FOURIER-YOUNG COEFFICIENTS OF A FUNCTION OF WIENER'S CLASS V_{ρ}

RAFAT N. SIDDIQI

1. Introduction. N. Wiener [12] introduced the idea of the class V_p . A 2π -periodic function f is said to have bounded *p*-variation $V_p(f)(1 \le p < \infty)$, or to belong to the class V_p , if

(1)
$$V_p(f) = \lim_{\epsilon \to 0} \sup_{\mu(P) \le \epsilon} \left\{ \sum_{i=1}^n |f(t_i) - f(t_{i-1})|^p \right\}^{1/p} < \infty,$$

where $P: 0 = t_0 < t_1 < t_2 < \ldots < t_n = 2\pi$ is an arbitrary partition of $[0, 2\pi]$ with $\mu(P) = \max_{1 \le i \le n} |t_i - t_{i-1}|$. We write simply V_p for the class of functions of bounded *p*-variation on $[0, 2\pi]$. When p = 1, V_1 is an ordinary class of functions of bounded variation. We have $V_{p_1} \subset V_{p_2}$ $(1 \le p_1 < p_2 < \infty)$, (see [11]), a strict inclusion. Hence for $(1 , Wiener's class <math>V_p$ is strictly larger class than the class V_1 . In connection with the existence of Riemann-Stieltjes integral of functions of V_p , Young [13] proved the following theorem.

THEOREM A. If an $f \in V_p$ and a $g \in V_q$ where p, q > 0, 1/p + 1/q > 1, have no common points of discontinuity, their Stieltjes integral $\int_0^{2\pi} f dg$ exists in the Riemann sense.

From Theorem A, $\hat{f}(n)$ defined by

$$\hat{f}(n) = (2\pi)^{-1} \int_0^{2\pi} e^{int} df(t) \quad (n = 0, \pm 1, \pm 2, \ldots)$$

exists for every $f \in V_p(1 \leq p < \infty)$. We shall call the series $\sum_{-\infty}^{\infty} \hat{f}(k)e^{ikx}$ the Fourier-Young series of f and $\hat{f}(n)$ will be called a sequence of Fourier-Young coefficients of $f \in V_p(1 .$

2. An infinite matrix $\Lambda = (\lambda_{n,k})(n, k = 0, 1, 2, ...)$ of real or complex numbers is called *admissible* if $\sup_{n\geq 0} \sum_{k=0}^{\infty} |\lambda_{n,k}| < \infty$. A sequence $\{s_k\}$ is said to be *summable* Λ if $\lim_{n\to\infty} \sum_{k=0}^{\infty} \lambda_{n,k} s_k$ exists; it is said to be *summable* F_{Λ} if $\lim_{n\to\infty} \sum_{k=0}^{\infty} \lambda_{n,k} s_{k+\nu}$ exists uniformly in $\nu = 0, 1, 2, \ldots$. The summability method F_{Λ} carresponding to the arithmetic mean is called *almost convergence*

Received June 25, 1975 and in revised form March 4, 1976. This research work was supported in part by NRC of Canada grant given to the Department of Physics-Mathematics, Université de Moncton, Moncton, N.B., and in part by the grant of a fellowship of SRI of the Canadian Mathematical Congress held at Dalhousie University, Halifax, N.S.

[7]. Recently Siddiqi [10] generalized a classical theorem of Fejér [3] on determination of jump of a function of the class V_1 .

THEOREM B. If $\Lambda = (\lambda_{n,k})$ is an admissible matrix, then for every $f \in V_1$ and for every $x \in [0, 2\pi]$, the sequence

(2)
$$\{\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1}D(\mathbf{x})\}$$

is summable Λ (or F_{Λ}) to zero if and only if {cos kt} is summable Λ (respectively, F_{Λ}) to zero for all $t \neq 0 \pmod{2\pi}$, where D(x) = f(x + 0) - f(x - 0).

In this paper we study the problem of summability of the sequence (2) and of allied sequences in the strictly larger class $V_p(1 . This enables us$ to obtain extensions of various theorems of Fejér [3], Wiener [12], Lozinskii [8],Matveyev (cf. Bari [1, p. 256]), Keogh and Petersen [6], Siddiqi [10] andDeLeeuw and Katznelson [2]. We give a simple proof of Theorem 1 whichdepends only on the application of Fatou's lemma and on the properties oflimit superior. More precisely we prove the following theorem.

