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SUMMING UP THE DYNAMICS
OF QUADRATIC HAMILTONIAN SYSTEMS

WITH A CENTER

JANOS PAL AND DANA SCHLOMIUK

ABSTRACT. In this work we study the global geometry of planar quadratic Hamilto-
nian systems with a center and we sum up the dynamics of these systems in geometrical
terms. For this we use the algebro-geometric concept of multiplicity of intersection
Ip(PÒQ) of two complex projective curves P(xÒ yÒ z) = 0, Q(xÒ yÒ z) = 0 at a point p of
the plane. This is a convenient concept when studying polynomial systems and it could
be applied for the analysis of other classes of nonlinear systems.

1. Introduction. The general structure of planar quadratic vector fields is not known
and attempting to classify all such systems is quite a complex task. Ultimately one would
like to obtain the bifurcation diagram of this class. The plane quadratic vector fields
form a family QV which depends on twelve parameters but due to the group action
of affine transformations and positive time rescaling, the class ultimately depends on
five parameters. Bifurcation diagrams were constructed for small parts of this class (for
example cf. [A], [S1], [S2]). In this article we study quadratic Hamiltonian systems with
a center. Although such systems are discussed in a number of works in the literature,
a satisfactory, geometric analysis of this class is still missing. Indeed, while in [V] and
[AL] we see phase portraits of these systems, they are not assembled in a bifurcation
diagram so as to allow us to easily see how systems change as parameters vary. In [A],
a Ph.D. thesis which appeared in russian and was not published, the bifurcation diagram
of all quadratic systems with a center was given, hence in particular for the Hamiltonian
case, but these diagrams were not realized in the adequate parameter space which is a
four-dimensional real projective space and for the Hamiltonian case, the real projective
plane. Doing the analysis over the projective plane puts all the parameters on an equal
footing and also yields a more condensed picture: it is very convenient to follow the
changes in the systems as parameters vary on a disk, representing the real projective
plane when the opposite points on the circumference are identified. In [A] the invariant
algebraic curves are mentioned but their role in the dynamics and in the integrability of
the systems does not appear in this work. While in [S2] this role is highlighted, in [S2]
the Hamiltonian case is not discussed. A goal of this article is to give a more satisfactory
analysis for the class of Hamiltonian systems with a center. This is one of the simplest
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classes of nonlinear integrable systems, and it makes a good case study for a geometrical
viewpoint. It gives an opportunity to observe basic geometrical properties of systems
with a rational (in this case a cubic) first integral. The problem of determining when a
polynomial system has a rational first integral is open. Poincaré posed this problem (cf.
[P91]) and he obtained partial results in [P97].

Our work sums up in geometric terms the dynamics of quadratic Hamiltonian systems
with a center. We spell out by using in the discussion the algebro-geometric notion of
intersection multiplicity at a point of two complex projective curves, the bifurcation
phenomena encountered. The treatment of bifurcation of singular points here could be
applied to other classes of polynomial systems, nonintegrable quadratic systems, cubic
Hamiltonian systems, etc.

The article is organized as follows: in Section 2 we describe the canonical forms for
the systems we consider. In Section 3 we briefly describe the Poincaré compactification
which is used for the systems. In Section 4 we discuss the singular points in the finite
plane using the intersection multiplicity at a point of two complex projective curves.
The singular points at infinity are studied in Section 5. In Section 6 we determine the
curves in the parameter space, on which saddle connections occur. In Section 7 we sum
up the main facts concerning the global geometry and the dynamics of the quadratic
Hamiltonian systems with a centre and we draw their bifurcation diagram.

2. Canonical forms and symmetry for the Hamiltonian vector fields with a
centre. The parameter space. A center of a planar vector field is an isolated singularity
surrounded by closed solution curves. In a quadratic system, a center is necessarily a
weak focus i.e. a singularity with pure imaginary eigenvalues (cf. [B], [DT] and [J]). So
let us first consider quadratic systems with a weak focus. Such a system can be brought
by affine coordinate transformations and positive time rescaling to the form:

dx
dt

= �y + kx2 + mxy + ny2Ò dy
dt

= x + ax2 + bxy + cy2(2.1)

The form (2.1) is invariant under rotations of axes. A rotation of axes of an angle í brings
the system to one of the same form but in coefficients k0, m0, n0, a0, b0, c0 and we have

c0 = c cos3 í � (b � n) cos2 í sin í + (m + a) cos í sin2 í � k sin3 í
Thus, if c 6= 0 we can find í such that c0 = 0. So we shall only consider systems:

dx
dt

= �y + kx2 + mxy + ny2Ò dy
dt

= x + ax2 + bxy(2.2)

A system (2.2) is Hamiltonian if and only if m = 0 = 2k +b. So we consider only systems

dx
dt

= �y + kx2 + ny2Ò dy
dt

= x + ax2 � 2kxy(2.3)

The system corresponding to the parameter ï = (aÒ kÒ n) has the following Hamiltonian:

Hï(xÒ y) = �ax3 � ny3

3
+ kx2y � x2 + y2

2
(2.4)
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We study systems (2.3) which are nonlinear i.e. ï = (aÒ kÒ n) 6= 0. For (aÒ kÒ n) 6= 0 the
systems can be rescaled, hence the parameter space needed for the bifurcation diagram
is actually the real projective plane P2(R) and not R3. P2(R) could be pictured as a
disk with opposite points on the circumference identified. We may place n = 0 on the
circumference of the disk. Since for n 6= 0 we can rescale the system, we may assume
n Ù 0. Furthermore we observe that the following identity holds for the systems (2.3):

H(�aÒkÒn)(xÒ y) = H(aÒkÒn)(�xÒ y)(2.5)

In view of (2.5) it is sufficient to discuss the systems (2.3) in a semidisk corresponding
to a ½ 0 (or a � 0), since the case a Ú 0 (resp. a Ù 0) can be recuperated from the
symmetry.

