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Abstract A non-commutative multivariable analogue of Parrott’s generalization of the Sz.-Nagy–Foiaş
commutant lifting theorem is obtained. This yields Tomita-type commutant results and interpolation
theorems (e.g. Sarason, Nevanlinna–Pick, Carathéodory) for F∞n ⊗̄M, the weakly-closed algebra gener-
ated by the spatial tensor product of the non-commutative analytic Toeplitz algebra F∞n and an arbitrary
von Neumann algebraM. In particular, we obtain interpolation theorems for bounded analytic functions
from the open unit ball of Cn into a von Neumann algebra.

A variant of the non-commutative Poisson transform is used to extend the von Neumann inequality
to tensor algebras, and to provide a generalization of the functional calculus for contractive sequences
of operators on Hilbert spaces. Commutative versions of these results are also considered.
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1. Introduction

Let F 2(Hn) = C1 ⊕ ⊕m>1H
⊗m
n be the full Fock space on n generators, where Hn is

an n-dimensional complex Hilbert space with orthonormal basis {e1, e2, . . . , en} if n is
finite, and {e1, e2, . . . } if n = ∞. For each i = 1, 2, . . . , define the left creation operator
by Siξ := ei ⊗ ξ, ξ ∈ F 2(Hn). We shall denote by P the set of all p ∈ F 2(Hn) which are
finite sums of tensor monomials. Define F∞n as the set of all g ∈ F 2(Hn) such that

‖g‖∞ := sup{‖g ⊗ p‖F 2(Hn) : p ∈ P, ‖p‖F 2(Hn) 6 1} <∞.

We denote by An the closure of P in (F∞n , ‖ · ‖∞). The Banach algebra F∞n (respec-
tively, An) can be viewed as a non-commutative analogue of the Hardy space H∞(D)
(respectively, disc algebra A(D)); when n = 1 they coincide.

In [20, Theorem 3.1] we proved that An is completely isometrically isomorphic to the
norm-closed algebra generated by any sequence V1, . . . , Vn of isometries with V1V

∗
1 +· · ·+

VnV
∗
n 6 I, and the identity. It follows from [18, Theorem 4.3] that the non-commutative

analytic Toeplitz algebra F∞n can be identified with the weakly-closed (WOT-closed)
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algebra generated by the left creation operators S1, . . . , Sn, and the identity. The algebras
F∞n and An were introduced by the author in [16] in connection with a non-commutative
von Neumann inequality, and have been studied in several papers [2,15,18–20,22], and
recently in [3,6–8,21].

We established a strong connection between the algebra F∞n and the function theory on
the open unit ball Bn of Cn through the non-commutative von Neumann inequality [16]
(see also [18, 20, 22]). In particular, we proved that there is a completely contractive
homomorphism

Φ : F∞n → H∞(Bn), f(S1, . . . , Sn) 7→ f(λ1, . . . , λn),

where (λ1, . . . , λn) ∈ Bn. A characterization of the analytic functions in the range of the
map Φ was obtained in [3,7]. Arveson proved that Φ is not surjective [4] and the functions
in its range are the multipliers of a certain function Hilbert space. In [3,7], it was proved
that F∞n / kerΦ is an operator algebra which can be identified with W∞n := PF 2

s
F∞n |F 2

s
,

the compression to the symmetric Fock space F 2
s ⊆ F 2(Hn).

In [1, 3, 4, 7, 22], a good case is made that the appropriate commutative multivari-
able analogue of H∞(D) is the algebra W∞n , which is the WOT-closed algebra generated
by Bi := PF 2

s
Si|F 2

s
, i = 1, . . . , n, and the identity. In this paper, we provide further evi-

dence that F∞n (respectively, W∞n ) is a non-commutative (respectively, commutative)
multivariate analogue of H∞(D).

The main result of § 2 (see Theorem 2.1) is a non-commutative multivariable analogue
of Parrott’s generalization [12] of the Sz.-Nagy–Foiaş commutant lifting theorem [24]
(see also [9]). We also identify (see Theorem 2.3) the commutant of sets of the form
F∞n ⊗ S, where S is a subset of B(H), the algebra of bounded linear operators on a
Hilbert space H, and contains the identity operator. These results are used to extend
Sarason’s interpolation result [23] to F∞n ⊗M, where M ⊆ B(H) is a self-adjoint set
containing the identity (see Theorem 2.4). This will lead to Tomita-type commutant
results. In particular, Corollary 2.6 shows that if J is a WOT-closed two-sided ideal in
F∞n , then

[(F∞n /J)⊗M]′ = (F∞n /J)′ ⊗̄M′
where the prime denotes the commutant and A⊗̄B denotes the WOT-closed algebra
generated by the spatial tensor product of the two algebras. Another consequence of
Theorem 2.4 is a Nevanlinna–Pick type interpolation theorem for analytic functions from
the unit ball of Cn into a von Neumann algebra M, which extends results from [3, 7,
11, 13, 21, 23]. On the other hand, the non-commutative Carathéodory interpolation
problem [19, Corollary 4.4] is extended to F∞n ⊗̄M.

In § 3, we consider a variant of the non-commutative Poisson transform introduced
in [22] and provide extensions of the von Neumann type inequalities from [4,12,16,20,
22, 26]. This will lead to a generalization of the F∞n -functional calculus for contractive
sequences of class C0 [18], which also extends the Sz.-Nagy–Foiaş H∞-functional calculus
for C·0-contractions [25].

More precisely, let F+
n be the unital free semigroup on n generators s1, . . . , sn, and let

e be its neutral element. For any σ := si1 · · · sik ∈ F+
n we define its length |σ| := k, and
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|e| = 0. On the other hand, if Ti ∈ B(H), i = 1, . . . , n, we denote Tσ := Ti1 · · ·Tik and
Te := IH. We show that if T := [T1, . . . , Tn] is C0-row contraction (see § 3 for terminology)
and ∆ := IH −

∑n
i=1 TiT

∗
i , then every f ∈ F∞n ⊗̄ {T1, . . . , Tn,∆}′ has a unique Fourier

expansion f ∼∑α∈F+
n
Sα ⊗W(α) with W(α) ∈ {T1, . . . , Tn,∆}′, and the map

f 7→ f(T1, . . . , Tn) := SOT-lim
r→1

∑
α∈F+

n

r|α|W(α)Tα

is a WOT-continuous, completely contractive homomorphism from the algebra F∞n ⊗̄
{T1, . . . , Tn,∆}′ to B(H). A commutative version of this result is also obtained. We
mention that all the results of this paper are true if n =∞, in a slightly adapted version.