THEOREM 1. If $\Lambda = (\lambda_{n,k})$ is an admissible matrix such that $\{\cos kt\}$ is summable Λ (or F_{Λ}) to zero for all $t \neq 0 \pmod{2\pi}$, then for every $f \in V_p(1 and for every <math>x \in [0, 2\pi]$, the sequence (2) is summable Λ (respectively, F_{Λ}) to zero. Conversely, if

$$\lim_{n\to\infty}\left(\sum_{k=0}^{\infty} \lambda_{n,k}(\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1}D(x)\right) = 0$$

for every $f \in V_1$ and for every $x \in [0, 2\pi]$, then

$$\lim_{k \to 0} \sum_{k=0}^{\infty} \lambda_{n,k} \cos kt = 0$$

for all $t \not\equiv 0 \pmod{2\pi}$.

3. Proof. We shall give the proof of summability Λ only. The proof of summability F_{Λ} is similar. Suppose that $\{\cos kt\}$ is summable Λ to zero for all $t \neq 0 \pmod{2\pi}$. We can write

$$\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} = \pi^{-1}\int_0^{2\pi} \cos k(x-t)df(t).$$

If $d(x_j)$ denotes the jump of f at $x_j \in [0, 2\pi]$, then $\sum_{j=0}^{\infty} [d(x_j)]^p \leq V_p(f)$ which is finite (cf. Wiener [12, p. 76]). Hence we can define

(3)
$$h(t) = f(t) - \pi^{-1} \sum_{j=0}^{\infty} d(x_j) \phi(t - x_j)$$

where $\phi(t) = (\pi - t)/2$ ($0 < t < 2\pi$), $\phi(0) = \phi(2\pi) = 0$, and outside of $[0, 2\pi]$, ϕ is defined by periodicity. It is clear that $h \in V_p$ ($1 \le p < \infty$) and is

continuous everywhere, and hence we can define

$$\{A_k(x)\} = \left\{ \hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1} \sum_{j=0}^{\infty} d(x_j) \cos k(x - x_j) \right\}$$
$$= \pi^{-1} \int_0^{2\pi} \cos k(x - t) dh(t),$$

so that

$$\sum_{k=0}^{\infty} \lambda_{n,k} A_k(x) = \pi^{-1} \int_0^{2\pi} K_n(x-t) dh(t)$$

where

$$K_n(t) = \sum_{k=0}^{\infty} \lambda_{n,k} \cos kt.$$

Breaking $K_n(t)$ into its positive and negative parts, we can write

$$K_n(t) = K_n^+(t) - K_n^-(t)$$

where $K_n^+(t) = \max(K_n(t), 0)$ and $K_n^-(t) = \max(0, -K_n(t))$. We also denote

(4)

$$\phi_n(x) = \int_0^{2\pi} K_n(x-t) dh(t)$$

$$= \int_0^{2\pi} K_n^+(x-t) dh(t) - \int_0^{2\pi} K_n^-(x-t) dh(t)$$

$$= \phi_n^+(x) - \phi_n^-(x).$$

Using the properties of limit superior (cf. Royden [9, p. 36]), we obtain (5) $\overline{\lim} \phi_n(x) \leq \overline{\lim} \phi_n^+(x) - \underline{\lim} \phi_n^-(x).$

But by Fatou's lemma (cf. Hildebrandth [4, p. 25]), we have

(6)
$$\overline{\lim} \phi_n^+(x) \leq \int_0^{2\pi} \overline{\lim} K_n^+(x-t) dh(t) \quad \text{and}$$
$$-\underline{\lim} \phi_n^-(x) \leq -\int_0^{2\pi} \underline{\lim} K_n^-(x-t) dh(t)$$

Adding (6) together and using (5), we obtain

(7)
$$\overline{\lim} \phi_n(x) \leq \int_0^{2\pi} (\overline{\lim} K_n^+(x-t) - \underline{\lim} K_n^-(x-t)) dh(t)$$

But $\overline{\lim} K_n^+(x-t) = \underline{\lim} K_n^-(x-t)$ by hypothesis, hence
(8) $\overline{\lim} \phi_n(x) \leq 0.$

Similarly using Fatou's lemma [4] again and by the properties of limit inferior, we obtain