3. The Poincaré compactification. For systems

dx
dt

= P(xÒ y)Ò dy
dt

= Q(xÒ y)(3.1)

with PÒQ polynomials with coefficients in R we use the Poincaré compactification (cf.
[P81] and [GV]). This is obtained as follows: we identify the (xÒ y)-plane with the plane
Z = 1 in R3 with coordinates (XÒYÒZ). We project this plane by a central projection on
the sphere S2 = f(XÒYÒZ) 2 R3 j X2 + Y2 + Z2 = 1g. The point (xÒ y) is sent on two
opposite points of the sphere. The central projection associates to our vector field (3.1)
a vector field on the complement of the equator of the sphere. In [GV] it was shown that
this vector field can be extended to an analytic vector field A(S) on the whole sphere.
Our vector field is diffeomorphic to the vector field obtained by restricting A(S) to the
upper hemisphere. A compactification AN(S) is obtained by considering the restriction
of A(S) to the upper hemisphere completed with the equator. Projecting the vector field
AN(S) vertically on the plane Z = 1 we obtain a vector field on the disk of radius 1 in the
(xÒ y)-plane. The phase portraits of the systems (2.3) will thus be pictured on disks.

4. The study of the singular points of the systems (2.3) in the finite plane. The
finite singular points of (3.1) are the intersection points of the curves P(xÒ y) = 0,
Q(xÒ y) = 0. For the nonlinear quadratic case (2.3) i.e. for (aÒ kÒ n) 6= 0, these two curves
are:

P(xÒ y) = �y + kx2 + ny2 = 0Ò Q(xÒ y) = x + ax2 � 2kxy = 0(4.1)

(0Ò 0) is a common point of the curves (4.1) for all values (aÒ kÒ n) but for all values
(aÒ kÒ n) 6= 0 the curves (4.1) have at least one other common point in R2.

NOTATION 4.1. We denote by N(aÒ kÒ n) the number of distinct (finite) singular points
of (2.3) for the parameter (aÒ kÒ n). Equivalently N(aÒ kÒ n) is the number of distinct
common points of (4.1).

For two systems (2.3) corresponding to (aÒ kÒ n) and (a0Ò k0Ò n0), which are topologically
equivalent N(aÒ kÒ n) = N(a0Ò k0Ò n0). For (aÒ kÒ n) 6= 0, we can rescale the coefficients in
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(2.3), hence the parameter space is actually the real projective plane P2(R) and N yields
a function on P2(R), N[aÒ kÒ n], which describes part of the the dynamics of the systems.
To determine the function N it is convenient to take into consideration the full projective
completions of the curves (4.1) in the complex projective space P2(C) i.e. the curves over
C given by the homogenized equations corresponding to (4.1):

� yz + kx2 + ny2 = 0Ò xz + ax2 � 2kxy = 0(4.2)

and to consider their intersection points, counted with multiplicities, over C. Roughly
speaking the intersection multiplicity Ip(PÒQ) of two algebraic curves P = 0, Q = 0 at a
point p indicates how many points the curves have in common at that point. For example
the intersection multiplicity of y = 0 with y � x2 = 0 at (0Ò 0) is two, since the line is
tangent to the parabola at (0Ò 0). At the same time the intersection multiplicity of xy = 0
with y � x2 = 0 at (0Ò 0) is three since x = 0 and y = 0 are components of xy = 0 and
x = 0 intersects the parabola y � x2 = 0 transversely. For a quick understanding of the
concept of intersection multiplicity and of its properties the reader is advised to consult
[G] or [Ki]. We look if there are values of the parameters for which the curves in (4.2)
have common components. The second curve in (4.2) has two components:

x = 0Ò z + ax � 2ky = 0(4.3)

The first curve in (4.2) is reducible if and only if k = 0 and then clearly x = 0 cannot be
a component of the first conic in (4.2). If k = 0 the second line in (4.3) is a component
of the first conic in (4.2) if and only if z + ax = 0 is z � ny = 0 which only occurs when
a = 0 = n yielding a linear system. So the curves in (4.2) have no common component
for all (aÒ kÒ n) 6= (0Ò 0Ò 0) and the same holds true for their affine parts (4.1). By Bézout’s
theorem (cf. [Ki]) the number of intersection points of (4.2) in P2(C), counted with
multiplicities, is four. We therefore have 1 � N(aÒ kÒ n) � 4. The intersection points of
the curves (4.2), counted with multiplicities are given by the intersection points (counted
with multiplicities), of each one of the straight lines in (4.3) with the first conic in (4.2).
We consider the intersections of each of the following two sets of curves:

�yz + kx2 + ny2 = 0Ò x = 0(4.4)

�yz + kx2 + ny2 = 0Ò z + ax � 2ky = 0(4.5)

Correspondingly we have the affine curves obtained by letting z = 1 in (4.4) and (4.5)
i.e.:

�y + kx2 + ny2 = 0Ò x = 0(4.6)