After this paper was submitted for publication, Muhly and Solel published a paper [10]
which contains a multivariable commutant lifting result (see their Theorem 4.4). Their
result is close to our Theorem 2.1, but seems to be different. In any case, our proof
is different, and is based on the geometric structure of the non-commutative minimal
isometric dilation [14] and Parrott’s Lemma [12].

2. Commutant lifting, tensor algebras, and interpolation

Let us recall from [14, 15, 17] a few results concerning the non-commutative dilation
theory for n-tuples of operators. A sequence of operators T := [T1, . . . , Tn], Ti ∈ B(H),
i = 1, . . . , n, is called contractive (or row contraction) if T1T

∗
1 + · · ·+TnT

∗
n 6 IH. We say

that a sequence of isometries V := [V1, . . . , Vn] on a Hilbert space K ⊇ H is a minimal
isometric dilation of T if the following properties are satisfied:

(i) V1V
∗
1 + · · ·+ VnV

∗
n 6 IK;

(ii) V ∗i |H = T ∗i , i = 1, . . . , n;

(iii) K =
∨
α∈F+

n
VαH.

The minimal isometric dilation of T is uniquely determined up to an isomorphism. Let us
consider a realization of it on Fock spaces. As in [14], let us define DT : ⊕nj=1H → ⊕nj=1H
by DT := (I⊕nj=1H − T ∗T )1/2, and set D := DT (⊕nj=1H). Let Di : H → F 2(Hn)⊗D be
defined by

Dih := 1⊗DT (0, . . . , 0︸ ︷︷ ︸
i−1 times

, h, 0, . . . , 0)⊕ 0⊕ 0 · · · .

Consider the Hilbert space K := H⊕ (F 2(Hn)⊗D) and define Vi : K → K by

Vi(h⊕ (ξ ⊗ d)) := Tih⊕ (Dih+ (Si ⊗ ID)(ξ ⊗ d))

for any h ∈ H, ξ ∈ F 2(Hn), d ∈ D. Notice that

Vi =

[
Ti 0
Di Si ⊗ ID

]
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392 G. Popescu

with respect to the decomposition K = H ⊕ (F 2(Hn) ⊗ D). It was proved in [14] that
the sequence V := [V1, . . . , Vn] is the minimal isometric dilation of T . Let H0 := H and

Hk := Hk−1

∨( ∨
|α|=1

VαHk−1

)
if k > 2. (2.1)

Notice that K =
∨∞
k=0Hk, Hk ⊂ Hk+1, and all subspaces Hk are invariant to each V ∗i ,

i = 1, . . . , n. On the other hand, we have H1 = H⊕D and

Hk = H⊕
⊕
|α|6k−1

eα ⊗D if k > 2, (2.2)

where {eα}α∈F+
n

is the canonical basis of F 2(Hn) generated by e1, . . . , en, i.e. eα :=
ei1 ⊗ · · · ⊗ eik if α := si1 · · · sik ∈ F+

n , and eα = 1 if α = e. Denote V0 := T and Vk :=
[V1,k, . . . , Vn,k] if k > 1, where Vi,k := PHkVi|Hk , i = 1, . . . , n, and PHk is the orthogonal
projection from K onto Hk. Notice that Vi,k, i = 1, . . . , n, are partial isometries with
orthogonal final spaces and initial space Hk−1. It is easy to see that V is also the minimal
isometric dilation of Vk, V ∗i |Hk = V ∗i,k, and V ∗i = SOT-limk→∞ V ∗i,kPHk .

On the other hand, let us mention that Vk+1 is the one-step dilation of Vk, i.e. Hk+1 =
Hk ⊕DVk(⊕nj=1Hk), and, for each i = 1, . . . , n,

Vi,k+1(x⊕ y) = Vi,kx⊕DVk(0, . . . , 0︸ ︷︷ ︸
i−1 times

, x, 0, . . . , 0)

for any x ∈ Hk and y ∈ DVk(⊕nj=1Hk). Given A ∈ B(H) with A ∈ C∗(T1, . . . , Tn)′, the
commutant of the C∗-algebra generated by T1, . . . , Tn, there exists a unique extension Ã
of A to the Hilbert space K = H⊕ (F 2(Hn)⊗D) such that

ÃVi = ViÃ, i = 1, . . . , n. (2.3)

Indeed, since A ∈ C∗(T1, . . . , Tn)′, it is easy to see that

(⊕nj=1A)DT (0, . . . , 0︸ ︷︷ ︸
i−1 times

, h, 0, . . . , 0) = DT (0, . . . , 0︸ ︷︷ ︸
i−1 times

, Ah, 0, . . . , 0)

for any h ∈ H and i = 1, . . . , n. Since K =
∨
α∈F+

n
VαH, one can see that Ã is uniquely

determined by condition (2.3), and, moreover,

Ã

(∑
α∈F+

n

eα ⊗ d(α)

)
=
∑
α∈F+

n

eα ⊗ (⊕nj=1A)d(α)

for any ∑
α∈F+

n

eα ⊗ d(α) ∈ F 2(Hn)⊗D.

