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Abstract

Electricity supply operators offer financial incentives to encourage large energy users to
reduce their power demand during declared periods of increased demand from energy
users such as residential homes. This demand flexibility enables electricity system
operators to ensure adequate power supply and avoid the construction of peaking power
plants.
Railway operators can sometimes reduce their power demand during specified peak
demand periods without disrupting the train schedules. For trains with infrequent stops,
such as intercity trains, it is possible to speed up trains prior to the peak demand period,
slow down during the peak demand period, then speed up again after the peak demand
period. We use simple train models to develop an optimal strategy that minimizes
energy use for a fleet of trains subject to energy-use constraints during specified peak
demand intervals. The strategy uses two sets of interacting parameters to find an optimal
solution—a Lagrange multiplier for each energy-constrained time interval to control the
speed of trains during each interval, and a Lagrange multiplier for each train to control
the relative train speeds and ensure each train completes its journey on time.

2020 Mathematics subject classification: primary 49K15; secondary 93C95.
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1. Introduction

Electric trains are an efficient means of transport, but can be large energy users that
impose significant power demands on national or regional electricity supply systems.
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Electricity supply systems often experience regular peaks in power demand during
morning and evening periods, when public transport use and household energy use
are both high. Extreme weather events can also cause peaks in power demand. During
periods of high power demand, the price of electricity increases dramatically.

The cost of electricity for large energy users, such as electric train operators,
often depends, at least in part, on their peak power demand during each month, so
large energy users have a financial incentive to manage their peak power demand.
Furthermore, electricity suppliers often seek to cooperate with large energy users to
better manage electricity supply during unusual periods of high power demand. The
electricity suppliers can give notification up to 24 hours in advance of periods where
overall power demand on the electricity network is predicted to be unusually high.
Financial incentives are offered to large energy users provided they can successfully
reduce their energy use. For example, the French transmission system operator, Réseau
de Transport d’Électricité (RTE), offers financial incentives for companies to provide
demand response capability, which they are obliged to meet at declared peak demand
intervals.

The French national state-owned railway company, Société Nationale des Chemins
de fer Français (SNCF), is the largest electricity user in France, and has been
investigating how they can manage the total peak power demand of their trains on
the French electricity grid [8]. They are particularly interested in reducing energy use
during peak demand periods that are announced by the electricity system operator 24
hours in advance; these peak demand periods typically last for an hour, with agreed
targets for energy reduction across the electricity network. Energy use is measured in
10-minute intervals.

To achieve reductions in energy use during a peak demand period, the trains
collectively must slow down. Trains with frequent stops during a peak demand
period will have limited capacity to slow down without disrupting arrival times at
key locations, such as stations and junctions. However, adjusting train speed profiles
without disrupting arrival times can be achieved on long intercity trips such as SNCF’s
premier high-speed Train à Grande Vitesse (TGV) service, where trains are already
driven efficiently using driving advice from the Energymiser system [1, 2]. If trains
speed up before the peak demand period, slow down during the peak demand period
and then speed up again after the peak demand period, as suggested by Pam et al. [8],
then this strategy will increase energy use before and after the peak demand period but
reduce energy use during the peak demand period.

The problem is to determine how much each train should slow down for the fleet
of trains to collectively achieve the required energy reduction during each 10-minute
interval of a peak demand period. Ideally, this should be done in a way that minimizes
the total energy use for the fleet of trains.

A feasibility study by Pam et al. [8] shows that it is possible to reduce energy
use during a 1-hour peak demand period for a fleet of 105 TGV trains. They
conducted experiments on SNCF high-speed lines to demonstrate that significant
energy reductions can be made using their algorithm. Their heuristic method finds
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good, but not necessarily optimal, solutions to the problem. This paper starts to develop
a theoretical basis for an optimal solution. Although the simple train model we use is
unrealistic, the method can be applied to more realistic models and the results obtained
with the simple model indicate that it should be possible to find an optimal solution to
a more realistic version of the problem.

