.1239/aap/1158685004 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685004


848 R. HAUSER ET AL.

–4 –2 0 2 4

–4

–3

–2

–1

0

0

0

0 20 40 60
0

10

20

30

–2 0 2 4

–4

–3

–2

–1

2 4 6 8
0

2

4

6

8

–2 0 2 4

–4

–3

–2

–1

1.0 1.5 2.0 2.5 3.0
0

2

4

6

Figure 1: Plots of log P[Uh
i (t, q) > ey ] against y (left) and the histogram of v̂i (t, q) (right) for parameter

values r = 1000, s = 1 (top); r = 200, s = 5 (middle); and r = 10, s = 100 (bottom). The distribution
of v̂i (t, q) becomes more symmetrical as s increases.

sufficiently symmetrically distributed around their mean to render

P[v̂i (t, q) ≥ var(W(t, q))] ≥ 0.45 (5.2)

a conservative estimate. It is now easy to see that (5.2) implies (5.1) for � = 0.9:

P[var(W(t, q)) ≥ v̂(t, q)] ≤
10∑

j=9

0.55j × 0.4510−j

(
10

j

)
= 0.034 <

1 − �

2
. (5.3)

We will henceforth make the heuristic assumption that (5.3) (or equivalently, (5.1)) holds.

Lemma 5.1. The function

� : (t, q) �→
∑
k>0

et (2m/q−k)ν̂k +
√

2v̂(t, q)

�0(1 − �)

is decreasing in q.

Proof. It suffices to show that the two summands are decreasing in q individually. For the
first summand, we have

∂

∂q

∑
k>0

et (2m/q−k)ν̂k = −2mt

q2

∑
k>0

et (2m/q−k)ν̂k < 0.
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For the second summand, it suffices to prove that v̂i (t, q) is decreasing in q, since the order
statistics and the square root are both monotone increasing. Thus,

∂

∂q
v̂i(t, q) = 1

r − 1

r∑
h=1

2(Uh
i (t, q) − Ūi(t, q))

(
−2mt

q2 Uh
i (t, q) + 2mt

q2 Ūi(t, q)

)

= −4mt

q2 v̂i (t, q)

< 0,

which establishes the claim.

Next, let q ∈ R+ be fixed and let us design a test on the null hypothesis H0, that q < γ ,
and the alternative hypothesis Ha that γ ≤ q. Let us assume that H0 holds. Then, by virtue of
Theorem 3.1 and (4.2), we have

E

[
1

�0

�0∑
�=1

W�(t, q)

]
= E[W(t, q)] > 1 (5.4)

for all t ∈ R+. By conditioning on the event {v̂(t, q) ≤ var(W(t, q))} and its complement, we
obtain

P[�(t, q) ≤ 1] ≤ 1 × P[v̂(t, q) ≤ var(W(t, q))] (5.5)

+ P

[∑
k>0

et (2m/q−k)ν̂k < 1 −
√

2 var(W(t, q))

�0(1 − �)

]
× 1

(5.1),(5.4)≤ 1 − �

2
+ P

[∣∣∣∣ 1

�0

�0∑
�=1

W�(t, q) − E[W(t, q)]
∣∣∣∣ >

√
2 var(W(t, q))

�0(1 − �)

]

Chebyshev≤ 1 − �. (5.6)

In particular, this holds for t ≡ t (q) := arg mint≥0 �(t, q). Therefore, if we design our test to
reject H0 when the criterion �(t(q), q) ≤ 1 is satisfied (or, equivalently, if there exists a t ∈ R+
such that �(t, q) ≤ 1), then the probability of a type-I error, i.e. of erroneously rejecting H0,
is P[�(t(q), q) ≤ 1] ≤ 1 − �. We will be interested in the situation where H0 is rejected, so
the probability of a type-II error is irrelevant.

A �-confidence region is now associated with our test via the usual mechanism. Consider
the random variable

q̂ := min{q : there exists a t ∈ R+ such that �(t, q) ≤ 1}, (5.7)

where we follow the usual convention by setting q̂ = ∞ when the feasible set is empty. Then,
from Lemma 5.1, H0 is rejected if and only if q ≥ q̂. The probability that γ lies outside the
confidence interval [0, q̂] is P[q̂ < γ ] = 1 − �. This is easily seen, as

P[q̂ < γ − ε] ≤ P[there exists a t ∈ R+ such that �(t, γ − ε) ≤ 1] (5.6)≤ 1 − �

holds for all ε > 0. It follows that [0, q̂] is a �-confidence interval for γ .
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Table 1: New upper bounds q̂ at the 90% confidence level, computed with m = 1000.