It is easy to see that the mapping A 7→ Ã from C∗(T1, . . . , Tn)′ to C∗(V1, . . . , Vn)′ is a
∗-monomorphism of C∗-algebras. Notice also that if we set Ak := Ã|Hk , k = 1, 2, . . . ,
then Ak is the unique extension of Ak−1 to Hk such that Ak ∈ C∗(V1,k, . . . , Vn,k)′.
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Let H1, H2, K1, K2 be Hilbert spaces and denote H := H1 ⊕H2 and K =: K1 ⊕ K2.
Any operator T ∈ B(H,K) can be written as an operator matrix

T =

[
A B

C X

]

with respect to the corresponding decompositions of H and K. It was proved in [12] that

inf
X∈B(H2,K2)

∥∥∥∥∥
[
A B

C X

]∥∥∥∥∥ = max

{∥∥∥∥∥
[
A

C

]∥∥∥∥∥ ,∥∥∥[A B
]∥∥∥} . (2.4)

Moreover, there are sequences of real numbers {ck}, {dk} such that

Y := WOT- lim
k→∞

−ckC(I − dkA∗A)−1A∗B

exists and the above-mentioned infimum is equal to∥∥∥∥∥
[
A B

C Y

]∥∥∥∥∥ .
In what follows, we find a non-commutative multivariable analogue of Parrott’s gen-

eralization [12] of the Sz.-Nagy–Foiaş commutant lifting theorem [24].

Theorem 2.1. Let T := [T1, . . . , Tn] be a contractive sequence of operators on a
Hilbert space H and let V := [V1, . . . , Vn] be its minimal isometric dilation on the Hilbert
space K ⊇ H. If X ∈ B(H) and XTi = TiX for any i = 1, . . . , n, then there exists
X∞ ∈ B(K) satisfying the following properties:

(i) X∞Vi = ViX∞, for any i = 1, . . . , n;

(ii) X∞Ã = ÃX∞ for any A ∈ C∗(T1, . . . Tn, X)′;

(iii) X∗∞|H = X∗ and PHÃVαX∗m∞ V ∗β |H = ATαX
∗mT ∗β , for any α, β ∈ F+

n , A ∈
C∗(T1, . . . Tn, X)′, and m ∈ N;

(iv) ‖X∞‖ = ‖X‖.
Proof. We use the notation and preliminaries preceding the theorem. Let us construct

a sequence of operators Xk ∈ B(Hk), k = 1, 2, . . . , with the following properties:

(a) XkVi,k = Vi,kXk, for any i = 1, . . . , n;

(b) XkAk = AkXk for any A ∈ C∗(T1, . . . Tn, X)′;

(c) X∗k |Hk−1 = X∗k−1 and PHk−1AkVα,kX
∗m
k V ∗β,k|Hk−1 = Ak−1Vα,k−1X

∗m
k−1V

∗
β,k−1, for

any A ∈ C∗(T1, . . . Tn, X)′ and α, β ∈ F+
n , m ∈ N;

(d) ‖Xk‖ = ‖Xk−1‖ = ‖X‖.
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Once this is established, it will be a routine exercise to show that the limit X∞ :=
SOT-limk→∞XkPHk exists and X∞ has the stated properties in the theorem.

Our first step is to show that X1 exists with the above-mentioned properties, when
k = 1. For each i = 1, 2, . . . , n, let Vi,1 : H1 := H⊕D → H1 be defined by

Vi,1(h⊕ d) = Tih⊕D(0, . . . , 0︸ ︷︷ ︸
i−1 times

, h, 0, . . . , 0).

Notice that Vi,1, i = 1, 2, . . . , n, are partial isometries with orthogonal ranges and
initial space H⊕ {0}. Define Z ∈ B(H1) by Z(h⊕ d) := Xh⊕ 0. Let

N1 := H⊕ {0}, N2 := H1 	N1 = {0} ⊕ D, M1 := V1,1N1 + · · ·+ Vn,1N1,

and M2 := H1 	M1.
Now we shall prove that the set of all operators X1 ∈ B(H1) satisfying the relations

PHX1|H = X and X1Vi,1 = Vi,1X1, for any i = 1, . . . , n, is non-empty and is exactly
L1 + B(M2,N2) where B(M2,N2) is embedded in B(H1), and L1 ∈ B(H1) is defined
by

L1 :=
n∑
i=1

Vi,1XV
∗
i,1 + ZPM2 . (2.5)

Since
∑n
i=1 Vi,1V

∗
i,1 = PM1 , V ∗i,1Vi,1 = PN1 for any i = 1, 2, . . . , n, and V ∗i,1Vj,1 = 0 if

i 6= j, we infer that

L1PM1 =
( n∑
i=1

Vi,1XV
∗
i,1

)
PM1 =

( n∑
i=1

Vi,1XV
∗
i,1

)( n∑
j=1

Vj,1V
∗
j,1

)
=

n∑
i=1

Vi,1XV
∗
i,1.

Therefore,

L1PM1 =
n∑
i=1

Vi,1XV
∗
i,1. (2.6)

On the other hand, we have

PN1L1 = PN1L1PM1 + PN1L1PM2

= PN1

( n∑
i=1

Vi,1XV
∗
i,1

)
+ PN1

( n∑
i=1

Vi,1XV
∗
i,1 + ZPM2

)
PM2

=
n∑
i=1

TiXV
∗
i,1 + PN1ZPM2 =

n∑
i=1

XTiV
∗
i,1 + PN1ZPM2

= XPN1PM1 + PN1ZPM2 = PN1Z(PM1 + PM2) = PN1Z = Z.

Therefore,

PN1L1 = Z, (2.7)
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which implies that PN1L1|N1 = X. Using the above-mentioned relations and ViPN1 = Vi,
i = 1, . . . , n, we deduce

L1Vi,1 = L1PM1Vi,1 =
( n∑
j=1

Vj,1XV
∗
j,1

)
Vi,1

= Vi,1XV
∗
i,1Vi,1 = Vi,1XPN1 = Vi,1Z

= Vi,1PN1L1.

Therefore,

L1Vi,1 = Vi,1L1, for any i = 1, . . . , n.

Now, suppose that X1 ∈ B(H1) satisfies PHX1|H = X and X1Vi,1 = Vi,1X1 for any
i = 1, . . . , n. Since X1 −L1 commutes with each Vi,1, i = 1, . . . , n, and N2 = kerVi,1, we
infer that N2 is invariant for X1 − L1. Taking into account that PN1(X1 − L1)|N1 = 0,
we deduce that the range of X1 − L1 is in N2.

