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Block perturbation of symplectic matrices
in Williamson’s theorem
Gajendra Babu and Hemant K. Mishra

Abstract. Williamson’s theorem states that for any 2n × 2n real positive definite matrix A, there exists
a 2n × 2n real symplectic matrix S such that ST AS = D ⊕ D, where D is an n × n diagonal matrix
with positive diagonal entries known as the symplectic eigenvalues of A. Let H be any 2n × 2n
real symmetric matrix such that the perturbed matrix A+ H is also positive definite. In this paper,
we show that any symplectic matrix S̃ diagonalizing A+ H in Williamson’s theorem is of the form
S̃ = SQ +O(∥H∥), where Q is a 2n × 2n real symplectic as well as orthogonal matrix. Moreover, Q is
in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic
eigenvalues of A. Consequently, we show that S̃ and S can be chosen so that ∥S̃ − S∥ = O(∥H∥).
Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of
symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear
Algebra Appl., 525:45–58, 2017].

1 Introduction

Analogous to the spectral theorem in linear algebra is Williamson’s theorem [23] in
symplectic linear algebra. It states that for any 2n × 2n real positive definite matrix
A, there exists a 2n × 2n real symplectic matrix S such that ST AS = D ⊕ D, where
D is an n × n diagonal matrix with positive diagonal entries. The diagonal entries
of D are known as the symplectic eigenvalues of A, and the columns of S form a
symplectic eigenbasis of A. This result is also referred to as Williamson normal form
in the literature [7, 8]. Symplectic eigenvalues and symplectic matrices are ubiquitous
in many areas such as classical Hamiltonian dynamics [2], quantum mechanics [8],
and symplectic topology [9]. More recently, it has attracted much attention from
matrix analysts [3–5, 12–14, 16, 22] and quantum physicists [1, 6, 10, 11, 15] for its
important role in continuous-variable quantum information theory [19]. For example,
any Gaussian state of zero mean vector is obtained by applying to a tensor product
of thermal states a unitary map that is characterized by a symplectic matrix [19],
and the von Neumann entropy of the Gaussian state is a smooth function of the
symplectic eigenvalues of its covariance matrix [17]. So, it is of theoretical interest
as well as practical importance to study the perturbation of symplectic eigenvalues
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and symplectic matrices in Williamson’s theorem, both of which are closely related
to each other. Indeed, the perturbation bound on symplectic eigenvalues of two
positive definite matrices A and B obtained in [13] is derived using symplectic matrices
diagonalizing tA+ (1 − t)B for t ∈ [0, 1]. In [11], a perturbation of A of the form
A+ tH was considered for small variable t > 0 and a fixed real symmetric matrix H.
The authors studied the stability of symplectic matrices diagonalizing A+ tH in
Williamson’s theorem and a perturbation bound was obtained for the case of A having
non-repeated symplectic eigenvalues.

In this paper, we study the stability of symplectic matrices in Williamson’s theorem
diagonalizing A+H, where H is an arbitrary 2n × 2n real symmetric matrix such
that the perturbed matrix A+H is also positive definite. Let S be a fixed symplectic
matrix diagonalizing A in Williamson’s theorem. We show that any symplectic matrix
S̃ diagonalizing A+H in Williamson’s theorem is of the form S̃ = SQ +O(∥H∥) such
that Q is a 2n × 2n real symplectic as well as orthogonal matrix. Moreover, Q is
in symplectic block diagonal form with block sizes given by twice the multiplicities
of the symplectic eigenvalues of A. Consequently, we prove that S̃ and S can be
chosen so that ∥S̃ − S∥ = O(∥H∥). Our results hold even if A has repeated symplectic
eigenvalues, generalizing the stability result of symplectic matrices corresponding to
the case of non-repeated symplectic eigenvalues given in [11]. We do not provide any
perturbation bounds.

The rest of the paper is organized as follows: In Section 2, we review some
definitions, set notations, and define basic symplectic operations. In Section 3, we
detail the findings of this paper. These are given in Propositions 3.2 and 3.7 and
Theorems 3.4 and 3.6.