2. Relevant literature

There is very little literature directly related to the problem of controlling a fleet
of trains to manage peak power demand, partly because this type of control has only
recently become possible with the advent of practical driving advice systems with
real-time data communication between control systems and trains. Section 2.1 reviews
work directly related to the problem of managing energy use during a peak demand
period. Additional literature related to power demand of trains, but not directly related
to our problem, is discussed in Section 2.2.

2.1. Reducing energy during specified time intervals This section reviews work
directly related to the problem of managing energy use for a fleet of trains during
specified time intervals.

A feasibility study by Pam et al. [8] simulated a fleet of 105 TGV trains to show
that it is possible to reduce power demand that initially varies between 220 MW and
290 MW during a 1-hour peak demand period to a constant average power of 200 MW
for each 10-minute interval. Experiments conducted on individual trains running on
the SNCF South Europe Atlantic high-speed line confirmed that significant power
reductions could be achieved in practice. Their algorithm for adjusting train schedules
to reduce energy use in 10-minute intervals worked by adjusting the locations of trains
at the beginning and end of each interval during a 1-hour peak demand period, but did
not attempt to find an optimal solution to the problem.

Scheepmaker et al. [12] gave a comprehensive review of the background literature
on optimal train control. Our previous work using Pontryagin’s principle is summa-
rized by Pudney [9], with details given in a pair of papers by Albrecht et al. [1, 2].
Pontryagin’s principle states necessary conditions for an optimal control u∗ that can be
found by maximizing the control Hamiltonian H [9]. There are five possible optimal
control modes for a train equipped with continuous control travelling along a track
with known gradient and fixed journey time: maximum acceleration, speedhold using
partial acceleration, coast, speedhold using partial regenerative braking (if available)
and maximum brake [2]. Rao et al. [10, 11] extend this analysis for scenarios where
regeneration energy can be shared between trains but not exported back to the grid,
and identify two additional control modes: driving to absorb power generated by other
trains and braking to supply power to other trains.

Howlett et al. [6] proposed a driving strategy for a single train on a level track to
minimize energy use when there are energy constraints during specified time intervals.
They used classical methods of constrained optimization to develop an optimal strategy
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that uses a period of coasting followed by speedholding at an optimal driving speed
during intervals where it is necessary to decrease speed, and a period of maximum
acceleration followed by speedholding at an optimal driving speed during intervals
where it is necessary to increase speed.

In this paper, we extend the work of Howlett et al. [6] by considering multiple
trains. Our aim is to find general characteristics for an optimal solution, so we start
with simple train models with piecewise constant speed profiles (Section 3). This is
equivalent to assuming that the energy use for a time interval depends on the average
speed of the train during that interval. Section 4 formulates the problem of minimising
total energy use of a fleet of trains with one peak demand interval. Section 5 extends
the problem with multiple consecutive peak demand intervals. In Section 6, we discuss
the implications for more realistic train models.

2.2. Methods for reducing peak power demand for train operations There are
several papers that consider reducing peak power demand for train operations, but not
the specific problem of managing power demand during specified time intervals.

Su et al. [14] evaluated general strategies for reducing energy use on railways.
They considered timetable optimization, reducing train mass, improving the design of
gradients along the track, increasing traction and braking forces, using regenerative
braking, and improving running resistance. Although these strategies can provide
energy savings, some require drastic system changes such as changing the train
schedules, operating trains made of lighter materials, and with larger traction and
braking forces, adjusting the slope of the track, installing regenerative braking systems,
reducing aerodynamic drag, and reducing the rolling resistance of the train. Even if
these strategies are implemented and trains are operating as efficiently as possible, a
method for managing energy use for a fleet of trains during specified time intervals is
still required.

Other literature has focused on energy-efficient scheduling to prevent high peaks
in power demand. Albrecht [3] examined the possibility of using train running time
control for synchronizing acceleration and braking phases to reduce power peaks and
energy use, and showed that optimized timetables for multiple trains gave smaller
power peaks and less energy use. Albrecht [3] also looked at the effects of stochastic
station dwell times, which made it harder for the trains to run on time and preserve
running time reserve, and still found that the modification of train running times can
contribute to significantly reducing power peaks and energy use, and thereby reducing
energy cost.

