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Abstract

In this paper, we apply standard zooarchaeological methods and novel osteological approaches to analyse faunal remains from five Middle–
Late Holocene sites in the southern Tibetan Plateau (STP). Framed by direct radiocarbon dates on taxonomically classified bioarchaeolog-
ical remains and compared with published palaeoclimate data, our findings revealed a three-stage process of agro-pastoral development in
the STP ca. 5.5 to 1.0 ka. In the first phase, habitation was restricted to the lower southeastern part of the plateau and human subsistence
essentially based on foraging and low-level pig–millet farming. With the onset of colder and drier climatic conditions ca. 3.8 ka, the study
area witnessed a growing human presence at higher elevations in its central and western parts, together with a shift towards bovid husbandry
and barley cultivation, that is, agricultural practices that originated in west Asia; these were likely introduced to the STP following the eastern
margin of the TP and/or arrived by sub-Himalayan transfer. Climate and ecological degradation might have contributed to the decline of
local game in favour of cold-and-dry-tolerant pastoral livestock and crops. Our work shows that Middle–Late Holocene climate change,
ecological change, human subsistence shifts, and prehistoric cultural transmissions are intimately connected.
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INTRODUCTION

The Tibetan Plateau (TP), located at the junction of East, South,
and central Asia, with an average altitude of more than 4000 m
above sea level (m asl), is one of the most challenging environ-
ments for human beings to live in. Recent archaeological research
conducted on the TP has significantly improved our understand-
ing regarding prehistoric human occupation of this high-altitude
environment as well as the associated subsistence strategies and
interactions with communities populating adjacent areas
(Madsen et al., 2006; Brantingham et al., 2007; Aldenderfer,
2011; Chen et al., 2015a, 2019; d’Alpoim Guedes et al., 2015;
Meyer et al., 2017; Zhang et al., 2018; Zhang et al., 2019a;
d’Alpoim Guedes and Aldenderfer, 2019; Zhang et al., 2021).
Although different opinions exist about the factors that enabled

people to colonize this cold, harsh environment at such a large
scale, research agrees that agriculture and animal husbandry
played an essential role (Brantingham et al., 2007; Chen et al.,
2015a; Lu, 2016; Zhang et al., 2016). However, although the tim-
ing and mechanisms governing the process have been investigated
from different perspectives, most conclusions until now have been
based on archaeobotanical evidence, architecture, and associated
archaeological finds (e.g., d’Alpoim Guedes et al., 2014; Chen
et al., 2015a; Liu et al., 2017; Tang et al., 2021), while archaeofau-
nal evidence was of secondary importance. In fact, limited
zooarchaeological data are available compared with the growing
body of archaeological investigations in the TP, with most
zooarchaeological research (including synthesis papers) focusing
on the northeastern part of the TP (NETP). Conversely, for the
southern TP (STP), published zooarchaeological work is limited
to faunal reports dealing with single sites (e.g., Huang and
Leng, 1985; Zhou, 1999; Li, 2007; Zhang et al., 2019b). This is
unsatisfactory, in that the TP represents one of the largest pasto-
ralist ecosystems in the world, and investigations into its forma-
tion using a zooarchaeological approach promise novel insights
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into the cultural and biological processes that have played crucial
roles in shaping the region economically and socioculturally.

Until now, the lack of systematic zooarchaeological research in
the STP impeded our understanding of animal exploitation pat-
terns and hence human–environment dynamics in this region.
Across the globe, the introduction of domestic crops and livestock
resulted in major changes in human subsistence practices, land
use and vegetation cover, human mobility, and population growth
(Boyle et al., 2002; Fuller, 2006; Hunt et al., 2011; Jones et al.,
2011; Boivin et al., 2012; Liu et al., 2019a), phenomena that can-
not be properly understood without studying bioarchaeological
remains. In the course of the Holocene, animals domesticated
in various parts of Eurasia, including pigs, sheep, goats, cattle,
and horses, spread widely to new environments unlike those
where domestic forms initially prospered (Meadow, 1996; Peters
et al., 1999, 2005; Levine, 2005; Flad et al., 2007; Colledge et al.,
2013; Vigne, 2015; Librado et al., 2021), including the extreme
harsh environments characterizing the STP (Miao et al., 2017;
Hu et al., 2019; Liu et al., 2019b; Wu et al., 2020). Originating in
southwestern Asia, economically productive herds of sheep, goat,
and cattle dispersed across Asia and towards Europe starting
some 10,000 years ago (Chessa et al., 2009; Peters et al., 2014;
Cai et al., 2014, 2018a; Lv et al., 2015; Wang, 2017; Hermes
et al., 2020; Yu, 2020; Wilkin et al., 2020), reaching the TP in the
mid-Holocene and becoming a mainstay of the local pastoral econ-
omy essential for human survival (Yang and Zheng, 2001).
Previous archaeological and linguistic research has already revealed
the key role played by the northern Eurasian steppe and the
Proto-Indo-European language communities relative to the disper-
sal of pastoralist lifeways across Asia (Levine, 2005; Frachetti, 2012;
Hermes et al., 2019; Wilkin et al., 2020). However, important ques-
tions regarding the adoption of livestock in the unique ecosystem of
the STP need yet to be satisfactorily answered. Arguably, detailed
zooarchaeological analyses and integration of the faunal spectra
into the broader archaeological and palaeoclimatic picture available
for the STP, and more generally East Asia, are essential.

One major limiting factor explaining the stagnation in
zooarchaeological research addressing relevant questions is the
poor foundation for comparative osteological research in a
study area characterized by a highly diverse herbivorous mamma-
lian fauna with many wild medium-sized ruminant taxa. Apart
from several species of the family Cervidae, the study area wit-
nesses the presence of two members of the subfamily
Antilopinae, that is, Tibetan gazelle (Procapra picticaudata) and
Tibetan antelope (Pantholops hodgsoni), as well as seven species
of the subfamily Caprinae, that is, serow (Capricornis milneed-
wardsii), goral (Naemorhedus goral), blue sheep (Pseudois
nayaur), Himalayan tahr (Hemitragus jemlahicus), argali (Ovis
ammon), domestic sheep (Ovis aries), and domestic goat (Capra
hircus) (Huang and Leng, 1985; Feng et al., 1986; IUCN/SSC,
1997; Wang, 2017; Zhang et al., 2019b). These species overlap
widely in size and exhibit a broadly similar osteomorphology,
complicating classification of heavily fragmented archaeological
specimens to the level of the genus, let alone to that of the species.
Taxonomic identification of medium-sized bovids from this
region poses a significant challenge, but progress has recently
been made (Wang, 2017; Wang et al., 2020b).

In this study, with the aid of the rich comparative osteological
collections of Tibetan fauna in the Institute of Zoology, Chinese
Academy of Sciences (IZCAS), and the Institute of Tibetan
Plateau, Chinese Academy of Sciences (ITPCAS), published refer-
ence works, osteological criteria published in Wang (2017) and

Wang et al. (2020b), and additional novel features, we conducted
taxonomic classification of medium-sized bovid remains recently
excavated in Middle–Late Holocene assemblages in the STP and
secured the ages of key domestic specimens through direct radio-
carbon dating. The majority of the faunal materials come from
archaeological sites situated on the riverbanks of the Yarlung
Tsangpo, which flows some 1200 km east through the South
Tibet Valley and likely served as a major corridor for the dispersal
of goods, agricultural practices, and pastoralism. Combining our
observations with the published zooarchaeological, archaeobotan-
ical, and palaeoclimatic records, as well as radiocarbon dates from
sites in the STP, our study addresses (1) the spatiotemporal devel-
opments of human subsistence practices in consecutive phases of
occupation, (2) the origins and route(s) by which livestock popu-
lations were introduced, and (3) the natural and cultural circum-
stances triggering highland pastoralism in the region. In brief, our
work deals with the adaptation of certain mammalian groups into
high-altitude environments and the long-term trajectory of such
nonlinear evolution of a very unique lifeway (so-called human–
animal–environment dynamics) in the TP and provides new
insights on methodological developments how to tackle such
problems.

STUDY AREA

With an average altitude above 4000 m asl, the STP occupies the
entire Tibetan Autonomous Region. Being located between 26°
52′N and 36°32′N and 78°24′E and 99°06′E, it covers an area of
more than 1,200,000 km2 (Guge, 2013). Imposing mountain
ranges—the Kunlun Mountains and Tangula Mountains in the
north, the Henduan Mountains to the east, and the Himalayas
to the south and west frame this elevated area. To the east and
southeast, the plateau gives way to the forested gorge and ridge
geography of mountainous headwaters. In the west, the rugged
Karakoram range of the northern Kashmir embraces the plateau,
and the Kailash Mountains give rise to, for example, the Indus
(Sengge Zangbo in Tibet), Sutlej, and Yarlung Tsangpo Rivers.
Together with their tributaries, these riverine landscapes offered
suitable opportunities for extensive settlement and agriculture,
and each of them housed important civilisations in former
times, for example, the Indus civilisation (2600–1300 BC), the
Shangshung civilization (ca. 500 BC–AD 625) (Aldenderfer,
2007), and the Tubo Kingdom (AD 618–AD 842).

Currently, the TP is characterized by a typically cold and dry
alpine climate (Ding et al., 2018; Wang et al., 2018). Being influ-
enced by both the westerlies and the Asian monsoon, it in turn
modifies the climate of neighbouring as well as more remote
regions (Zhou et al., 2009). Because the surface topography of
the plateau slopes from the northwest (average altitude >
5000 m in the Changtang region) to the southeast (average alti-
tude of 3000 m in the Nyingchi region), precipitation and temper-
ature show clear gradients. In northwest Tibet, the mean annual
temperature is below 0°C, amounting to above 18°C in southeast
Tibet. Regarding precipitation, an average of less than 30 mm
characterizes the northwestern TP, amounting to 4495 mm in
the southeastern TP (SETP) at the lower reaches of the Yarlung
Tsangpo River. The vegetation distribution captures the overall
gradient from subalpine forests in the southeast margin to alpine
meadow and scrub, alpine/temperate steppes, and alpine/temper-
ate deserts in the northwest TP (Hou, 2001).

Most suitable for human inhabitation and agriculture from a
climatic perspective is the SETP, where archaeological sites we
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examined located around 3000 m asl face comparatively warm
and humid climates in conifer forest vegetation. A diverse range
of crops (wheat, barley, naked barley, pea) and fauna (deer,
pigs, wild boar, monkey, hare, fish, etc.) were exploited by humans
in recent historic and prehistoric times (Feng et al., 1986; Wang
et al., 2021b). In the central part of the STP (CSTP), where
most sites examined in this study are found between 3500 and
4000 m asl, the climate is cooler and drier, and the typical vege-
tation type is alpine steppe. Because of irrigation practices made
possible by the Yarlung Tsangpo, it is one of the most productive
areas for agriculture and pastoralism in Tibet. Currently, this
region is characterised by wheat and barley cultivation and
sheep and yak pastoralism (Guge, 2013). In the Ali region of
southwest Tibet (SWTP), where most sites are located above
4000 m asl, the climate is even cooler and drier, and the typical
vegetation is alpine steppe. Here pastoralism dominates human
subsistence, with limited agriculture. Because of its high elevation,
solar radiation of the TP is strong and the air very thin (Yang and
Zheng, 2001; Guge, 2013).