On the other hand, using Vi,1PN1 = Vi,1, we obtain

(X1 − L1)PM1 = (X1 − L1)
n∑
i=1

Vi,1V
∗
i,1 =

n∑
i=1

Vi,1(X1 − L1)V ∗i,1

=
n∑
i=1

Vi,1PN1(X1 − L1)|N1V
∗
i,1 = 0.

This shows that X1 − L1 ∈ B(M2,H1). Summing up, we deduce that X1 − L1 ∈
B(M2,N2), which shows that X1 = L1 + Y for some Y ∈ B(M2,N2).

Conversely, let Y ∈ B(M2,N2). It is clear that PN1(L1 + Y )|N1 = X, and, since
Vi,1Y = Y Vi,1 = 0, i = 1, . . . , n, we infer that L1 + Y commutes with each Vi,1, i =
1, . . . , n. Therefore, we proved that the set

{X1 ∈ B(H1) : PHX1|H = X and Vi,1X1 = X1Vi,1}

is non-empty and equal to L1 + B(M2,N2), where L1 is given by (2.5). According to
(2.4), there exists X1 with

‖X1‖ = max{‖L1PM1‖, ‖PN1L1‖}.

Taking into account (2.6), (2.7), we obtain ‖X1‖ = ‖X‖. Moreover, if we set

Λ := PN1L1PM1 = ZPM1 ,

∆ := PN2L1PM1 = PN2

( n∑
i=1

Vi,1ZV
∗
i,1

)
,

Γ := PN1L1PM2 = ZPM2 ,
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then we may choose X1 to be of the form

X1 = Λ+ ∆ + Γ + WOT- lim
k→∞

−ck∆(I − dkΛΛ∗)−1Λ∗Γ

for some sequences of real numbers {ck}, {dk}.
Now, let A ∈ C∗(T1, . . . , Tn, X)′ and A1 be its canonical extension to H1. Since A1 ∈

C∗(V1,1, . . . , Vn,1)′ and PM1 =
∑n
i=1 Vi,1V

∗
i,1, it is clear that M1 and M2 are invariant

under A1. It follows from the definition of A1 that N1 and N2 are also invariant to A1.
Since A1 ∈ C∗(V1,1, . . . , Vn,1, Z)′, it follows that A1 commutes with Λ, ∆, Γ , and, hence,
with X1. Let us show that

PHA1Vα,1X
∗m
1 V ∗β,1|H = ATαX

∗mT ∗β , (2.8)

for any A ∈ C∗(T1, . . . Tn, X)′ and α, β ∈ F+
n , m ∈ N. Since N2 is invariant for X1 and

PHX1 = Z, we have

X1 =

[
X 0
∗ ∗

]
with respect to the orthogonal decomposition H1 = H ⊕ H⊥, where H⊥ := H1 	 H.
Notice that X∗1 |H = X∗. On the other hand, the matrices of Vi,1 and A1 are of the form

Vi,1 =

[
Ti 0
∗ 0

]
and A1 =

[
A 0
0 ∗

]
.

Hence,

A1Vα,1X
m
1 V

∗
β,1|H =

[
ATαX

mT ∗β 0
∗ 0

]
,

which proves (2.8).
Now, since X1 always exists, one can replace T1, . . . , Tn and X by V1,1, . . . , Vn,1 and

X1 and iterate the process, obtaining at the kth step an operator Xk ∈ B(Hk) satisfying
properties (a)–(d). The proof is complete. �

As in the classical case, we expect Theorem 2.1 to yield interpolation theorems for
analytic functions from the open unit ball of Cn into a von Neumann algebra. We need
to consider some preliminary results. According to Theorem 1.2 from [19], the commutant
of F∞n , which we denote by R∞n , is equal to U∗F∞n U , where U is the unitary operator on
F 2(Hn) defined by U(ei1⊗ei2⊗· · ·⊗eik) = eik⊗· · ·⊗ei2⊗ei1 . Moreover, the commutant
of R∞n is equal to F∞n .

For each S ⊆ B(H), we denote its commutant by S ′. Define the isometries Qα : H →
F 2(Hn)⊗H, α ∈ F+

n , by Qαh := eα ⊗ h, h ∈ H.

Lemma 2.2. If S ⊆ B(H) and f is in the commutant of

{U∗SiU ⊗ IH : i = 1, . . . , n} ∪ {IF 2(Hn) ⊗ Y : Y ∈ S},
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then the operators Q∗αfQe, α ∈ F+
n , are in S ′, and f has a formal Fourier expansion

f ∼
∑
α∈F+

n

Sα ⊗Q∗αfQe.

Proof. Since f commutes with U∗SiU ⊗ IH, i = 1, . . . , n, we infer that it is uniquely
determined by

f(1⊗ h) =
∑
α∈F+

n

eα ⊗Q∗αfQeh, h ∈ H.

Indeed, notice that

f(eβ ⊗ h) = f(U∗SβU ⊗ IH)(1⊗ h) = (U∗SβU ⊗ IH)f(1⊗ h)

=
∑
α∈F+

n

eαβ ⊗Q∗αfQeh.

On the other hand, since f commutes with each IF 2(Hn) ⊗ Y , Y ∈ S, we have

(IF 2(Hn) ⊗ Y )f(1⊗ h) =
∑
α∈F+

n

eα ⊗ Y Q∗αfQeh

= f(IF 2(Hn) ⊗ Y )(1⊗ h) =
∑
α∈F+

n

eα ⊗Q∗αfQeY h.

Hence, Q∗αfQe ∈ S ′. �

We denote by F∞n ⊗S (respectively, R∞n ⊗S) the spatial tensor product, and by F∞n ⊗̄ S ′
(respectively, R∞n ⊗̄ S ′) the WOT-closed algebra generated by the spatial tensor product
of the two algebras. The following result is a Tomita-type theorem in a non-self-adjoint
setting.