Li and Lo [7] used a genetic algorithm to jointly optimize the scheduling and speed
control of metro rail systems such that the net energy use is minimized by coordinating
arrival and departure times so that regenerative energy from braking trains is used by
nearby accelerating trains. Their results showed that a larger headway leads to a smaller
energy saving rate, and the maximum energy saving of roughly 25% is achieved when
the minimum allowable headway is used.
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There is much recent literature related to energy efficient train operations, but none
address the problem of managing a fleet of trains during specified time intervals to
reduce peak power demand.

3. Simple train model

We wish to calculate how much each train in a fleet should slow down during a
peak demand interval t ∈ [p0, p1] so that the total energy use during the peak demand
interval does not exceed a given limit. We start with a simplified model and assume:

• trains travel on a level track with no speed limits;
• trains do not stop during their journeys;
• trains follow piecewise constant speed profiles and can change speed instantly.

This is equivalent to calculating the average speed for each section of the journey;
• trains have sufficient power to travel at the required average speeds;
• the power reduction that can be achieved by slowing a train is independent of on

which part of the railway electrical network the train is.

The focus of this study is to determine the optimal average speed required for each
section of each journey, and how much each train will contribute to demand reduction
during each peak demand interval. Further work will be required to determine optimal
strategies that incorporate real train dynamics.

Figure 1 shows four trains with constant speed profiles. The peak demand interval
(grey shaded region) starts at time p0 = 1800 seconds and finishes at time p1 = 5400
seconds. The first train (green) starts its journey before the peak demand interval and
finishes after the peak demand interval. The second train (orange) starts its journey
before the peak demand interval and finishes within the peak demand interval. The
third train (blue) starts and finishes its journey within the peak demand interval, and
the fourth train (pink) starts its journey within the peak demand interval and finishes
after the peak demand interval.

The force required to drive a train at constant speed v on a level track is the force
required to overcome aerodynamic and rolling resistance forces, which are commonly
modelled using the Davis formula [5]:

R(v) = r0 + r1v + r2v2,

where r0, r1 and r2 are known constants. The power required to drive at constant speed
v is therefore

ϕ(v) = vR(v) = r0v + r1v2 + r2v3.

In general, ϕ will be a monotonic increasing convex function of speed with monotonic
increasing derivative

ϕ′(v) = R(v) + vR′(v)

= r0 + 2r1v + 3r2v2.
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FIGURE 1. Initial constant piecewise speed profiles for four trains. The shaded region is the peak demand
period.

4. Problem formulation with a single peak demand interval

In this section, we consider the case where the peak demand period comprises a
single interval with a target energy use. In Section 5, we consider the more general
case where the peak demand period comprises multiple consecutive intervals, each
with a target energy use.

Consider a fleet of n trains. Each train i is given a start time si and a finish time fi,
with si < fi. The length of journey i is Xi. The most energy-efficient driving strategy for
each train i, on a level track with no speed limits and no stops, is to drive at a constant
speed

vi =
Xi

di
,

where di = fi − si is the journey duration. Suppose every train has a part of its journey
during the peak demand interval [p0, p1], so that a journey is starting before the end
of the peak period si < p1 and finishing after the start of the peak period fi > p0 for all
trains i ∈ {1, . . . , n}. Assume that each train i will travel at a constant optimal speed vi

throughout its journey then, during the peak demand interval [p0, p1], the trains will
have a combined total energy use of

E0 =

n∑
i=1

hiϕi(vi),

where hi = min(fi, p1) −max(si, p0) is the duration of the overlap between intervals
[si, fi] and [p0, p1]. Suppose we wish to reduce this to E1 = (1 − α)E0, where 0 < α < 1
and 100α is the percentage energy reduction required during the peak demand interval.
To achieve the required energy reduction, we must find a new speed wi for each train i
during the peak demand interval so that

n∑
i=1

hiϕi(wi) = E1 = (1 − α)E0. (4.1)
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To compensate for a changed speed in the peak demand interval [p0, p1], each train
that starts before the peak demand period (si < p0) or finishes after the peak demand
period (fi > p1) must change speed in the intervals [si, p0] and [p1, fi] so that the average
journey speed and hence journey distance remain unchanged. We know from Howlett
et al. [6] that each train i should have the same speed zi before and after the peak
demand period. To meet the distance constraint for each train, we must have