The STP witnessed comparably humid conditions from the
Early Holocene to the Middle Holocene (9.6–4.2 ka). After 4.2
ka, however, the climate generally turned more arid, and from
ca. 3.0 ka until today, aridity increased and the climate became
more variable (Nishimura et al., 2014; Bird et al., 2014; Leipe
et al., 2014). The changes in the reconstructed palaeovegetation
distribution correspond with climatic developments at the global
scale and in the East Asian monsoon. In the mid-Holocene, the
climatically most favourable and most suitable period for

human inhabitation, subtropical vegetation, including forests,
expanded northward. This process was reversed in the Late
Holocene, with alpine meadow and steppe vegetation expanding
southward, in line with the relatively cool and dry conditions
after the climatic optimum (Qin et al., 2021; Li et al., 2022). It is
reasonable to assume that these changes had a lasting impact on
the livelihoods of early inhabitants and their livestock and crops.

MATERIALS AND METHODS

To elucidate human presence as well as early agricultural and pas-
toralist practices in the study area, systematic archaeological inves-
tigations were conducted between 2018 and 2019 in the frame of
the Second Tibetan Plateau Scientific Expedition and Research
Program (STEP) along the alluvial terraces of the Yarlung
Tsangpo River and its tributaries. For sites yielding Neolithic
material culture including pottery sherds, stone tools, charcoals,
and animal bones, the archaeological layers as well as specific
structures, such as ash pits, were sampled systematically, and
the sediment was screened using the manual bucket flotation
technique. The location of the sites is shown in Figure 1. All
the sites reflect human occupation, although tomb and stone
structures were also identified in two of the sites (Khog Gzung
and Kha lding). The elevation of the sites ranges from 2800 m
in the SETP to 4050 m in the SWTP.

Most of the faunal remains considered in this study were
hand-collected from the occupation layers. In addition, small
amounts were retrieved using sieves with a mesh of 0.45 mm,

Figure 1. Locations of the five studied sites. The numbers of the sites correspond to those in Fig. 3.
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through which carbonized plant and other remains were also
obtained. Carbonized plant seeds were identified in the
Archaeobotanical Laboratory of the ITPCAS, with selected speci-
mens being directly radiocarbon dated.

Based on the results of the investigations in 2018, the site of Klu
lding was found to be of particular interest, and a small-scale exca-
vation was carried out in the winter of 2019. The site is located on
the second terrace of the Nyang River, where it discharges into the
Yarlung Tsangpo River. The terrace is composed of lacustrine sed-
iments with horizontal stratigraphy, where the archaeological mate-
rials were discovered. Aeolian accumulation likely took place
following the onset of the Holocene. At present, the site is located
under the agricultural land of the village. The total area of the set-
tlement is estimated to be ca. 20,000 m2. Excavation was restricted
to three grids totalling 54 m2: two 5 × 5 m grids and one 2 × 2 m
grid (Fig. 2a–d). Faunal remains were retrieved systematically
from the subsequent occupation layers by hand and through
3 mm dry sieving of selected sediment samples.

The Kha lding site is located on the terrace of the diluvial fan
on the northern bank of the Bode Tsangpo. In the valley lowlands,
wheat fields are found, and smooth-pit peach or Tibetan peach
(Prunus mira) grows as well as drought-tolerant herbs such as
Artemisia. James barberry (Berberis jamesiana) grows at lower
altitudes in the mountains, while at higher altitudes the landscape
is dominated by the drought- and high altitude–tolerant Quercus
aquifolioides. The site’s expanse has not been recorded.

The Khog Gzung site is located on the northern bank of the
Yarlung Tsangpo River, at the front of a north-south alluvial-
diluvial fan called Khog Gzung. The site was estimated to cover
some 20,000 m2. From the vertical profiles of the gullies crossing
the fan, it can be seen that the alluvial gravel layer is covered with
an aeolian sediment layer (sandy loess layer) measuring 70 to
160 cm thick. The ash pits reported here all come from this
layer, which is about 15 cm below the surface (Fig. 2e and f).

The Kyamo site is located on a secondary river terrace on the
northern bank of a tributary flowing into the Gyelung Zangpo
River. Prominent geomorphic features are a diluvial fan, the river
terrace, and rocks. The newly discovered profile revealed a cultural
layer rich in animal bones, charcoal debris, and a small amount of
stone artefacts, located ca. 1.5 m above the ground surface (Fig. 2g
and h) and extending nearly 8.7 m in length. Conceivably, we are
dealing with an accumulation resulting from human activities,
instead of the product of transportation of the river. At present,
an estimation for the size of the site is missing.

Apart from the archaeofaunas retrieved during the STEP, the
first author also had the opportunity to study in detail the remains
of medium-sized bovids excavated from the site of Xiaoenda in
2012 and first reported by Zhengwei Zhang, who analysed the
entire faunal assemblage excavated in an area of 170 m2 (Zhang
et al., 2019b). Xiaoenda is characterized by rectangular semi-
subterranean household features; its material culture contained
ceramics, bone tools, and lithics showing close resemblance to
those from the Karuo site. Dated 5600 to 2900 cal yr BP, Karuo
is a Neolithic settlement situated next to Xiaoenda and one of
the earliest reported and best-studied Neolithic sites in the
Tibetan Autonomous Region (BCRTAR and DHSU, 1985;
d’Alpoim Guedes et al., 2014). At Xiaoenda, collecting faunal
remains combined hand-picking with systematic sieving of all
sediments using 5 and 3 mm meshes. From a total of 7314 mainly
mammalian specimens, 730 could be identified to the order level
or below in the original faunal analysis (Zhang et al., 2019b). The
landscape of Xiaoenda exhibits contrasting vertical diversity in

vegetation. Starting around 3400 m asl, scrub and meadow grass-
lands give way to alpine temperate coniferous forests.

The faunal assemblages retrieved by the STEP team were ana-
lysed at the Zooarchaeological Laboratory of the Institute of
Tibetan Plateau (ITP). Focus has been on mammalian remains,
which were identified with the aid of modern and ancient mam-
malian osteological collections housed at the IZCAS and ITPCAS.
Identification manuals consulted by us include Olsen (1964),
Schmid (1972), Chen (1995), and Hillson (2005, 2016). Basic
analysis comprised anatomical (body part) and taxonomic classi-
fication as well as the study of taphonomic markers (weathering,
gnawing, burning, etc.) and traces of hunting and butchery indic-
ative of past human behaviour.

Particular attention was paid to the study of dental and osseous
remains of medium-sized bovids, which include nine species of
Antilopinae and Caprinae that overlap in size and exhibit similar
osteomorphologies. Being highly relevant in zooarchaeological
research worldwide, diagnostic osteomorphological and osteomet-
ric criteria to distinguish sheep and goats have witnessed intense
study since the 1950s (Gromova, 1953; Boessneck et al., 1964;
Schramm, 1967; Boessneck, 1969; Payne, 1969, 1985; Kratochvil,
1969; Prummel and Frisch, 1986; Clutton-Brock et al., 1990;
Davis, 1996, 2000; Rowley-Conwy, 1998; Helmer, 2000; Halstead
et al., 2002; Zeder and Lapham, 2010; Zeder and Pilaar, 2010;
Gillis et al., 2011; Gudea and Stan, 2011, 2012; Salvagno and
Albarella, 2017; Zedda et al., 2017). Conversely, diagnostic morpho-
logical features enabling identification of the other aforementioned
taxa populating the TP and its piedmonts received less attention
(Götze, 1998; Tong et al., 2008; Wang, 2017; Wang et al., 2020b).
Not only the lack of criteria for accurately distinguishing between
the relevant taxa mentioned earlier, but also the fact that modern
comparative specimens of the genera Capricornis, Naemorhedus,
Pseudois, or Hemitragus are quite rare in osteological reference col-
lections worldwide, complicate establishing reliable osteomorpho-
logical keys. Recently, biomolecular techniques, including ancient
DNA (aDNA) analysis and ZooMS, have proved helpful tools for
taxonomic classification of archaeological specimens, but few insti-
tutions have access to such equipment. Moreover, sampling is
destructive and analysis more expensive than morphological exam-
ination of bones, which can be done on the spot (Buckley et al.,
2010; Rizzi et al., 2012; Dodson et al., 2014).

Thus, starting points in our study were detailed morphological
and morphometric analyses of the aforementioned medium-sized
bovids. As a first step, the remains were sorted based on absolute
size and morphological criteria described in the literature
(Boessneck et al., 1964; Boessneck, 1969; Prummel and Frisch,
1986; Helmer and Rocheteau, 1994; Götze, 1998; Halstead et al.,
2002; Hillson, 2005; Zeder and Lapham, 2010; Zeder and Pilaar,
2010; Wang et al., 2020b). Additional morphological features
and morphometric data for the relevant species accumulated dur-
ing their study of osteological reference collections in Europe, the
United States, and China1 by Y Wang and JP (see Supplementary
Material E) were helpful for specific identification. Second, where

1The collections include: IZCAS, Institute of Zoology, Chinese Academy of Sciences;
CUMZ, University Museum of Zoology at Cambridge; SPM, Staatssammlung für
Paläoanatomie, München; BMN, Berlin Museum für Naturkunde; MNHN, Muséum
national d’Histoire naturelle, Paris; MHJ, Museum für Haustierkunde “Julius Kühn”,
Martin-Luther University of Halle-Wittenberg; AMNH, American Museum of Natural
History, New York; USNM, Smithsonian National Museum of Natural History,
Washington, DC; MCZ, Museum of Comparative Zoology, Harvard; FMNH, Field
Museum of Natural History, Chicago. Part of the results were published previously in
Wang et al. (2020b).
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applicable, identification of specimens using morphometrics was
performed. To this extent, measurements defined by von den
Driesch (1976) and complemented by additional ones defined
by Y Wang and JP, were collected, and the data were evaluated
by applying discriminant function analysis following the approach
outlined in Wang (2017). This method obtains morphometric
information on commonly preserved elements (i.e., distal humeri,
distal metacarpals, distal metatarsals, etc.) and allowed quantita-
tive analysis to sort out and identify several morphologically sim-
ilar taxa, such as Ovis, Pseudois, Naemorhedus, and Capra.
Osteometric data are provided in Supplementary Material A.
Thus, taxonomic identification was achieved by merging multiple
lines of evidence generated with the aid of modern reference spec-
imens. In sum, combining the existing identification criteria and
our novel osteomorphological and morphometric approaches, our
analyses allow a systematic evaluation of the whole bulk of the skel-
etal elements of mammalian bodies preserved in archaeological
sites, and specimens of domestic sheep can be clearly separated
from medium-sized bovids of similar morphology, which is crucial
for understanding sheep raising and domestication in this area.

Securing the age of the specimens under study combines
radiocarbon dates from several sites. Radiocarbon dates were
obtained on several key specimens from each of the sites. Eight
dates from Xiaoenda published by Zhang et al. (2019b) showed
that the site was occupied between 4900 and 4200 cal yr BP.
The dated samples originate from distinct stratigraphic levels,
likely representing the entire time range of site occupation. To
these we can add two 14C dates each from the sites of Klu lding
and Kha lding published by Wang et al. (2021b). Finally, in this
study, we present the dates obtained for selected crop and live-
stock remains from each of the four sites investigated by the
STEP team. Accelerator mass spectrometry (AMS) dating was
conducted by Beta-Analytic. The 14C dates were calibrated

using OxCal 4.3.2 (Ramsey, 2017) and the IntCal 13 curve
(Reimer et al., 2013), with ranges expressed at 2σ (95.4%) confi-
dence level.

