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1. Introduction.

Our subject1 is a set of equations

I,Aii{n)uj(n) = zi(n) (1)
i

where the ut(n) (j = 1, 2, ..., k) are k " unknown " functions of the integer
variable n, the zi(n) (i = 1, 2, ..., h) are h " known " functions of n, and the
Avin) are hk " known " operators

§(n)E' (2)
(V)

which are polynomials in E, each of fixed order ptj but with coefficients
which may vary with n. E is the usual operator defined by

Ef(n) =f(n+l). (3)

Our first task is to determine whether the equations (1) are self-
consistent. Secondly, if they are self-consistent, we ask what follows
from them for a given subset of the unknowns, e.g. for (uj+1, ..., uk), in
other words we wish to eliminate (uv ..., u5). In particular we wish to

1 We shall keep to this application. But, as a referee has noted, much of our work
applies to any elements A,j belonging to a (non-commutative) ring which possesses a right
(and for some purposes a left) Euclidean algorism : in particular it applies to differential
operators.

In the purely algebraic context, we would draw attention to the definition of the
row-rank p (column-rank K) of a matiix when the ring possesses a right (left) algorism, to
the reduction to p rows (K columns), and to the equality of p and K when both algorisms
are available.

In the context of differential equations, the H.C.R.F. process appears to be known, but
not well-known. The order of a system " in general " (and therefore also of the eliminant
"in general") is given already by Jacobi (Crelle, 64, 297; Werke, V, 193) as p of our
(45'1), §6. There is no apparent analogue in this case of the e of our (45-2). Jaoobi
states the result for non-linear simultaneous differential equations. His first two steps,
reducing the problem to one of homogeneous linear equations with constant coefficients,
seem bo the writer not entirely satisfying in these days : that he finds no need of such
considerations as are involved in our two lemmas arises partly from this, partly from the
fact that he concerns himself with the order of the system, not that of the eliminant.
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184 H. D. URSELL

eliminate all the variables but one, say uk. We shall in fact find that either
uk is arbitrary or else that it has only to satisfy a single linear recurrence
relation : and the order of that relation is of interest to us. Thirdly, we
ask that reduction to standard form is possible, with or without a trans-
formation of the unknowns themselves.

In the case of homogeneous equations

», = <), (4)
i

the problem of self-consistency is altered. There is the obvious trivial
solution

ut = 0 (all n,j) (5)

and so we ask whether any other solution exists. But this is not the whole
story, as we see by considering the single equation in one unknown

If we regard n as running through all integers, positive, negative and
zero, this equation has only the trivial solution u = 0. But if, as is more
usual in connection with recurrence relations, n is to take only non-
negative or positive values, then the equation has the additional solution
given by u(l) = 1, u(n) = 0 for n^=l. It will be convenient to lump
together as " trivial " all solutions for which

^ = 0 (all j , all large ri). (6)

It will be observed that we have written Aijt % instead of Ati(n), Uj{n).
In order to simplify the notation we shall usually suppress any explicit
mention of n: but before n is forgotten entirely, two remarks must be
made.

Firstly: the manipulations we describe produce at every stage new
quantities which, like the old, are functions of n. The march of our
manipulations depends on whether these functions of n c: vanish " or not.
To " vanish " will mean to vanish identically in n: but difficulty arises if
one of these quantities, while not vanishing identically, does vanish for
a particular value of n. Our work has little value if these " particular "
values of n are more than finite in number.

Secondly: if the operators Atj were independent of n, our problems
would be solved by classical procedures: thus the whole point of our work
lies in the fact that it still applies with variable operators Ati. In our
case some of the classical methods fail—among them the most powerful
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SIMULTANEOUS LINEAE RECUEBENCE RELATIONS 185

method of the eigen-values of E—and we must pick our way rather carefully
even to get a linear recurrence relation for uk.

The process of elimination from simultaneous recurrence relations leads
us, as a by-product, to the (non-linear) recurrence relation satisfied by the
convergents of a continued fraction. It seems unlikely that this relation
is new, but it is certainly little known.

We are also led to define the rank of a matrix of operators of the type
(2). Here again care is needed: we have no analogue of the sub-
determinants that figure in any classical treatment of the rank of a matrix.

This note was prompted by the paper " A Determinantal Expansion
for a Class of Definite Integral, Part 5 ", by L. R. Shenton, Proc. Edinburgh
Math Soc. (2), 10 (1957), 167-188 (169), which the present writer was
privileged to see before its publication.