Xi = kizi + hiwi for all i ∈ {1, . . . , n}, (4.2)

where ki = max(p0 − si, 0) +max(fi − p1, 0) is the journey duration before and after the
peak demand interval for train i. So when ki > 0,

zi =
Xi − hiwi

ki
. (4.3)

When train i has its journey entirely within the peak demand period, then it is not
possible for the train to both reduce energy use and meet the journey time constraints.
In this case, the total duration before and after the peak demand period is ki = 0, and
so the speed during the peak demand interval remains unchanged with wi = vi. The
new total energy for all train journeys will be

E =
n∑

i=1

kiϕi(zi) + E1. (4.4)

4.1. Minimizing total energy We can now define an optimization problem. We
wish to find constant speeds wi and zi for each train i ∈ {1, . . . , n} to minimize the
total energy use E defined by (4.4), such that the energy use E1 during the peak
demand period, defined by the summation in (4.1), is constrained to the pre-defined
level (1 − α)E0. Speed wi is the optimal speed of train i during the peak demand
interval, and speed zi is the optimal speed of train i before and after the peak demand
period. Equation (4.2) must be satisfied for each train i to ensure that the journey
covers the correct distance Xi. To solve this problem, we form a Lagrangian function
L = L(zi, wi) given by

L =
n∑

i=1

kiϕi(zi) + E1

+ λ
( n∑

i=1

hiϕi(wi) − E1

)

+

n∑
i=1

δi(Xi − kizi − hiwi),
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where λ and δi are Lagrange multipliers. The optimal solution must satisfy the
Karush–Kuhn–Tucker conditions [4]:

∂L
∂wi
=
∂L
∂zi
= 0 for all i ∈ {1, . . . , n},

and the complementary slackness conditions

λ
( n∑

i=1

hiϕi(wi) − E1

)
= 0

and

δi(Xi − kizi − hiwi) = 0 for all i = {1, . . . , n}.

The partial derivatives with respect to the new speeds wi and zi are

∂L
∂wi
= hi(λϕ

′
i(wi) − δi), (4.5)

∂L
∂zi
= ki(ϕ

′
i(zi) − δi). (4.6)

Equation (4.6) can equal zero when either ki = 0 or when δi = ϕ′i(zi). If a train journey
starts and finishes within the peak demand period, then ki = 0, and then (4.2) gives
wi = vi. In other words, journeys entirely within the peak demand interval remain
unchanged. Otherwise, if journey i starts before or finishes after the peak demand
period where ki > 0, then setting the partial derivatives from (4.5) and (4.6) to zero
and rearranging gives

δi = λϕ
′
i(wi) = ϕ

′
i(zi). (4.7)

Substituting zi from (4.3) gives

λϕ′i(wi) = ϕ
′
i

(Xi − hiwi

ki

)
. (4.8)

Equation (4.8) defines the relationship between the Lagrange multiplier λ and the
speed wi for each train i during the peak demand interval. Notice that the optimal
speed wi for each train depends only on λ and not on the speeds of the other trains.
Furthermore, we have the following.

• If λ = 1, then from (4.7), we have ϕ′i(wi) = ϕ′i(zi) =⇒ wi = zi, which implies
that the speed during the peak demand interval wi is the same as the speed before
and after the peak demand interval zi for train i. That is, if λ = 1, then the optimal
journey for each train is unchanged.

• Now, suppose λ > 1. For trains that have some part of their journey before or
after the peak demand period (that is, ki > 0), (4.7) implies wi < zi, since ϕ′i is
an increasing function (Figure 2). That is, each train that has some part of its
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FIGURE 2. Relationship between wi and zi for a given λ > 1.

journey before or after the peak demand period speeds up before the peak demand
period, slows down during the peak demand period and speeds up after the peak
demand period. Increasing λ will decrease the speed of each train during the
peak demand period and, hence, decrease the energy use during the peak demand
period.

• If λ < 1, then trains will speed up during the peak demand period.