RESULTS

Stratigraphy, radiocarbon dates, and time frame for the
occupation of the sites under study

Figure 2 offers insight into the stratigraphy of the four sites inves-
tigated by the STEP team. The top row presents relevant informa-
tion for the excavations at Klu lding. Figure 2a offers a top view of
the main excavation area. Excavated in 2019, Trenches 2 (T2) and
3 (T3) are separated by 1 m. Their stratigraphic sequences are
depicted in Figure 2b and c. The blue parts that constitute
much of layer ④ represent ditch G1 cutting through T2 and T3.
Quite rich archaeological remains were recovered from G1. The
layers below G1—k1, k3, ④g, and ④h—contain only pure sandy
soils without archaeological remains. Recorded during the 2018
survey, profile 3 (18-P3) is situated immediately south of the east-
ern half of the southern profile of T2 (Fig. 2d). Not depicted in
Figure 2 is Trench 1, which is located about 15 m north of T2
and T3. The bottom row offers insight into the stratigraphy of
the three other sites of interest, more precisely of Khog
Gzung-P4 (Fig. 2e), Khog Gzung-P2 (Fig. 2f), Kyamo-P1
(Fig. 2g and h), Kha lding-P1 (Fig. 2i). These profiles were
exposed by modern earth moving. An ash pit (H1*) was identified
in both Khog Gzung-P4 and Khog Gzung-P2. Kyamo and Kha
lding both show layered stratigraphies.

Table 1 lists the published and new 14C dates of the plant and
animal remains from the five sites under study. Information on
the stratigraphic position of the radiocarbon-dated bone speci-
mens from Xiaoenda can be found in Zhang et al. (2019b).

Figure 2. Archaeological contexts of the sites in this study. Dating materials collected from features with an asterisk (*). (a) Plan view of Klu lding T2 and T3; (b) Klu
lding-T2 western profile; (c) Klu lding-T3 eastern profile; (d) 18-Klu lding-P3; (e) Khog Gzung-P4; (f) Khog Gzung-P2; (g) Bos mandible from Kyamo-P1; (h) Kyamo
-P1; (i) Kha lding-P1.
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Regarding Klu lding, 14C-dated samples include a pig molar
(Beta592299), a sheep premolar (Beta593674), and a piece of
charcoal (Beta513039) collected from the deeper stratigraphic sec-
tion of Trench 3 (G1b*), Trench 2 (G1a*), and from Profile 3
(H1*), respectively. The H1 in P3 is likely to be of the same
unit as G1 in T2. Within the stratigraphic sequence, the position
of the pig specimen (Fig. 2c) is below that of the sheep. Another
dated specimen is a nutshell (Beta513032) collected from layer
P1② during the 2018 survey (Wang et al., 2021b), which is on
the opposite side of the southern profile of T1.

For Klu lding, all results point to a mid-fourth millennium BP
occupation. In the excavated parts, the 14C results of the samples
match their relative positions in the stratigraphy. In other words,
the 2σ range obtained for the pig tooth (3569–3411 cal yr BP)
corresponds to earlier occupation than that measured for the
sheep tooth (3456–3364 cal yr BP), suggesting that the specimens
remained in stratigraphic position after site abandonment. The 2σ
range obtained with the charcoal specimen from the same layer is
larger (3610–3458 cal yr BP) and could possibly be indicative of
site occupation before 3.5 ka, provided we are not dealing with
“old” wood (Schiffer, 1986). With a 2σ range of 3544–3367 cal
yr BP, the dating of the nutshell overlaps well with the ranges
of the animal bones, suggesting that the sampled areas may
have been occupied broadly contemporaneously. Based on the
available 14C dates and considering the extent of the deposits sep-
arating the location of the samples from bedrock, it can be postu-
lated that Klu lding was most likely occupied in the mid-fourth
millennium BP.

At Khog Gzung, the faunal remains submitted to radiocarbon
dating originated from two profiles, that is, P2 and P4, separated
by ca. 100 m. The dated barley (Beta559278) and naked barley
(Beta559279) were collected from the ash pits (H1*) visible in
Profiles 2 (P2) and 4 (P4), respectively (Fig. 2e and f). The
sheep molar dated by us (Beta592300) was found in the latter pro-
file as well. Despite the fact that information about their exact
positions is missing, the 2σ ranges suggest that the features in
Profiles 2 and 4 may have been in use broadly contemporane-
ously. As such, the currently available dates frame site occupation
at Khog Gzung between ca. 3300 and 2950 cal yr BP.

At Kha lding, faunal and crop remains submitted to radiocarbon
dating were retrieved from P1② and P1③ (Fig. 2i). The 2σ ranges
obtained for both the wheat grain (Beta514620) and the sheep
bone (Beta592301) collected in Profile 1 match well. They date
the formation of layer ③ to ca. 2700–2400 cal yr BP. Another
wheat grain (Beta514619) collected from overlying layer ② provided
a 2σ range of 2140–1952 cal yr BP, thus confirming human pres-
ence at the end of the third millennium BP. Taken together, the
dates suggest that the Kha lding specimens remained in strati-
graphic position after people had abandoned the site.

At Kyamo, two faunal specimens retrieved from layer P1②
(Fig. 2h), more precisely a sheep bone (Beta592302) and an
unidentified mammal bone (Beta536111), were dated. Based on
these, it can be argued that the formation of this layer took
place between ca. 1400 and 1200 cal yr BP.

Summing up, the time frame suggested by the available radio-
carbon dates covers several millennia. It allows us to address

Table 1. The 14C dating results of the plant and animal remains from Xiaoenda, Klu lding, Khog Gzung, Kha lding, and Kyamo.

Site Context Laboratory no. Dating material
Radiocarbon
age (yr BP)

Calibrated age
(cal yr BP)
2σ 95.4% Reference

Xiaoenda 2012CXIT0101②c:1 BA171542 Mammal bone 4025 ± 40 4783-4416 Zhang et al. (2019)

2012CXIT0101③c:1 BA171543 Mammal bone 3870 ± 25 4412-4183 Zhang et al. (2019b)

2012CXIT0101④:1 BA171544 Mammal bone 4000 ± 25 4522-4420 Zhang et al. (2019b)

2012CXIT0101⑤c:1 BA171545 Mammal bone 4150 ± 25 4824-4580 Zhang et al. (2019b)

2012CXIT0101⑥c:1 BA171546 Mammal bone 4195 ± 25 4840-4628 Zhang et al. (2019b)

2012CXIT0101⑥UD12c:1 BA171547 Mammal bone 4175 ± 25 4831-4619 Zhang et al. (2019b)

2012CXⅢT0205②c:1 BA171548 Mammal bone 3825 ± 25 4381-4100 Zhang et al. (2019b)

2012CXⅢT0206③c:1 BA171549 Mammal bone 4245 ± 35 4867-4649 Zhang et al. (2019b)

Klu lding 2018Klu lding-P1② Beta513032 Nutshell 3210 ± 30 3544-3367 Wang et al. (2021b)

2018Klu lding-P3H1 Beta513039 Charcoal 3310 ± 30 3610-3458 Wang et al. (2021b)

2019LZLDT2: G1a Beta593674 Sheep Tooth 3190 ± 30 3456–3364 This paper

2019LDT3: G1b (bottom) Beta592299 Pig Tooth 3280 ± 30 3569-3411 This paper

Khog Gzung 2019LZKX-P2-H1① Beta559278 Barley 2900 ± 30 3156-2953 This paper

2019LZKX-P4-H1 Beta559279 Naked Barley 2990 ± 30 3323-3067 This paper

2019LZKX-P4 Beta592300 Sheep Tooth 2910 ± 30 3160-2961 This paper

Kha lding 2018KD-P1② Beta514619 Wheat 2080 ± 30 2140–1952 Wang et al. (2020)

2018KD-P1③ Beta514620 Wheat 2460 ± 30 2707-2378 Wang et al. (2020)

2018KD-P1③ Beta592301 Sheep Bone 2470 ± 30 2715-2371 This paper

Kyamo 19KM-P1② Beta536111 Mammal Bone 1460 ± 30 1398 1302 This paper

19KM-P1② Beta592302 Sheep Bone 1320 ± 30 1297-1176 This paper

Human–animal–environment dynamics in the STP 35

https://doi.org/10.1017/qua.2023.6 Published online by Cambridge University Press

https://doi.org/10.1017/qua.2023.6


human–animal interactions in the study area from the early fifth
until the late second millennium BP.

Taxonomic composition of the faunal assemblages

General considerations
The faunal assemblages evaluated by us comprise the remains of
two excavated and three surveyed sites. Table 2 presents the tax-
onomic identifications, together with the number of identified
specimens (NISP). Understandably, applying hand-picking
and selected flotation during surveys resulted in a bias against
small-sized bone and tooth specimens, explaining the absence
of vertebrate taxa the size of pika (Ochotona) or even fox
(Vulpes). In contrast, sieving, flotation, and hand-picking during
a meticulous excavation at Klu lding produced a significant num-
ber of tiny bone specimens that, due to their high degree of frag-
mentation, could not be assigned to the taxonomic level of the
order essential for further assessment. Thus, while the faunal
assemblage from Klu lding totalled 984 specimens, mainly of

mammals, with some birds and fishes, only 73 of these (or
7.4%) could be classified taxonomically (Table 2).

Among the identified taxa, livestock is represented by pig (Sus
domesticus), sheep (Ovis aries), and cattle and/or yak (Bos sp.).
Comparison of the Sus tooth specimens from Klu lding with
modern reference skulls confirmed that we are most likely dealing
with domestic pigs based on visual assessment of their size. The
teeth turned out comparably small, a criterion separating them
from wild boar (Sus scrofa). We are aware of the fact that age,
sex, state of wear, and geographic region can affect the size of
Sus molars (Zeder and Lemoine, 2020), but the small size of the
specimens and the species’ relatively high frequency (10.5–
14.4%) in the assemblage favour their classification as domesti-
cates. In addition, the site’s altitude renders the presence of
wild boar rare, as it is at the upper limit of its altitudinal distribu-
tion (Wilson and Reeder, 1993), although the animals’ occasional
presence above this altitude seems not impossible.

