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Summary
The problem considered is that of long gravity waves approaching, from

an arbitrary direction, a semi-infinite barrier, the whole system being in rotation.
It is shown that the rotation gives rise to a wave in the shadow region whose
amplitude depends upon the angle of incidence, but whose form is independent
of it and which travels along the barrier without attenuation in that direction.
The work is an extension and simplification of previous work by Crease, in-
volving the use of methods previously developed by the author.

1. Introduction
The problem of long gravity waves approaching a semi-infinite barrier,

the whole system being in rotation, arises for certain aspects of an investigation
into the origin of storm surges. A full discussion of the oceanographic problems
involved has been given in a recent paper (Crease, 1958). In this a solution
has been given using Wiener-Hopf techniques. It will be shown in this paper
that these long and complicated techniques are not in fact necessary for the
solution of this problem, and that the solution for an arbitrary angle of incidence
(it having been assumed in the previous treatment that the barrier was parallel
to the wave crests) can be obtained quite simply using a technique for the
solution of the Sommerfeld problem developed by the author (1) in 1954.

The equations associated with long-wave theory are well known (e.g. see
(3)) but will for convenience be reproduced here. The horizontal equation
of motion is

ot

where q is the horizontal fluid velocity, £ is the elevation of the free surface
above its mean level, V* the two dimensional gradient operator, k unit vector
vertically upwards and Q the Coriolis parameter (= 2co sin a where (a is
the angular velocity of the earth and a the north latitude).

The continuity equation is

hdt
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It may be seen that a solution is given by

n\gh dt2 gh

where W2A A = 0 .
gh gh dt2 .

It can fairly easily be seen that, if a time variation exp {iat} be imposed,
the elevation £ obeys a differential equation

dx2 dy2

- >
gh gh

and the boundary condition of zero fluid velocity across a boundary with
normal n is

os on
where p = Q/CT < 1. .

If the semi-infinite barrier is x>0, y = 0 (i.e. the positive *-axis), the
boundary condition is

Equations (1) and (2) together with the incident field define the problem.
The incident wave is of the form

exp {ik(x cos a + y sin a)}

which represents a wave travelling in the direction <x + 7i (see figure), and the

direction of
incidence

X

solution required is that which obeys the required boundary condition (2)
and which reduces to the incident field at great distances from the origin
in the region n— u<<j><n + a, where p, <j> are polar coordinates.

https://doi.org/10.1017/S0013091500011196 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500011196


LONG WAVES ON A ROTATING EARTH 27

2. Analysis
Consider the diffraction function

D(j>, <t>,x) = - p e x p - M kp cos (<t> + x)--A \\ exp {-iy2}dy, (3)xp{-iy2}

where x = p cos <j>, y = p sin <j>, m = ^Jlkp cos i ($ + x). Then it follows (1)
that

— zr =Dcosx+F0cosi(<j>-x) (4a)
lA: OX

and

= — D sin x + F0 sin i($— x), (4b)
ik dy

/~T~ . . . . .
where Fo = / exp {-i{kp + ln)} (5)

Bearing in mind these differential coefficients, we look for a £ of the form

C = £(/>, <£, - a ) + ^D(p, ^, «)+LZ)(p, <̂ , - a * ) (6)
such that

\-ip — vanishes on (j> = 0 and <j> = 2n.
dy dx

D(p, <j), —a) and D(p, <j>, a) are the terms of the type usually associated with
the Sommerfeld Diffraction Problem. D(p, <j>, —a*) is a term which is inserted
in order to cancel out the terms involving Fo in the boundary condition. We
note that

D(p, 0, - a ) = D(p, 0, a) = Do, say,
and

D(p, In, -a)= D{p, 2n, a) = DQ, say.

On <f> = 0, the boundary equation becomes

D0{[sin a+ip cos a] + [—sin x+ip cos a]X}

+ F0{[(sin ia+ip cos %a) + K( — sin i<x + ip cos ^a)}

+ LD(p, 0, -a*)[s ina* + ipcosa*] + L F o | s i n — + i p c o s — 1 = 0 :.(7)

The condition on (j> = 2n is similar, D'o replacing Do and —Fo replacing Fo.
Both of these conditions can be satisfied it

sin a + ip cos a + K{ip cos a— sin a) = 0, (8)

sin i a + ip cos -' + K' I - sin - + ip cos - ) + L( sin —\-ip cos — j = 0 , (9)

and
sin <x* + ip cos a* = 0 (10)
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It follows, from equation (8), that

, . sina + ipcosa ,__ _ . . . , , . , . . . . .
X = f- =exp (2itan J(p cot a)} = exp (iij/), (11)

sin a — ip cos a
and, from equation (10), that

t a n a * = — ip (12)
It further follows that

sin a* = ^~i> c o s a * — -yi

and, writing s = (1 —/»2)*, we deduce that

cos a* A —A* . • a* A+lV_ = and sin — = — I .
2 V 2s) 2 \ 2s )

That these are the appropriate solutions will be shown in the appendix.
Equation (9) becomes, on using equations (11) and (12),

2 sin?
22 tan a*

sin a — ip cos a . a* a*
sin — + in cos —

2 2
_2V2sin2

sin a — ip cos a
Substituting the expressions for ^ and L given by (11) and (13) into equation
(6), it follows that

C = D(p, $, -a )+exp {itj>}D{p, +, a)

— D(P, 4>> - a * ) ,
s )

(14)T :

sin a — ip cos a

It may be verified that if a = l%\2 this is equivalent to the previously obtained
expression (2).