If we pick a value for λ, then we can calculate wi by numerically solving (4.8) for
each train i ∈ {1, . . . , n}. If (4.1) is not satisfied, then we simply adjust λ and try again;
if the energy use during the peak demand interval is too high, then λ must increase,
otherwise λ must decrease.

4.2. Single peak demand interval example Consider four trains, with:

• journey distances X = [600 000, 382 500, 114 000, 200 000];
• start times s = [0, 500, 2500, 3000];
• finish times f = [8000, 5000, 4400, 7000].

The peak demand period starts at time p = 1800 and finishes at time q = 5400. All
units are SI. The initial train speeds are v = [75, 85, 60, 50]. If ϕi(v) = v3, then the
energy use during the peak demand interval is E0 ≈ 4.19 × 109. If we want to reduce
this by 10%, then α = 0.1 and the target energy use during the peak demand interval is
E1 ≈ 3.77 × 109. Numerical solution of (4.8) gives the Lagrange multipliers λ ≈ 1.21
and δ ≈ [0, 0, 13 070, 0]. We note that δi > 0 only when a train journey starts and
finishes within the peak demand period (ki = 0). The new speeds within the peak
demand period are w ≈ [71.09, 82.61, 60.00, 48.08], and the new speeds before and
after the peak demand period are z ≈ [78.20, 90.87, 0, 52.88]. This solution is shown
in Figure 3 and was calculated in approximately 0.005 seconds. Total energy increases
from 7.049 × 109 to 7.091 × 109. This is a 0.60% increase.
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FIGURE 3. Initial (pale, dashed) and adjusted (bold) speed profiles for four trains. Shaded region is the
peak demand period.

5. Problem formulation with multiple peak demand intervals

Constraining energy use during the peak demand period will manage the average
power demand during the period, but not instantaneous power. In practice, energy use
is usually measured at intervals of 5–15 minutes, so railways will want to manage
average power in these shorter intervals.

Suppose the peak demand period [p0, . . . , pq] is made up of q consecutive peak
demand intervals. During each peak demand interval j, the trains have combined
energy use

E0j =

n∑
i=1

hijϕi(vi) for all j ∈ {1, . . . , q},

where hij = max(0, min(fi, pj) −max(si, pj−1)) is the duration of the overlap between
intervals [si, fi] and [pj−1, pj] for train i ∈ {1, . . . , n}. Suppose we wish to reduce the
energy use during each peak demand interval to E1j = (1 − αj)E0j, where 100αj is
the target percentage energy reduction during the peak demand interval j. To achieve
the required energy reduction, we must find new speed wij for each train i during each
peak demand interval j so that

E1j =

n∑
i=1

hijϕi(wij) = (1 − αj)E0j for all j ∈ {1, . . . , q}. (5.1)

To compensate for speed change within a peak demand interval [pj−1, pj], each train’s
speed must change in another interval so that the average journey speed and hence
journey distance remain unchanged. Once again, we know from Howlett et al. [6] that
each train i should have the same speed zi before and after the peak demand period
[p0, . . . , pq]. To meet the journey distance constraint for each train i, we must have

Xi = kizi +

q∑
j=1

hijwij for all i ∈ {1, . . . , n}, (5.2)
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where ki = max (p0 − si, 0) +max (fi − pq, 0) is the journey duration before and after
the peak demand period [p0, . . . , pq]. When ki > 0,

zi =
Xi −
∑q

j=1 hijwij

ki
for all i ∈ {1, . . . , n}. (5.3)

When the journey duration is entirely within the peak demand period [p0, . . . , pq], then
ki = 0 and so

Xi =

q∑
j=1

hijwij for all i ∈ {1, . . . , n}. (5.4)

The new total energy for all train journeys will be

E =
n∑

i=1

kiϕi(zi) +
q∑

j=1

E1j. (5.5)