2. Simultaneous Equations in One Unknown and the H.C.B.F. of a Set of
Operators.

Consider the h simultaneous equations

At(n)u(n) = tt(n) (7)

in one unknown u(n). The Ai are polynomials in E. We adopt a process
corresponding to that for constructing the H.C.F. (highest common factor)
of h polynomials in an ordinary variable. We select one of them (say Ae)
whose order in E is least. We divide the other A% on the right by Ap obtain-
ing equations

Ai = tiA^Ai, (8)

where tt, A/ are new polynomial operators and At' is of lower order than
Ap. We also put

A' = AP. (9)

The change from the set {At} of operators, written as a column, to the
column {A/} may be represented by

{Ai} = t.{Ai% (10)

where t is a matrix operator having unity in each element on the principal
diagonal, tt in the (i, /J) place, and zero elsewhere. We have also

{At'} = s.{A& (11)

where s = 27—t, I being the unit matrix, s, t are inverse operators:

st = ts=I. (12)
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We apply the operator-matrix s on the left to the column of equations
(7), obtaining

Ai'u = s{Ai}% = s{Q = Zi, (13)

say. The new set of equations is completely equivalent to the old, since
the old may be recovered by applying the operator matrix t to the new.

This process of reduction is now repeated as many times as possible.
At each step, except possibly the first, the highest order of the operators At

is lowered: hence the process terminates after a finite number of steps.
When it terminates all the operators At but one have been reduced to zero.

Let s(1), ta); ...; sip\ t^ be the pairs of transforming matrices used
in the different steps and write

S = sW...sW, T = P-K..tf*>\ (14)
Then clearly

ST=TS=I. (15)
We may suppose

(16)

since the one non-zero element surviving may be brought into this position
by one more matrix multiplication. Then

At=TixF, F = XSliAi. (17)
i

The equations (17) justify calling F the highest common right factor
(H.C.R.F.) of the At [the elements of S, T are by (14) polynomials in E]
and the H.C.R.F. is unique save for an arbitrary left factor not
involving E.

By an operator we shall mean always a polynomial in E, and by an
operator matrix (or matrix operator) we shall mean a matrix whose
elements are operators. A (square) matrix operator will be called regular
if it has an inverse: thus S, T are regular, and the product of two regular
matrices is regular. Multiplying a set of equations on the left by a regular
matrix operator gives a new set of equations completely equivalent to the
old. And by such transformation we can reduce the equations (7) to the
form

Zv (18.1)

) , (18.2)
where Z ^ S{Q.
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This may be considered as solving the problem of the elimination of
one unknown from a system of linear recurrence equations. The equations
(18.2) are the result of elimination, and if they are satisfied then the sole
condition on u is the single linear recurrence relation (18.1).

To reduce the equations to the form (18), however, we must know the
operators At. The t,t may, for example, contain certain parameters, and
then (18 . 2) gives the conditions on these parameters in order that (7) be
self-consistent: but we cannot effectively reach (18) unless the Ai are
genuinely known. If we try to follow out the process of reduction without
that knowledge, we are led to a string of alternatives of the type of (18)
which apply according as certain combinations of the coefficients in the
operators At do or do not vanish.

We may ask whether by some other method we can carry out the
elimination and obtain a single set of equations which will include all these
alternatives. The answer appears to be in the negative unless we are
prepared to accept non-algebraic equations. For example, the result
of eliminating u from the simultaneous equations

{aE+b)u = 0, (a'E+b')u = 0

is " in general "
ab'—a'b = 0.

But if a = a' — 0, and b = b' = 1, this condition is satisfied although the
equations for u have no common non-trivial solution. The true result of
the elimination gives all points (in the space of coordinates a, b, a', b')
for which ab' = a' b, excluding those for which a = a' = 0, excluding also
those for which b = b' = 0, but including the point a = a' = b = b' .= 0.
This construct, which as a set of points is not closed, cannot be given by
algebraic equations.

To summarise: the h equations (7) in one " unknown " can be reduced,
by operating on the left with a regular matrix operator, to the single
equation (18.1) for the unknown and the (h— 1) equations (18.2) free of
the unknown. The operator F is the H.C.R.F. of the Ai and does not
vanish (identically) unless all the Ai vanish (identically). This exception,
which can arise non-trivially in our later work, can be included formally
as a case in which F = 0: from the point of view of elimination, of course,
(18.1) disappears and all h equations appear in (18.2).

3. The Rank of a Matrix Operator.
Suppose that we are given an (h, k) matrix operator A = \\Atj\\. We

shall first discuss the dependence or independence of the rows of A, and
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188 H. D. UBSELL

the forms to which it can be reduced by multiplication on the left by a
regular matrix operator. The description of the results is simplified if
we allow ourselves on occasion to transpose columns: such transposition
is equivalent to multiplying the matrix on the right by a regular matrix
(of constants), but the role of these right factors is quite subsidiary.

If A does not vanish identically, we choose a column which does not
vanish identically (e.g. the first such column) and transpose this column
to the first position. This transposition is given by a matrix C(1): AC(1)

has first column not identically zero.
Next we choose the regular matrix operator S(1) so that S(1)4C(1) has

a first column

From now on we are concerned only with the last (h— 1) rows and last
(k—1) columns of S^AG^. Our programme is completed if either h = 1
or k = 1 or the submatrix formed by the common part of these rows and
these columns vanishes identically. If not, we choose a column of the
submatrix which does not vanish identically, bring it to the first position
in the submatrix, i.e. to the second position in the whole matrix, by a
transposition C(2>, leaving our first column, of course, in place. By a regular
matrix operator $(2> which leaves the first row unchanged and only trans-
forms the remaining (k—l) rows among themselves we bring the first column
of the submatrix to standard form. Continuing in this way we reach our
end after, say, r steps. Writing

8 = 8<r>... 80i, C = CW.. . CM (19)

we see that T is a regular matrix operator, that C merely permutes the
columns in some way, and that

8AC=\ • • | (20)
F.r

where all elements below either the principal diagonal or the r-th row
vanish, while F1} F2, ..., Fr are in fact different from zero.