2 Background and notations

Let Sm(m) denote the set of m ×m real symmetric matrices equipped with the
spectral norm ∥ ⋅ ∥, that is, for any X ∈ Sm(m), ∥X∥ is the maximum singular value
of X. We also use the same notation ∥ ⋅ ∥ for the Euclidean norm, and ⟨⋅, ⋅⟩ for the
Euclidean inner product on R

m or Cm . Let 0i , j denote the i × j zero matrix, and let 0i
denote the i × i zero matrix (i.e., 0i = 0i , i ). We denote the imaginary unit number by
ι ∶=

√
−1. We use the Big-O notation Y = O(∥X∥) to denote a matrix Y as a function

of X for which there exist positive scalars c and δ such that ∥Y∥ ≤ c∥X∥ for all X with
∥X∥ < δ.

2.1 Symplectic matrices and symplectic eigenvalues

Define J2 ∶= ( 0 1
−1 0 ), and let J2n = J2 ⊗ In for n > 1, where In is the n × n identity matrix.

A 2n × 2n real matrix S is said to be symplectic if ST J2n S = J2n . The set of 2n × 2n
symplectic matrices, denote by Sp(2n), forms a group under multiplication called
the symplectic group. The symplectic group Sp(2n) is analogous to the orthogonal
group Or(2n) of 2n × 2n orthogonal matrices in the sense that replacing the matrix
J2n with I2n in the definition of symplectic matrices gives the definition of orthogonal
matrices. However, in contrast with the orthogonal group, the symplectic group
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is non-compact. Also, the determinant of every symplectic matrix is equal to +1
which makes the symplectic group a subgroup of the special linear group [8]. Let
Pd(2n) ⊂ Sm(2n) denote the set of positive definite matrices. Williamson’s theorem
[23] states that for every A ∈ Pd(2n), there exists S ∈ Sp(2n) such that ST AS = D ⊕ D,
where D is an n × n diagonal matrix. The diagonal elements d1(A) ≤ ⋯ ≤ dn(A) of D
are independent of the choice of S, and they are known as the symplectic eigenvalues
of A. Denote by Sp(2n; A) the subset of Sp(2n) consisting of symplectic matrices that
diagonalize A in Williamson’s theorem. Several proofs of Williamson’s theorem are
available using basic linear algebra (e.g., [7, 20]).

Denote the set of 2n × 2n orthosymplectic (orthogonal as well as symplectic) matri-
ces as OrSp(2n) ∶= Or(2n) ∩ Sp(2n). Any orthosymplectic matrix Q ∈ OrSp(2n) is
precisely of the form

Q = ( X Y
−Y X) ,(2.1)

where X , Y are n × n real matrices such that X + ιY is a unitary matrix [3]. For m ≤ n,
we denote by Sp(2n, 2m) the set of 2n × 2m matrices M satisfying MT J2n M = J2m . In
particular, we have Sp(2n, 2n) = Sp(2n).

2.2 Symplectic block and symplectic direct sum

Let m be a natural number and I, J ⊆ {1, . . . , m}. Suppose M is an m ×m matrix. We
denote by MJ the submatrix of M consisting of the columns of M with indices in J.
Also, denote by MIJ the ∣I∣ × ∣J∣ submatrix of M = [M i j] consisting of the elements
M i j with indices i ∈ I and j ∈ J. Let T be any 2m × 2m matrix given in the block
form by

T = (W X
Y Z) ,

where X , Y , W , Z are matrices of order m ×m. Define a symplectic block of T as a
submatrix of the form

(WIJ XIJ

YIJ ZIJ
) .

Also, define a symplectic diagonal block of T as a submatrix of the form

(WII XII

YII ZII
) .

The following example illustrates this.

https://doi.org/10.4153/S0008439523000620 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000620


204 G. Babu and H. Mishra

Example 2.1 Let T be a 6 × 6 matrix given by

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 ⋮ 4 5 6
7 8 9 ⋮ 10 11 12
13 14 15 ⋮ 16 17 18
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
19 20 21 ⋮ 22 23 24
25 26 27 ⋮ 28 29 30
31 32 33 ⋮ 34 35 36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

A symplectic block of T, which corresponds to I = {3} and J = {2}, is given by

( 14 17
32 35 ) .

A symplectic diagonal block, corresponding to I = {1, 2}, is given by

⎛
⎜⎜⎜
⎝

1 2 4 5
7 8 10 11
19 20 22 23
25 26 28 29

⎞
⎟⎟⎟
⎠

.

