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1. In a recent note in this Bulletin t3] , W . A . J . Luxemburg has 
shown in two different ways that a condition of Krein and Krasnosel 1 -
skii [2] for the uniqueness of solutions of a differential equation 
also implies the convergence of the successive approximations. 
Here , a third proof of the uniqueness and the convergence of suc
cessive approximations, formulated for systems of differential 
equations, will be obtained. This third proof is modelled on the 
methods used in proving general uniqueness and convergence the
orems £ l } . The approach is suggested by Luxemburg1 s idea of 
breaking the argument into two stages and using one of the hypoth
eses in each stage. Since the proofs given here a re hardly shorter 
than the ear l ie r d i rect proofs , their main in teres t l ies in the fact 
that they fit what appeared to be an isolated result into the f rame
work of a general theory* 

2. We consider the initial value problem 

(1) x' = f(t,x) , x(0) = 0 , 

where x and f a r e n-dimensional vec tors . The norm lx| of any 
vector x is defined in the usual way (cf. LI 3) as the sum of the 
absolute values of i ts components. We consider a vector function 
£(t,x) satisfying the pai r of conditions 

(2) l f ( t , x 1 ) - f ( t , x 2 ) U A ! x 1 . x 2 | < , 

(3) IfCt.X!)- f(t,x2) | < k |xX- :2 | It , 

where k ,A , and oc a r e constants with 0 < k, 0<<*<1. 

THEOREM 1 [2, 3j . Let f(t,x) be continuous in a region 
0 i t < a , | x | < b , and bounded in norm by M in this region. 
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Suppose also that f satisfies (2) and (3) in this region, withk(l-<*)< 1. 
Then there is a unique solution of (1) on 0 £ t < a . 

Proof. Suppose there a r e two solutions x (t) and x?(t) of (1) on 

0 < t < a, and let m(t) = l x . ( t ) - x (t)| . We must show that m(t) = 0 

for 0 < t < a . We have 

(4) |m«(t)| 4 | x x Ht)-x2
!(t)l < U(t ,x 1( t ) ) - f(t,x2(t))l 

< A l x ^ t ) . xz(t)C$ A£rn(t)3* , 

using (2), Suppose there exists <T, 0<d~<a, such that 

(5) rn(<T)> L A t l - o c J c r l 1 ^ 1 " ^ . 

Then there is a solution u(t) of the differential equation 

(6) u1 = Au* , 

passing through the point (cr,m((J*)), and existing on some interval 
to the left of <r. As far to the left of <T as u(t) ex i s t s , 

(7) u( t )<m(t) . 

If this is false, there exists \ £cr such that u(Ç) = m(Ç ) and u(t)>m(t) 
for t<^ and t sufficiently near ^ , say for ^-h ^ t < Ç . But if 
Ç -h £ t < Ç ,then u'(t) = A Cu(t)3" > A Cm(t)3* ^ m ! ( t ) . Th is , together 
with m(Ç -h) < u ( | -h) implies m(^) < u(^ ) , a contradiction which 
proves (7) . The solution u(t) can be continued to t = 0. If u(c) = 0, 
0 < c<cr , we can effect the continuation by defining u(t) = 0 for 
0 < t < c; otherwise (7) ensures that the continuation is poss ib le . 
Since m(0) = 0, l im t_^ou(t) = 0, and we define u(0) = 0. Now we 
have a solution u(t) of (6) on 0 et t ^cr satisfying u(0) » 0. But (6) 
can be solved explicitly, and any solution with u(0) = 0 has the 

form u(t) = 0, C 0 i t i c ] , u(t) = U ( l - o c ) ( u c)Jl^l'V 9 £t > c] , 
and satisfies 

. 1 / (1 -* ) 
(8) u(t) <A(l-<*)t3 ' , 0 i t £ < r . 