Theorem 2.3. If S ⊆ B(H) and IH ∈ S, then

(R∞n ⊗ S)′ = F∞n ⊗̄ S ′ and (F∞n ⊗ S)′ = R∞n ⊗̄ S ′.
Proof. Since (R∞n )′ = F∞n , it is easy to see that F∞n ⊗̄ S ′ ⊆ (R∞n ⊗ S)′. Conversely,

assume that f is in (R∞n ⊗S)′. Then f belongs to the commutant of the set {U∗SiU⊗IH :
i = 1, . . . , n}∪{I⊗Y : Y ∈ S}. According to Lemma 2.2, the operators W(α) := Q∗αfQe,
α ∈ F+

n , are in S ′, and f has a formal Fourier expansion

f ∼
∑
α∈F+

n

Sα ⊗W(α).

For each 0 < r < 1, define
fr :=

∑
α∈F+

n

r|α|Sα ⊗W(α).

Notice that the convergence of this series is in the uniform norm. Indeed, since

f(1⊗ h) =
∑
α∈F+

n

eα ⊗W(α)h, h ∈ H,
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we infer that ∑
α∈F+

n

W ∗(α)W(α) 6 ‖f‖IH. (2.9)

On the other hand, we have

∞∑
k=0

rk
∥∥∥∥ ∑
|α|=k

Sα ⊗W(α)

∥∥∥∥ =
∞∑
k=0

rk
∥∥∥∥ ∑
|α|=k

W ∗(α)W(α)

∥∥∥∥1/2

6
( ∞∑
k=0

rk
)∥∥∥∥ ∑

α∈F+
n

W ∗(α)W(α)

∥∥∥∥1/2

.

Therefore, fr ∈ F∞n ⊗̄ S ′. Moreover, fr is in the norm-closure of the algebra generated by
the operators Si⊗I, I⊗Z, where Z ∈ S ′, i = 1, . . . , n. According to the non-commutative
von Neumann inequality, we have ‖fr‖ 6 ‖f‖ for any 0 < r < 1. Now, let us prove that

SOT-lim
r→1

fr = f. (2.10)

For any h ∈ H, β ∈ F+
n , we have

‖fr(eβ ⊗ h)− f(eβ ⊗ h)‖2 =
∥∥∥∥ ∑
α∈F+

n

(r|α| − 1)eαβ ⊗W(α)h

∥∥∥∥2

=
∑
α∈F+

n

(r|α| − 1)2‖W(α)h‖2

=
∞∑
k=1

(rk − 1)2
∑
|α|=k

‖W(α)h‖2.

Using (2.9), we deduce that ‖fr(eβ ⊗h)− f(eβ ⊗h)‖ → 0, as r → 1. Since ‖fr‖ 6 ‖f‖,
a standard argument shows that (2.10) follows. Hence, f ∈ F∞n ⊗̄ S ′ and the proof is
complete. �

One can easily see from the proof of Theorem 2.3 that F∞n ⊗̄ S ′ is the WOT-closed
algebra generated by the operators Si⊗I, I⊗Z, where i = 1, . . . , n, and Z ∈ S ′, and any
f ∈ F∞n ⊗̄ S ′ has a formal Fourier expansion. On the other hand, ifM is a von Neumann
algebra, then (F∞n ⊗̄M)′′ = F∞n ⊗̄M.

A complete description of the invariant subspace structure of F∞n was obtained in [15,
Theorem 2.2] (even in a more general setting). A subspaceN of F 2(Hn) is invariant under
S1, . . . , Sn if and only ifN =

⊕
λ∈Λ U

∗ϕλU [F 2(Hn)], for some family {ϕλ ∈ F∞n : λ ∈ Λ}
of isometries with orthogonal ranges (see also [8,19]).

In what follows we use Theorems 2.1 and 2.3 in order to extend Sarason’s interpolation
result [23] to our setting.

Theorem 2.4. Let M⊆ B(K) be such that IH ∈ M =M∗ and let N ⊆ F 2(Hn) be
an invariant subspace under S∗1 , . . . , S

∗
n. If X ∈ B(N ⊗K) commutes with PN⊗K(F∞n ⊗
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M)|N⊗K, then there exists Φ ∈ R∞n ⊗̄M′ such that

PN⊗KΦ|N⊗K = X, ‖Φ‖ = ‖X‖,

where PN⊗K is the orthogonal projection of F 2(Hn) ⊗ K onto N ⊗ K. If, in addition,
UN is an invariant subspace under S∗1 , . . . , S

∗
n, then

[PN⊗K(F∞n ⊗M)|N⊗K]′ = PN⊗K[(F∞n )′ ⊗̄M′]|N⊗K.

Proof. Let B ∈ M, and define B̃ ∈ B(F 2(Hn)⊗K) by B̃ := I ⊗B. Since X com-
mutes with PN⊗K(F∞n ⊗ M)|N⊗K and IH ∈ M, we deduce that X commutes with
Ti := PNSi|N ⊗ IK, i = 1, . . . , n, and also with B̃|N⊗K = IN ⊗B for any B ∈M. Since
M =M∗, we have B̃|N⊗K ∈ C∗(T1, . . . , Tn, X)′. On the other hand,N is invariant under
each S∗1 , . . . , S

∗
n, and [PNS1|N , . . . , PNSn|N ] is a C0-row contraction. Using [14, Propo-

sition 2.3] we infer that its minimal isometric dilation is [S1, . . . , Sn]. Therefore, the
minimal isometric dilation of [T1, . . . , Tn] is [S1 ⊗ IK, . . . , Sn ⊗ IK]. On the other hand,
B̃ commutes with {Si ⊗ IK, S∗i ⊗ IK, i = 1, . . . , n}. Notice that B̃ must be the canonical
extension of B̃|N⊗K. According to Theorem 2.1, there exists X∞ ∈ B(F 2(Hn)⊗K) such
that

(i) X∞(Si ⊗ IK) = (Si ⊗ IK)X∞, for any i = 1, . . . , n;

(ii) X∞B̃ = B̃X∞ for any B ∈M;

(iii) ‖X∞‖ = ‖X‖;

(iv) X∗∞|N⊗K = X∗.

Using Theorem 2.3, we find Φ in R∞n ⊗̄M′ such that X∞ = Φ. Now, assume that UN is
an invariant subspace under S∗1 , . . . , S

∗
n, and let X := PN⊗KΨ |N⊗K with Ψ ∈ R∞n ⊗̄M′.