At Klu lding, only a single tooth specimen could be identified
as Bos sp. It can be assumed that amongst the remains classified

Table 2. Taxonomic representation of identifiable specimens from Klu lding, Khog Gzung, Kha lding, and Kyamo.a

Taxon

Excavation
(3 mm sieving) Survey collections (hand-picking)

Klu lding Khog Gzung Kha lding Kyamo

NISP % % NISP % % NISP % % NISP % %

Domestic animals

Bos sp. 1 1.3% 15.8% 7 16.3% 23.3% 0 0.0% 44.4% 10 83.3% 100.0%

Ovis aries 2 2.6% 2 4.7% 3 33.3% 1 8.3%

Ovis aries/Capra hircus 0 0.0% 1 2.3% 1 11.1% 1 8.3%

Sus scrofa domesticus 8 10.5% 0 0.0% 0 0.0% 0 0.0%

Wild animals

Ochotona princeps 1 1.3% 27.6% 0 0.0% 30.2% 0 0.0% 11.1% 0 0.0% 0.0%

Microtus millicens 1 1.3% 0 0.0% 1 11.1% 0 0.0%

Medium felid 1 1.3% 0 0.0% 0 0.0% 0 0.0%

Vulpes vulpes 1 1.3% 0 0.0% 0 0.0% 0 0.0%

Muntiacus sp. 3 3.9% 0 0.0% 0 0.0% 0 0.0%

Moschus sp. 1 1.3% 0 0.0% 0 0.0% 0 0.0%

Cervus elaphus 0 0.0% 9 20.9% 0 0.0% 0 0.0%

Aves 5 6.6% 0 0.0% 0 0.0% 0 0.0%

Pisces 8 10.5% 4 9.3% 0 0.0% 0 0.0%

Wild/domestic

Small felid 1 1.3% 52.6% 0 0.0% 46.5% 0 0.0% 44.4% 0 0.0% 0.0%

Carnivore 1 1.3% 0 0.0% 0 0.0% 0 0.0%

Budorcas/Bos 2 2.6% 0 0.0% 0 0.0% 0 0.0%

Large Artiodactyla 4 5.3% 5 11.6% 0 0.0% 0 0.0%

Caprinae 15 19.7% 5 11.6% 3 33.3% 0 0.0%

Suid 3 3.9% 0 0.0% 0 0.0% 0 0.0%

Medium Artiodactyla 15 19.7% 10 23.3% 1 11.1% 0 0.0%

Total 73 100.0% 43 100.0% 9 100.0% 12 100.0%

aNISP, number of identified specimens.
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as large artiodactyls, additional fragmented Bos specimens are
present, but their taxonomic status should be confirmed by
ancient DNA analysis or protein fingerprinting. At Khog Gzung
and Kyamo, Bos has been recorded as well. As such, both domes-
tic cattle (Bos taurus) and/or domestic yak (Bos grunniens) may
have occurred, but morphological criteria enabling us to distin-
guish between fragmented osseous remains of the two species
are not presently available.

Other mammalian taxa identified by us include the Sichuan
vole (Microtus millicens), pika (Ochotona princeps), a small felid
(Felis sp.), a medium felid, the red fox (Vulpes vulpes), a musk
deer species (Moschus sp.), and barking deer (Muntiacus sp.).
The medium felid bone may represent either a clouded leopard
(Neofelis nebulosa) or a snow leopard (Panthera uncia). The
small felid represented by an ulna is enigmatic. Its size and mor-
phology fit with two wild cat taxa—Pallas’s cat (Otocolobus
manul) and leopard cat (Prionailurus bengalensis)—distributed
across the SETP in the Middle–Late Holocene (Yamaguchi
et al., 2004). However, close morphological resemblance to the
domestic cat (Felis catus) has been noted as well, which compli-
cates addressing the taxonomic status of this specimen using mor-
phological and morphometric criteria alone. Nevertheless, such
early presence of a domestic cat would be surprising in view of
its domestication history as revealed by ancient DNA (Ottoni
et al., 2017). Besides mammals, remains of fishes and birds
were identified from Klu lding as well. Finally, the presence of
either red deer (Cervus elaphus) or white-lipped deer (Cervus
albirostris) was noted at Khog Gzung. Because all deer bones per-
tain to similar-sized animals, the possibility that they represent a
single species cannot be excluded.

An assessment of the unidentifiable mammalian specimens
shows that the relative abundance of the animals of different
size categories of each site are similar to those reflected by the
identifiable specimens. This suggests that regardless of the compa-
rably small number of specimens classified to genus and/or spe-
cies, the relative species frequencies reflected in the identified
assemblages can be considered representative of overall animal
exploitation at the site.

Identification of medium-sized bovids
Table 3 shows the Caprinae remains identified by us from each of
the sites studied. As can be seen, apart from Xiaoenda, domestic
sheep (and probably goats) could be identified at each of the other
sites. Relative to Xiaoenda, four out of five medium bovid remains
available for re-analysis could be attributed to blue sheep
(Pseudois nayaur), a wild taxon widely distributed across the
TP. In the case of the distal humeri, the sagittal ridge in particular
and other discrete morphological features allowed distinguishing
Pseudois from similar-sized Ovis and Capra. As to the proximal
radius, shape and size of the medial and dorsal margins as well
as the lateral protuberance and the lip at the medial edge allow
excluding Ovis, Capra, and Naemorhedus (see also Appendix
S5, Fig. S5, Fig. 2A,B in Wang et al., 2020b). Morphometric anal-
yses of two sufficiently well-preserved humerus specimens con-
firmed morphological diagnosis (Supplementary Tables A.1 and
C.1). Because only part of the medium-sized bovid remains
were examined by us, our study cannot entirely exclude the pos-
sibility of the presence of domestic Caprinea at the site, but just
indicates that the majority of the medium bovids represent wild
rather than domestic taxa. This corroborates the results of the pre-
vious work by Zhang et al. (2019b).

In the assemblage studied, gazelles are missing, which may
relate to the altitude of the sites investigated by us. At higher alti-
tudes, however, we expect the subfamily Antilopinae to contribute
to the fauna as well.

At Klu lding, two specimens (LD001 and LD004) were iden-
tified as domestic sheep, O. aries. The identification of LD001, a
complete astragalus, was achieved through both morphological
and morphometric analyses. As such, the specimen’s small size
excludes Capricornis, O. ammon, Pseudois, and Naemorhedus
as possible identifications (Supplementary Tables A.3 and
C.3). From a morphological perspective, all four characters com-
bined (the medial articular ridge from dorsal view, distal articu-
lar surface at lateral aspect, proximo-plantar projection of the
medial articular ridge, and the proximo-plantar projection of
medial articular ridge of the trochlea in medial view) point to
Ovis and eliminate similar-sized Capra, Pseudois, and large
(male) Antilopinae (Supplementary Table C.3). Morphometric
discriminant analysis also classified this specimen with high
posterior probability (99.2%) as Ovis (Supplementary
Table A.3). Specimen LD004, a right lower premolar (P3) just
beyond the “mature” wear stage (12S; Fig. 2 in Payne, 1987),
was determined to be from O. aries too. Its morphology distin-
guishes it from its homolog in similar-sized Capra and Pseudois,
characterized by a well-developed “step” in the middle of the lin-
gual face; the mesio-buccal quarter of the tooth tends towards a
right angle, while its overall shape tends to be short and broad
(which is, however, somewhat difficult to judge due to the
slightly damaged mesio-buccal corner). These features can be
considered typical for O. aries (Halstead et al., 2002;
Supplementary Fig E.11). In addition, we noted that the size
of the P3 is below that observed in a series of mandibles from
Pseudois and O. ammon (Supplementary Table E.2). In sum-
mary, both LD001 and LD004 exhibit close morphological and
morphometric similarities with domestic sheep (O. aries),
while features typical of argali (O. ammon) including large
size could not be observed.

At Khog Gzung site, two lower molar teeth, an M1 (KX013)
and an M2 (KX012), can be classified as Ovis. These specimens
can be morphologically separated from Capra and Pseudois
based on: (1) the gently convex mesial part of the buccal edge,
(2) the absence of a marked posterior orientation in the disto-
buccal cusp, (3) the overall shape of the buccal edge tending to
a rounded “arcaded” appearance, and (4), the quite broad flange
on the mesial face. Taken together and independent of tooth wear,
these traits strongly suggest we are dealing with molars of sheep.
In this respect, identification criteria are particularly reliable when
used in suites (Halstead et al., 2002; Zeder and Pilaar, 2010).
Despite the fact that classification as Ovis is secure, we are not
able to separate domestic sheep (O. aries) from wild argali (O.
ammon), because the dimensions of the teeth fit the range of
size overlap of both taxa. Having said that, it is noteworthy to
mention that genetic analysis of the sediments from the same
layer revealed DNA sequences of both O. aries and O. ammon
(Gu et al., 2023), which corroborated the identification made by
the morphological analyses.

At Kha lding site, domestic sheep are represented by a first pha-
lanx (KD003) and two third phalanges (KD001, KD002). While
based on morphology alone, difficulties arise deciding if one is
dealing with, O. ammon, O. aries, or Pseudois (Supplementary
Table C.5), morphometric comparison confirms that the specimens
are smaller in size than the lower range recorded in adult O. ammon
and Pseudois (Wang et al., 2020b: Appendix S5, Table S5.5). For the
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other Caprinae specimens, taxonomic classification proved difficult.
A small caprine maxilla with dentition (KD006) implies either
domestic sheep (O. aries) or goat (C. hircus).

At Kyamo, one scapula specimen (KM005) was identified as
probably/likely to be O. aries. The certainty of this diagnosis is
not very high, though, due to surface erosion and parts being

Table 3. Caprinae remains identification results from Xiaoenda, Klu lding, Khog Gzung, and Kha lding.

Site Context
Inventory

no.a Element
Morphological and
morphometric ID Confidenceb

Xiaoenda 2012CXIT0103② — Distal humerus Pseudois 1

2012CXIT0202② — Distal humerus Pseudois 1

2012CXIIIT0206③ — Distal humerus Caprinae 1

2012CXIH2 — Distal humerus Pseudois 2

2012CXIT0102②UF1 — Proximal radius Pseudois 1

Klu lding 2019LZLDT3WN⑪:2 LD001 Astragalus Ovis aries 1

2019LZLDG1:1 LD002 Upper M3 Ovis aries/Capra hircus/Pseudois 1

2019LZLDG1:2 LD003 Upper M1/M2 Ovis aries/Capra hircus/Pseudois 1

2019LZLDT2:G1 LD004* Lower P3 Ovis aries 1

2019LZLDT2③:1 LD023 Upper M1/M2 Ovis aries/Capra hircus/Pseudois 1

2019LZLDT2③:1 LD024 Lower M1/M2/P4 Caprinae 1

2019LZLDT2:G1 LD035 Radius Ovis 2

2019LZLDT2:G1 LD040 Radius Capra hircus/Pseudois 1

2019LZLDT2:G1 LD041 Phalanx 1 Caprinae 1

2019LZLDT2:G1 LD042 Tibia Ovis/Pseudois 1

2019LZLDT2:③ LD043 Upper M1/M2 Ovis aries/Capra hircus/Pseudois 1

2019LZLDT1:⑥ LD045 Lower M1/M2 Caprinae 1

2019LZLDT3:WS⑤ LD046 Lower M1/M2 Caprinae 1

2019LZLDT3:WS⑤:2 LD049 Upper M1/M2 Caprinae 1

2019LZLDT2G1 LD050 Incisor 1 Caprinae 1

2019LZLDT2③ LD051 M1/M2 Caprinae 1

2019LZLDT2G1 LD053 M1/M2/M3 Caprinae 1

2019LZLDT3WN
(18):16

LD154 Upper M1/M2 Ovis/Capra hircus/Pseudois 1

2019LZLDT2G1:2 LD161 Femur Caprinae 1

Khog
Gzung

2019P4H1 KX003 Upper M3 Ovis ammon/ Ovis aries/Capra
hircus

1

2019P4 KX012 Lower M2 Ovis ammon/Ovis aries 1

2019P4 KX013* Lower M1 Ovis ammon/Ovis aries 1

2019P4 KX041 Lower M1/M2 Caprinae 1

Kha lding P1③A KD001* Phalanx 3 Ovis aries 1

P1③A KD002 Phalanx 3 Ovis aries 1

P1③A KD003 Phalanx 1 Ovis aries 1

P2 KD006 Maxillary bone with P2, P3, P4, M1,
M2

Ovis aries/Capra hircus 1

P1③A KD014 Metacarpal Caprinae 1

Kyamo KM-P1 KM002 Maxillary bone with M1, M2, M3 Ovis aries/Capra hircus 1

KM-P1 KM005* Scapula Ovis aries 2

aDated samples are noted with an asterisk (*).
bConfidence refers to the degree of certainty of our identification, as archaeological specimens often bear traces of damage complicating taxonomic classification. 1 = identification secure;
2 = identification likely.
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damaged, including the tuberculum supraglenoidale and the cor-
acoid process, two diagnostic parts that are helpful for separating
Nemorhaedus and juvenile Pseudois from O. aries. Nevertheless,
there is still a higher probability for this specimen to be
O. aries, as the remaining diagnostic features are typical for
O. aries (Wang, 2017, vol. 2: Figs. H3, H4). Like that observed
at Kha lding, an incomplete maxilla with dentition (KM002)
from a small-sized individual most likely pertains to either
O. aries or C. hircus (Table 3).