Let us say that ij rows Bx, ..., R^ of a matrix operator M are dependent
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if there exists a row B = (Bv ..., Bv) of operators not all zero and such that

i.e. JB1J2u+... + 5,ii,J = 0 (allj), (21)

where R1P ..., B^ are the j-th elements of Rlt ..., i?,. If no such B
exists we say that the rows Rv ..., R,, are independent. Let us also say
that p is the row-rank of a matrix M if there is in M at least one set of p rows
which are independent, while any (p+1) rows of M are dependent.

It is evident that r is the row-rank of the matrix SAC in (20), and
that multiplication on the right by a transposition matrix C, or even by
any regular matrix, cannot alter the row-rank of a matrix.

Now consider a matrix M of row-rank p. We suppose without real
loss of generality that the first p rows Rv ..., Rp of M are independent.
There is a relation

1JB()+1=0 (22)

between the first (p+1) rows. The process of forming the highest common
left factor G of the Bi leads us to a regular matrix t (of p+ 1 rows and
columns) such that

(Bv . . . , Bp, Bp+1)=(0, ...,O,G).t.

The common left factor G can be cancelled from (22): in effect, then, we
may suppose that G is unity. We apply the transformation t on the left
to the first p-j-1 rows of M, leaving the other rows unchanged : the complete
transformation of M is given by a regular matrix T(1), say, and. the trans-
formed matrix

has its (p+l)-th row i ? ^ identically zero.
We now observe that a relation

p+i = 0 (23)

exists between Rv ..., Rp, Rp+2- moreover, since Rv ..., Rp are inde-
pendent, BW2 cannot be zero. Substituting for Rv ..., Rpin terms of the
first p+1 rows of M(1) (we recall that t is regular) we get from (23) a relation
between the first p+2 rows of Mm. From this the term in R(1li can
obviously be omitted: we then have a dependence relation between the
first p and the (p+2)-th rows of Mm. We use this dependence relation
to determine a regular matrix operator f(2) to apply to those />-f-l rows of
M(1\ leaving the other rows unchanged: the complete transformation
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is given by a regular matrix T®\ and the transformed matrix

has its (p-\-l)-th and (p+2)-th rows identically zero.
Continuing in this way we arrive finally at a regular matrix

rp _ rp<$> y ( l )

such that in TM all rows below the p-th vanish identically. This result
we may express by saying that a matrix of row-rank p may be reduced to
p rows (or fewer).

Conversely suppose that M may be reduced to a rows, i.e.

M = TN, (24)

where T is a regular matrix and only the first a rows of N are different from
zero. Then

M=T'N', (25)

where T' consists of the first a columns of T and N' consists of the first
a rows of N. Now select any a+1 rows of M to form a matrix M' and
let the corresponding a-\-1 rows of T' form a matrix A : then

M' = AN'. (26)

This matrix A we reduce as in (20). Since A has only a columns, r
and the last row of SA G must vanish identically. So also therefore do the
last rows of SA and of SAN' = SM'. This shows that the rows of M'
are dependent: thus a matrix M which can be reduced to a rows has row-
rank p ^ a.

Putting these two results together, we see that p is the same as the
minimum number of rows to which the matrix may be reduced (by regular
multiplication on the left). Hence also the row-rank is unaltered by such
regular transformation on the left (as well as on the right).

In (20), therefore, r is the row-rank of A as well as of SAC: and any
such reduction of A must involve the same value of r.

We can define the column-rank K of a matrix M analogously: it is the
maximum number of independent columns, the minimum number of
columns to which M may be reduced by regular transformation on the
right: and it is unaltered by regular transformation on either side.

The row-rank p and column rank K are equal. To see this we first
reduce column 1 of a given matrix A to its first element as above. Next
we reduce the first row to its first element by regular transformation on the
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right (there is no need for a transposition matrix on the left in this step).
In general this will replace some or all of the zero elements in the first
column by non-zero elements again: but in general also it will diminish
the order of the (1,1) element. We then again reduce the first column
to its first element, and we continue operating alternately on the rows and
on the columns as long as this diminishes the order of the (1, 1) element.
This process terminates when we find that the element is itself the H.C.R.F.
(H.C.L.F.) of the first column (row). Then one more transformation on
the rows (columns), which merely subtracts left (right) multiples of the
first row (column) from the others, while leaving the first row (column)
itself unchanged, will produce a matrix in which both the first row and the
first column are reduced to the (1,1) element.

Operating now on the remaining rows and columns in the same way,
we finally arrive at regular matrices S, Q such that

(27)

where Flt ..., Fr are different from zero but all other elements on the
right-hand side vanish. Since regular transformation alters neither p
nor K, we see that

P = K = r, (28)

and we may speak simply of the rank of a matrix operator.