Notice that X commutes with PN⊗K(F∞n ⊗M)|N⊗K. The proof is complete. �

Corollary 2.5. Let M be a von Neumann algebra acting on a Hilbert space K and
let N ⊆ F 2(Hn) be a subspace with the property that N and UN are invariant under
S∗1 , . . . , S

∗
n. If Ψ ∈ R∞n ⊗̄M, then there is Φ ∈ R∞n ⊗̄M such that ‖Φ‖ = ‖PN⊗KΨ |N⊗K‖

and PN⊗KΦ|N⊗K = PN⊗KΨ |N⊗K.

Proof. Since X := PN⊗KΨ |N⊗K commutes with PN⊗K(F∞n ⊗̄M′)|N⊗K, we can use
Theorem 2.4 to find Φ ∈ R∞n ⊗̄ (M′)′ with the required properties. Since (M′)′ = M,
according to the double commutant theorem, the result follows. �

Let J be a WOT-closed two-sided ideal of F∞n . Define J(1) := {ψ(1);ψ ∈ J} and
NJ := F 2(Hn) 	 J(1). Let us remark that NJ and UNJ are invariant subspaces under
S∗i , i = 1, . . . , n. It was proved in [3, 7] that the quotient algebra F∞n /J is completely
isometricaly isomorphic to PNJF

∞
n |NJ . Using this result and Theorem 2.4, one can deduce

the following Tomita-type commutant result.
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Corollary 2.6. If J is a WOT-closed two-sided ideal in F∞n and M ⊆ B(K) such
that IH ∈M =M∗, then

[(F∞n /J)⊗M]′ = (F∞n /J)′ ⊗̄ (M)′.

In the particular case when J is the WOT-closed two-sided ideal in F∞n generated
by {ej ⊗ ei − ei ⊗ ej : 1 6 i < j 6 n}, we have NJ = F 2

s , the symmetric Fock space, and
F∞n /J can be identified with W∞n := PF 2

s
F∞n |F 2

s
.

Corollary 2.7. Let M ⊆ B(K) with IH ∈ M = M∗ and let E ⊆ F 2
s be an invari-

ant subspace under each B∗i := S∗i |F 2
s
, i = 1, . . . , n. If X ∈ B(E ⊗ K) commutes with

PE⊗K(W∞n ⊗M)|E⊗K, then there exists g ∈ W∞n ⊗̄M′ such that

PE⊗Kg|E⊗K = X, ‖g‖ = ‖X‖.

Moreover, [PE⊗K(W∞n ⊗M)|E⊗K]′ = PE⊗K[W∞n ⊗̄M′]|E⊗K.

Proof. Since F 2
s is invariant to S∗i , i = 1, . . . , n, it is easy to see that E has the same

property. Taking into account thatW∞n is the compression of F∞n to the symmetric Fock
space, we can see that X commutes with PE⊗K(F∞n ⊗M)|E⊗K. Applying Theorem 2.4,
we find f ∈ F∞n ⊗̄M′ such that PE⊗K(U∗ ⊗ I)f(U ⊗ I)|E⊗K = X and ‖X‖ = ‖f‖.
Hence, PE⊗Kf |E⊗K = X, and, if we set g := PF 2

s⊗Kf |F 2
s⊗K, then PE⊗Kg|E⊗K = X and

‖X‖ 6 ‖g‖ 6 ‖f‖ = ‖X‖. This shows that ‖X‖ = ‖g‖, and the proof is complete. �

Let M be a von Neumann algebra acting on a Hilbert space K. According to the
non-commutative von Neumann inequality, if φ ∈ F∞n ⊗̄M, then the map λ 7→ φ(λ) is
in H∞(Bn) ⊗̄M, where Bn := {z ∈ Cn : |z| < 1}. A consequence of Theorem 2.4 is the
following Nevanlinna–Pick-type interpolation problem for the algebra F∞n ⊗̄M.

Corollary 2.8. Let λ1, . . . , λk be k distinct points in Bn and let W1, . . . ,Wk be in the
unit ball of a von Neumann algebra M acting on a Hilbert space K. Then there exists
Φ ∈ F∞n ⊗̄M, such that ‖Φ‖ 6 1 and Φ(λj) = Wj , j = 1, 2, . . . , k, if and only if the
operator matrix [

IK −WjW
∗
i

1− 〈λj , λi〉
]
i,j=1,2,...,k

is positive definite.

Proof. Construct Ψ ∈ R∞n ⊗̄M such that Ψ(λj) = Wj , j = 1, 2, . . . , k. Define X :=
PN⊗KΨ |N⊗K, with N as defined in Theorem 2.4 from [3], and apply Corollary 2.5. The
rest of the proof is similar to [3, Theorem 2.4]. �

Let Pm be the set of all polynomials in F 2(Hn) of degree less than or equal to m, and
let P∞m := {p(S1, . . . , Sn) : p ∈ Pm}. Let J∞>m be the WOT-closed two-sided ideal of F∞n
generated by {Sα : α ∈ F+

n , |α| = m + 1}. Another consequence of Theorem 2.4 (when
N := Pm) is the following result that generalizes the non-commutative Carathéodory
interpolation problem [19, Corollary 4.4] to our setting.
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Corollary 2.9. Let M be a von Neumann algebra acting on a Hilbert space K, and
let f ∈ P∞m ⊗M. Then

dist(f, J∞>m ⊗̄M) = ‖PPm⊗Kf |Pm⊗K‖.

3. Non-commutative Poisson transforms and functional calculus

A variant of the non-commutative Poisson transform (see [22, § 8]) is used to extend the
von Neumann-type inequalities from [4,12,16,20,22,26]. This will lead to a generaliza-
tion of the functional calculus for contractive sequences of class C0 (see [18]), which also
extends the Sz.-Nagy–Foiaş H∞-functional calculus for C·0 (see [25]).

A sequence T := [T1, . . . , Tn], Ti ∈ B(H), is called C0-row contraction if T is a row
contraction and

SOT- lim
k→∞

∑
α∈F+

n , |α|=k
TαT

∗
α = 0.