Then u(cr) = m(cr), (5) and (8) yield a contradiction, and (5) can not 
be t rue for any cr. Therefore 

n l / ( l - « ) 
(9) m(t) < [A(l-oc)t] v ' , 0 4 t < a , 
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and since k(l-<*) < 1, we have 

(10) lim t^ot"km(t) = 0. 

To complete the proof, we must show that (10) implies m(t)s0. 
Proceeding as in the first part of the proof, but using (3) instead oi 
(2), we obtain |mf(t)| £ km(t)/t. Suppose m(T) TÉ 0 for some r , 
0<T< a. The same argument as that used above, replacing (6) by 

(11) v! = kv/t , 

gives a solution v(t) of (11) on OétèT such that v(r) = m(r), 0 4v(t) 
£m(t), v(0) = 0. Then lim Qt"Kr(t) 4 l ir^ ^ ^ " ^ ( t ) = 0, and 

(12) l i n ^ ^ r ^ t ) = 0 . 

But the only solution v(t) of (11) satisfying (12) is the identically 
zero solution. This contradicts v{T) = mfT)^ 0, and thus m(t) = 0, 
0 é t < a, which completes the proof of the theorem. 

3, The successive approximations to the solution of (1) are 
defined by 

(13) xQ(t) = 0, x j+1 (t) = >/J)
tf(s,xj (s))ds , (j = 0,1, . - . ) . 

THEOREM 2 Dl . Let f satisfy the hypotheses of Theorem 1. 
Then the successive approximations (13) converge uniformly on 
0 4 t < min (a,b/M) to the unique solution of (1). 

Proof. An examination of the proof of the general theorem on 
the convergence of successive approximations ( t i l , chap. 2, Theorem 
3.1) shows that the approximations (13) form a uniformly bounded 
e qui continuous sequence, and that the conclusion of the theorem is 
equivalent to 

(14) lim sup lx (t)-x.(t)l = 0 , 0ât<min (a,b/M) . 
J «-* oo J T x J 

Let w (t) = x (t)-x (t), m(t) = lim sup \w (t)l . Then m (0) = 0, 

and m(t) is continuous on 0$ t < min (a,b/M), since it is the upper 
limit of a uniformly bounded e qui continuous sequence of functions. 
Using (13) and (2), we obtain 

(15) Iw (t+h)- wj+1(t)|< / t
t+hif(s,x j+1(s»-f(s,Xj(s))| ds 

^ / t+h t .<* 
< J A 1 Wj(s)l ds 
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Because of the continuity of m and the e qui continuity of w. , 

given any £ > 0 there exists an integer M(£) , independent of s and 
j such that 

(16) I w ^ s j U m ( s ) + £ , j > M < £ ) . 

It follows from (15) and (16) that 

(17) t w j + 1 ( t + h ) - w j + 1 ( t ) t à ^ t + h A l m ( s ) + 4 " d s „ j > M ( e ) . . 

F r o m the definition of m it is easy to see that lm(t+h)- m(t)( 
4 l im sup . îw.+ 1(t+h)- w-+1(t)l- . Combining this with (17) and 

then letting £->0, we obtain 

(18) |m(t+h)-m(t)l Û ft
 t + h A M s ) ! * ds . 

The inequality (18) implies that m !(t) exists on any interval ( t , t+h), 
t £ '0 , and that |m 1 ( t ) | à A |m(t)r* . The argument used in the 
proof of Theorem 1 beginning with (4) proves 

(19) liin ^ t-kmft) = 0 . 
t -> o 

To complete the proof, we must show that (19) impl ies m(t) H 0. 
This is done in much the same way as the las t stage of the proof of 
Theorem 1. Suppose m(T) ^ 0 for some T, 0 < T < a . A repeti t ion 
of the f i rs t pa r t of the proof, using (3) instead of (2), so that (11) 
rep laces (6), gives a solution v(t) of (11) on O â t 4 T such that 
v(T) = m(T) , 0 $ v(t) 4 m(t) , v( 0) = 0. Then (19) implies (12), and 
the des i red conclusion follows as in Theorem 1. 
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