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FOURIER-YOUNG COEFFICIENTS OF A FUNCTION 
OF WIENER'S CLASS Vp 

RAFAT N. SIDDIQI 

1. I n t r o d u c t i o n . N. Wiener [12] introduced the idea of the class Vp. A 
27r-periodic f u n c t i o n / is said to have bounded p-variation Vp(f)(l S p < ° ° ) , 
or to belong to the class Vp, if 

(1) V,(f) = lim sup JE Wi)-ttt-i)\PY" <<*>, 

where P : 0 = t0 < h < t2 < . . . < tn = 2TT is an arbi t rary part i t ion of [0, 2TT] 
with n(P) = m a x i ^ ^ n \h ~ h-i\- We write simply Vp for the class of functions 
of bounded ^-variat ion on [0, 2ir]. When p = 1, Vi is an ordinary class of 
functions of bounded variation. W7e have VPI C VP2 (1 S pi < pi < °o ), 
(see [11]), a strict inclusion. Hence for (1 < p < oo), Wiener 's class Vp is 
strictly larger class than the class V\. In connection with the existence of 
Riemann-Stieltjes integral of functions of Vp, Young [13] proved the following 
theorem. 

T H E O R E M A. Ifanf G Vp and a g G Vq where p, a > 0, \/p + 1/g > 1, have 
no common points of discontinuity, their Stieltjes integral fl* fdg exists in the 
Riemann sense. 

From Theorem A, f(n) defined by 

f(n) = (2X)- 1 f * emdj{t) (n = 0, ± 1 , ± 2 , . . .) 
•/ 0 

exists for e v e r y / G Vp(l ^ p < co). We shall call the series J^-œf(k)eikx the 
Fourier-Young series o f / and f(n) will be called a sequence of Fourier-Young 
coefficients o f / G Vp(l < p < oo). 

2. An infinite matrix A = (\ntk)(n, k = 0, 1, 2, . . .) of real or complex 
numbers is called admissible if sup„^0 ZJS=O|V*: | < °° • A sequence \sk} is said 
to be summable A if lim„^œ K=oX„ift5À- exists; it is said to be summable FA if 
limW4oo 2Z?Lo Xw.^+v exists uniformly in v — 0, 1, 2, . . . . The summabil i ty 
method T̂ A carresponding to the ari thmetic mean is called almost convergence 
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[7]. Recently Siddiqi [10] generalized a classical theorem of Fejér [3] on deter­
mination of j ump of a function of the class V\. 

T H E O R E M B. If A = (\n,k) is an admissible matrix, then for every f G Vi and 
for every x Ç [0, 2ir], the sequence 

(2) \f(k)eikx +f(-k)e-ikx - TT-ICKX)} 

is summable A (or FA) to zero if and only if {cos kt) is summable A (respectively, 
I\) to zero for all t ^ 0 (mod 2TT), where D(x) = f(x + 0) - f(x - 0) . 

In this paper we s tudy the problem of summabil i ty of the sequence (2) and 
of allied sequences in the strictly larger class Vp(l < p < GO ). This enables us 
to obtain extensions of various theorems of Fejér [3], Wiener [12], Lozinskii [8], 
Matveyev (cf. Bari [1, p. 256]), Keogh and Petersen [6], Siddiqi [10] and 
DeLeeuw and Katznelson [2]. We give a simple proof of Theorem 1 which 
depends only on the application of Fa tou ' s lemma and on the properties of 
limit superior. A lore precisely we prove the following theorem. 

T H E O R E M 1. If A = (\n,k) is an admissible matrix such that {cos kt} is summable 
A (or F \) to zero for all t ^ 0 (mod 2T), then for every f £ Vp(l < p < GO ) and 
for every x G [0, 2TT], the sequence (2) is summable A (respectively, FK) to zero. 
Conversely, if 

1™ ( £ KAf(k)eikx +f(-k)e-ikx - Tr^Dix)) = 0 
n->oo \Jc=0 I 

for every f G Fi and for every x G [0, 2w], then 

CO 

lim ^2 ^n,k cos kt = 0 

for all t ^ 0 (mod 2TT). 