Apart from the specimens discussed, no other medium-sized
caprine specimen could be classified to the genus or species level.

Bone taphonomy

Expectedly, the use of 3 mm sieves at Klu lding produced a faunal
assemblage with many small-sized specimens, usually splinters of
long bones. The average specimen weight is 0.61 g. More than
60% of the identified specimens measure between 1 and 3 cm in
length; fragments measuring >9 cm are lacking. Such size distribu-
tion mirrors careful recovery by the excavating team. From our
observations of the bone specimens, which displayed percussion,
scratching marks, sawing, root etching, carnivore gnawing, and ero-
sion, among other markings (Supplementary Fig. B.1a, c, d, and f),
human beings and other agents as well as natural processes contrib-
uted to fragmentation. Moreover, one-third of the specimens in the
assemblage have either a blackish-greyish or whitish appearance,
illustrating that discarded bone refuse witnessed significant heat
exposure, with temperatures surpassing 700°C. Although our
results do not conclusively prove the use of animal bones as fuel,
the fact that some 33% of the finds showed traces of direct heat
exposure implies that the use of fire on-site was another major fac-
tor contributing to bone fragmentation.

At Klu lding, animal bones also served as a source of raw mate-
rial. This is illustrated by the presence of four entirely polished
bone needles (Supplementary Fig. B.1b). Such finds suggest that
during the processing of the carcass for consumption, certain ele-
ments were selected in order to modify them into tools
(Supplementary Fig. B.1c). The metapodials of medium- and
large-sized bovids and cervids were particularly preferred as raw
material for manufacturing diverse objects of daily use.

Turning to Khog Gzung, 126 specimens were retrieved during
the site’s survey. The fact that collecting occurred through hand-
picking is reflected in the average weight of 5.7 g per specimen,
which is 10 times the value noted at Klu lding. In addition,
more than 60% of the identified specimens are clearly larger,
with lengths between 4 and 10 cm. The negative bias against
smaller bone fragments in assemblages collected by hand-picking
versus sieving has been addressed repeatedly in zooarchaeology
(e.g., Payne, 1972). Percussion marks on long bone shafts imply
efforts to open the medullary cavity in order to access the bone
marrow (Supplementary Fig. B.1e). Of the identified specimens,
5% testify to exposure to heat (black colour; ca. 400°C), implying
postdepositional contact with a source of intense heat, for
instance fireplaces.

The faunal assemblage of Kha lding totals 90 specimens. Their
average weight is 1.5 g, and more than 60% of the specimens iden-
tified by us surpass 9 cm. This survey material did not contain
burnt bones at all, which is in marked contrast to the archaeo-
fauna from Klu lding.

The Kyamo site produced an assemblage of 99 fragments with
an average weight of 14.4 g. The assemblage lacks both burnt
pieces and specimens with cutmarks; the latter—if present—

being hardly visible due to the poor preservation of the bone sur-
face. However, percussion marks were observed on two medium-
sized artiodactyl specimens, one of which being a caprine.

DISCUSSION

Fourth millennium BP human–animal dynamics in the SETP

Faunal research into human–animal dynamics and early food
production in the STP is still in its infancy. New faunal data
from the Klu lding site illustrate that among the specimens clas-
sified into the subfamily Caprinae, two could be identified as
domestic sheep (O. aries). Conversely, the presence of wild
Caprinae could not be confirmed in the assemblage studied
(Table 2). Despite limitations of sample size, positive identifica-
tion of the domestic form and lack of unequivocal evidence
for wild Caprinae suggest that domestic sheep likely figured
prominently in the non-identified Caprinae assemblage as well
(n = 15; i.e., 19.7% of NISP). Thus, on the assumption that all
taxa identified to the species level contributed significantly to
the non-identified assemblage, it seems reasonable to postulate
that sheep husbandry was essential in the livestock economy of
Klu lding.

The relative abundance of pig remains (10.5–14.4%) indicates
that swine husbandry contributed to human subsistence as well,
possibly equivalent to sheep. The only Bos specimen identified
by us suggests that large bovines, be it domestic cattle, yak, or
their hybrid (termed “dzo”), were present in small numbers as
well. For reasons of economic efficiency, however, the keeping
of large ruminants often goes hand in hand with their use as
draught, dairy, or pack animals, but unequivocal evidence for
this is lacking. Nevertheless, the economic importance of domes-
tic bovines may be underestimated in view of the pronounced
fragmentation of the bone material at Klu lding.

During excavation of Klu lding, a square-corner stone enclo-
sure (Q1) made of large gravels was partially uncovered in layer
③ of T1, with a length of 450 cm exposed inside the trench.
The radiocarbon date of layer ② (Table 1) suggests its construc-
tion before 3400 cal yr BP. Similar stone enclosures were found
in numbers at Bangga in the south-central TP, with early-phase
structures dating to 3000–2800 cal yr BP (Lu et al., 2021). In com-
parison to the findings from stone enclosures F2/F5 at Bangga
yielding abundant animal dung and interpreted by Lu et al.
(2021, see Fig. 3 in this reference) as animal corrals, the possibility
of Q1 at Klu lding serving the same purpose cannot be excluded.
However, stone structures are prevalent in the prehistoric and his-
toric TP, so without additional evidence, any statement regarding
their exact function remains speculative.

Apart from domestic livestock, a diverse archaeofauna com-
prising remains of Sichuan vole, a small cat, a fox, a leopard,
musk deer, barking deer, birds, and fishes was recovered at Klu
lding. These taxa formed part of the local fauna populating the
natural environment surrounding the site. As such, the vole and
small cat most likely represent commensal species frequenting
human habitats in search of food. With the onset of sedentism
and cereal cultivation in SW Asia at the transition of the
Pleistocene to the Holocene, the human niche witnessed increas-
ing numbers of seed-eating rodents (Tchernov, 1984; Willcox and
Stordeur, 2012). Higher rodent densities certainly attracted the
species’ natural enemies, such as (wild) cats (Vigne et al., 2004,
2012) and foxes (Peters et al., 2014), and the fact that crop
seeds including millet have been found in numbers in the
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archaeobotanical samples of Klu lding (Wang, Y., personal com-
munication, August 2021) makes commensalism a likely explana-
tion. Elsewhere in China, the presence of commensal carnivores
as a means of reducing crop losses has already been postulated
for Neolithic farming villages of the Yangshao culture dating to
the sixth millennium BP (Guan et al., 2008; Hu et al., 2014;
Vigne et al., 2016). Just as in the ancient Near East (e.g.,
Weissbrod, 2010), the relative abundance of cereal finds and the
presence of rodents and their predators testify to the sedentary
agricultural nature of the Klu lding settlement.

With regard to the other vertebrate taxa, hunting or trapping
of pika, leopard, musk deer, barking deer, birds, and freshwater
fishes primarily served food purposes. Similar faunal spectra
have been reported from other SETP sites (Huang and Leng,
1985; Li, 2007; Zhang et al., 2019b). Besides meat and fat, the
furs of pikas, foxes, and leopards were certainly valued for cloth-
ing (Feng et al., 1986; Monchot and Gendron, 2011), while the
hides of deer and Caprinae may have been used as seat carpets.
(Feng et al., 1986). Deer musk obtained from the species’ caudal
glands may have been appreciated for fragrance or as admixture
to medicine, among other uses (e.g., Green, 1986; Yang et al.,
2003). As wild taxa account for almost 28% of the assemblage
identified, hunting, fowling, and fishing still represented essential
subsistence activities at Klu lding, even if the relative importance
of these wild taxa had already decreased compared with the earlier
settlement sites of Xiaoenda and Karuo (Li, 2007; Zhang et al.,
2019b).

In summary, the fauna from Klu lding illustrates the dynamics
of human–animal–environment dynamics in the SETP during the
mid-fourth millennium BP. In this warm-humid and most suit-
able area for human habitation in Tibet, the site inhabitants
explored a diverse range of food resources. Their subsistence com-
bined husbandry of pigs, sheep, and cattle with millet agriculture,
the latter also attracting crop-eating rodents and their enemies,
more precisely wild small felids. Meanwhile, a large part of the
resources were obtained through the hunting of leopards, foxes,
different species of deer, and pikas, as well as fowling and fishing.

Spread of millet–pig agriculture in the STP

Pig domestication and early husbandry can be evidenced in the
Central Plain of northern China (i.e., Jiahu site, Jiahu culture)
and the Lower Yangtze of southern China (i.e., Kuahuqiao site,
Kuahuqiao culture) some 9000–8000 years ago (Luo and Zhang,
2008; Cucchi et al., 2011). Millet was domesticated in northern
China ca. 10,000 ago (Cishan site, Cishan culture), and by the
sixth millennium BP, millet agriculture had already dispersed
across much of northern China (Lu et al., 2009; Yang et al.,
2012; Zhao, 2014). As such, millet–pig farming developed into
the main mode of subsistence of the Yangshao (7–5 ka) and
Majiayao (5.3–4 ka) farming communities inhabiting the Yellow
River basin (Yuan, 1999; Wang et al., 2012, 2015). Millet–pig
farming has also been observed in Dadiwan, situated at 1593 m
asl (6.5–4.9 ka; Barton et al, 2009) close to the NETP, and
along the upper Min River at the eastern margin of the TP in
NW Sichuan province, as exemplified at the Yingpanshan site
(5.3–4.6 ka; 1650 m asl; Zhao and Chen, 2011; He, 2015).