�y + kx2 + ny2 = 0Ò 1 + ax � 2ky = 0(4.7)

We shall write Ip(4i) in place of Ip(PÒQ) if the curves are those of (4i) with i =
1Ò 2Ò 4Ò 5Ò 6Ò 7. Clearly, for each intersection point p of either (4.4) or (4.5) we have
Ip(4i) � 2, i = 4Ò 5. If p = (xÒ y) we also write p = [xÒ yÒ 1] identifying p with its image
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[xÒ yÒ 1] in the projective plane. N(aÒ kÒ n) = 4 if and only if the curves (4.2) have no point
of intersection “at infinity” (i.e. for z = 0) and there is no singular point p of (2.3) with
Ip(41) Ù 1. N(aÒ kÒ n) = 3 if the curves (4.2) have four distinct points of intersection, one
of them a point at infinity for the curves in (4.1) or if (4.2) have three distinct points of
intersection, none at infinity for (4.1) and one and only one of them, p, with Ip(42) = 2.
Thus determining N is related to determining the intersection points at infinity of (4.1)
and to the intersection multiplicities of the curves (4.2). We first look at the intersection
points at infinity for (4.1) (or of (4.2) with z = 0) and at their multiplicity of intersection:

PROPOSITION 4.1. The curves (4.2) intersect “at infinity” (i.e. for z = 0) if and only if
nC = 0, where C = na2 + 4k3, in which case they have a unique point p of intersection at
infinity.

i) If n = 0 6= C, p = [0Ò 1Ò 0] with Ip(42) = 1 and N[aÒ kÒ 0] � 3.
ii) If C = 0 6= n, p = [2kÒ aÒ 0] if (aÒ k) 6= 0, with Ip(42) = 1, N[aÒ kÒ n] � 3 and

p = [1Ò 0Ò 0] if (aÒ k) = 0 in which case Ip(42) = 2, N[0Ò 0Ò 1] = 2.
iii) If n = 0 = C, p = [0Ò 1Ò 0], Ip(42) = 2 and N[aÒ 0Ò 0] = 2.

PROOF. For (4.4) the points of intersection are [0Ò 0Ò 1] and [0Ò 1Ò n]. Hence the curves
in (4.4) intersect for z = 0 if and only if n = 0. If n = 0 we have I[0Ò1Ò0](44) = 1 (x = 0 is
not tangent to �yz + kx2 = 0 at [0Ò 1Ò 0]). The curves in (4.5) have a point of intersection
at infinity if and only if ax � 2ky = 0 and kx2 + ny2 = 0 have a common nontrivial
solution in R2. We distinguish the cases k 6= 0 and k = 0. If k 6= 0, y = axÛ(2k) and
hence

�
k + na2Û(4k2)

�
x2 = 0. This equation has a nontrivial solution if and only if C = 0.

Simple calculations yield the remaining part of the proposition.

PROPOSITION 4.2. The systems (2.3) have four distinct singular points (real or com-
plex) if and only if nCé(n � 2k) 6= 0, where é = a2 � 4kn + 8k2. These are: (0Ò 0),
Pn = (0Ò 1Ûn) and Pš = (xšÒ yš) where

(xšÒ yš) =

8><
>:
�

(ak�anškÐsgn(a)Ðé1Û2

C Ò 4k2+a2šjajé1Û2

2C

�
if a 6= 0�

š� 2k�n
4k3

�1Û2Ò 1
2k

�
if a = 0

(4.8)

(If a 6= 0, sgn(a) = jajÛa). These points are real if and only if é Ù 0 in which case
N(aÒ kÒ n) = 4.

PROOF. If C 6= 0, we have (aÒ k) 6= 0. If a 6= 0 then replacing x = (2ky � 1)Ûa, z = 1
into the first equation of (4.5) we obtain the equation in y

(na2 + 4k3)y2 � (a2 + 4k2)y + k = 0(4.9)

If a = 0, since C 6= 0, we have k 6= 0, so replacing z = 1 and y = 1Û(2k) in the first
equation of (4.5) we get the equation

kx2 +
n � 2k

4k2
= 0(4.10)
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The discriminant of the equation (4.9) is a2é. If nCé(n�2k) 6= 0 and if a 6= 0 we can solve
the equation (4.9) for y and if a = 0 6= k we can solve the equation (4.10) for x obtaining
(4.8). The equation (4.9) has real solutions if and only if é Ù 0. If a = 0, é = �4k(n�2k).
The equation (4.10) applies in this case and (4.10) has two real solutions if and only if
é Ù 0.

PROPOSITION 4.3. If p is a singular point of (2.3) for ï = (aÒ kÒ n), then Ip(41) � 3.
There exists a singular point p0 of (2.3) such that Ip0 (41) ½ 2 if and only if é(n�2k) = 0.
If é = 0 6= n � 2k or if é 6= 0 = n � 2k and k 6= 0, then N(aÒ kÒ n) = 3, we have two
singular points p with Ip(41) = 1 and one p0 with Ip0 (41) = 2. If é = 0 = n � 2k, then
N[aÒ kÒ n] = N[0Ò 1Ò 2] = 2, the two singular points being (0Ò 0) and Pn = (0Ò 1Ûn) with
I(0Ò0) = 1 and IPn(42) = 3.