For example, if
∑n
i=1 TiT

∗
i 6 aIH for some a < 1, then T is a C0-row contraction. Suppose

that T is a C0-row contraction and let ∆ := IH −
∑n
i=1 TiT

∗
i . The Poisson kernel K({Ti})

associated to T is the linear map

K({Ti}) : H → F 2(Hn)⊗H defined by K({Ti})h :=
∑
α∈F+

n

eα ⊗∆1/2T ∗αh.

Since
∑
α∈F+

n
Tα∆T ∗α = IH, the Poisson kernel is an isometry. Notice that

(S∗α ⊗ C∗)K({Ti})h = K({Ti})T ∗αC∗h
for any α ∈ F+

n , and C ∈ {T1, . . . , Tn,∆}′ (the prime stands for the commutant). Hence,

K({Ti})∗(SαS∗β ⊗AC∗)K({Ti}) = ATαT
∗
βC
∗ (3.1)

for any α, β ∈ F+
n and A,C ∈ {T1, . . . , Tn,∆}′. We define the Poisson transform associ-

ated with T to be the map

ΨT : B(F 2(Hn)⊗H)→ B(H), ΨT (X) := K({Ti})∗XK({Ti}).
Notice that ΨT is unital, completely contractive, w∗-continuous, and

ΨT (SαS∗β ⊗AC∗) = ATαT
∗
βC
∗

for any α, β ∈ F+
n , and A,C ∈ {T1, . . . , Tn,∆}′.

Proposition 3.1. Let T := [T1, . . . , Tn] be a C0-row contraction and let K({Ti}) be
its Poisson kernel. If N is a subspace of F 2(Hn) invariant under S∗1 , . . . , S

∗
n and K({Ti})

takes values in N ⊗H, then the map Φ : B(N ⊗H)→ B(H) defined by

Φ(X) = K({Ti})∗XK({Ti})
is unital, completely contractive, w∗-continuous, and

Φ(BαB∗β ⊗AC∗) = ATαT
∗
βC
∗,

for every α, β ∈ F+
n , A,C ∈ {T1, . . . , Tn,∆}′, where Bi := PNSi|N , i = 1, . . . , n.
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Proof. Since N ⊆ F 2(Hn) is an invariant subspace of S∗1 , . . . , S
∗
n, it is clear that

PNSαS∗β |N = BαB
∗
β for every α, β ∈ F+

n . Since K({Ti}) = (PN ⊗ IH)K({Ti}), Rela-
tion (3.1) implies that

ATαT
∗
βC
∗ = K({Ti})∗(SαS∗β ⊗AC∗)K({Ti})

= K({Ti})∗(PN ⊗ IH)(SαS∗β ⊗AC∗)(PN ⊗ IH)K({Ti})
= K({Ti})∗(BαB∗β ⊗AC∗)K({Ti})

for any α, β ∈ F+
n . This completes the proof. �

Let C∗(S1, . . . , Sn) be the C∗-algebra generated by S1, . . . , Sn, the extension through
compacts of the Cuntz algebra On (see [5]). The following result is a generalization of
Theorems 8.1 and 9.2 from [22], and Theorem 6.2 from [4].

Theorem 3.2. Let T := [T1, . . . , Tn] be a contractive sequence of operators with
Ti ∈ B(H). Then there exists a completely contractive linear map

ΦT : C∗(S1, . . . , Sn)⊗ C∗(T1, . . . Tn)′ → B(H),

such that ΦT (SαS∗β⊗A) = ATαT
∗
β , for any α, β ∈ F+

n and A ∈ C∗(T1, . . . Tn)′. Moreover,
if T1, . . . , Tn are commuting, then the result remains true if one replaces Si by Bi :=
PF 2

s (Hn)Si|F 2
s (Hn), i = 1, . . . , n.

Proof. For each 0 < r < 1, let Kr({Ti}) be the Poisson kernel associated to
[rT1, . . . , rTn]. Define the linear map

ΦT : C∗(S1, . . . , Sn)⊗ C∗(T1, . . . Tn)′ → B(H)

by ΦT (f) = limr→1Kr({Ti})∗fKr({Ti}). Using Relation (3.1), one can see that the
limit exists in the uniform topology of B(H) and ΦT is unital, completely contractive,
and ΦT (SαS∗β ⊗C) = CTαT

∗
β for every α, β ∈ F+

n and C ∈ C∗(T1, . . . , Tn)′. The map ΦT
is called the Poisson transform associated with T .

Assume now that TiTj = TjTi for any i, j ∈ {1, . . . , n}. In this case, the Poisson kernel
Kr({Ti}) takes values in F 2

s (Hn)⊗H for every 0 < r < 1, where F 2
s (Hn) is the symmetric

Fock space. As in the proof of Proposition 3.1, we deduce that

Kr({Ti})∗(BαBβ ⊗ C)Kr({Ti}) = r|α|+|β|CTαT ∗β .

Since Kr({Ti}), 0 < r < 1, is an isometry, the map BαB
∗
β ⊗ C 7→ CTαT

∗
β , defined

on the span of {BαB∗β ⊗ C : α, β ∈ F+
n , C ∈ C∗(T1, . . . , Tn)′}, is completely con-

tractive. Therefore, it can be extended to a unital, completely contractive map Φ :
C∗(B1, . . . , Bn) ⊗ C∗(T1, . . . Tn)′ → B(H) satisfying Φ(BαB∗β ⊗ C) = CTαT

∗
β for all

α, β ∈ F+
n and C ∈ C∗(T1, . . . , Tn)′. �

Notice that, for any A,C ∈ {T1, . . . , Tn,∆}′, α, β ∈ F+
n , and 0 < r < 1, we have

Kr({Ti})∗(SαS∗β ⊗AC∗)Kr({Ti}) = r|α|+|β|ATαT ∗βC
∗. (3.2)

This relation can be used to prove the following result.
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Proposition 3.3. If T := [T1, . . . , Tn] is a row contraction, then∥∥∥∥∑
finite

A(α)TαT
∗
βC
∗
(β)

∥∥∥∥ 6 ∥∥∥∥∑
finite

SαS
∗
β ⊗A(α)C

∗
(β)

∥∥∥∥
for any A(α), C(β) ∈ {T1, . . . , Tn,∆}′. Moreover, if T1, . . . , Tn are commuting, then one
can replace Si by Bi.