Let T ′ be another 2m′ × 2m′ matrix, given in the block form

T ′ = (W ′ X′
Y ′ Z′) ,

where the blocks W ′ , X′ , Y ′ , Z′ have size m′ ×m′. Define the symplectic direct sum of
T and T ′ as

T ⊕s T ′ = (W ⊕W ′ X ⊕ X′
Y ⊕ Y ′ Z ⊕ Z′) .

This is illustrated in the following example.

Example 2.2 Let

T =
⎛
⎜⎜⎜
⎝

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎞
⎟⎟⎟
⎠

, T ′ = ( 17 18
19 20 ) .

We then have

T ⊕s T ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 0 ⋮ 3 4 0
5 6 0 ⋮ 7 8 0
0 0 17 ⋮ 0 0 18
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
9 10 0 ⋮ 11 12 0
13 14 0 ⋮ 15 16 0
0 0 19 ⋮ 0 0 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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We know that the usual direct sum of two orthogonal matrices is also an orthogonal
matrix. It is interesting to note that an analogous property is also satisfied by the
symplectic direct sum. If T ∈ Sp(2k) and T ′ ∈ Sp(2�), then T ⊕s T ′ ∈ Sp(2(k + �)).
Indeed, we have

(T ⊕s T ′)T J2(k+�)(T ⊕s T ′)

= (W ⊕W ′ X ⊕ X′
Y ⊕ Y ′ Z ⊕ Z′)

T

( 0k+� Ik+�
−Ik+� 0k+�

)(W ⊕W ′ X ⊕ X′
Y ⊕ Y ′ Z ⊕ Z′)

= (W T ⊕W ′T Y T ⊕ Y ′T
XT ⊕ X′T ZT ⊕ Z′T)(

Y ⊕ Y ′ Z ⊕ Z′
−(W ⊕W ′) −(X ⊕ X′))

= (W T Y ⊕W ′T Y ′ − Y T W ⊕ Y ′T W ′ W T Z ⊕W ′T Z′ − Y T X ⊕ Y ′T X′
XT Y ⊕ X′T Y ′ − ZT W ⊕ Z′T W ′ XT Z ⊕ X′T Z′ − ZT X ⊕ Z′T X′ )

= ((W T Y − Y T W) ⊕ (W ′T Y ′ − Y ′T W ′) (W T Z − Y T X) ⊕ (W ′T Z′ − Y ′T X′)
(XT Y − ZT W) ⊕ (X′T Y ′ − Z′T W ′) (XT Z − ZT X) ⊕ (X′T Z′ − Z′T X′) )

= (W T Y − Y T W W T Z − Y T X
XT Y − ZT W XT Z − ZT X ) ⊕s (W ′T Y ′ − Y ′T W ′ W ′T Z′ − Y ′T X′

X′T Y ′ − Z′T W ′ X′T Z′ − Z′T X′ )

= (W T Y T

XT ZT)(
Y Z
−W −X) ⊕

s (W ′T Y ′T
X′T Z′T)(

Y ′ Z′
−W ′ −X′)

= (W X
Y Z)

T

( 0k Ik
−Ik 0k

)(W X
Y Z) ⊕

s (W ′ X′
Y ′ Z′)

T

( 0� I�
−I� 0�

)(W ′ X′
Y ′ Z′)

= T T J2k T ⊕s T ′T J2�T ′

= J2k ⊕s J2�

= J2(k+�) .

2.3 Symplectic concatenation

Let M = (p1 , . . . , pk , q1 , . . . , qk) and N = (x1 , . . . , x� , y1 , . . . , y�) be 2n × 2k and
2n × 2� matrices, respectively. Define the symplectic concatenation of M and N to
be the following 2n × 2(k + �) matrix:

M ◇ N ∶= (p1 , . . . , pk , x1 , . . . , x� , q1 , . . . , qk , y1 , . . . , y�) .

Here is an example to illustrate symplectic concatenation.

Example 2.3 Let

M =
⎛
⎜⎜⎜
⎝

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎞
⎟⎟⎟
⎠

, N =
⎛
⎜⎜⎜
⎝

17 18
19 20
21 22
23 24

⎞
⎟⎟⎟
⎠

.
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The symplectic concatenation of M and N is given by

M ◇ N =
⎛
⎜⎜⎜
⎝

1 2 17 3 4 18
5 6 19 7 8 20
9 10 21 11 12 22
13 14 23 15 16 24

⎞
⎟⎟⎟
⎠

.