PROOF. Since (0Ò 0) is a nonsingular point of both curves in (4.1), and the curves are
transversal at (0Ò 0), I(0Ò0)(41) = 1 and hence for any other singular point p of (2.3) we
must have Ip(41) � 3. We could have Ip(41) Ù 2 only if a point p of intersection of
the curves (4.1) is at the same time the point of intersection of the lines in (4.3) (i.e. if
p = [0Ò 1Ò 2k]) and in addition one of the lines in (4.3) is tangent at p to the first conic
in (4.2). Clearly x = 0 cannot be tangent to the first curve in (4.2). p = [0Ò 1Ò 2k] lies
on the first conic of (4.2) so Ip(41) ½ 2. The tangent at p of the first conic in (4.2) is:
2(n� k)y� z = 0. This line coincides with z + ax� 2ky = 0 if and only if a = 0 = n� 2k
in which case é = 0, p = Pn and Ip(42) = IPn (41) = 3. For all other singular points p we
have Ip(41) � 2. We have equality if either [0Ò 1Ò 2k] lies on the first curve in (4.2) i.e.
when n � 2k = 0 but a 6= 0 i.e. when é 6= 0 or when a point p on the second line in (4.3),
p 6= [0Ò 1Ò 2k], is the point at which this line is tangent to the first curve in (4.2). Since for
(aÒ k) = 0, the line z + ax � 2ky = 0 is the line at infinity, we must consider (aÒ k) 6= 0.
z + ax � 2ky = 0 is tangent to the conic in (4.5) if and only if é = 0.

COROLLARY 4.1. The bifurcation set for the systems (2.3) due to a change in the
number of (finite) singular points of (2.3) is the set defined by the equation nCé(n�2k) = 0
i.e.

B = f[aÒ kÒ n] 2 P2(R) j nCé(n � 2k) = 0g = Bn [ BC [ Bé [ Bn�2k(4.11)

where we put

Bó = f[aÒ kÒ n] 2 P2(R) j ó = 0gÒ ó 2 fnÒCÒ éÒ (n � 2k)g(4.12)

To study the singular points we use the matrix of the linearized system at a point
(xÒ y):

L(xÒ y) =
 

Hyx Hyy

�Hxx �Hxy

!
=
 

2kx 2ny� 1
�(1 + 2ax� 2ky) �2kx

!
(4.13)

and its characteristic polynomial

p(ï) = ï2 + Det L(xÒ y)(4.14)
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where Det L(xÒ y) is the determinant of L(xÒ y). A singular point (xÒ y) for which
Det L(xÒ y) 6= 0 is either a weak focus or a saddle according to whether Det L(xÒ y) Ù 0 or
Det L(xÒ y) Ú 0. Since the system is Hamiltonian, if Det L(xÒ y) Ù 0, the singular point is
a center.

OBSERVATION 4.1. Each singular point (x0Ò y0) of the system (2.3) is also a double
point of the Hamiltonian level curve

H(xÒ y) � H(x0Ò y0) = 0Ò(4.15)

the equations of the tangent lines at (x0Ò y0) to the curve (4.15) being given by

Hxx(x0Ò y0)(x � x0)2 + 2Hxy(x0Ò y0)(x � x0)(y � y0)(4.16)

+Hyy(x0Ò y0)(y � y0)2 = 0
We describe the nature of the singular points starting with Pn = (0Ò 1Ûn), n 6= 0.

PROPOSITION 4.4. Suppose n 6= 0.
i) If n� 2k 6= 0 the singular point Pn = (0Ò 1Ûn) is a saddle or a center according to

whether or not (2k � n)n Ú 0 or (2k � n)n Ù 0.
ii) If n � 2k = 0, the singular point Pn = (0Ò 1Ûn) is a cusp if é 6= 0 (i.e. a 6= 0) and it

is a saddle if é = 0 (i.e. a = 0).

PROOF. i) Follows from (4.14) and the fact that Det L(0Ò 1Ûn) = (2k � n)Ûn.
ii) If n = 2k, Det(Pn) = Det(0Ò 1Ûn) = 0. The level curve of the Hamiltonian passing

through Pn is:

H(xÒ y) � H(0Ò 1Ûn) = �ax3

3
+

x2(ny � 1)
2

(4.17)

+
(ny � 1)2(2ny + 1)

6n2
= 0

and the equation (4.17) yields two coincident tangent lines at Pn = (0Ò 1Ûn):

�
y � 1

n

�2
= 0(4.18)

For a 6= 0, ny � 1 = 0 is not a component of (4.17) and therefore Pn = (0Ò 1Ûn) is a cusp
for (4.17) which yields a cusp for the system. If a = 0 the equation (4.17) can be written

H(xÒ y) � H
�

0Ò 1
n

�
= (ny � 1)

�x2

2
+

y2

3
� y

6n
� 1

6n2

�
= 0(4.19)

ny�1 = 0 is tangent to the second component of (4.19) and Pn is a topological saddle.

PROPOSITION 4.5. If néC(n � 2k) 6= 0 and é Ù 0 we have:
i) The points Pš are both saddles if and only if nC Ú 0 or n(n � 2k) Ú 0.

ii) One of the points Pš is a center and the other a saddle if and only if nC Ù 0 and
n(n � 2k) Ù 0.

https://doi.org/10.4153/CJM-1997-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-027-0


THE DYNAMICS OF QUADRATIC HAMILTONIAN SYSTEMS 589

PROOF. Using (4.8) we get

Det L(Pš) =
(�š sgn(a)xš Ð é1Û2 if a 6= 0
�4k2(xš)2 if a = 0.

