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SPECTRAL MAPPING THEOREM FOR REPRESENTATIONS OF
MEASURE ALGEBRAS
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Let G be a locally compact abelian group, M,(G) be a closed regular subalgebra of the convolution measure
algebra M(G) which contains the group algebra L'(G) and w : My(G) — B be a continuous homomorphism
of M,y(G) into the unital Banach algebra B (possibly noncommutative) such that w(L'(G)) is without order
with respect to B in the sense that if for all b € B, b.w(L'(G)) = {0} implies b = 0. We prove that if sp(w) is a
synthesis set for L'(G) then the equality oz(w(u)) = fi(sp(w)) holds for each u € My(G), where sp(w) denotes
the Arveson spectrum of w, o,(.) the usual spectrum in B, i the Fourier-Stieltjes transform of p.

1991 Mathematics subject classification: Primary 46H15; Secondary 47A10.

1. Introduction and the main result

Let G be a locally compact abelian group, G its dual group, L'(G) the group algebra
and M(G) the Banach algebra of bounded regular complex Borel measures on G. Given
any closed subalgebra M(G) of M(G) which contains L'(G): L'(G) C My(G) c M(G).
G can be considered as a subset of the maximal ideal space of My(G) and the restriction
of the Gelfand transform of ue My(G) to G coincides with the Fourier-Stieltjes
transform [ of . This implies that My(G) is a semisimple algebra.

Let X be a Banach space, B(X) the algebra of all bounded linear operators on X
and 1, the unit element of B(X). For any T € B(X) we denote by o(T) the spectrum of
T. Now let U be a representation of G be means of isometries, i.e. a map
U : G - B(X) satisfying

() Uis+t)=U(s)U@) forall s,t e G, U(0) =1,
@) JU@s)x|l = jIx|l forall se G,x e X
(iii) s > U(s)x is a continuous for each x € X.

Then this representation induces a continuous homomorphism zn : My(G) — B(X) given
by
) = [ V@ula)
G

The Arveson spectrum sp(U) of U [2] is defined as the hull in L'(G) of the closed ideal
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Iy ={f € L'(G) | =(f) = 0}. In this setting, A. Connes proved that for every Dirac
measure u the spectral mapping theorem o(n(u)) = i(sp(U)) holds (see [7])). C.
D’Antoni, R. Longo and L. Zsido [1], proved the spectral mapping theorem for every
u € L'(G) ® M(G), where M,(G) is the algebra of all discrete measures on G.
Furthermore S.-E. Takahasi and J. Inoue [7] proved the spectral mapping theorem for
any regular subalgebra of M(G) in the case that G is compact. Since there exists a
largest regular subalgebra of M(G) which contains L'(G) ® M,(G) [7], the Takahasi—
Inoue theorem contains the D’Antoni-Longo-Zsido spectral mapping theorem for the
compact case.

Now, let B be a complex Banach algebra (possibly noncommutative) with the unit
element 1; and let w: My(G) > B be a continuous homomorphism. The Arveson
spectrum of @ (which we will denote by sp(w)) is defined as the hull in L'(G) of the closed
ideal I, = {f € L'(G) | w(f) = 0}. More precisely, sp(w) = {x € G | w(f) =0 = f(y) =0,
f € L'(G)} where [ denotes the Fourier transform of f € L'(G). It is easily seen that sp(w)
is a closed subset of G. Recall ([4, p. 13]) that a Banach algebra A is without order if for all
a€ A,a.A= {0} implies a = 0. We say that a subset C C 4 is without order with respect
to 4, ifforalla € 4, a.C = {0} implies a = 0.

Throughout this paper we will assume that w(L'(G)) is without order with respect
to B. It can be seen that, under this condition sp(w) # &, whenever @ # 0.

In the present note we prove the following.

Theorem. Let M(G) be a regular Banach algebra and let w: My(G) > B be a
continuous homomorphism such that w(L'(G)) is without order with respect to B. If sp(w)
is a synthesis set for L'(G), then we have

ox(w(w)) = Alsp(w))

Sfor each u € My(G).

Note that if G is a compact, then each subset of G is a synthesis set for L'(G) ([5, p.
197]). It can be seen that, the linear span of the ranges of the operators n(f),f € L'(G), is
dense in X. This implies that, n(L'(G)) is without order with respect to B(X). Thus, the
above theorem contains the Takahasi-Inoue spectral mapping theorem.

For the proof of the theorem we need some preliminary results.