Suppose that M ∈ Sp(2n, 2k) and N ∈ Sp(2n, 2�). Let us derive a necessary and
sufficient condition on M and N for k + � ≤ n such that M ◇ N ∈ Sp(2n, 2(k + �)).
This will be useful later. We have

(M ◇ N)T J2n(M ◇ N) = ((M ◇ N)T J2n M) ◇ ((M ◇ N)T J2n N)

= (MT JT
2n(M ◇ N))T ◇ (N T JT

2n(M ◇ N))T

= ((MT JT
2n M) ◇ (MT JT

2n N))T ◇ ((N T JT
2n M) ◇ (N T JT

2n N))T

= (JT
2k ◇ (MT JT

2n N))T ◇ ((N T JT
2n M) ◇ JT

2�)
T

.(2.2)

We also observe that

J2(k+�) = (JT
2k ◇ 02k ,2�)

T ◇ (02�,2k ◇ JT
2�)

T
.(2.3)

By comparing (2.2) and (2.3), we deduce that M ◇ N ∈ Sp(2n, 2(k + �)) if and only if
MT J2n N = 02k ,2�.

3 Main results

We fix the following notations throughout the paper. Let A ∈ Pd(2n) with distinct
symplectic eigenvalues μ1 < ⋯ < μr . For all i = 1, . . . , r, define sets

α i ∶= { j ∶ d j(A) = μ i , j = 1, . . . , n},
β i ∶= { j + n ∶ j ∈ α i},
γ i ∶= α i ∪ β i .

An example to illustrate these sets is as follows.

Example 3.1 Suppose A ∈ Pd(20)with symplectic eigenvalues 1, 1, 2, 3, 3, 3, 4, 4, 4, 5.
We have μ1 = 1, μ2 = 2, μ3 = 3, μ4 = 4, μ5 = 5. Also α1 = {1, 2}, α2 = {3}, α3 =
{4, 5, 6}, α4 = {7, 8, 9}, α5 = {10}. Note that n = 10, so we have β1 = {11, 12}, β2 =
{13}, β3 = {14, 15, 16}, β4 = {17, 18, 19}, β5 = {20}. We thus also get γ1 = {1, 2, 11, 12},
γ2 = {3, 13}, γ3 = {4, 5, 6, 14, 15, 16}, γ4 = {7, 8, 9, 17, 18, 19}, γ5 = {10, 20}.

Proposition 3.2 Let A ∈ Pd(2n) and H ∈ Sm(2n) such that A+H ∈ Pd(2n). Let
S ∈ Sp(2n; A) and S̃ ∈ Sp(2n; A+H). For 1 ≤ i ≠ j ≤ r, we have

(S−1 S̃)γ i γ j
= O(∥H∥),(3.1)

(S−1 S̃)α i α i
= (S−1 S̃)β i β i

+O(∥H∥),(3.2)
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(S−1 S̃)α i β i
= −(S−1 S̃)β i α i

+O(∥H∥),(3.3)

(S−1 S̃)T
γ i γ i

(S−1 S̃)γ i γ i
= I2∣α i ∣ +O(∥H∥),(3.4)

(S−1 S̃)T
γ i γ i

J2∣α i ∣ (S−1 S̃)γ i γ i
= J2∣α i ∣ +O(∥H∥2).(3.5)

Proof It suffices to prove the assertions for A in the diagonal form A = D ⊕ D and
S = I2n . For any S̃ ∈ Sp(2n; A+H), we have

S̃T(A+H)S̃ = D̃ ⊕ D̃,(3.6)

where D̃ is the diagonal matrix with entries d1(A+H) ≤ ⋯ ≤ dn(A+H). By Theo-
rem 3.1 of [11], we get

D̃ = D +O(∥H∥).(3.7)

By (3.6) and (3.7), and using the diagonal form A = D ⊕ D, we get

S̃T(A+H)S̃ = A+O(∥H∥).(3.8)

The symplectic matrix S̃ satisfies

∥S̃∥2 = ∥(A+H)−1/2(A+H)1/2 S̃∥2

≤ ∥(A+H)−1/2∥2∥(A+H)1/2 S̃∥2

= ∥(A+H)−1∥∥S̃T(A+H)S̃∥
= 2∥(A+H)−1∥d1(A+H)
≤ 2∥(A+H)−1∥∥A+H∥ = 2κ(A+H),

where κ(T) = ∥T∥∥T−1∥ is the condition number of an invertible matrix T, and we
used [13, Lemma 2.2(iii)] in the last inequality. It thus implies that ∥S̃∥ is uniformly
bounded for small ∥H∥, which follows from the continuity of κ. So, from (3.8) and
the symplectic relation S̃−T = J2n S̃ JT