(4.20)

It suffices to prove the proposition for n Ù 0. Proof of i): Assume C Ú 0. We need
sgn

�
Det(Pš)

�
and straightforward calculations for cases a 6= 0 and a = 0 yield:

(4.21)

sgn
�
Det(Pš)

�

=

8><
>:
� š sgn(C) Ð sgnfsgn(k � n)ð jk � nj jaj š sgn(k) Ð jkjé1Û2g if a 6= 0
�1 if a = 0.

If C Ú 0, na2 Ú �4k3. For n Ù 0, k Ú 0. So sgn(k � n) = sgn(k) = �1 and hence
sgn

�
Det(Pš)

�
= �š sgnfjk� nj jaj š jkj Ð é1Û2g. Clearly sgn

�
Det(P+)

�
= �1 and hence

P+ is a saddle. For P� we compare jk � nj jaj with jkj Ð é1Û2. Squaring these, since
n� 2k Ù 0 we have (k � n)2a2 Ú k2é. Hence sgn

�
Det(P�)

�
= �1 and P� is a saddle. If

C Ù 0 and n � 2k Ù 0, k � n Ú �k. If k Ù 0, sgn(k � n) = �1. Then P+ is a center and
P� is a saddle. If k Ú 0, sgn(k � n) = �1, P+ is a center and P� is a saddle.

THEOREM 4.1. Consider a nonlinear system (2.3) i.e. for ï = (aÒ kÒ n) 6= 0. We have:

N(aÒ kÒ n) =

8>>>>>><
>>>>>>:

4 iff nCé(n � 2k) 6= 0 and é Ù 0.
3 iff only one of the equations n = 0, é = 0, C = 0,

n � 2k = 0 is satisfied.
2 iff é Ú 0 or two distinct ones of the equations n = 0,

é = 0Ò C = 0, n � 2k = 0 are satisfied.

(4.22)

When N(aÒ kÒ n) = 4 we have a center and three saddles if and only if nC Ú 0 and two
centers and two saddles if and only if nC Ù 0.

PROOF. Let B\ = fp 2 P2(R) j 9ó1Ò ó2 2 fnÒCÒ éÒ n � 2kgÒ ó1 6= ó2Ò p 2 Bó1 \ Bó2g.
Then

B\ = f[1Ò 0Ò 0]Ò [0Ò 1Ò 2]Ò [0Ò 0Ò 1]g(4.23)

More precisely we have:
i) [aÒ kÒ n] satisfies é = 0 = C if and only if [aÒ kÒ n] = [0Ò 0Ò 1].

ii) [aÒ kÒ n] satisfies é = 0 = n � 2k if and only if [aÒ kÒ n] = [0Ò 1Ò 2].
In both cases i) and ii) the system has only two singular points: (0Ò 0) and Pn.

iii) [aÒ kÒ n] satisfies C = 0 = n � 2k if and only if [aÒ kÒ n] = [1Ò 0Ò 0]. In this case we
have only two singular points: (0Ò 0) and (�1ÛaÒ 0).

iv) The equations n = 0 = C, or n = 0 = n � 2k hold only for [aÒ kÒ n] = [1Ò 0Ò 0].
In both cases we have only two singular points: (0Ò 0) and (�1ÛaÒ 0). é = 0 = n cannot
occur for a real nonlinear system. We look at the number of singular points for systems
in Bó � B\, with ó 2 fnÒCÒ éÒ n � 2kg. We have: On Bé � B\, the singular points are:
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(0Ò 0), P+ = P�, Pn = (0Ò 1Ûn). On Bn � B\, there are three singular points: (0Ò 0) and
Pš. On BC � B\, ak 6= 0, (4.9) is a first degree equation in y yielding only one singular
point: Pf = (xf Ò yf ). When we approach C = 0, one of the two singular points Pš runs to
infinity and on C = 0 we are left with only one of them in the finite plane, point which
we denote Pf = (xf Ò yf ). We have:

Pf = (xf Ò yf ) =
 
� a2 + 2k2

a(a2 + 4k2)
Ò k

a2 + 4k2

!
(4.24)

In this case the singular points are: (0Ò 0), Pf , Pn. On Bn�2k � B\ the singular points are:
(0Ò 0), Pn = P+ and P�. Propositions 4.3 and 4.4 yield the remaining part of the proof.

We consider now the nature of the singular points P+ and P�, and of Pf , if nC(n�2k) =
0 with é Ù 0.

PROPOSITION 4.6. If nC(n� 2k) = 0 and é Ù 0, for the singular points Pš (if C 6= 0),
respectively Pf (if C = 0) we distinguish the following possibilities:

I. For systems with [aÒ kÒ n] in Bn � B\ we have n � 2k 6= 0 and the singular points
Pš are topological saddles.

II. If [aÒ kÒ n] 2 BC � B\, Pf is a topological saddle.
III. If [aÒ kÒ n] 2 Bn�2k � B\, P� is a topological saddle and P+ = Pn and it is a cusp.
IV. If [aÒ kÒ n] 2 B\ we have two singular points (0Ò 0) and Pn except for [aÒ kÒ n] =

[1Ò 0Ò 0] when the singular points are (0Ò 0) and Pf = (�1ÛaÒ 0) which is a topo-
logical saddle.