Notice that, in the particular case when n = 1, we obtain an extension of the Arveson–
Parrott version of the von Neumann inequality (see [12]). LetAn be the non-commutative
disc algebra and let Asn be the norm-closed algebra generated by Bi, i = 1, . . . , n, and
the identity on F 2

s .

Corollary 3.4. Let Ti ∈ B(H), i = 1, . . . , n, such that T1T
∗
1 + · · ·+ TnT

∗
n = IH, then

there exists a completely contractive linear map

Φ : An ⊗ {T1, . . . , Tn}′ → B(H)

such that Φ(Sα ⊗ A) = ATα, for any A ∈ {T1, . . . , Tn}′ and α ∈ F+
n . Moreover, if

T1, . . . , Tn are commuting, then one can replace Si by Bi, and An by Asn.

Let us remark that all the results presented so far in this section can be extended to
the class of sequences of operators with property (P ) (see [22] for terminology). We leave
this task to the reader.

According to Lemma 2.2 and Theorem 2.3, every f ∈ F∞n ⊗̄ {T1, . . . , Tn,∆}′ has a
unique Fourier expansion

f ∼
∑
α∈F+

n

Sα ⊗W(α)

with W(α) ∈ {T1, . . . , Tn,∆}′. For any 0 < r < 1, define

fr :=
∑
α∈F+

n

r|α|Sα ⊗W(α)

and
fr(T1, . . . , Tn) :=

∑
α∈F+

n

r|α|W(α)Tα ∈ B(H).

The convergence of this series is uniform. Indeed, using Theorem 3.2, we infer that∥∥∥∥ ∑
|α|>m

r|α|W(α)Tα

∥∥∥∥ 6 ∥∥∥∥ ∑
|α|>m

r|α|Sα ⊗W(α)

∥∥∥∥ 6 ∑
k>m

rk
∥∥∥∥ ∑
|α|=k

Sα ⊗W(α)

∥∥∥∥
6
(∑
k>m

rk
)∥∥∥∥ ∑
|α|>m

W ∗(α)W(α)

∥∥∥∥1/2

.

Therefore, ‖∑|α|>m r|α|W(α)Tα‖ → 0 as m→∞. The following result is a generalization
of the F∞n -functional calculus for C0-row contractions.
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Theorem 3.5. Let f ∈ F∞n ⊗̄ {T1, . . . , Tn,∆}′ and let T := [T1, . . . , Tn] be a C0-row
contraction. Then SOT-limr→1 fr(T1, . . . , Tn) exists and the map

f 7→ f(T1, . . . , Tn) := SOT-lim
r→1

fr(T1, . . . , Tn)

is a WOT-continuous completely contractive homomorphism.

Proof. Since T is a C0-row contraction, Relation (3.1) implies that

fr(T1, . . . , Tn) = K({Ti})∗
(∑
α∈F+

n

r|α|Sα ⊗W(α)

)
K({Ti}), (3.3)

where K({Ti}) is the Poisson kernel associated with T . Since f = SOT-limr→1 fr (see
the proof of Theorem 2.3), we deduce that SOT-limr→1 fr(T1, . . . , Tn) exists. On the
other hand, Relation (3.3) and the non-commutative von Neumann inequality show that
‖fr(T1, . . . , Tn)‖ 6 ‖fr‖ 6 ‖f‖ for any 0 < r < 1. Therefore, ‖f(T1, . . . , Tn)‖ 6 ‖f‖.
Since f(T1, . . . , Tn) = K({Ti})∗fK({Ti}), it is clear that f 7→ f(T1, . . . , Tn) is WOT-
continuous. This completes the proof. �

When n = 1, Theorem 3.5 is a generalization of the Sz.-Nagy–Foiaş H∞-functional
calculus for C·0-contractions. We can also obtain a commutative version of Theorem 3.5.
Indeed, if T1, . . . , Tn are commuting, then, according to Proposition 3.1 (when N := F 2

s ),
the map Φ : B(F 2

s ⊗H) → B(H) defined by Φ(X) := K({Ti})∗XK({Ti}) is completely
contractive and WOT-continuous. Since Φ(Bα ⊗ A) = ATα, the map Bα ⊗ A 7→ ATα
can be extended to a WOT-continuous completely contractive homomorphism from
W∞n ⊗̄ {T1, . . . , Tn,∆}′ to B(H).

Let J be a WOT-closed two-sided ideal of F∞n . Set NJ := F 2(Hn)	 J(1), and Bi :=
PNJSi|NJ , i = 1, . . . , n. The following theorem generalizes Theorem 3.7 from [3] to our
setting.

Theorem 3.6. Let T := [T1, . . . , Tn] be a C0-row contraction, and let J be a WOT-
closed, two-sided ideal of F∞n such that ϕ(T1, . . . , Tn) = 0 for every ϕ ∈ J , then the
linear map Φ : B(NJ ⊗ H) → B(H) defined by Φ(X) := K({Ti})∗XK({Ti}) is unital,
completely contractive, w∗-continuous and

Φ(BαB∗β ⊗AC∗) = ATαT
∗
βC
∗,

for every α, β ∈ F+
n , and A,C ∈ {T1, . . . , Tn,∆}′.

Proof. Let K({Ti}) be the Poisson kernel associated with T . Since F∞n is the WOT-
closed algebra generated by the left creation operators S1, . . . , Sn and the identity, and
the F∞n -functional calculus is WOT-continuous, we have

〈K({Ti})h, ϕ⊗ k〉 = 〈h, ϕ(T1, . . . , Tn)∆1/2k〉 = 0

for any h, k ∈ H and ϕ ∈ J . Hence, we deduce that K({Ti}) takes values in NJ ⊗ H.
Now, using Proposition 3.1, the result follows. �
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We mention that a characterization of the WOT-closed two-sided ideals of F∞n was
obtained in [6].
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