2n , we get

AS̃ = J2n S̃ JT
2n A+O(∥H∥).(3.9)

Consider S̃ in the block matrix form:

S̃ = (W̃ X̃
Ỹ Z̃) ,

where each block W̃ , X̃ , Ỹ , Z̃ has size n × n. From (3.9) and using the fact A = D ⊕ D,
we get

(DW̃ DX̃
DỸ DZ̃) = (

0n In
−In 0n

)(W̃ X̃
Ỹ Z̃)(

0n −In
In 0n

)(D 0n
0n D) +O(∥H∥)

= ( Z̃D −Ỹ D
−X̃D W̃D ) +O(∥H∥).(3.10)
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Now, using the representation D = μ1I∣α1 ∣ ⊕⋯⊕ μr I∣αr ∣, and comparing the corre-
sponding blocks on both sides in (3.10), we get, for all 1 ≤ i , j ≤ r,

(μ i W̃α i α j μ i X̃α i α j

μ i Ỹα i α j μ i Z̃α i α j

) = ( μ j Z̃α i α j −μ jỸα i α j

−μ j X̃α i α j μ jW̃α i α j

) +O(∥H∥).(3.11)

This can be equivalently represented as

μ i S̃γ i γ j = μ j J2∣α i ∣S̃γ i γ j J
T
2∣α j ∣

+O(∥H∥).(3.12)

This also gives

μ j S̃γ i γ j = μ i J2∣α i ∣S̃γ i γ j J
T
2∣α j ∣

+O(∥H∥).(3.13)

Adding (3.12) and (3.13), and then dividing by μ i + μ j , gives

S̃γ i γ j = J2∣α i ∣S̃γ j γ j J
T
2∣α j ∣

+O(∥H∥).(3.14)

Suppose, we have i ≠ j. This implies μ i ≠ μ j . By subtracting (3.13) from (3.12), and
then dividing by μ i − μ j , we then get

S̃γ i γ j = −J2∣α i ∣S̃γ i γ j J
T
2∣α j ∣

+O(∥H∥).(3.15)

By adding (3.14) and (3.15), we get S̃γ i γ j = O(∥H∥). This settles (3.1).
We get (3.2) and (3.3) directly as a consequence of (3.11) by taking i = j.
By the symplectic relation S̃T J2n S̃ = J2n , we get

J2∣α i ∣ = S̃T
γ i

J2n S̃γ i

=
r
∑
k=1

S̃T
γk γ i

J2∣αk ∣S̃γk γ i

= S̃T
γ i γ i

J2∣α i ∣S̃γ i γ i +
r
∑

k≠i ,k=1
S̃T

γk γ i
J2∣αk ∣S̃γk γ i .(3.16)

We know by (3.1) that S̃γk γ i = O(∥H∥) for all k ≠ i. Using this in the second term of
(3.16), we get

J2∣α i ∣ = S̃T
γ i γ i

J2∣α i ∣S̃γ i γ i +O(∥H∥2).(3.17)

This implies (3.5). The relation (3.17) also gives

S̃T
γ i γ i

J2∣α i ∣S̃γ i γ i JT
2∣α i ∣

= I2∣α i ∣ +O(∥H∥2).(3.18)

The two relations (3.2) and (3.3) can be combined and expressed as

J2∣α i ∣S̃γ i γ i JT
2∣α i ∣

= S̃γ i γ i +O(∥H∥).(3.19)

Substituting (3.19) in (3.18) gives

S̃T
γ i γ i

S̃γ i γ i = I2∣α i ∣ +O(∥H∥).

This proves the remaining assertion (3.4). ∎
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Remark 3.3 By taking H = 02n ,2n in Proposition 3.2, we observe that (S−1 S̃)γ i γ j
=

02∣α i ∣,2∣α j ∣ for i ≠ j, and that Q[i] ∶= (S−1 S̃)γ i γ i
is orthosymplectic for all i. This implies

S̃ = SQ, where Q = Q[1] ⊕s ⋯⊕s Q[r] is orthosymplectic. The following result gener-
alizes this observation for arbitrary H → 02n .