2. The theorem

Let A be a complex commutative Banach algebra, and let A(A) be the structure space
of A. It is well known that A(4) is a locally compact Hausdorff space and the Gelfand
transform a of any a € A is a continuous function on A(4) which vanishes at infinity.
The hull of any ideal I C 4 is h(I) = {h € A(A) | a(h) =0, a € I}. A is regular if, for each
closed S C A(A) and each h € A(A)\S there exist a€ A with a(h) =1 and a(S) =0. If
A is regular and semisimple then, I(S) ={a € A | a(h) =0, h € S} is the largest closed
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ideal with hull equal to S, and J(S) ={a€ A| a=0 near S and supp a is compact} is
the smallest ideal with hull equal to S.S is a set of synthesis if and only if
J(S) = I(S).

Lemma 1. Let A be a regular semisimple Banach algebra with identity 1, and let
w: A— B be a continuous one-to-one homomorphism such that w(l1,) = 1;5. Then we
have

o5(w(a)) = a(A(4))

for each a € A

Proof. We put B, = w(A). Then the mapping w* : A(B,) — A(A) is one-to-one. Note
that w*A(B;) = A(4). Suppose on the contrary that there exists hy € A(A) but
ho & w'A(B,). Let U and V be neighbourhoods of hy, and w*A(B,) respectively such
that UNV = @&. Then there exists a,b in A such that a(hy) =1, a(A(AN\U) =0,
B(w'A(Bo)) =1 and B(A(A)\V) =0. It is easily seen that ab =0 which implies
w(a)w(b) = 0. Since w(b) = B;' we obtain w(a) =0 or a = 0. This contradicts a(h,) = 1.
Now we have o, (w(a)) = a(A(A)) for each a € A. It remains to prove that B, is a full
subalgebra of B. Let b€ B, be such that b€ B~ and let B, be a smallest closed
subalgebra of B containing b™' and B,. Since B, is a regular subalgebra of B,, any
hy € A(B,) may be extended to some h, € A(B,) by Silov’s theorem ([5, p. 249}]). Since
b € B;' we have hy(b) = h,(b) # 0 and so b € B;"'.

Lemma 2. Let A be a regular semisimple Banach algebra without unit and let
w : A — B be a continuous one-to-one homomorphism. Then we have

ap(w(a)) = a(A(4))

foreachae A.

Proof. Let A, = A x C is the unitization of A. It is easily verified that A4, is a
regular and semisimple on the structure space A(A4,) = A(A) U {oo} — the one-point
compactification of A(4). We may extend the homomorphism » to the homomorphism
®,: A4, —> Bby

w, :(a, ) > w(a@)+ 11,
Since |lw, |l < max (lwll, 1), w, is a continuous. Moreover w, : (0,1) = 1, and w, is
one-to-one, because the equality w(a) + A1; =0 (a # 0, 2 # 0) clearly implies that —a/A

is the identity of 4. Now applying Lemma 1 to the homomorphism w, : 4, = B we
obtain
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op(w(a)) = a(A(4,))
= a(A(A)) U {0} = a(A(A)).

Lemma 3. Suppose the hypotheses of the theorem are satisfied. Then w(u) = 0 if and
only if p = 0 on sp(w).

Proof. Let yu € My(G) and w(u) =0. Then w(u*f) =0 for each f € L'(G). Since
u*f € L'(G) and ux*f € Ker(w) it follows that uxf belongs to the largest ideal in
L'(G) with hull equal to sp(w). Thus p * f fi.f =0 on sp(w) for each f € L'(G). This
clearly implies that & = 0 on sp(w).

Now let u € M(G) and i = 0 on sp(w). Then ,u/*\f =0 on sp(w) for each f € L'(G).
Since sp(w) is a synthesis set for L'(G), I, = {f € L'(G) | w(f) = 0} is the unique ideal
in L'(G) with hull equal to sp(w). On the other hand we know that u*f € L'(G) and
hence uxf € I,. Thus we obtain w(u)w(f) =0 for each f € L'(G). Since w(L'(G)) is
without order with respect to B, we conclude that w(u) =

Proof of theorem. A continuous homomorphism w: My(G) — B induces a con-
tinuous one-to-one homomorphism

@ : My(G)/Ker(w) - B
defined by

@ : p+ Ker(w) - w(u).
M(G)/Ker(w) is a regular Banach algebra with the structure space h(Ker(w)). Let
sp(w) denotes the closure of sp(w) in the usual topology of A(M,(G)). Recall that

I(sp(w)) is the largest closed ideal in M,(G) with hull equal to sp(w). Using Lemma 3
we can see that,

Ker(w) = I(sp(w)).