|A| BL DL AL Est q̂1000 DU BU AU P s �0

2 0.7580 0.7739 0.8079 0.8118 0.8182 0.8376 0.8602 0.8607 0.0675 400 8 000
3 0.6338 0.6154 — 0.7172 0.7235 0.7658 0.7865 — >0.2 400 12 000
4 0.5528 0.5455 — 0.6537 0.6601 0.7082 0.7297 — >0.2 200 8 000

Table 2: New upper bounds q̂m at the 98% confidence level, computed with m = 100, 1000, 5000.

|A| BL DL Est q̂100 q̂1000 q̂5000 DU BU

2 0.7580 0.7739 0.8118 0.8330 0.8203 0.8154 0.8376 0.8602
3 0.6338 0.6154 0.7172 0.7383 0.7266 — 0.7658 0.7865
4 0.5528 0.5455 0.6537 0.6777 0.6631 — 0.7082 0.7297
5 0.5095 0.5062 0.6069 0.6279 0.6152 — 0.6644 0.6861
6 0.4670 0.4717 0.5701 0.5928 0.5771 — 0.6293 0.6510
7 — 0.4450 0.5399 0.5596 0.5459 — 0.6002 0.6217
8 — 0.4224 0.5146 0.5352 0.5215 — 0.5754 0.5968
9 — 0.4032 0.4931 0.5098 0.4990 — 0.5539 0.5751

10 — 0.3866 0.4741 0.4951 0.4795 — 0.5349 0.5560

Corollary 5.1. Subject to condition (5.3), the solution q̂ to the optimization problem (5.7)
constitutes an upper bound on γ with probability at least �.

In our experiments we verified (5.3) empirically and solved (5.7) numerically. We im-
plemented the above-described method in MATLAB® 6.1 and ran the experiments on a
Sun BladeTM 100 Workstation for the uniform distributions over alphabets of size |A| = 2, 3, 4.
In all three experiments we chose m = 1000 and � = 0.9. Each of the experiments reported in
Table 1 took a few days to complete, but there remains considerable room for code optimization.
The value of q̂ did not change significantly after a few hundred simulations, but more simulations
were needed to obtain sufficiently symmetric variance estimators, as discussed above. The
p-value,P , of the Lilliefors test and the number, s, of independent copies used in the computation
of v̂i (t, q) are listed in the tenth and eleventh columns, respectively. For comparison, we also
list the best deterministic lower (DL) and upper (DU) bounds for these examples, as derived by
Dančik and Paterson in [14] and [24], as well as the best known probabilistic lower (AL) and
upper (AU) bounds at the 95% confidence level, obtained by Alexander [2] on the basis of two
simulations of E[L50 000]. Finally, we list the probabilistic lower (BL) and upper (BU) bounds
of [9], although we do not know at which confidence level they apply, and their value (Est)
estimated on the basis of ten simulations of E[L100 000], which is to be seen as a probabilistic
lower bound without confidence guarantee.

Using a variant of our method, Decouvelaere [15] obtained further numerical results in
his Masters thesis. He chose ξ to be the uniform distribution over alphabets of cardinality
|A| = 2, . . . , 10 and computed upper bounds q̂m for m = 100 and m = 1000 at the confidence
level � = 98%. Furthermore, for |A| = 2 he computed an upper bound for m = 5000 at
the same confidence level. His results are reported in Table 2. Simulations with m = 100 are
considerably faster than those with m = 1000, taking less than an hour to complete.

Steele [26] conjectured that, in the case where ξ is the uniform distribution over |A|, the
true value of γ is 2/(1 + √|A|). Since our new upper bounds are consistently smaller than the
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conjectured values, and since our bounds have been obtained to a reasonable level of confidence,
this indicates that the Steele conjecture may be wrong.

6. Conclusions

Our paper highlights the central role played by the theory of large deviations in revealing
information about the Chvátal–Sankoff constant, γ . Exploiting large deviations, we designed a
theoretical Monte Carlo algorithm to simulate upper bounds on γ to arbitrary precision, �, and
at an arbitrarily high confidence level, �. We presented a full complexity analysis, which shows
that the amount of work required by the algorithm is polynomial in �−1 and (1 − �)−1. A
practical heuristic of our method turns out to be the first randomized algorithm that consistently
generates bounds that are tighter than the deterministic bounds of Dančik and Paterson in [14]
and [24].
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