4. Reduction, Elimination and Consistency for Simultaneous Recurrence
Relations in any Number of Unknowns.

We turn now to our simultaneous equations (1). The transforma-
tion (20) gives

(29.D

Frvr+ ... = Zr

0=Zi (i>r) (29.2)

where S{z} = [Z], (30)

{u} = C{v}, (31)
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i.e. the vt are a permutation of the ut. As to this permutation we recall
that permutation is only needed when the next variable to be eliminated
does not in fact occur in the remaining equations. Thus without any
permutation we get

(29.1 bis)

where it < iz < ... <lir: the variables before uii do not occur, those before
ui2 only occur in the first equation, and so on.

The transformation (27) gives

FiUi=Zi (»<r), (32.1)

0=3, (Or), (32.2)

where Sz = Z, u=QU or U = Pu, (33)

P being the inverse of Q. This transformation is less satisfactory than
might at first be thought. The transformation from u to U lacks the
geometrical interpretation of a co-ordinate transformation: P and Q
are operator matrices. And the reduction is not unique. The result,
given the initial set of equations, depends on whether we start with an
H.C.R.F. or an H.C.L.F. process: and, given the procedure, two mathe-
matically equivalent sets of equations will lead to two different reduced
sets. The reduction has indeed a tendency to throw everything into the
last equation rather than to separate out the difficulties. For example,
one would be content with the pair of equations

(E—a)u=0, (E—P)V=O.

But given the equivalent set

(P—E)u'+{E—P)v' = 0.

the H.C.R.F. process replaces this by the set

-a—j8) t ; '= 0,

t;' = 0,
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and the H.C.L.F. process then simply defines u" so that the former
equation becomes

(J3—<x)tt" = 0.

If we confine our transformations of variables to ordinary ones,
i.e. require P, Q to be matrices of numbers not of operators, then it is
evident that no separation of variables is to be expected. If we allow
transformation by operator matrices, the most acceptable complete
separation of the system can be defined as follows. For any complete
separation (32) we write down a symbol

(nv n2, ..., nr),

where the nt are the orders of the operators Ft so arranged that

nl ^ n2 ^ • • • ^ nr-

Of two separations with symbols (nx...) and (m1...) we prefer the former if

nx < mx,

or if nx = m1 and n2 < m,%,

or if ....

But there is no evidence that the " most acceptable " is unique and we
have no algorithm for obtaining it.

5. The Convergents of a Continued Fraction.

The numerator and denominator of the n-th convergent rn = pn/qn
of the ordinary continued fraction

(34)

Pn = *nP«r-l+Pn-» ( 3 5 - ] )

?« = «n?n-l+f«-2- (35.2)

Replacing pn by qnrn we get

rn In = «n »W 9n-l+rn-l 1n-%- (36)
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(35.2) and (36) can be regarded as simultaneous recurrence relations for
qn. Eliminating qn we get

0 1 -an —1

0

rrt+l ~~an+lrn rn-\ "
= 0, (37)

'n "n'n-l ~ ' n - 2

Or1 O»a«+l(»"«+l—»'»)(»>n-2-»>»-l)= (»'»+l-»1n-l)(»1n-»"n-«). (38)

or K_2, rnJ rn+1, rn_y] =-anan+1, (39)

with one of the accepted notations for a cross-ratio. Alternatively we
can write

6. The Eliminant " in general ".
We look now for a method of writing down straight away the recurrence

relation for one of the variables, say uk, and of determining the order of
that relation. Here we have in mind a procedure depending only on the
orders of the A{j, not on the actual values of the coefficients a in those
operators. For this purpose we must of course assume that the equations
as given are independent and equal in number to the unknowns: thus we
suppose li = k and rank (A) = h.

From what we said in §2 it is clear that the result we obtain may fail
in some way in special cases. We shall discuss this aspect partly here, but
more fully in §7.

Suppose that the h equations are of orders %, ..., mh in E. Multiply
the i-th equation through by

1, E, E*, ..., EM~m:

We obtain in all E(if—mf +1) equations. From these we wish to eliminate
the quantities

The elimination is just possible if

X(M-mi+l) = (h-i)(M+l)+l,

M^Xnii. (41)

'From (35) one easily gets p»? n - i -? n p n - i = ( — 1)", Pn 5W-2—?»p«-2 = ( — l ) " - 1 ^ ,
well-known formulae from which (38) follows trivially. The proof given above is merely
an example of the process of elimination between simultaneous recurrence relations.
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With this value of M, the eliminant is a determinant in which one column
consists of uh acted on by operators, plus terms derived from the zt, while
the other columns do not involve uh. Thus, unless the condition, proves
to be nugatory, we have a linear recurrence relation for uh: and. it is in
general of order M.