5.1. Minimizing total energy For the problem with multiple peak demand inter-
vals, the optimization problem is to find constant speeds wij and zi for each peak
demand interval j ∈ {1, . . . , q} and for each train i ∈ {1, . . . , n} to minimize total energy
use E defined by (5.5) such that the energy use E1j during peak demand interval j,
defined by the summation in (5.1), is constrained to the pre-defined level (1 − αj)E0j

for each peak demand interval j ∈ {1, . . . , q}. Speed wij is the optimal speed of train i
during peak demand interval j, and speed zi is the optimal speed of train i before and
after the peak demand period. Equation (5.2) must be satisfied for each train i to ensure
that the journey covers the correct distance Xi. To solve this problem, we once again
form a Lagrangian function L = L(zi, wij), this time given by

L =
n∑

i=1

kiϕi(zi) +
q∑

j=1

E1j

+

q∑
j=1

λj

( n∑
i=1

hijϕi(wij) − E1j

)

+

n∑
i=1

δi

(
Xi − kizi −

q∑
j=1

hijwij

)
,

where λj and δi are Lagrange multipliers. The optimal solution must satisfy the
Karush–Kuhn–Tucker conditions

∂L
∂wij
=
∂L
∂zi
= 0 for all i ∈ {1, . . . , n}, j ∈ {1, . . . , q},
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and the complementary slackness conditions

λj

( n∑
i=1

hijϕi(wij) − E1j

)
= 0 for all j ∈ {1, . . . , q}

and

δi

(
Xi − kizi −

q∑
j=1

hijwij

)
= 0 for all i ∈ {1, . . . , n}.

The partial derivatives with respect to the new speeds wij and zi are

∂L
∂wij
= hij(λjϕ

′
i(wij) − δi) for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . , q},

∂L
∂zi
= ki(ϕ

′
i(zi) − δi) for all i ∈ {1, . . . , n}.

For the problem with multiple peak demand intervals, we now have a Lagrange
multiplier λj for each peak demand interval j, and the speed for each train in peak
demand interval j is determined by the choice of λj and not by the speeds of the other
trains. The optimization problem can be solved as follows.

(1) Pick an initial value for each λj.
(2) Find values wij for each train i as follows:

(a) if ki > 0, then calculate wij numerically by solving

λjϕ
′
i(wij) = ϕ

′
i(zi), (5.6)

where zi is given by (5.3);
(b) otherwise, if ki = 0, then pick a value for δi and calculate wij numerically by

solving

λjϕ
′
i(wij) = δi. (5.7)

If (5.4) is not satisfied, then adjust δi and try again.

(3) If (5.1) is not satisfied, then adjust the λj values and try again from Step (2).

The outer loop, which finds values for λj, can be solved using a multi-dimensional
root-finding method. We used the SciPy fsolve function [13].

5.2. Multiple peak demand interval example Consider the same four trains from
our single peak demand interval example (Section 4.2). As before, the peak demand
period starts at time p0 = 1800 and finishes at time pq = 5400, and the initial train
speeds are v = [75, 85, 60, 50]. The peak demand period is divided into 12 equal
intervals of 5-minutes, so we have 12 initial energy values E0j and 12 target energy
values E1j = 0.9 E0j. Numerical solution of (5.6) and (5.7) give 12 Lagrange multipliers
λj each in the range [1.173, 1.221] and δ ≈ [0, 0, 13 160, 0]. Similarly to the case with

https://doi.org/10.1017/S1446181125100138 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125100138


[13] Reducing energy during specified time intervals using simple train models 13

FIGURE 4. Initial (pale, dashed) and adjusted (bold) speed profiles for four trains. The shaded region is
the peak demand period divided into 5-minute peak demand intervals.

a single peak demand interval, δi > 0 only when a train journey starts and finishes
within the peak demand period (ki = 0). We calculate new speeds wij within each
peak demand interval j. The average speeds across the entire peak demand period are
w ≈ [71.11, 82.60, 60.01, 48.10], and the new speeds before and after the peak demand
period are z = [78.18, 90.94, 0, 52.86]. This solution is shown in Figure 4 and was
calculated in approximately 0.08 seconds. Total energy increases from 7.049 × 109 to
7.0913 × 109. This is a 0.60% increase.

Notice that the average speeds w across the entire peak demand period are different
to the holding speeds w shown in the example with a single peak demand interval in
Section 4.2. Within the peak demand period, whenever a journey starts or finishes, the
speeds wij of the other trains change, including journeys completely within the peak
demand period. However, this change is usually small.