In view of the geographic origins of pig husbandry in China,
domestic pigs were introduced to the TP from the east, along
with millet cultivation. Of interest is the fact that in the STP,
Sus remains have been identified in sites located above 3000 m
asl, for instance at 3700 m asl Qugong (3.8–3 ka, Qugong culture;

Zhou, 1999) or at the earlier sites of Xiaoenda (3140 m asl; Zhang
et al., 2019b), Karuo (3100 m asl; Huang and Leng, 1985), though
in quite low numbers. Debate continues regarding whether these
Sus remains represent domestic pigs or wild boars (Zhou, 1999;
Li, 2007; Zhang et al., 2019b). Conceivably, the species’ successful
association with millet-cultivating Neolithic communities inhabit-
ing the Central Plain (Han, 2012) allows arguing in favour of
domestic pigs spreading along with millet farming Yangshao
and Majiayao communities that migrated into the TP from low-
land eastern China. As the aforementioned Tibetan sites are all
close to or above the altitude limit of the natural distribution usu-
ally accepted for Eurasian wild boar (∼3000 m asl; Feng et al.,
1986; Groves and Grubb, 1993; Wilson and Reeder, 1993;
Keuling and Leus, 2019), the arrival of pig husbandry offers the
most plausible explanation for the species’ presence in the fifth
millennium BP contexts of the study region.

Although the site inhabitants obviously managed to provide
suitable fodder and indoor space so that pigs could endure the
harsh Tibetan winter, numbers may have been limited by the
area of available space and the amounts of food the community
could spare (e.g., Mitchell, 2002; Albarella et al., 2007).
Investigation of the correlation between the intensity of millet
farming and the rather low frequency of Sus in archaeological
contexts of the TP needs further exploration, particularly when
the climate turned colder in the Middle–Late Holocene TP and
millet cultivation was at low-level production due to ecological
constraints (d’Alpoim Guedes, 2015). Besides millet, other cereals,
including barley, naked barley, wheat, and Tartary buckwheat
identified in STEP sites served as food for humans and perhaps
animals as well (Gao et al., 2021; Song et al., 2021). With more
reliable numbers at hand, a closer look at the demographic pro-
files of pigs could be helpful to test the hypothesis that people
removed surplus young and old animals from the herd to save
fodder for valuable breeding stock over the winter. Finally, thriv-
ing well in a temperate habitat, domestic lineages had to adapt to
the conditions of living at significantly higher altitudes. Future
ancient DNA studies will have to clarify whether this involved
deliberate selection by pig breeders or even hybridization with
local wild boar.

Origins of bovid pastoralism in the STP

At present, none of the sites located in the STP and predating 4 ka
yielded unequivocal evidence for human exploitation of domestic
bovids. This assumption draws upon the faunal records from
Xiaoenda (Zhang et al., 2019b; this study), Karuo (Huang and
Leng, 1985; Li, 2007), and Mabu Co (located at the very southern
edge of the TP; fauna analysed by the first author and colleagues),
although in the course of the fifth millennium BP, SETP wit-
nessed the introduction of agricultural practices including millet
cultivation and pig husbandry, as discussed earlier.

Relative to the first half of the fourth millennium BP, earlier
work proposed that the inhabitants of Qugong in the central TP
kept domestic sheep and yak (Zhou, 1999). Though livestock hus-
bandry at ∼3700 cal yr BP cannot be excluded, taxonomic identi-
fication of the specimens and their 14C dating need verification.
Recent archaeobotanical work at Qugong by Gao et al. (2021)
pointed out issues with 14C dating of contexts likely due to the
old wood effect and/or the use of lab instrumentation generating
dates with wide analytical errors (Schiffer, 1986; Dong et al.,
2014). In addition, the Ovis skull found in Pit 5 has been classified
taxonomically as a domestic sheep of the “Tibetan breed” due to
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its large horns and very large size (Zhou, 1999, p. 238). However,
given the widespread occurrence of argali in the region, criteria
separating O. ammon from domestic “Tibetan sheep” must be
detailed. By analogy, morphological separation of domestic yak
from its wild relative and from cattle × yak hybrids is essential
to postulate the early presence of the first.

After 3.5 ka, domestic sheep and cattle/yak gain visibility in the
archaeological record of the STP, with remains now being identi-
fied in every site located above 3000 m asl (Supplementary
Material D). Current evidence thus suggests that bovid husbandry
gained a foothold around the middle of the fourth millennium BP.
Following initial introduction of the domestic bovids, STP wit-
nessed the establishment of an agro-pastoral system combining
wheat and barley cultivation with livestock husbandry (Gao
et al., 2021). From the early third millennium BP onward, how-
ever, barley becomes the dominant crop staple at the expense of
millet in pastoral communities inhabiting high-elevations in the

NETP (Qinghai) and central STP (d’Alpoim Guedes et al.,
2016; Tang et al., 2021). Interestingly, this shift in cereal exploita-
tion seems restricted to those regions where mobile pastoralism
became an essential feature of local economies.

Like elsewhere in alpine Eurasia, the adoption and widespread
use of livestock in the STP relates to the species’ adaptation to
high-altitude environments and pasture opportunities (Schaller,
1977; Felius, 1985; IUCN/SSC, 1997) on the one hand, and
their returns in terms of lifetime (secondary) products, such as
milk, hair/wool, dung, and labor on the other (Greenfield,
2010). Perhaps noteworthy as well is the fact that in mountainous
terrain, small ruminants also can be used for transporting goods
—for instance, bags containing salt (Yang and Zheng, 2001).
Moreover, caprines and cattle/yak can be pastured in the valleys
during wintertime to avoid harsh alpine conditions and periods
of food shortage, but will return to higher altitudes to enjoy sum-
mer pastures without too much need of human attention for

Figure 3. Proposed pathways of cultural exchange in Middle–Late Holocene, distribution of prehistoric culture groups in central and East Asia, archaeological sites
mentioned in the text, location where palaeoclimatic records were obtained. 1: Mehrgarh; 2: Harappa; 3: Burzahom; 4: Gepa Serual; 5: Mebrak/Phudzeling; 6:
Zhongba; 7: Nizhnaya; 8: Kyamo; 9: Khog Gzung; 10: Khuurai Gobi2; 11: Qugong; 12: Yagshiin Huduu2; 13: Bangga; 14: Klu lding; 15: Kha lding; 16: Xiaoenda;
17: Karuo; 18: Shatar Chuluu1; 19: Yingpanshan; 20: Ashaonao; 21: Sanxingdui; 22: Dadiwan; 23: Shimao; 24: Taosi; 25: Shihushan; 26: Erlitou; 27: Youyao; 28:
Jiahu; 29: Cishan; 30: Kuahuqiao; 31: Houtaomuga. Hexagons for palaeoclimate records: I: Bangong Co; II: Aweng Co; III: Ngamring Tso; IV: Paru Co; V:
Delingha; VI: Tiancai Lake; VII: Heihai Lake. The red box indicates the area of the studied archaeological sites.
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feeding and shelter (Cai, 1981; Ryder, 1983). Conceivably, low-
land lineages of sheep and cattle translocated into the
Himalayas at altitudes well above 3000 m asl needed specific
adaptations in order to thrive well under such conditions
(Zhang et al., 2016; Wang, 2017; Wang et al., 2021a). Deliberate
selection by breeders seems one option, but with respect to
sheep and cattle, hybridization respectively with local wild argali
(Ovis ammon) (Aniwashi et al., 2011; Wang, 2017) and yak
(Bos mutus) (Liu et al., 2020; Wang et al., 2021a) could have accel-
erated acquisition of vital adaptive and in the meantime geneti-
cally fixed traits to deal with conditions of hypoxia and
ultraviolet signaling. As these traits have been identified in the
chromosomal DNA of modern representatives of Tibetan sheep
(Hu et al., 2019) and cattle (Chen et al., 2018; Wu et al.,
2018b), it raises the question whether hybridization of domestic
lineages with local wild forms had a much deeper history.
Estimates using the molecular clock offer a timeframe of 2400–
1400 years ago for introgression events between cattle and yak
(Chen et al., 2018). That said, analysis of the genetic makeup of
prehistoric sheep and cattle is essential to refine the picture.

If, as already said, the northern Fertile Crescent witnessed the
domestication of wild sheep, goat, and cattle based on zooarch-
aeological (Peters et al., 1999, 2005, 2014; Zeder and Hesse,
2000; Helmer et al., 2005) and ancient DNA studies (Meadows
et al., 2011; Bollongino et al., 2012; Demirci, 2012, 2013; Lv
et al., 2015; Scheu et al., 2015), the routes by which these domestic
ungulates spread across central, South, and East Asia can only be
addressed in broad outline for reasons of poor archaeological cov-
erage in many parts of this vast region. Migratory routes of sheep
pastoralism across Europe and Asia have been proposed based on
the study of endogenous retroviruses (Chessa et al., 2009) and
mitogenomes (Lv et al., 2015) of modern Eurasian sheep breeds
and wild Ovis. The Mongolian Plateau region was postulated as
acting as a main “transportation hub” that witnessed two major
migratory waves by the fifth millennium BP (Lv et al., 2015).
According to direct radiocarbon dating and proteomics analysis,
sheep were exploited by Afanasievo communities of the Altai
Mountains and Mongolian Plateau ca. 5300–4800 cal yr BP
(Hermes et al., 2019; Wilkin et al., 2020). In NE China, direct
radiocarbon dating and aDNA analyses confirmed that cattle
(Bos taurus) of Near Eastern origin was exploited at Jilin by ca.
5300 cal yr BP (Cai et al., 2018b). Furthermore, domestic sheep
were exploited in the upper and middle Yellow River basin
(including Qinghai, Gansu, southern Shaanxi, and Shanxi) by
the late fifth/early fourth millennium BP (IACASS and
SPLCRB, 2005; Yan and He, 2005; Cai et al., 2011; Li, 2012;
Wang, 2017; Brunson et al., 2020), while at sites located at higher
latitudes in northern Shaanxi and Shanxi, the species may have
been present a few centuries earlier (Dodson et al., 2014; Hu
et al., 2016, 2022; Yang et al., 2017; Sun et al., 2020; Hu,
2021b). Zooarchaeological and ancient DNA analyses moreover
confirm that cattle appeared in the middle Yellow River Valley
at broadly the same time ca. 4.5–4 ka (Cai et al., 2014, 2018a;
Yu, 2020), suggesting that their spatiotemporal dispersal may
have coincided with that of domestic sheep, possibly even along
the same route(s) of dispersal. In the same region, goats likely
occurred a few centuries later than sheep.

Thus, by 5.5–5 ka, sheep and cattle were raised by Neolithic
communities inhabiting the Mongolian Plateau and NE China.
From there, livestock husbandry progressed south into the north-
ern Shanxi and Shaanxi Provinces at around 4.5 ka and further
into the Yellow River basin to reach the NETP around 4 ka. In

this respect, the spatiotemporal pattern proposed for the onset
of livestock farming in NE China and Gansu/Qinghai seems par-
alleled by routes of dispersal and timing of arrival of wheat and
barley (Dodson et al., 2013; Chen et al., 2015a; Stevens et al.,
2016; Liu et al., 2017). By the same route but in the opposite
direction, broomcorn millet spread into central Asia, with evi-
dence for its cultivation 4.2 ka in Begash, south Kazakhstan
(Stevens et al., 2016).

Current opinion agrees that in China, livestock husbandry dis-
persed south from the Yellow River basin. To reach the SWTP, the
most likely route taken (>1500 km) crossed the Tao River basin in
Gansu to continue through the mountain and gorge regions of
northwest Sichuan and across the Hengduan Mountains. Being
adapted to cold-temperate environmental conditions prevailing
in NE China, dispersal must have been challenging for livestock
populations, because herds faced new climate and vegetation condi-
tions when crossing distinct eco-geographic zones. Nevertheless, the
recent evidence from early occupations in Ashaonao, Jiuzhaigou,
may exemplify such north-south dispersal during the fourth millen-
nium BP (d’Alpoim Guedes et al., 2017; Lv et al., 2017; Zhang et al.,
2017b).