3. Discussion
Ignoring for the present the third term in equation (14), the first two terms

represent Sommerfeld Diffraction type fields of the usual type.
If p is large, i.e. if points far from the diffracting edge are considered, then

D{p, <}>, —a) behaves like exp {ikp cos(<t>~a)} for O<0<7t + a, and vanishes
for K+a<(j><27z. Similarly D(p, <j>, a) behaves like exp {ikp cos (4> + a)} in
the region 0 < <j> < n — a and is zero in n — a, < 4> < 2%. Thus there are three regions:

(a) 7t+a<$<27t. This is the geometrical shadow region and at large
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distances from the origin the field is effectively zero, the region being screened
by the half axis.

(b) n — a. < <j> < n + a. At large distances from the origin the field is effectively
the incident field.

(c) 0<4><n— a. At large distances from the origin the field is effectively
exp {ikp cos (<f>— a)} + exp {i\ji} exp {ikp cos ($ + a)} which is the same as that
for reflection by a complete axis.

It will be observed that when a = 2>nj2 (the case previously treated) cot a
and hence \j/ are zero, and the following statement (2) is true: " Neither £2

nor Ci contains the rotational parameters at all; these functions may be expected
to represent the usual diffraction and reflection effects of acoustics when the
boundary condition is that the normal gradient of the dependent variable is
zero on the barrier." However if a. is not nj2 or 3nj2, there is a phase factor
involving/) in (2, and the statement ceases to hold.

The third term £3 is the product of two terms, one of which is a function
of a and the other of which is a function of the field variables p and <j>, but is
independent of a. In fact, one may write (2)

C3=/l«Xi, (15)
yj2 sin -

where/(a) = , and so f{2>nj2) = 1. The quantity that is of
sin <x — ip cos a

importance is
. a

sin -
2

It is fairly easy to to see that this is a smooth function whose behaviour is
given by the following table:

a : 0 7i/2 71 3TE/2 2TT

The intervening points can be filled in without difficulty.
As the spatial behaviour has already been discussed (2), it will not be

discussed here. The only difference that the alteration in the angle of incidence
makes is that the magnitude of the effect will be different.

Appendix

The equation tana* = — ip will have four possible solutions relevant to
this problem since D(p, cj>, —a*) has period 4n in the variable (<l>— a*). The
correct one is the one which will lead to evanescence of the disturbances at
great distances from the barrier. That the solution taken is the appropriate
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one may be seen from a consideration of the asymptotic expansion of the
Fresnel Integral.

Consider first Stokes' Asymptotic formula (4):

for | x | large where the positive sign is taken if — \n<phase x<%n and the

negative sign is taken if \n < phase x < —. It follows that

e'«'V"2 f" e-*2dy = ± ̂  e""2 + 01'J-.\ (A2)
Jo 2 \\m\J

where + arises according as — 37t/4<phase m<n/4 or 7t/4<phase TM<5T:/4,
and that

- j - einlAeiml f" e-iy2dy = Peim2 + o(j-i-Y (A3)
V J-oo VI |

where P is 1 if — 3TI/4<phase m<nj4 and is 0 if TT/4<phase m<5nj4. Now

, - a * ) = — — e x p {ikp cos (<f>-<x*)}.

I cos (—-—)

exp(-iy2)dy,
— 00

-in/4
= —.— eikpeiml \ e-iyZdy, (A4)

{</>-«*
where m = «/2kp cos

V 2

Thus D(p, (j>, —a*) is, apart from a constant factor, of the form of the expres-
sions in (A3).

Now sin a*/2 is of the form —n and cos a*/2 is of the form — iv, where
fi and v are positive. This follows from the fact that 0<p<l. For 0<</><n,
we have 0<sin 0/2<l, O<cos0/2<1, and

v 2 ;cos[ y ^ ) = —ivcos- -/x sin - (A5)

For n<4><2n, we have 0<sin 4>I2<\, —l<cos 0/2<O, and

cosl I = iv — cos- — /i sin r (A6)

Clearly phase m is the same as the phase of the right hand sides of (A5), (A6).
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It follows therefore from (A5) that, for 0 < <f> < n,

< 2-> n , , ( . 0 <A2i
exp {im } = exp i 2kp I n sin - + iv cos - 1

/ , . , < 6 2 ,(6 . <^ <t>\
= exp j 2fcp I fi sin x — v cos - + i/zv sin - cos - I

= exp i 2kp I n2 sin2 - — v2 cos2 — 1 . exp [— sin ^>].

This tends to zero as p tends to infinity for 0<<j><n, and so does Pein>2; thus
the value of P, and hence the phase of m, is immaterial. Hence, for 0«j><n,
D(p, <f>, —a*)-»0 as p->co. Looking at (A6), it can be seen that, for n<(f><2n,

we have ^7i^phase m^n and so D(p, <j>, —a*) = o( — j as p-»oo.

It will be observed that D does not tend to zero for <j) = 0, at large distances
from the origin. This is in order. As pointed out (2) by Crease, the waves
represented by C3 can be greater on the barrier than the incident waves. What
matters is that they die out away from the barrier. Thus the particular set
a*, £a* chosen satisfy the appropriate radiation conditions, and so the solution
obtained is the required one.
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