5.3. One hundred trains Ultimately, we want to calculate optimal journey profiles
for a fleet of 100 trains or more that reduce their energy use in each 10-minute
interval for a 1-hour peak demand period. As a final example with simple trains, we
generated 100 trains with random journey distances Xi ∈ [39 100, 736 500], start times
si ∈ [0, 5000], finish times fi ∈ [2300, 10800], and initial train speeds vi ∈ [60, 85]. The
peak demand period was divided into six equal intervals of 10 minutes:

p = [1800, 2400, 3000, 3600, 4200, 4800, 5400]

so we have six initial energy values E0j and six target energy values E1j = 0.9 E0j.
Numerical solution of (5.6) and (5.7) give the Lagrange multipliers

λ ≈ [1.235, 1.142, 1.135, 1.133, 1.133, 1.133]

and δi ∈ [0, 1 596 000], from which we can calculate new speeds within each peak
demand interval wij ∈ [0, 83.99] and new speeds outside the peak demand period
zi ∈ [0, 89.38]. This solution is shown in Figure 5 and was calculated in approximately
0.97 seconds. Total energy increases from 168.86 × 109 to 169.22 × 109. This is a
0.21% increase.
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FIGURE 5. Adjusted (bold) speed profiles for 100 trains. The shaded region is the peak demand period
containing six consecutive 10-minute peak demand intervals.

6. Towards realistic journey profiles

The analysis and examples in Sections 3–5 are a first step towards solving the
theoretical problem of managing energy use for a fleet of trains. We have shown that,
at least for a very simple train model, we can formulate and solve the optimization
problem. We have also shown the following.

• There is a Lagrange multiplier λj for each peak demand interval j ∈ {1, . . . , q}.
Increasing λj will decrease the speed of the trains in peak demand interval j and,
hence, decrease the total energy use by the fleet of trains during peak demand
interval j.

• There is a Lagrange multiplier δi for each train journey entirely within the peak
demand period (ki = 0). Increasing δi (without changing λ) will increase the
speed of train i during each of the peak demand intervals.

That is, λj controls the energy use of all trains during peak demand interval j, and δi
controls the contribution of train i to energy use across all peak demand intervals.

This problem is not as simple as solving for each individual peak demand interval.
The speed of train i during peak demand interval j is influenced by the speed train i
will travel during other peak demand intervals as well as the speed train i will travel
before and after the peak demand period. This means that the optimization problem
is multidimensional with the number of dimensions depending on the number of peak
demand intervals q and the number of trains n.

Real trains cannot change speed instantly and, because of gradients and speed limits,
they cannot always travel at constant speed. We investigated whether we could simply
use the hold speeds calculated with our simple model as hold speeds for realistic train
models, but the differences between the real train speed profiles and the simple speed
profiles were large enough to mean that the energy and distance constraints were not
met. The next step will be to incorporate acceleration, coasting and braking dynamics
into our multi-train model, similar to the approach used by Howlett et al. [6] for a
single train.
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Another practical issue to be considered is that on the day of operation, some trains
might be running late and so unable to drive according to a pre-planned peak-demand
schedule, and it may not be feasible to calculate a new exact solution in real time.
Understanding the structure of an optimal solution will be useful when trying to
calculate an approximate solution in real time.

7. Conclusion

The peak demand of a fleet of trains can be reduced during specified time intervals
by slowing the trains during these intervals. We have formulated the problem of
achieving target peak demand reductions in specified intervals as an optimal control
problem, and found the structure of an optimal solution for a fleet of trains with
piecewise-constant speed profiles. The problem is a multidimensional problem that
can be solved using classical methods of constrained optimisation. The number of
dimensions of the problem is the number of peak demand intervals plus the number of
trains. The optimal solution can be found by adjusting:

• Lagrange multipliers {λj} to adjust the speed of the trains during each peak
demand interval j;

• Lagrange multipliers {δi} to adjust the average speed of train i to ensure that it
completes its journey on time.

Although the simple train model we use is unrealistic, we have identified general
characteristics of the optimal solution that we expect to find when incorporating
realistic train models.
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