PROOF. I. For this case we use (4.20) and (4.21).
To prove II. we use (4.24) obtaining

Det L(Pf ) = �a2 + 4k2

a2
(4.25)

To prove III. we first obtain:

(xšÒ yš) =

8<
:
�

[aš(a2+8k2)1Û2]
4k2 Ò [a2+4k2š(a2+8k2)1Û2]

8k3

�
for a 6= 0�š[ (2k�n)

4k3 ]1Û2Ò 1
2k

�
for a = 0.

(4.26)

This yields

Det L(xšÒ yš) =

8<
:�š xš(a2 + 8k2)1Û2 for a 6= 0

2k�n
k for a = 0.

(4.27)

To prove V. we use Det L(Pf ) = Det L(�1ÛaÒ 0) = �1.

5. The study of the singular points at infinity. To study the singular points at
infinity it suffices to use two charts: one obtained by projecting the hemisphere X ½ 0 of
S2 on the plane X = 1 (we denote the coordinates Y, Z in this plane by u, z) and another
one by projecting the hemisphere Y ½ 0 on the plane Y = 1 (we denote the coordinates
X, Z by v, z). Projecting the plane Z = 1 (with coordinates x, y) on the upper hemisphere
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and then on the two planes X = 1 and Y = 1 we pass from coordinates (xÒ y) to (uÒ z),
respectively to (vÒ z): z = (1Ûx), u = yÛx and z = 1Ûy, v = xÛy. We obtain in this way,
after time rescaling, the two systems of equations:

dz
dú = z(�k + uz � nu2)Ò du

dú = (1 + u2)z + a � 3ku� nu3(5.1)

dz
dú = �z(�2kv + vz + av2)Ò dv

dú = �(1 + v2)z + n + 3kv2 � av3(5.2)

The singular points of (5.1) having the form (zÒ u) = (0Ò u) are given by the equation in u

G(u) = nu3 + 3ku� a = 0(5.3)

We recall an algebraic result needed to discuss the number of real roots of this equation:

PROPOSITION 5.1. All the roots of the equation a0u3 + a1u2 + a2u + a3 = 0 are real if
and only if its discriminant D = a2

1a2
2 � 4a0a3

2 � 4a3
1a3 � 27a2

0a2
3 + 18a0a1a2a3 is positive

or zero. The equation has three distinct real roots in the case D Ù 0. The equation has a
single real root if and only if D Ú 0. In particular for G(u) = 0 we have

D = �27Cn(5.4)

When nC 6= 0, the sign of D depends on the sign of nC. The matrix of the linearized
system for (5.1) at singular points of the form (zÒ u) = (0Ò u) is given by

A(0Ò u) =
 �nu2 � k 0

u2 + 1 �3nu2 � 3k

!
(5.5)

with eigenvalues

ï1 = �3(nu2 + k) = �G0(u)Ò ï2 = �(nu2 + k) = �G0(u)
3

(5.6)

We have

ï1ï2 = 3(nu2 + k)2 =
[G0(u)]2

3
(5.7)

Clearly, the singular points (0Ò u) are of node type whenever u is a simple root of G(u).
The nature of the singular points is given by the following proposition:

THEOREM 5.1. I. If nC 6= 0, there are three singular points at infinity or one according
to whether nC Ú 0 or nC Ù 0. In both situations the singular points at infinity are nodes.

II.(a) If C = 0 6= n, then either (aÒ k) 6= (0Ò 0) and we have two singular points at
infinity, a node and a singular point with an elliptic region, or (aÒ k) = (0Ò 0) and the only
singular point at infinity is u = 0 = z which is of node type.

II.(b) If n = 0 6= C we have two singular points at infinity: z = 0 = v which is with an
elliptic region and z = 0, u = aÛ(3k) which is a node.

III. If n = 0 = C, there is only one singularity at infinity which is z = 0 = v and it is a
node.
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PROOF. I. Follows from Proposition 5.1, from (5.3), (5.4) and (5.7). All nondegen-
erate (i.e. such that G0(u) 6= 0) singular points (0Ò u) are nodes due to formula (5.7). It
remains to consider the singular points (0Ò u) with G0(u) = 0 and if n = 0, the singular
point z = 0 = v.

II.(a) Assume first that ak 6= 0 = C. We may assume n Ù 0 and because of the
symmetry (2.5) we may assume a Ù 0. In this case since C = 0 we have a2n =
�4k3 and hence k Ú 0. We also have a = �2k(�kÛn)1Û2 and G(u) =

n
�
u+(�kÛn)1Û2

�2�
u�2(�kÛn)1Û2

�
. Hence the singular points at infinity are (zÒ u) = (0Ò u)

with u = �(�kÛn)1Û2, or u = 2(�kÛn)1Û2. By (5.7), z = 0, u = 2(�kÛn)1Û2 is a node.
The point z = 0, u = �(�kÛn)1Û2, has as its linear part a nilpotent 2 ð 2 matrix and
the standard blow up technique [BM] or application of results in [ALGM, Chapter IX],
yields a point with an elliptic region (cf. [PS]). If a = k = 0 6= n, the first integral is
H(xÒ y) = �(x2 + y2)Û2 + ny3Û3. All the curves Hï(xÒ y) � K = 0, K a constant, have
only one point at infinity: z = 0 = u. Clearly the projective completions of the curves
Hï(xÒ y) � K = 0 are all tangent to the line at infinity at this point. Only two singular
real curves are in this family, one passing through (0Ò 0) and another one passing through
the singular point (0Ò 1Ûn) which is Hï(xÒ y) � H(0Ò 1Ûn) = 0. This curve can be traced
easily; it is a nodal cubic with only one point at infinity. The phase portraits are thus clear
and the point at infinity in this case is a node.