As shown for the SW Asian domestic crops wheat and barley,
there might be different routes and episodes for domestic bovids
spreading into China in prehistory. At present, four routes into
China have been proposed for the spread of wheat and barley,
including the Eurasian steppe route, the sea route, the Silk
Road, and possibly the South Asia route (Zhao, 2009; Flad
et al., 2010; Barton and An, 2014; Betts et al., 2014; Liu et al.,
2017; Lister et al., 2018; Long et al., 2018). The wheat–barley–
pea combination and the round-bottomed pottery basins discov-
ered at Qugong (∼3.5 ka) in the central STP (Tang, 2014; Gao
et al., 2021), and the cowrie shells from Karuo (Tang, 2014) in
the SETP were most likely from northern South Asia, and the
archaeobotanical assemblage including barley, pea, millet, and
rice found in Mebrak/Phudzeling (3–2.1 ka) in Nepal illustrates
an important trade route connecting the Indian subcontinent
with the TP (Knörzer, 2000). Given that domestic sheep and
goats appeared in the NW Indian subcontinent comparably
early, that is, at Neolithic Mehrgarh (8.3–6 ka), and with caprine
husbandry spreading across much of South Asia in the subse-
quent millennia (Meadow, 1989, 1993, 1996; Thomas, 2002;
Miller, 2004; Joglekar et al., 2013; Chase, 2014), the possibility
of a southern, sub-Himalayan route of introduction into Tibet
must be considered. Evidence for cultural exchange between
NW South Asia, Kashmir, and the STP since the late fifth millen-
nium BP (Mughal and Halim, 1972; Huo, 1990; Han, 2012; Cao
et al., 2021) underscores the possibility of a livestock transfer.
According to this scenario, sheep and goats may have travelled
along the hilly flanks from the sites at the foothills in NW subcon-
tinent, through Kashmir, and then along the Sengge Zangbo River
valley into the SWTP. Alternatively, they could have followed the
mountain ranges along the Sutlej River valley from the Indus
plain into the CSTP. Considering the nearly synchronous pres-
ence of sheep in the SWTP (represented by Gepa Serual), CSTP
(represented by Qugong), and SETP (represented by Klu lding),
several trajectories of introduction into the Himalayas seem to
be a scenario worth considering, even if definitive proof of this
still needs to be provided. The genetic contributions of Pamir
O. ammon to Tibetan domestic sheep (Hu et al., 2019) and of
South Asian zebu cattle (Bos indicus) (Chen et al., 2010) in
ancient central plain Chinese cattle (Cai et al., 2014) equally sug-
gest the possible existence of a “southern route” of livestock
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translocation. It agrees with previous archaeological studies sug-
gesting that the formation of a “highland silk road” has deep pre-
historic roots (Huo, 2017). Hence, regardless of its formidable
altitude and varying climates, the STP was likely a dynamic
arena of cultural activity spanning distant regions of central
Asia, South Asia, and East Asia as early as 5 ka (Tang, 2014;
d’Alpoim Guedes, 2015; Huo, 2017; Liu et al., 2019a; Gao et al.,
2021).

On the other hand, there are also arguments against a
sub-Himalayan route of dispersal (Witzel, 2009; Stevens et al.,
2016). To test the hypothesis of a transfer of domestic bovids
via a sub-Himalayan corridor, additional excavations and
zooarchaeological studies involving ancient DNA analysis exam-
ining phylogenetic relationships with either northern Eurasian
or southern Asian livestock lineages is needed for STP archaeo-
logical sites along potential trajectories.

Three-phase subsistence development and formation of
Tibetan pastoralism

The TP hosts one of the world’s largest pastoral systems, the for-
mation of which is still poorly understood (Miehe et al., 2009; Wei
et al., 2020; Huang et al., 2020). Against the background of
Holocene climate archives in the wider region and by contrasting
this information with zooarchaeological and archaeobotanical
findings, this study evaluated and integrated ecological and bio-
cultural developments in the study area in order to trace the
dynamics of the human–animal–environment relationship and
the emergence of pastoralism on the TP.

Precipitation and temperature records have been obtained in
different regions of the TP (see yellow hexagons in Fig. 3). Most
Holocene archives illustrate that towards the end of the
Holocene thermal maximum, the climate became cooler and
drier (Fig. 4a–d). Figure 4b and d show the decline in precipita-
tion in the SWTP (Fig. 3, hexagon I) and CSTP (Fig. 3, hexagon
III) respectively. The hydrogen data from Delingha in the NETP
(Fig. 3, hexagon V; Yang et al., 2021) and the temperature data
from Lakes Tiancai and Heihai in the SETP (Fig. 3, hexagons
VI and VII; Chang et al., 2017; Zhang et al., 2017a) show similar
patterns. Two other climate archives seem to diverge, though,
namely the ones from Paru Co in the STP (Fig. 3, hexagon IV;
Bird et al., 2014) and Aweng Co in the SETP (Fig. 3, hexagon
II; Li et al., 2017), most likely for reasons of low resolution of
the data and the effects of complex factors other than climate,
such as vegetation (Liang et al., 2019; Wang et al., 2020a).
Based on pollen, alkenone, and chironomid records from the
TP, Chen et al. (2020) were able to confirm a drop in both tem-
perature and precipitation in Middle–Late Holocene times follow-
ing the Holocene thermal maximum. Alongside this, it was also
concluded that in the course of this development, the extent of
forested habitat decreased (Fig. 4e).

Despite notable differences in the quality of hitherto recorded
faunal data (Supplementary Table D.2), exploitation of animal
resources in the STP postdating the Holocene climatic optimum
reveal some interesting trends. Figure 4f thus illustrates that rela-
tive to human subsistence, the contribution of game species
declined over time. Even smaller faunal collections hand-picked
during surveys reveal this pattern. Parallel to this, an increase in
the number of archaeological sites and the relative contribution
of domestic animals to the archaeofaunas is noted (Fig. 4f, g).
While climate deterioration undoubtedly affected the natural
environment and its vegetation, we postulate that the growing

human presence in the study area reflected by increased settle-
ment density and livestock numbers had a lasting impact on nat-
ural woodland habitats as well, given that people cut wood for
building (houses, fences), cooking, heating, and other purposes.

Figure 4. Spatiotemporal development of climate and fauna in the southern Tibetan
Plateau (STP) during the Middle–Late Holocene. (a) Reconstructed annual temperature
at midlatitude (30–50°N) based on marine and terrestrial archives (red line; Routson
et al., 2019). (b) Effective precipitation reconstructed based on leaf wax δD records
of Bangong Co (blue line; Hou et al., 2017). (c) Mean annual temperature reconstructed
by fossil pollen from the TP (red line; Fig. 4D in Chen et al., 2020). (d) Summer mon-
soon precipitation reconstructed based on sediment records of Ngamring Tso (light
blue line; Conroy et al., 2017). (e) Reconstructed forest extent based on arboreal pollen
records in the TP (green line; Fig. 9A in Chen et al., 2020). (f) Variations in the percent-
age of number of identified specimens (NISP) of wild game in the STP from 5000 to
1000 BP (Supplementary Table D.2). (g) Spatiotemporal distribution of archaeological
sites with major exploited animals in the STP (Supplementary Table D.1). Symbols for
STP sites correspond to those in Fig. 3.
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In addition, shepherds pasturing increasingly larger herds at dif-
ferent altitudes and in all vegetation types including forests, cer-
tainly contributed over time to the decline of wildlife in local
catchment areas.

Interestingly, diachronic analysis of the archaeological record
clearly shows that over time, people started exploiting higher eleva-
tions more systematically, which would have hardly been possible
without adjustments to their subsistence strategy (Fig. 4g). Based
on (bio)cultural developments in the STP, three main phases can
be distinguished (Fig. 4g). During the first phase (∼5.5–4 ka),
CSTP and SWTP human groups obviously went on forays above
4400 m asl in search of game. However, communities continued
residing at lower altitudes, that is, below 3000 to 3200 m asl in
the SETP. Here subsistence relied primarily on foraging and low-
level millet and pig farming, as exemplified by Karuo (3100 m
asl; BCRTAR&DHSU, 1985) and Xiaoenda (3140 m asl; Zhang
et al., 2019b). Conceivably, the agricultural component of the sub-
sistence dispersed via the Upper Yellow River into the TP, gaining
foothold in the SETP ca. 5–4 ka. Though situated at the upper alti-
tudinal and temperature limits for cultivating foxtail millet and
raising pigs (d’Alpoim Guedes, 2015; Keuling and Leus, 2019),
the Karuo villagers obviously participated in small-scale farming
alongside a good deal of hunting and gathering. We assume that
this represented a viable strategy, because some 5000 years ago,
local temperature and precipitation were significantly higher than
today (Chen et al., 2020), by an estimated ca. 1.2°C and 400 mm,
respectively (Chen et al., 2015a; Wu et al., 2018a). The site’s mate-
rial culture moreover yielded stone tools for harvesting millet, while
archaeobotanical analysis confirmed the presence of weeds com-
monly encountered in millet fields (Lu, 2016). Finally, architectural
features indicate facilities for millet storage and the stabling of pigs
during the cold season.

From the second phase onwards at ∼3.8 ka, we observe a
significant decline in the role of game in the diet of the TP
inhabitants (Fig. 4f). Domestic crops and animals other than millet
and pigs become increasingly important in archaeological assem-
blages, more precisely, wheat, barley, sheep, and cattle. Against the
background of shifting climatic conditions, this cultural adaptation
makes sense, given the higher ecological tolerance of these crops and
livestock species towards colder and drier conditions. Apart from
being a reliable food source under these shifting climatic conditions,
the mastery of agro-pastoral techniques, including the cultivation of
barley at higher altitudes or the hybridization of cattle and wild yak
or domestic sheep and wild argali to obtain offspring better adapted
to higher altitudes, seems essential in order to significantly advance
human exploitation in the TP above 3500 m asl. Archaeological
traces bear testimony to these dynamics during the second (4.2–
2.7 ka) and third phases (2.7–1 ka), though evidence for village
life at altitudes above 3500 m asl remains limited, for example, at
Bangga (3–1.8 ka; 3673 m asl; Lu et al., 2021) and Dingdong
(2.7–2.2 ka; 4100 m asl; CTSSU et al., 2007). Rather, most high-
altitude sites discovered and excavated until now represent cemeter-
ies, such as Qugong (3.7–3 ka; 3680 m asl; IACASS and BCRTAR,
1999), Gepa Serual (3.6–2.1 ka; 3780 m asl; Hu, 2021a),
Butaxiongqu (2.7–2.4 ka; 4650 m asl; Zhang et al., 2015); and
Gurujia (1.9–1.7 ka; 4300 m asl; Tong et al., 2014). Presumably,
the custom of burying the deceased at higher elevations in order
to strictly separate them from the living likely has deep roots in
Tibetan culture, which believed in preventing evil spirits from
threatening the living (Zhu, 1989).