Theorem 3.4 Let A ∈ Pd(2n) and H ∈ Sm(2n) such that A+H ∈ Pd(2n). Let
S ∈ Sp(2n; A) and S̃ ∈ Sp(2n; A+H) be arbitrary. Then, there exists an orthosymplectic
matrix Q of the form

Q = Q[1] ⊕s ⋯⊕s Q[r],

where Q[i] ∈ OrSp(2∣α i ∣) for all i = 1, . . . , r, satisfying

S̃ = SQ +O(∥H∥).

Proof There is no loss of generality in assuming that A has the diagonal form
A = D ⊕ D and S = I2n . With this assumption, Proposition 3.2 gives the following
representation of S̃ in terms of a symplectic direct sum:

S̃ = ⊕s
i (

S̃α i α i S̃α i β i

−S̃α i β i S̃α i α i

) +O(∥H∥).(3.20)

Our strategy is to apply the Gram–Schmidt orthonormalization process to the
columns of S̃α i α i + ιS̃α i β i to obtain a unitary matrix of the form U[i] + ιV[i], where
U[i] and V[i] are real matrices, and then use the representation (2.1) to obtain
orthosymplectic matrix Q[i].

Let x1 , . . . , x∣α i ∣ and y1 , . . . , y∣α i ∣ be the columns of S̃α i α i and S̃α i β i , respectively.
Now, apply the Gram–Schmidt orthonormalization process to the complex vectors
x1 + ι y1 , . . . , x∣α i ∣ + ι y∣α i ∣ . Let z1 = x1 + ι y1. Choose w1 = z1/∥z1∥ ≡ u1 + ιv1. By (3.5)
and (3.4), we have

∥z1∥2 = ∥x1∥2 + ∥y1∥2

= ∥( x1
−y1

)∥
2

= 1 +O(∥H∥).

This implies

w1 = z1 +O(∥H∥) = x1 + ι y1 +O(∥H∥).

Let z2 = x2 + ι y2 − ⟨w1 , x2 + ι y2⟩w1. Choose w2 = z2/∥z2∥ ≡ u2 + ιv2 so that {w1 , w2}
is an orthonormal set. By (3.5) and (3.4), we have ⟨x1 + ι y1 , x2 + ι y2⟩ = O(∥H∥). This
implies

z2 = x2 + ιx2 − ⟨w1 , x2 + ι y2⟩w1

= y2 + ι y2 − ⟨x1 + ι y1 , x2 + ι y2⟩w1 +O(∥H∥)
= x2 + ι y2 +O(∥H∥).

Again, by (3.5) and (3.4), we have ∥z2∥ = 1 +O(∥H∥), which implies w2 = x2 + ι y2 +
O(∥H∥).
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By continuing with the Gram–Schmidt process, we get orthonormal vectors
{w1 , . . . , w2∣α i ∣} = {u1 + ιv1 , . . . , u∣α i ∣ + ιv∣α i ∣} such that for all j = 1, . . . , ∣α i ∣,

u j + ιv j = x j + ι y j +O(∥H∥).(3.21)

Let U[i] ∶= [u1 , . . . , u∣α i ∣], V[i] ∶= [v1 , . . . , v∣α i ∣] so that U[i] + ιV[i] is a unitary matrix.
By (2.1), it then follows that the following matrix:

Q[i] ∶= (
U[i] V[i]
−V[i] U[i]

)

is orthosymplectic. The relation (3.21) thus gives

Q[i] = (
S̃α i α i S̃α i β i

−S̃α i β i S̃α i α i

) +O(∥H∥).

This combined with (3.20) gives S̃ = Q +O(∥H∥), where Q = Q[1] ⊕s ⋯⊕s Q[r],
which completes the proof. ∎

The matrix SQ in Theorem 3.4 characterizes the set Sp(2n; A). We state this in the
following proposition, proof of which follows directly from Corollary 5.3 of [13]. It is
also stated as Theorem 3.5 in [21].

Proposition 3.5 Let S ∈ Sp(2n; A) be fixed. Every symplectic matrix Ŝ ∈ Sp(2n; A) is
precisely of the form

Ŝ = SQ ,

where Q = Q[1] ⊕s ⋯⊕s Q[r] such that Q[i] ∈ OrSp(2∣α i ∣) for all i = 1, . . . , r.