This process for the eliminant can frequently be improved, leading to
a recurrence relation of lower order than (41). Suppose, for example,
that the operator Au is of order at most m^—83. In other words, we
suppose that the operators acting on v,} are systematically of lower orders
than the equation in which they occur. Then the number of quantities
to be eliminated is only

S (M+l-8,),
i<h

elimination is possible when

M = Ilm,— 2 8,,
,<h

and the order of the recurrence relation for uh is at most

M—8h = 'Emi—'L 8j. (42)

Similarly, if the operator Ait has a (right) factor E'J for all i, we get

and the order of the recurrence relation for uh is at most

J f - A - e ^ 27^ -2 (8 , +e,). (43)

A moment's consideration shows that if $,• + €,• > 0 for some j<h
then the eliminant which ignores this fact is indeed nugatory : for it
contains a column of zeros.

The formulae (42), (43) seem to be fairly practical. By our present
methods we cannot hope to detect any lowering of the order of the
recurrence relation due to relations between the coefficients x in the
operators, and apart from such causes it is perhaps fair to say that (43)
will usually give the right answer. There is, however, a better result
depending only on the highest and lowest orders of E in the Aif, which we
shall denote by pi} and etj respectively. It is less easily calculable than (43).

We can get some guidance in this matter by considering the case of
constant coefficients. In this case we can speak of the determinant of A,
of the various subdeterminants, and in particular of the co-factor A'i} of

it
in
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To eliminate ux, ..., uh_v operate on the i-th equation with A'ih and
sum. A recurrence relation for uh alone is obtained, with det^4 as the
operator. If p is the highest and e the lowest power of E actually
occurring in the expansion of det-4, we get a recurrence relation for uh

of order

p—e. (44)

From the pi} alone we can give an upper bound for p. We redefine p
as this bound,

, (45.1)

where {jv} is any permutation of the numbers 1, ..., h and the maximum
is taken for all such permutations. Similarly we redefine

6 = min2e, j 3 V (45.2)

(44) then becames an upper bound for the order of the recurrence relation
for uh: but it is the correct order unless the coefficients a obey certain
relations.

The highest and lowest powers of E in A'ih will in general be p/, e/,
where

p/ = max 2 pt „ (46.1)
v<h "

e/ = min 2 et „ (46 . 2)
v<h "

where in each case the iv are a permutation of the numbers 1, ..., h, with
i itself excluded, and the maximum and minimum are taken for all such
permutations.

These results for the case of constant coefficients suggest the following
results, which are in fact true, for our case.

(I) If we apply the operator E" to the i-ih equation for all values of v
from e/ to p/, we obtain in general just enough equations to eliminate
the unwanted E"Uj (j<h).

(II) The order of the resulting recurrence relation for nh is in
general p—e.

Before indicating the proof of these results we must refer to a point
of interpretation which arises both here and in (42), (43). Suppose that
a particular Afj vanishes identically: what values are then to be assigned
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to pij, e{j ? The example of operators with constant coefficients shows us
that in forming our maxima and minima any combination which would
involve this pit or <=u is simply to be ignored: the same effect is obviously
achieved if we write

pu = - co , €tj = +00 if Au = 0. (47)

Any rule not equivalent to this (e.g. ptj = —1, e^ = +1) will on occasion
lead to an " eliminant " nugatory whatever the coefficients a.

But with this rule of interpretation some unexpected questions arise.
In the argument leading to (43) we proposed to multiply the i-th. equation
through by powers of E ranging from 0 to M—wi, giving (M—mi-)-l)
equations. This is nonsense unless

S m , + 1 > S(8,+ «,). (48)

Even equality here would be rather alarming: it would imply that we
make no use of the i-th equation. Similar questions arise in the more
precise method leading to (44): can we be sure that pt', e/ as given by
(46) are finite ?

The solution is that (48) holds, p{ and e/ are finite, (I) and (II) are true,
and the methods we have described do work, unless the Atj identically
zero are so distributed that there is a smaller group of, say, hi equations
included in (1) which only involve h'—l unknowns other than uh. In
such a case we should obviously obtain the condition on uh from this more
restricted set of equations.

The first step in our proof of these results is the following

LEMMA 1. Suppose that in a square block of k2 sites, arranged in k roivs
and k columns, some sites are occupied and some unoccupied. Suppose also
that there is no rectangular block, formed by the intersections of kx rows and k2

columns (not necessarily consecutive), and consisting wholly of unoccupied
sites, for which fcj^+ib^ > k. Then there is a set of k occupied sites, of which
precisely one occurs in each row and precisely one in each column.

[If the " occupied sites " represent non-zero elements in a determinant,
we are saying that the determinant does not vanish identically.]

A block of unoccupied sites for which kx-\-k2 > k we shall call a forbidden
block, one for which kx-\-k% = k a maximum block of unoccupied sites.
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The proof of the lemma is, in principle, by induction on k.

(i) If the given array includes a maximum
block 1 the rest of the kx rows of that block form
a square array of kx rows and k± columns, and
we see at once that this array contains no
forbidden block. So also the rest of the k2

columns of the maximum block form a square
array of k2 rows and k2 columns containing no
forbidden block. The result follows on apply-
ing the inductive hypothesis to these smaller
square arrays.