II.(b) Two singular points at infinity are present: z = 0 = v and (zÒ u) = (0Ò u) with
u = aÛ(3k). The analysis for z = 0 = v is done by standard blow up techniques (cf. [BM]
or [ALGM]) and the point turns out to have an elliptic region. The point z = 0, u = aÛ3k
is a node.

III. C = 0 = n 6= a. In this case the first integral is Hï(xÒ y) = �ax3Û3 � (x2 + y2)Û2.
We have only two singular real Hamiltonian level curves, one with an isolated singular
point at the origin, the other one passing through the singular point (�1ÛaÒ 0) which
is Hï(xÒ y) � Hï(�1ÛaÒ 0) = �ax3Û3 � (x2 + y2)Û2 + 1Û6a2 = 0. This curve (as well
as each of the other Hamiltonian level curves) is tangent to the line at infinity at the
point at infinity which is in the direction of y-axis. Translating the origin at the singular
point (�1ÛaÒ 0) by X = x + 1Ûa, Y = y the curve Hï(xÒ y) � Hï(�1ÛaÒ 0) = 0 becomes
�2aX3 + 3X2 � 3Y2 = 0 which is clearly a nodal cubic yielding a homoclinic loop and
this cubic has only one point at infinity which is a node for the system and the phase
portrait is (except for the orientation of the integral curves) is as indicated in Figure 2.

6. The saddle-connections. These will occur when the Hamiltonian level curve
passing through a saddle, will also pass through another saddle. This cubic curve is
reducible, in view of Observation 4.1, with a straight line component passing through
the two saddles.

DEFINITION 1. We consider a polynomial vector field

X = P(xÒ y)
]

] x
+ Q(xÒ y)

]

] y
(6.1)
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with P and Q polynomials with real coefficients. An algebraic invariant curve of (6.1) is
a curve f (xÒ y) = 0, with f a polynomial with real or complex coefficients such that for
some polynomial g over R or over C we have

P
] f
] x

+ Q
] f
] y

= f Ð g(6.2)

An algebraic solution of a polynomial differential equation P(xÒ y) dy�Q(xÒ y) dx = 0 is
an irreducible invariant algebraic curve for (6.1).

We look for invariant lines for the systems (2.3). f (xÒ y) = rx + sy + t = 0 is an invariant
line for a quadratic field (6.1) if for some g(xÒ y) = r0x + s0y + t0 we have:

rP(xÒ y) + sQ(xÒ y) = (rx + sy + t)(r0x + s0y + t0)(6.3)

Straightforward calculations yield:

PROPOSITION 6.1. The systems (2.3) admit invariant straight lines if and only if
(aÒ kÒ n) satisfy one of the following two conditions:

i) an 6= 0 and (aÒ kÒ n) is on the curve (6.4) of saddle connections whose equation is:

a2n � (n + k)2(n � 2k) = 0(6.4)

A systems (2.3) with (aÒ kÒ n) on the curve (6.4) has only one invariant line whose equation
is: L(xÒ y) = anx � n(n + k)y + n + k = 0.

ii) If a = 0 6= k, the line f (xÒ y) = �2ky + 1 = 0 is invariant and if n + k = 0, the lines
š(3)1Û2nx � ny + 1 = 0 are also invariant.

In the case i), (n+k)(n�2k) 6= 0 and Pn = (0Ò 1Ûn) lies on the invariant line L(xÒ y) = 0.
Let C (Pn) = H(xÒ y) � H(0Ò 1Ûn) = 0. Calculations yield the factorization for C (Pn):

L(xÒ y)[�2an(n + k)x2 � 2an2y2 + 2n(n + k)(2k � n)xy + (2k � n)(n + k)x + any + a]

= 0(6.5)

The conic component intersects L(xÒ y) = 0 at Pn and at another singular point q. q cannot
be the origin or a point at infinity. Hence q = Pš and when C = 0 the line contains Pf .

The affine type of the conic component is determined by its corresponding quadratic
form and the value of the determinant ∆ of its associated matrix: �2na(n + k) n(n + k)(2k � n)

n(n + k)(2k � n) �2n2a

!

(6.6)

Since on (6.4), a2n = (n + k)(2k � n)2, simple calculations yield that on (6.4) we have:

∆ = 3n2(n + k)2(n � 2k)(n + 2k)(6.7)

For the nature of the conic component it suffices to assume n Ù 0 and its affine type is
easily obtained.
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7. The bifurcation diagram of quadratic Hamiltonian systems with a centre. As
seen in Section 2, the parameter space for nonlinear systems (2.3) is the real projective
plane P2(R). Since the systems (2.3) are Hamiltonian, they have no limit cycle. We sum
up the dynamics of quadratic Hamiltonian systems with a center as follows:

THEOREM 7.1. ï = (aÒ kÒ n) is a bifurcation point for the family (2.3) if and only if
[aÒ kÒ n] lies on the projective curve C : nCé(n � 2k)a[an � (n + k)(n � 2k)] = 0 and if ï
is on a = 0 then é Ù 0. Let Sing(C ) be the set of singular points of the projective curve
C . The codimension one stratum is made of points in C n Sing(C ) and they are grouped
as follows:

I. N[aÒ kÒ n] = 3. This occurs if and only if nCé(n � 2k) = 0 in which case we have a
bifurcation of singular points.

II. N[aÒ kÒ n] = 4. This occurs if and only if a[an � (n + k)(n � 2k)] = 0 and if a = 0
then é Ù 0. This is a saddle-connection bifurcation.