3 . Proof. We shall give the proof of summabi l i ty A only. The proof of 
summabil i ty F\ is similar. Suppose t ha t {cos kt} is summable A to zero for all 
t =ZÉ 0 (mod 2TT). We can write 

/

» 2 T T 

cos£(x ~ l)df(t). 
0 

Ud(xj) denotes the j u m p o f / a t x} G [0, 2?r], then J^%o [d(xj)]p ^ Vp(f) which 
is finite (cf. Wiener [12, p . 76]). Hence we can define 

oo 

(3) M 0 = / ( 0 - 7T-1 E d(xj)4>(t-xj) 

where <$>(t) = (TT - t)/2 (0 < t < 2TT), 0(0) = 0(2TT) = 0, and outside of 
[0, 2ir], (j> is defined by periodicity. I t is clear t ha t h G Vv (1 S P < °° ) and is 

https://doi.org/10.4153/CJM-1976-071-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-071-4


FOURIER-YOUNG COEFFICIENTS 755 

continuous everywhere, and hence we can define 

M*(*)} = \]{k)eikx + f\-k)e~ikx - TT1 £ d(xj) cos£(x - *,) 
I 7 = 0 ; = 0 

/

»2TT 

cos k(x — t)dh(t), 
0 

so that 

oo P2v 

fc=0 •/ 0 fc=0 

where 

oo 

Kn{t) = X K,kCoskt. 
k=0 

Breaking Kn(t) into its positive and negative parts, we can write 

Kn{t) = ^ + ( 0 - Kn~{t) 

where 2£n
+(0 = max (Kn(t), 0) and i£n~00 = max (0, -Kn(t)). We also 

denote 

/

' 2 T T 

i£„(x - 0^(0 
0 

/

» 2TT /» 2TT 

i£/(x - t)dh(t) - I #„"(* - t)dh(t) 
0 •/ 0 

= <£n
+(x) - 0W"(X). 

Using the properties of limit superior (cf. Royden [9, p. 36]), we obtain 

(5) lim <t>n(x) ^ lim cj>n
+(x) — lim 0n~~(x). 

But by Fatou's lemma (cf. Hildebrandth [4, p. 25]), we have 

n* 
lim <t>n

+(x) g I \imKn
+(x - t)dh(t) and 

•/ o 

— lim <t>n (x) ^ — I limi£n (x — t)dh(t) 
J o 

Adding (6) together and using (5), we obtain 

/

' 2 7 T 

(limi£n
+(x - t) - \\mK~(x - t))dh{t). 

o 

But lim Kn
+(x — t) = lim Kn~(x — t) by hypothesis, hence 

(8) ïîrn" </>n(x) ^ 0. 
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Similarly using Fa tou ' s lemma [4] again and by the properties of limit in­
ferior, we obtain 

(9) lim <\>n{oc) ^ lim <t>n(x) ^ Km c/>n
+(x) — lim 0 n

_ ( x ) 

/

•27T 

(limKn
+(x - t) - \imKn~(x - t))dh{t). 

o 
which is equal to zero by hypothesis. Hence 

(10) HnT <t>n{x) ^ 0. 

From (8) and (10), we conclude t ha t lim <t>n(x) = 0. Also it follows from (9) 
t ha t lim <t>n(x) ^ 0 and from (8), we have lim <j>n{x) S 0. Hence lim 4>n(x) = 0, 
and hence we obtain finally 

(11) lim 0n(z) = 0. 

This implies t ha t if Kn(t) —>0 as n —> co for all / ^ 0 (mod 2w), then the 
sequence {Ak(x)} and hence the sequence 

{f(k)eikx +f(-k)e-ikx - ir-lD(x)} 

is summable A to zero for e v e r y / G Vp and for every x G [0, 2ir], Conversely if 

1 H B ( È KAf(k)eikx+f(-k)e-ikx- ir^Dipc)) = 0 
\A;=0 / 

for e v e r y / G Vp and for every x G [0, 2T], then we choose f{t) = 2<t>(t) where 
4>{t) has already been defined in (3). I t can easily be verified t h a t / G Vp{\ ^ 
p < oo ) and /(fe) = / ( - £ ) = 1, D(x) = 0 so t ha t 

/(*)**** + /(- jfe) ér '** - T T " 1 ^ ^ ) = 2 cos fee. 

This completes the proof of Theorem 1. 

Theorem 1 contains as a special case the following extended version of 
Fejér's Theorem (cf. Zygmund [14, p . 107, Theorem 9.3]). 

COROLLARY 1. Let f G Vv{\ < p < GO) and let x G [0, 2ir\. Then 

lim (« + I)"1 £ Ak{x) = 0 
n->oo k=v 

uniformly in v = 0, 1, 2, . . . . 

Using an a rgument similar to the proof of Theorem 1, we can prove the 
following: 

T H E O R E M 2. If A = (Xn^) is #w admissible matrix such that {eikt} is summable 
A /o zero for all t ^ 0 (mod 27r) then for every f G Fj,(l < /> < co ) and for every 
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x G [0, 2TT], the sequences {f(k)eikx -f(-k)e~ikx} and{f(±k)e±ikx - (2TT)~1D(X)} 
both are summable FA to zero. The converse is also true in the sense of Theorem 1. 