####•
(ii) If the given square array contains no

maximum block of unoccupied sites, we select an occupied site, strike
out the row and column in which it lies, and find that the remaining square
array of (k—1) rows and (k—1) columns contains no forbidden block.
To it we can therefore apply the inductive hypothesis.

Since the lemma is trivial for k = l, its proof is now complete.
Referring to (46), (47) we see tha tp / , e/ are finite unless the submatrix

of A obtained by striking out the i-th. row and last column contains a
forbidden block of zeros. In this case there are kt equations, other than
the i-th, which involve only (&x—1) variables other than uh: and the
equation for uh is to be obtained from these alone.

Except in such a case, (48) follows, and with strict inequality. For
there is a set {*„} for which A^v is not zero, and we find

—8r,

S (€„+§„) < S
r<h v<h

= S mv.

To establish (I) we note first that the number of equations obtained is

The highest and lowest v for which E"Uj is present in these equations are
respectively

p" = max
(0

e" = min
(i)

(49)

1 In the figure the rows and columns are rearranged so that the maximum block is in
the north-east corner of the plan.
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and the number of variables to be eliminated is therefore

<h

It is therefore sufficient for us to prove that

sp /= zPy, s e / = s ej'. (so)

We observe now that

p " = max S^V;,-, (51)

where the maximum is taken for all sets {jv} in which the value j is taken
twice, all other values from 1 to (h—1) taken onoe each. We define

, (52)

where the maximum is taken for all sets (iv, ,?'„) in which the i,, take (h—1)
times each value from 1 to h, while the j , , take h times each value from
1 to (h—1). The inequalities

^P (53)

are obvious: we prove that also

Xpi'>P, Xp'/>P. (54)

LEMMA 2. Suppose that h(h—\) houses are arranged in a rectangular
block of h streets and (h—1) avenues, one house being common to each street
and each avenue. Suppose also that in each street there are (h— 1) occupants,
and in each avenue h occupants. [A particular house may be unoccupied,
occupied by one person, or occupied by more than one person.] Then the
occupants can be divided into h parties such that the i-th party includes one
person from each street except the i-th street, and one person from each avenue.
And they can be dividedinto (h—1) denominations, such that thej-th denomina-
tion includes precisely two persons from thej-th avenue, one person from each
of the other avenues, and one person from each street.

Suppose that the first a parties have been chosen, and put h = a + 6 + 1 .
Then there remain (6+1) persons in each of the first a streets, b persons in
each of the remaining (6+1) streets, and (6+1) persons in each avenue.
We strike out the (a+ l)-th street and remark that the square array which
is left contains no forbidden block of unoccupied houses. For if it con-
tained an unoccupied block kxy.k2, where &1+&2 = A = a + 6 + l , then
there would be in the whole array a k2xk2 block with k2{b+l) occupants.
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This is impossible since no street can have more than (b-\-l) occupants,
and one street, the («+l)-th, has only b occupants. Hence by Lemma 1
the (a-\-l)-th party can be chosen.

Similarly, after a denominations have been chosen we form a square
array from the remaining population by duplicating the (a-(-l)-th avenue,
suppose that this array contains a forbidden block of empty sites, and
deduce a contradiction. [There are three cases to consider, according
as the supposed forbidden block involves both, one or neither of the (a+1 )-th
avenue and its duplicate.] Thus the desired result follows from Lemma 1
again.

Lemma 2 gives (54) at once, and hence, with (53), the first of the
equations (50). The second of those equations is proved by the same
argument: and (I) is thus established.

As for (II), it is now evident that in the last column of our determinantal
eliminant occur terms E"uh with values of v ranging precisely from e to p,
so that the recurrence relation for uh is of order at most (p—e). That it
is not in general of lower order can be seen from the case of constant (but
general) coefficients.

7. Special Cases: the Nugatory Eliminant.
We remark first that we have given more than one " general " eliminant.

Each is general in a particular field of systems (1). Each such field is
contained in (or contained in the closure of) a wider field: e.g., the field

h = 3, m1 = m2 = % = 5

is contained in (the closui'e of) the field

h = 3, mx = m2 = ra3 = 6.

If a system (1) belonging to a field Fx is treated as though belonging to a
wider field F2, the eliminant may go wrong in a number of ways : e.g., it
may become nugatory (this occurs with the fields just cited) or give a
condition necessary but not sufficient. The eliminants we have given
are, in general, in the fields to which they refer, sufficient as well as necessary:
but we shall not stay to establish this.

Our object in this section is to describe what can happen to a general
eliminant in a special case. A thread which runs through our remarks
is given by the statement that specialisation can only lower the order of the
eliminant (i.e. the recurrence relation for uh alone). This may seem obvious:
but sound reasons for it are not obvious, and indeed the statement is not
entirely true.
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We have used the word field without precise definition. Such definition
is possible: for our purposes a field consists effectively of systems (1) for
which a .particular process of elimination (a particular formula for the
operators Si7 see below) gives a correct result, i.e. a condition on uh both
necessary and sufficient.