In [11], it is shown that if A has no repeated symplectic eigenvalues, then for any
fixed H ∈ Sm(2n), one can choose S ∈ Sp(2n; A) and S(ε) ∈ Sp(2n; A+ εH) for small
ε > 0 such that ∥S(ε) − S∥ = O(

√
ε). We generalize their result to the more general

case of A having repeated symplectic eigenvalues. Moreover, we consider the most
general perturbation of A and strengthen the aforementioned result.

Theorem 3.6 Let A ∈ Pd(2n) and H ∈ Sm(2n) such that A+H ∈ Pd(2n). Given any
S̃ ∈ Sp(2n; A+H), there exists S ∈ Sp(2n; A) such that

∥S̃ − S∥ = O(∥H∥).(3.22)

Proof Let M ∈ Sp(2n; A). By Theorem 3.4, we have

S̃ = MQ +O(∥H∥),

where Q = Q[1] ⊕s ⋯⊕s Q[r] such that Q[i] ∈ OrSp(2∣α i ∣) for all i = 1, . . . , r. Set
S ∶= MQ so that ∥S̃ − S∥ = O(∥H∥). We also have S ∈ Sp(2n; A) which follows from
Proposition 3.5. ∎

We know from Theorem 3.4 that the distance of the symplectic block (S−1 S̃)γ i γ i

from OrSp(2∣α i ∣) is O(∥H∥) for all i = 1, . . . , r. Since Sp(2∣α i ∣) ⊃ OrSp(2∣α i ∣), the
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distance of (S−1 S̃)γ i γ i
from Sp(2∣α i ∣) is expected to be even smaller. The following

result shows that this distance is O(∥H∥2).
Let W = [u, v] be a 2n × 2 matrix such that Range(W) is non-isotropic, i.e.,

uT J2nv ≠ 0. Let R = (1 0
0 uT J2nv) and S = WR−1 . We then have S ∈ Sp(2n, 2). The

decomposition W = SR is called the elementary SR decomposition (ESR). See [18]
for various versions of ESR and their applications in symplectic analogs of the Gram–
Schmidt method.

Proposition 3.7 Let A ∈ Pd(2n) and H ∈ Sm(2n) such that A+H ∈ Pd(2n). Let S ∈
Sp(2n; A) and S̃ ∈ Sp(2n; A+H). For each i = 1, . . . , r, there exists N[i] ∈ Sp(2∣α i ∣)
such that

(S−1 S̃)γ i γ i
= N[i] +O(∥H∥2).

Proof Without loss of generality, we can assume that A has the diagonal form
A = D ⊕ D and S = I2n . Let u1 , . . . , u∣α i ∣ , v1 , . . . , v∣α i ∣ be the columns of S̃γ i γ i . Set
M[ j] ∶= [u j , v j] for j = 1, . . . , ∣α i ∣. We will apply mathematical induction on j to
construct N[i]. We note that S̃γ i γ i can be expressed as

S̃γ i γ i = M[1] ◇⋯ ◇ M[∣α i ∣].

Choose W[1] = M[1] . We know from (3.5) that Range(W[1]) is non-isotropic for
small ∥H∥. Apply ESR to W[1] to get W[1] = S[1]R[1], where

R[1] = (
1 0
0 uT

1 J2∣α i ∣v1
) ,(3.23)

and S[1] = W[1]R−1
[1] ∈ Sp(2∣α i ∣, 2). By (3.5), we have uT

1 J2∣α i ∣v1 = 1 +O(∥H∥2). Substi-
tuting this in (3.23) gives

R[1] = I2 +O(∥H∥2).(3.24)

Substituting the value of R[1] from (3.24) in W[1] = S[1]R[1] gives

M[1] = W[1] = S[1] +O(∥H∥2).