The codimension two stratum is made of the points in

Sing(C ) = f[1Ò 0Ò 0]Ò [0Ò 0Ò 1]Ò [0Ò 1Ò 2]Ò [0Ò 1Ò �1]Ò [0Ò 1Ò 0]Ò [šp2Ò 1Ò �2]g
For these points N[aÒ kÒ n] = 2.

We note that for a = 0, the systems are symmetric with respect to the y-axis. We
spell out the types of bifurcation points in the codimension one and two strata and the
characteristics of the systems as follows:

THEOREM 7.2. Consider the points in the codimension one stratum = C n Sing(C ).
These are of the following types:

I.(a) If nC = 0, one of the finite singular points disappears at infinity becoming a
singular point at infinity (a point with an elliptic region). The only other singular point
at infinity is a node. The finite singular points are a center and two saddles.

I.(b) If é(n � 2k) = 0 there exists a unique singular point p of (2.3) where two finite
singular points coalesce at a finite singular point p. The singularities are: the point p
which is a cusp, a center, a saddle and only one singular point at infinity, a node.

In the codimension two stratum = Sing(C ) we have:
i) Sing(nC = 0) = f[1Ò 0Ò 0]Ò [0Ò 0Ò 1]g. At one of these points a multiple singular

point of (2.3) disappears at infinity. This corresponds to the equations P = 0 and
Q = 0 having a point p at infinity with Ip(45) = 2.

ii) Sing
�é(n � 2k) = 0

�
= f[0Ò 1Ò 2]g. At [0Ò 1Ò 2] we have a coincidence of three

singular points, Ip(PÒQ) = 3. In both cases i) and ii) we have N(ï) = 2 (a center
and a saddle) and we have only one singular point at infinity, a node.

iii) Sing
�
a[a2n� (n + k)2(n� 2k)] = 0

�
= f[0Ò 1Ò �1]Ò [0Ò 1Ò 2]g. At [0Ò 1Ò �1] we have

three invariant lines which are saddle connections. ([0Ò 1Ò 2] was already discussed
above.)

iv) fš2Ò 1Ò �2g. At these points the situation is similar to the case [0Ò 1Ò 0] where we
have a center and two saddles and two singular points at infinity: a node and point
with an elliptic region.
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These theorems follow from the results of the preceeding sections. The six bifurcation
curves components of C appear on Figure 1 where we represent the projective plane as
a disk with n = 0 on the circumference, the opposite points being identified. Due to the
symmetry of the Hamiltonian i.e. H(�aÒkÒn)(xÒ y) = H(aÒkÒn)(�xÒ y) it is only necessary to
draw the bifurcation diagram for systems (2.3) with a � 0, i.e. on the semi-disk with
a � 0. The ellipse é = 0 divides the semi-disk in two regions: its interior where there are
two singular points and its exterior where there are four finite singular points generically.
The curve C = 0 divides the semi-disk corresponding to a � 0 in two regions: one with
three infinite singular points generically and one with one infinite singular point. Placing
also the saddle connection (6.4) as well as the bifurcation line n � 2k = 0, and all the
phase portraits (except for the orientation of the integral curves which we leave out but
which can easily be drawn) obtained by using the results in previous sections, we obtain
the bifurcation diagram pictured in Figure 2. We have ten topologically distinct phase
portraits, eight of which are located on the bifurcation lines and three in the generic
situation:

(a) With two singular cycles which are homoclinic loops;
(b) with just one homoclinic loop and one singular point at infinity;
(c) with one homoclinic loop, three other singular points which are saddles through

which pass three distinct irreducible singular cubic solutions and with three sin-
gular points at infinity.

For fixed ï = (aÒ kÒ n) the solution curves lie on curves of the form:

F(KÒï)(xÒ y) = Hï(xÒ y) � K = 0(7.1)

where K is a constant. All the curves (7.1) for fixed ï and variable K pass through the
same points at infinity which are given by the cubic terms of F(KÒï)(xÒ y).

THEOREM 7.3. All finite singular points of a nonlinear quadratic Hamiltonian system
with a center (2.3) are ordinary double points for the level curves of the Hamiltonian
passing through them except for é(n � 2k) = 0. In this case there is a unique singular
point p of (2.3) for which F(H(p)Òï)(xÒ y) = 0 is irreducible having a cusp at p or this
curve is reducible with a line component tangent to the conic component at p. All
singular points at infinity are nonsingular points for the projective completions of the
Hamiltonian level curves (7.1) passing through them. These are points where the curves
(7.1) are transversal to the line at infinity except if nC = 0 when we have curves in (7.1)
which are tangent to the line at infinity at the elliptic singular point at infinity of (2.3).
For bifurcation points ï on only one of the curves: (6.4), a = 0, one of the singular
curves in the family F(KÒï)(xÒ y) = 0 is reducible with an irreducible conic component
and a line component which is not tangent to the conic. If ï belongs to both (6.4) and
a = 0, then we have a cubic in (7.1) which either has three line components or a line and
an irreducible conic component which are tangent.
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+
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FIGURE 1
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[G] F. Gione, Géométrie projective, Notes de cours, Cours Math. l’UQTR 13(1978), 267.
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