After these preliminary remarks we observe that the eliminant is
given by a row

(<Si, •••> Sh)

of operators applied to the column of equations (1). These operators are
so chosen that

S S ^ , = 0 (j<h), (55)
i

and the eliminant is

( ^ (56)

This is obvious in the case of §4 (and is therefore true for any field): it may
be seen without difficulty in the case of the determinantal eliminants of
§6. The operators S{ have no common left factor involving E. This
again is obvious in the case of §4, since the S{ then form a row of a regular
matrix operator: but, in any case, if 8t = LS^ then the S/ also satisfy
(55) and hence the stronger condition

(Z8t'Ath)uh = j:Si'zi (57)

on uh is necessary, (56) therefore certainly not sufficient. Thus a set of
operators St which in general, in a field F, give a correct elimination have
in general no common left factor: and any case in which they do have a
common left factor counts as a special (or limiting) case of that field.

Finally, the set of operators giving the correct elimination is unique,
apart from common left factors not involving E. For if there were two
such, (Sx, ..., Sh) and {Tx, ..., Th), these rows being independent, then the
first (h—1) columns of A would form a matrix operator of (row) rank at
most (h— 2), and so A itself would be of rank less than h.

Now suppose that we have found a row (SJ of operators giving correct
elimination in general in a field F. What then can happen to the eliminant
(56) in a special or limiting case ?

The limiting case is the limit of a sequence of systems (1) general in F.
We correlate the members of such a sequence with the values of an integral
parameter A. The operators S^X) will depend on A (as well as on n): we
ask first what happens to them as A~-oo.
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(I) The coefficients j8(A) in the ^(A) may fail to tend to finite limits
as A-^co, or they may all tend to zero.

In this case we take all the f3 (the coefficients of the different powers
of E in the S{) and regard them as homogeneous co-ordinates in a pro-
jective space, giving a point PKn in that space. The projective space is
compact, and so, for each n, the points PKn have at least one limit point.

By a selection process we can replace the sequence of systems (1) by
a subsequence such that, for each n, PKn tends to a limit Pn as A-^oo.

If now we normalise the operators 8$ (A) by the condition that the sum
of the squares of the moduli of the /3 be unity, the new operators

Si'(X)=f(X).8i(X)

will converge as A-̂ oo to operators S/ which are well-defined, do not
vanish identically, and satisfy (55) for the limiting case under discussion.
They give an eliminant which is certainly a necessary condition, and
whose order is at most equal to that of the general eliminant.

It may happen that a different sequence of systems (1) general in F,
or a different subsequence of the first sequence, leads to a different set of
operators $/ for the limiting case. If so, we can treat the two eliminants
as in §2 and obtain, if they are consistent, an eliminant of lower order.

In brief, (I) may be evaded.

(II) The limiting 8t [obtained, if necessary, by the devices of (I)]
may have a common left factor. In this case we simply remove it: the
resulting eliminant (57) is certainly of lower order than (56) and therefore
certainly of lower order than the general eliminant.

Thus in all cases we can deduce, from operators 8t(X) giving correct
elimination in the general case, a set of operators St for the limiting case
which satisfy (55) and have no common left factor: and the change can
only lower the order of the " eliminant " so obtained.

If the system of equations (1) remains of rank h in the limiting case, the
condition on uh thus obtained is both necessary and sufficient: for we have
seen that if A is of rank h there can be effectively only one row (8t) satisfying
(55) and of H.C.L.F. unity.

But if the matrix operator A falls in rank in the limiting case, a number
of different cases may arise.

(A) The equations (1) may become inconsistent: that is, there may
exist operators Tt such that

S r , 4 f l = 0 (allj), (58.1)
i

Sr^^O. (58.2)
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In this case there need by no question of the " condition on uh alone "
or of its order. Evidently our limiting St may, but will not always,
reveal inconsistency.

(B) The equations (1) may remain consistent, and uh become arbitrary.
In this case the last column of A is, in the limiting case, dependent on the
other columns. The limit of the eliminant (even when the St have been
modified as above) is nugatory. But it may be nugatory also in other
cases.

(C) The equations (1) may remain consistent, and the general
eliminant lead to a condition which is not nugatory. In this case the
correct eliminant could be obtained as in §4: whatever condition on uh

emerges, it implies our limiting eliminant and is therefore of the same or
lower order.

(D) The equations (1) remain consistent, the general eliminant leads
to a condition which (even when the St have been modified as above) is
nugatory, but uh is not arbitrary. In this case the true eliminant may be
of higher order than in the general case. An example of this is given by
the system

a.Bnu1+B12u2 = z1,

aB22u2 = 0.

Here the eliminant in the general case is B22 u2 = 0, but in the special or
limiting case <x=0 it is i?12w2 = z1. Evidently the order of B12 may
exceed that of B22.

8. Generalised Continiumts.

We turn now to the topic from which our work originated. Let
K = Kn be a determinant of n rows and columns in which every element
is zero except those in the principal diagonal, k superdiagonals and
k subdiagonals. The (i, j) element we may denote by

ai for i=j,

bt, Ci, ... for j—i= 1, 2, ..., k,

b/, c/, ... fort—j= 1, 2, ..., k.