Therefore, h(Ker(w)) is the closure of sp(w) in the hull-kernel topology. Since My(G)
is regular, the Gelfand topology coincide with the hull-kernel topology on A(My(G))
and hence it follows that the structure space of My(G)/Ker(w) is sp(w):

A(My(G)/Ker(w)) = h(Ker(»)) = sp(w).

Now, again using Lemma 3 we can see that the algebra My(G)/Ker(w) is semisimple.
Assume that h(Ker(w)) is compact. Then there exist p, € My(G) such that gy =1
near h(Ker(w)) (here u” denotes the Gelfand transform of any u € My(G)). Since
('uy — p)° vanishes near h(Ker(w)), it follows that u*u,—u belongs to the
smallest ideal whose hull is h(Ker(w)) and so o(u) w(y,) = w(u) for each pu e My(G).
Thus g, + Ker(w) is the identity of the algebra M(G)/Ker(w). From equality
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(@) — 15)0(f) =0, f € L'(G) and from the fact that w(L'(G)) is without order with
respect to B we obtain @(u, + Ker(w)) = 15. Now applying Lemma 1 to the homo-
morphism @ : My(G)/Ker(w) - B we get

ap(w(w) = p* (sp(w)).

Since u"(sp(w)) is closed we have

B(sp(w)) = p¥(sp(w)) C p"(sp(w))-

On the other hand since " is continuous on A(M(G)) we get

1 (sp(w)) C p¥(sp(w)) = i(sp(w)).

Thus we obtain

1 (sp(w)) = i(sp(w))
and so
os(w()) = ilsp(w)).

If h(Ker(w)) is noncompact, then the algebra My(G)/Ker(w) has no unit element. In
this case applying Lemma 2 we obtain

os(w(W)) = p(sp(w)) = i(sp(w)).

This completes the proof.

Remark. Let w: M(G) — B(L'(G)) be the homomorphism given by w:u— T,;
T.f = u*f. Obviously sp(w) = G. It is also evident that, if (f)),.n is a bounded
approximate identity for L'(G), then T, — I strongly. This implies that, w(L'(G)) is
without_order with respect to B(L'(G)). Thus, from the preceding theorem we have
o(T,) = fi(G) for every measure y from the largest regular subalgebra of M(G). On the
other hand, since w(M(G)) is a multiplier algebra for L'(G) and w is isometry (4, p. 6])
we have seen that M(G) may be considered as a full subalgebra of B(L'(G)) (4,
p. 15]). Therefore, o(T,) = oy (1) = 1’ (A(M(G))) for every u € M(G). It is well known
([6, p. 107]) that for non-discrete G there exists a measure p € M(G) such that,
AG)=0 but p'(AM(G)) #0 (in other words G is not dense in A(M(G))).
Consequently, for such measures o(T,) # (G) (see also [1, Remark 1]).

Acknowledgement. The author would like to thank TUBITAK for their financial
support.

https://doi.org/10.1017/50013091500023701 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023701

266 H. SEFEROGLU

REFERENCES

1. C. D’AnNTONL, R. LONGO and L. Zsipo, A spectral mapping theorem for locally compact
groups of operators, Pacific J. Math. 103 (1981), 17-24.

2. W. ARVESON, On groups of automorphisms of operator algebras, J. Funct. Anal. 15
(1974), 217-243.

3. N. BOURBAKI, Theories spectrales (Hermann, 1967).

4. R. LARSEN, An introduction to the theory of multipliers (Springer-Verlag, New York,
Heidelberg, 1971).

5. R. LARSEN, Banach Algebras (Markel Dekker, Inc., New York, 1973).
6. W. RUDIN, Fourier Analysis on Groups (Interscience, New York, 1962).

7. S.-E. TAKAHASI and J. INOUE, A spectral mapping theorem for some representations of
compact abelian groups, Proc. Edinburgh Math. Soc. 35 (1992), 47-52.

ONDOKUZ MAYIS UNIVERSITY
FACULTY OF ARTS AND SCIENCES
DEPARTMENT OF MATHEMATICS
55139, KuruPELIT, SAMSUN
TURKEY

https://doi.org/10.1017/50013091500023701 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023701