4. If / G Vp(l < p < oo), then from Theorem A, the convolution of / 

defined by 

/*(*) = (27T)-1 f ' / ( * + t)df(i) 
J 0 

exists for every point x of continuity of / and for the values of 1 ^ p < 2 only. 
If Xj is a point of discontinuity of/, then we definef*(xf) = limx^.xjf*(x). I t is 
easily seen (cf. Zygmund [14, p. 108]) tha t f* G Vp(l S p < 2) and its 
Fourier-Young series is J2-œ \f(k)\2eikx. Since 

/

»2TT oo 

/ ( * + t)dh(t) + (27T)-1 £ / ( * + Xi)d(?Cj), 
0 j=0 

I t follows t ha t 
oo 

/* (+0) - /* ( -0 ) = (2.)-1 E |d(*,)|2 

where summation is over all points of discontinuity of / in [0, 2T] and h is 
defined above in (3). Hence applying Theorem 1 a t x = 0 for the Fourier-
Young series of /*, we deduce the following generalization of a theorem of 
Wiener [12]. 

T H E O R E M 3. If A = (\n,k) is an admissible matrix such that {coskt} is summable 
A (or FA) to zero for all t ^ 0 (mod 2ir), then for every f G Vp(l < p < 2) the 
sequence 

{l/(*)l2+l/(-*)l2- ( 2 0 _ 1 E l ^ ) l 2 } 

is summable A {respectively, FA) to zero. The converse is also true in the sense of 
Theorem 1. 

Applying Theorem 3 and Schwarz's inequality, we obtain the following 
extended version of a theorem of Wiener [12]. 

T H E O R E M 4. If A = (\„.,k), is a positive admissible matrix such that {cos kt) is 
summable A (or FA) to zero for all t je 0 (mod 2TT), then for every f G Vp(l < 
p < 2), the following statements are equivalent: 

(1) f is continuous. 
(2) {|/(&)|2 + | / ( — k)\2} is summable A (respectively, I\) to zero. 
(3) {|/(&)I + \f(~k)\\ is summable A (respectively, FA) to zero. 

If / is a real-valued function of Vv, then \j(k)\ = \f( — k)\. Hence under the 
hypothesis of Theorem 4, the s ta tements (1), (2) and (3) will be equivalent to 
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the s ta tement t ha t the sequence {\f(k)\2} or {|/( — k)\} is summable A (respec­
tively, FA) to zero. 

S ince /* exists for the values of 1 ^ p < 2 only, the theorems of Wiener [12], 
Keogh and Petersen [6], Lozinskii [8], Matveyev (cf. Bari [1, p. 256, Exc. 9]) 
and of Siddiqi [10] can be extended to the class Vp(l rg p < 2) by making 
special choices of the matr ix A = (\n,k)-

5. Now we shall give some applications of our theorems. Recently, DeLeeuw 
and Katznelson [2] have given some results for the convergence of {|/(w)|} of 
functions of the class Vi only. More precisely, they [2] proved the following 
theorem. 

T H E O R E M C. If {\f(n)\} converges to zero then {\f( — n)\} converges to zero as 
n —> oo for all f £ V\. 

They [2] also gave an example of a function / £ V\ for which 

ïïm \f(n)\ ?± ïïm \f(-n)\. 
n-)co n-yco 

Applying Theorem 4, we can extend Theorem C into strictly larger class Vp in 

the following way. 

T H E O R E M 5. Let A = (\n,k) be a positive admissible matrix such that {cos kt) is 
summable A (or F\) to zero for all t ^ 0 (mod 2w). Then for every continuous 
function f of the class Vp(l S P < 2), the sequence {\f(k)\} is summable A 
(respectively, FA) to zero if and only if {\f( — k)\} is summable A (respectively, FA) 
to zero. 

Proof. If / G Yv and is continuous, then from Theorem 4, we have t ha t the 
sequence defined by 

(12) \\}\k)\ + \j\-k)\} 

is summable A (respectively, F\) to zero. T h e equivalence of the summabil i ty 
of the sequences {|/(fe)|} and {\f( — k)\} follows immediately from the summa­
bility of the sequence (12). 

Remark. If we drop the hypothesis of cont inui ty in Theorem o, we can 
establish a criterion for the summabil i ty of the sequences {|/(&)|} and 
{\f( — k)\\ to a number different from zero. 
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