For k— 1, Kn satisfies the recurrence relation

Kn = anKn_1—bn_1b'n_1Kn_2
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which is of the second order and has highest coefficient unity. If there is
only one subdiagonal differing from zero (and that the one next to the
principal diagonal), i.e. if c/ = ... = 0, then Kn satisfies a recurrence relation
of order (fc-j-1), again with highest coefficient unity, which can at once
be written down. For example, if k = 3,

Kn = an Kn-l — K-1 &ra-l Kn-2 + K-l K-2 Cn-2 Kn^~&«-l K~1 &»-3^»-3 Kn-i-

Determinants of this type have been called " recurrent " by Shenton
(loc. cit. §1). In general, however, Kn does not satisfy a recurrence
relation, of fixed finite order, with highest coefficient unity, and with
polynomials of fixed finite order in the elements of Kn for its other
coefficients. To see this we need only observe that Kn includes terms in
which we take from the columns numbered

..., n—5, n—3, n—1, n, n—2, w—4, ...

respectively the elements from the rows numbered

..., n—3, n—1, n, n—2, n—4, n—6, ...,

so that the completion of the cycle can be put back indefinitely.

Nevertheless, Kn does satisfy a recurrence relation. To see this,
denote by [</], where

J= Ul,h, ~;j*), (59)

the minor obtained by striking out from Kn+K its last «r rows and the
K columns numbered

n+K—jv ..., n+x—jK.

We may write the symbol (59) with

(O<)ji<j,<...<j«, (60)

and we shall need the symbols with

K < h, jK < k+K. (61)

We shall see that the functions of n denoted by these symbols satisfy a
set of simultaneous recurrence relations. To see first how many variables
we have we remark that (59) may be replaced by

{ji,3»-,3k}, (62)

in which, if K = k, we have merely changed the type of bracket, while if
K <k we complete the set of indices in (59) with the k—K numbers

A+jc+1, ...,2k.
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The correspondence between the symbols (59), (62) is easily seen to be

( 2k\, 1. The old and new

symbols for Kn itself are

[( )], [{Jc+1, k+2, ..., 2k}].

For each of our symbols / we now expand E[I] by the elements of its
last row. This gives a recurrence relation between our variables. This
fact is obvious for K <.k, while for K = k we " must " take the element from
the last column and last row, since all other elements of that column are
zero. There are as many relations as variables, and the order of each

(2jfc\, j .

We can indeed show that (44) gives the same assessment for the order

( 2k\
7, I, and that, in a formal

expansion of det.4, Ep would arise only from the product of the elements
in the principal diagonal. To see that e = 0, we pick out the (/, J)
elements of A according to the following rule:

(i) if / = (iv ..., i,), where K<k, we take J = (i1, ..., iK, &+/c),

(ii) if /== (1, ..., m— l,im, ...,*&)> where im>m, we take

J= (im—m, ...,ik—m).

Here we may have m= 1, in which case the initial run (1, ..., m—1) in /
is missing, or we may have m = k-\-l, in which case im, ...,ik are missing,
and J = ( ).

This rule picks out one element, not involving E and not in general
zero, in each row of the matrix A. The correspondence between / , J
is (1, 1), so that e = 0: and actually this rule picks out the only term in
the formal expansion of the determinant which does not involve E.

The Kn satisfy a recurrence relation of substantially lower order if
they are symmetrical. To see this we first give a different derivation for
the order in the non-symmetrical case. We denote by [/, J ] , where

I, J— ( i l t . . . , i K ; j x , . . . , j K ) ,

the minor obtained from Kn+K by striking out the rows numbered
n-\-K—% and the columns numbered n-\-K—jv. We may write the
symbol with
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We observe now that

[(0, i2, . . , » , ; 0,j2, . . . , j» ) ] = [(h-l, ...,iK—l;j2—l, ...,jK—l)],

a relation which we may call " reduction ". We can reduce any symbol
to a form in which

iv j± do not both vanish.

We shall need the minors with

h > 0 , iK<k, jK<k (A)

and also those with

»1 = 0, iK<k, i x > 0 , i.-<*. (B)
To obtain our recurrence relations we expand E(I, J) by the elements

of its last row if it satisfies (A), and by the elements of its last column if
it is of type (B).

The relations are all of the first order, and so the order of the eliminant
is (in general) equal to the number of variables, namely

as before. When, however, Kn is symmetrical, we have

[/, J] = [J, I].

In consequence we can rule out entirely those symbols, of type (A), for
which j x = 0. And of the symbols which remain under (A), we must
select only one representative from each symmetrical pair [/, J] and [J, I],
with I ^ J. This gives for the number of variables, and so for the order
of the eliminant,

2 i f c - 1
(2k-l

Although this gives a substantial reduction, it must be admitted that
the order of the eliminant increases with phenomenal rapidity with k,
thus:

Symmetrical case ...

XJnsymmetrical

0

1

1

1

2

2

2

5

6

3

15

20

4

49

70

5

169

252

6

604

924
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