Our induction hypothesis is that, for 1 ≤ j < ∣α i ∣, there exist 2∣α i ∣ × 2 real matrices
S[1] , . . . , S[ j] satisfying S[1] ◇⋯ ◇ S[ j] ∈ Sp(2∣α i ∣, 2 j) and

M[1] ◇⋯ ◇ M[ j] = S[1] ◇⋯ ◇ S[ j] +O(∥H∥2).(3.25)

We choose

W[ j+1] = M[ j+1] − (S[1] ◇⋯ ◇ S[ j]) JT
2 j (S[1] ◇⋯ ◇ S[ j])

T J2∣α i ∣M[ j+1] .(3.26)

By (3.5) and (3.25), we have

W[ j+1] = M[ j+1] +O(∥H∥2),(3.27)
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which implies Range(W[ j+1]) is non-isotropic for small O(∥H∥). Apply ESR to
W[ j+1] = [w j+1 , z j+1] to get W[ j+1] = S[ j+1]R[ j+1]. Here, S[ j+1] ∈ Sp(2∣α i ∣, 2) and

R[ j+1] = (
1 0
0 wT

j+1 J2∣α i ∣z j+1
) .(3.28)

From (3.5) and (3.27), we get wT
j+1 J2∣α i ∣z j+1 = 1 +O(∥H∥2). Using this relation in (3.28)

implies R[ j+1] = I2 +O(∥H∥2). Substituting this in W[ j+1] = S[ j+1]R[ j+1] gives

W[ j+1] = S[ j+1] +O(∥H∥2).(3.29)

Combining (3.27) and (3.29) then gives

M[ j+1] = S[ j+1] +O(∥H∥2).

We thus have

M[1] ◇⋯ ◇ M[ j+1] = S[1] ◇⋯ ◇ S[ j+1] +O(∥H∥2).

To complete the induction, we just need to show that S[1] ◇⋯ ◇ S[ j+1] ∈ Sp(2∣α i ∣,
2( j + 1)). We have

S[1] ◇⋯ ◇ S[ j+1] = (S[1] ◇⋯ ◇ S[ j]) ◇ S[ j+1] .

By the necessary and sufficient condition for (S[1] ◇⋯ ◇ S[ j]) ◇ S[ j+1] ∈ Sp(2∣α i ∣, 2( j +
1)), as discussed in Section 2.3, it is equivalent to show that (S[1] ◇⋯ ◇ S[ j])T J2∣α i ∣S[ j+1]
is the zero matrix. Now, using the relation W[ j+1] = S[ j+1]R[ j+1], we get

(S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣S[ j+1] = (S[1] ◇⋯ ◇ S[ j])

T J2∣α i ∣W[ j+1]R−1
[ j+1] .(3.30)

Substitute in (3.30), the value of W[ j+1] from (3.26) to get

(S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣S[ j+1] = (S[1] ◇⋯ ◇ S[ j])

T J2∣α i ∣

[M[ j+1] − (S[1] ◇⋯ ◇ S[ j]) JT
2 j (S[1] ◇⋯ ◇ S[ j])

T J2∣α i ∣M[ j+1]]R−1
[ j+1] .

Apply the induction hypothesis S[1] ◇⋯ ◇ S[ j] ∈ Sp(2∣α i ∣, 2 j) and simplify as follows:

(S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣S[ j+1]

= [(S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣M[ j+1] − J2 j JT

2 j (S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣M[ j+1]]R−1

[ j+1]

= [(S[1] ◇⋯ ◇ S[ j])
T J2∣α i ∣M[ j+1] − (S[1] ◇⋯ ◇ S[ j])

T J2∣α i ∣M[ j+1]]R−1
[ j+1]

= 02 j,2 .
(3.31)

We have thus shown that S[1] ◇⋯ ◇ S[ j+1] ∈ Sp(2∣α i ∣, 2( j + 1)). By induction, we then
get the desired matrix N[i] = S[1] ◇⋯ ◇ S[∣α i ∣] ∈ Sp(2∣α i ∣), which satisfies

S̃γ i γ i = M[1] ◇⋯ ◇ M[∣α i ∣] = N[i] +O(∥H∥2). ∎
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4 Conclusion

One of the main findings of our work is that, given any S ∈ Sp(2n; A) and S̃ ∈
Sp(2n; A+H), there exists an orthosymplectic matrix Q such that S̃ = SQ +O(∥H∥).
Moreover, the orthosymplectic matrix Q has structure Q = Q[1] ⊕s ⋯⊕s Q[r], where
Q[ j] is a 2∣α j ∣ × 2∣α j ∣ orthosymplectic matrix. Here, r is the number of distinct
symplectic eigenvalues μ1 , . . . , μr of A and α j is the set of indices of the symplectic
eigenvalues of A equal to μ j . We also proved that S ∈ Sp(2n; A) and S̃ ∈ Sp(2n; A+H)
can be chosen so that ∥S̃ − S∥ = O(∥H∥).
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