whence

$$\int_{a}^{b} \frac{x}{e^{x}-1} dx = 2 \int_{\sqrt{a}}^{\sqrt{\beta}} \frac{\log(1+u)}{u} du + 2 \left\{ \int_{a}^{\sqrt{a}} - \int_{\beta}^{\sqrt{\beta}} - \frac{\log(1+u)}{u} du \right\}.$$
Let $a \to 0$ and $b \to \infty$, then $\sqrt{a} \to 0$, $\sqrt{\beta} \to 1$ and so (the limit existing by
Theorem 3) $\int_{\sqrt{a}}^{\sqrt{\beta}} \frac{\log(1+u)}{u} du \to \int_{0}^{1} \frac{\log(1+u)}{u} du$; furthermore, by (v)
and (vi), $\int_{a}^{\sqrt{a}} -\frac{\log(1-u)}{u} du \to 0$ and $\int_{\beta}^{\sqrt{\beta}} -\frac{\log(1-u)}{u} du \to 0$, whence
 $\int_{0}^{\infty} \frac{x}{e^{x}-1} dx$ exists and equals $2 \int_{0}^{1} \frac{\log(1+u)}{u} du$.

Combining theorems 3 and 4 we obtain Planck's integral

$$\int_{\odot}^{\infty}\frac{x}{e^x-1}\,dx=\tfrac{1}{6}\,\pi^2.$$

UNIVERSITY COLLEGE, LEICESTER.

Some series for π

By C. E. WALSH.

Consider three sequences a_n , D_n , k_n (n = 1, 2, 3, ...), such that $D_n a_n \rightarrow 0$ and, for n > 1,

(1) $a_n + D_n a_n = D_{n-1} a_{n-1} + k_n a_n$ Then $\sum_{1}^{m} a_n + D_m a_m = a_1(1 + D_1 - k_1) + \sum_{1}^{m} k_n a_n$. Hence, writing Σ for $\sum_{1}^{\infty} a_n$

(2)
$$\Sigma a_n = a_1(1 + D_1 - k_1) + \Sigma k_n a_n$$

if either series converges. This will be applied to derive various series for π from the two known results ¹

¹ Knopp, Infinite Series, p. 269, Ex. 110 (a), and p. 246, Ex.2.

(3) $\pi/2 = \Sigma(n+1)! N_n^{-1} = 1 + \Sigma n! N_n^{-1}$, where $N_n = 3.5....(2n+1)$.

We have first $\pi = 2\Sigma a_n$, where $a_n = (n+1)! N_n^{-1}$. Taking $D_n = (n+2) (n+a+1)^{-1}$, we find that the formula for k_n given by (1) is simplest when a = 0. Then $k_n = -n^{-1}(n+1)^{-1}$, and (2) yields

(4)
$$\pi = 4 - 2\Sigma(n-1)! N_n^{-1}$$

Repeating the procedure on the series in (4), we chose $D_n = n(n+a+1)^{-1}$, a = 2, $k_n = 3(n+2)^{-1}(n+3)^{-1}$, and obtain

(5)
$$\pi = 3\frac{1}{3} - 6\Sigma(n-1)! [n+2)(n+3) N_n]^{-1}.$$

For this series, chose $D_n = n(n + a + 1)^{-1}$, a = 6,

$$c_n = 3(3n + 7) [(n + 1) (n + 6) (n + 7)]^{-1},$$

from which follows

(6)
$$\pi = 3\frac{4}{21} - 18\Sigma(3n+7)(n-1)! [(n+1)(n+2)(n+3)(n+6)(n+7)N_n]^{-1}.$$

Again, from (5), in two stages, if we first take $D_n = n (n + 1)^{-1}$, rearrange¹ the resulting series slightly, then, at the second stage, take $D_n = (n + 1) (n + a + 1)^{-1}$, a = 9, there results the series

(7)
$$\pi = 3_{\frac{19}{120}} + 90\Sigma(n-8)(n-1)! [(n+1)(n+2)(n+3)(n+4)(n+9)(n+10)N_n]^{-1},$$

five terms of which give π to six decimal places.

If we proceed similarly from the second of the series (3), taking at the first stage $D_n = (n+1)(n+2)^{-1}$, and at the second stage $D_n = (n+1)(n+6)^{-1}$, rearranging 'slightly the final result, we find

(8)
$$\pi = 3 + 2\Sigma n! [(n+1)(n+2)N_n]^{-1}$$

(9) $= 3\frac{1}{7} + 6\Sigma(n-3)n! [(n+2)(n+3)(n+6)(n+7)N_{n+1}]^{-1}.$

This gives in series form the error ² in the approximation $\pi = 22/7$. Taking only the two negative terms with which the series begins, we obtain π with an error in the fifth decimal place.

¹ These rearrangements consist in taking the first term of Σ separately and changing n to n + 1.

² Another such expression was found by D. P. Dalzell, "On 22/7," Journ. London Math. Soc., 19 (1944), pp. 133-4.

74 SERPENTINE AVENUE, BALLSBRIDGE, DUBLIN.