Thus, despite the fact that the current archaeological record
does not confirm extensive permanent inhabitation at high-altitude

locations, the location of cemeteries nonetheless testifies to regular
human presence in this alpine zone, possibly in the context of pas-
toralism. As observed in montane ecosystems worldwide, vertical
transhumance involving upland pasturing in summer and feeding
at lower elevation in the valleys during winter is to be expected
in the TP as well. In vertical transhumance, usually relatively few
people and their herds are involved, with most villagers remaining
permanently in the valleys. In the SETP, the sites of Klu lding and
Kha lding (Nyingchi area) provide archaeological evidence for such
permanent inhabitation at an altitude below 3000 m asl.
Bioarchaeological studies at these sites confirm exploitation of
pigs, wheat, and sheep, with commensal rodents benefiting from
feeding opportunities provided by the human niche.

During the second phase, “eastern” domesticates and crops,
that is, pigs and millet, were still exploited in both low-elevation
SETP (2900 m asl) and high-elevation CSTP sites (3700 m asl).
However, we noted that pigs were a minor source of meat supply
in the CSTP (e.g., Qugong) compared with contemporaneous
SETP sites (e.g., Klu lding). At Qugong, the remains of “western”
crops (wheat and barley) were almost four times (300:83) as abun-
dant as “eastern” ones (foxtail millet and broomcorn millet) (Gao
et al., 2021). The low relative abundance of millet and pigs in the
assemblages would make it difficult to compensate for losses
under fluctuating climatic conditions. In parallel with this, farm-
ers over time may have faced difficulties to cultivate millet and
breed pigs at an elevation of 3700 m asl when temperatures
dropped. Taken together, regional subsistence patterns character-
izing the second phase illustrate an economic emphasis on “east-
ern” domesticates and crops in the lower SETP and on “western”
foods in the higher CSTP and SWTP.

In our three-stage process, the third phase lasting 2.7–1 ka is
characterized by the fact that in the archaeological record, two
novel large-sized pastoral animals, that is, domestic yak and
horses, gain growing visibility (Fig. 4g). By that time, farming
communities living at altitudes above 3600 m asl had already
shifted crop cultivation in favor of barley at the expense of the
less cold-tolerant millet and wheat (d’Alpoim Guedes et al.,
2016; Tang et al., 2021). Parallel to this, pork had disappeared
from the menu as well. Among the newly adopted domestic ani-
mals, yak appears locally domesticated (Qiu et al., 2015), a process
likely elicited by hybridization with domestic cattle adapted to
montane environments (Medugorac et al., 2017; Wu et al.,
2018b). Conversely, horses, the typical steppe pastoralism animals
domesticated first in the Black Sea region (Librado et al., 2021),
likely underwent considerable selection during dispersal into
high-altitude environments of central and East Asia as well,
including improved adaption to conditions of hypoxia (Xu
et al., 2007; Liu et al., 2019b). Expectedly, at this stage game did
not play a significant role in human food economies anymore.
That said, the third phase witnessed the emergence of high-
altitude Tibetan pastoralism as we know it today, featuring mainly
yaks, horses, and sheep, and the cultivation of barley. Overall, our
synopsis fits the three-stage faunal exploitation pattern previously
proposed by Zhang (2016).

Compared with the model proposed by d’Alpoim Guedes et al.
(2014, 2016) and Chen et al. (2015b), which shows how shifts in
palaeoclimate led to the changes in the crops and land use by
Tibetan people, our data suggest palaeoclimate, human activities,
and faunal distributions are interrelated in the STP. The cooler
and drier climate characterizing the Late Holocene period and con-
tinuous exploitation of game during the late Neolithic period (5–4
ka) resulted in a decline of both forest habitat and wildlife, two
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factors that forcedhumans to adopt and engage in breedingnew live-
stock species and crops able to better cope with cool and dry condi-
tions. This in turn facilitated the more systematic use of higher
altitudes in the STP through pastoralism. In fact, sheep and cattle
had already spread to Mongolia and northeast China from the
north Eurasian steppe by 5.3 ka (Cai et al., 2018b; Wilkin et al.,
2020), but they only appeared in the Yellow River and TP around
1000 years later, as we discussed earlier. The reason why there is
such a long time gap before people adopted them was most likely
because the agriculturalists and foragers inhabiting the Yellow
River Range and TPwere still well sustained by their own traditional
systems during the sixth and early fifth millennium BP. Humans
only started to adopt thenew livestock and cropswhen theirown sys-
tems were challenged as climate changed and ecological conditions
deteriorated. In other words, climatic and ecological change paved
the way for a new system exploiting different animals and plants.

The climate change, especially the significant reduction in pre-
cipitation, has demonstrably always been directly related to the
southward migration of pastoralists during historic times (Bai
and Kung, 2011; Pei and Zhang, 2014). In the STP, we argue
that Late Holocene climate change and ecological degradation
triggered the adoption and/or development of the new
cool-and-dry-tolerant herds and crops. Through introduction of
suitable animals and crops, and in case of sheep and cattle
improvement through intentional selection and breeding (e.g.,
hybridizing sheep and cattle with local wild argali and yak respec-
tively), highland domestic herds adapted to the Tibetan alpine
ecology and environment were developed, thus contributing to
the formation of the highland pastoral system in Tibet.

From the overall data set, we also note that the transitions
between the three phases occurred earlier in the NETP than in
the STP—in the NETP, the first phase dates to ca. 5.6–4.3 ka
and is represented by Majiayao and Zongri culture settlements
(Fig. 3, yellow dots), the second phase dates to ca. 4.3–3.5 ka,
and is represented by Qijia culture (Fig. 3, orange dots), and
the third phase (3.5–2 ka) is represented by Xindian, Kayue,
and Nuomuhong culture sites (Fig. 3, purple dots) (Dong et al.,
2021; Ren et al., 2021). This time lag relates to the fact that
sheep and cattle appeared later in the catchment area of the
STP. Arguably, once they were incorporated into livestock econo-
mies, time was needed for breeding and developing populations
adapted to pasturage above 3500 m asl in the STP, which was
accomplished by hybridizing domestic lineages of sheep and cattle
with argali and wild yak, respectively, giving rise to cold-resistant
and hypoxia-tolerant Tibetan sheep, yak, and dzos.

Despite the fact that the large majority of STP sites dating to
the later phases exhibit agro-pastoral features, discovery of micro-
lithic assemblages at sites like Zhongba (occupation intervals
dated to 6.6–2.6 ka and 3.4–1.3 ka) shows that in the STP, pre-
pastoral lithic technology and associated modes of subsistence
continued to persist for some time (Hudson et al., 2014).
Obviously, communities of foragers and agro-pastoralists coex-
isted in parts of the TP before the latter displaced the first, as
observed elsewhere across the globe (Stephens et al., 2019).

CONCLUSIONS AND OUTLOOK

In this study, zooarchaeological analysis and AMS 14C dating were
carried out on the faunal remains from five Middle–Late
Holocene sites located in the southern Tibetan Plateau (STP).
Integrating our results into the existing body of faunal data, our
study addresses the objectives raised at the beginning of the paper.

The spatiotemporal developments of human subsistence prac-
tices in consecutive phases of occupation can be described as a
three-stage process: first, during 5.5–4 ka, permanent inhabitation
was restricted to the low-altitude southeast Tibetan Plateau, and
subsistence was mainly based on hunting, fowling, fishing, and
gathering combined with low-level millet and pig farming. This
first stage likely reflects a more sedentary way of life. Second,
after ca. 3.8 ka, the use of wild resources declined, while sheep,
cattle, barley, and wheat were adopted in the TP. Traces of
human presence in the alpine zone above 3500 m asl increased,
and in the central part of the STP and southwest TP, a heavier
reliance on barley–pastoralism is noted. Third, to ca. 2.7 ka,
domestic horse and yak were added, and an economy solely
based on barley cultivation and pastoralism was developed.
Since that time, a more mobile pastoralism–barley economy dom-
inated the subsistence pattern in the high-elevation central part of
the STP and southwest TP.

Regarding the origins and route(s) by which livestock popula-
tions were introduced, before 4 ka, domestic pigs were the only
livestock in the STP, having been introduced along with millet
farming in communities that originated in the Neolithic Yellow
River basin. Since 3.8 ka, domestic bovines and caprines were
adopted in the STP, likely through both northern and southern
routes. These animals were first domesticated in the Fertile
Crescent. The northern route was probably through the northern
Eurasian landmass and Mongolian Plateau, and the southern
route probably involved the NW Indian subcontinent and
sub-Himalayan dispersal. After ca. 2.7 ka, domestic horse and
yak were added to TP livestock, while pigs disappeared. Yak
appears locally domesticated, and horse was domesticated in the
Black Sea region and dispersed to the TP through west and central
Asia.

The natural and cultural circumstances triggering highland
pastoralism in the region involved increased human settlement
density and continuous exploitation of wild game during the
late Neolithic on the one hand, and the cooler and drier climate
characterizing the Late Holocene period on the other, resulted
in a decline of both forest habitat and wild game. Alongside the
global dispersal of the livestock and crops first domesticated in
the Fertile Crescent and Black Sea region—cattle, sheep, goats,
horse, wheat, and barley, which are more ecologically tolerant
to colder and drier conditions—prehistoric humans in the TP
started to adopt and breed a new set of livestock and crops.
Arguably, sheep, goats, cattle, and horses had undergone consid-
erable selection during the dispersal into Tibetan highland, which
probably involved the hybridization of domestic cattle and sheep
lineages with local wild yak and argali, and the herds’ resilience to
colder, drier, and hypoxic conditions were improved. Yak domes-
tication was likely elicited by hybridization with domestic cattle
adapted to montane environments. In turn, the mastery of the
new livestock and crops facilitated highland pastoralism in the
STP above 3500 m asl in the Middle–Late Holocene that has
lasted up until today.

From a methodological viewpoint, our study illustrates the
usefulness of morphological and morphometric approaches for
identifying the medium sized bovid species inhabiting the TP
(Wang, 2017; Wang et al., 2020b). Many archaeofaunal assem-
blages excavated in the TP and adjacent areas still await detailed
analysis of this taxonomic group essential for our understanding
of human–livestock dynamics in East Asia. In recent years,
genetic and proteomic analyses have been increasingly applied
to archaeofaunal remains and have been valued for their accuracy
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in taxonomic identification, but the critical role of morphological
and morphometric approaches should not be overlooked, consid-
ering that it is the base for sorting large quantities of archaeofau-
nal remains and understanding past human–animal relationships.
Ancient DNA analysis, proteomics, and 3D geometric morpho-
metrics will help advance our knowledge regarding the develop-
ments outlined above, and breeding issues in particular. We
thus call for a broad morphological and biomolecular approach
for elucidating biological and cultural processes involving live-
stock exploitation at high altitudes. In addition, alignment with
palaeoclimate archives proved beneficial for data interpretation
in our research.

In sum, our study broadens our understanding of human–ani-
mal–environment dynamics in the prehistoric STP, supporting
that the Middle–Late Holocene climatic shifts might have been
one of the triggers for Tibetan human communities to adopt
domestic ruminants through both cultural exchanges and local
breeding. Over time, the newly developed “highland” herds and
crops enabled people to use the land above 3500 m asl more
systematically.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/qua.2023.6.
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