(9)
$$\overline{\lim} \phi_n(x) \ge \underline{\lim} \phi_n(x) \ge \underline{\lim} \phi_n^+(x) - \overline{\lim} \phi_n^-(x)$$
$$\ge \int_0^{2\pi} (\underline{\lim} K_n^+(x-t) - \overline{\lim} K_n^-(x-t)) dh(t).$$

which is equal to zero by hypothesis. Hence

(10)
$$\lim \phi_n(x) \ge 0.$$

From (8) and (10), we conclude that $\lim \phi_n(x) = 0$. Also it follows from (9) that $\lim \phi_n(x) \ge 0$ and from (8), we have $\lim \phi_n(x) \le 0$. Hence $\lim \phi_n(x) = 0$, and hence we obtain finally

(11) $\lim_{n\to\infty}\phi_n(x)=0.$

This implies that if $K_n(t) \to 0$ as $n \to \infty$ for all $t \not\equiv 0 \pmod{2\pi}$, then the sequence $\{A_k(x)\}$ and hence the sequence

$$\{\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1}D(x)\}$$

is summable Λ to zero for every $f \in V_p$ and for every $x \in [0, 2\pi]$. Conversely if

$$\underline{\lim}\left(\sum_{k=0}^{\infty} \lambda_{n,k}(\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1}D(x)\right) = 0$$

for every $f \in V_p$ and for every $x \in [0, 2\pi]$, then we choose $f(t) = 2\phi(t)$ where $\phi(t)$ has already been defined in (3). It can easily be verified that $f \in V_p(1 \leq p < \infty)$ and $\hat{f}(k) = \hat{f}(-k) = 1$, D(x) = 0 so that

$$\hat{f}(k)e^{ikx} + \hat{f}(-k)e^{-ikx} - \pi^{-1}D(x) = 2\cos kx.$$

This completes the proof of Theorem 1.

Theorem 1 contains as a special case the following extended version of Fejér's Theorem (cf. Zygmund [14, p. 107, Theorem 9.3]).

COROLLARY 1. Let
$$f \in V_p(1 and let $x \in [0, 2\pi]$. Then$$

$$\lim_{n \to \infty} (n+1)^{-1} \sum_{k=\nu}^{n+\nu} A_k(x) = 0$$

uniformly in $\nu = 0, 1, 2, \ldots$

Using an argument similar to the proof of Theorem 1, we can prove the following:

THEOREM 2. If $\Lambda = (\lambda_{n,k})$ is an admissible matrix such that $\{e^{ikt}\}$ is summable Λ to zero for all $t \not\equiv 0 \pmod{2\pi}$ then for every $f \in V_p(1 and for every$

 $x \in [0, 2\pi]$, the sequences $\{\hat{f}(k)e^{ikx} - \hat{f}(-k)e^{-ikx}\}$ and $\{\hat{f}(\pm k)e^{\pm ikx} - (2\pi)^{-1}D(\mathbf{x})\}$ both are summable F_{Λ} to zero. The converse is also true in the sense of Theorem 1.

4. If $f \in V_p(1 , then from Theorem A, the convolution of f defined by$

$$f^{*}(x) = (2\pi)^{-1} \int_{0}^{2\pi} f(x+t) d\overline{f(t)}$$

exists for every point x of continuity of f and for the values of $1 \leq p < 2$ only. If x_j is a point of discontinuity of f, then we define $f^*(x_j) = \lim_{x \to x_j} f^*(x)$. It is easily seen (cf. Zygmund [14, p. 108]) that $f^* \in V_p(1 \leq p < 2)$ and its Fourier-Young series is $\sum_{-\infty}^{\infty} |\hat{f}(k)|^2 e^{ikx}$. Since

$$f^*(x) = (2\pi)^{-1} \int_0^{2\pi} f(x+t) d\overline{h(t)} + (2\pi)^{-1} \sum_{j=0}^{\infty} f(x+x_j) \overline{d(x_j)},$$

It follows that

$$f^{*}(+0) - f^{*}(-0) = (2\pi)^{-1} \sum_{j=0}^{\infty} |d(x_{j})|^{2}$$

where summation is over all points of discontinuity of f in $[0, 2\pi]$ and h is defined above in (3). Hence applying Theorem 1 at x = 0 for the Fourier-Young series of f^* , we deduce the following generalization of a theorem of Wiener [12].

THEOREM 3. If $\Lambda = (\lambda_{n,k})$ is an admissible matrix such that $\{\cos kt\}$ is summable Λ (or F_{Λ}) to zero for all $t \not\equiv 0 \pmod{2\pi}$, then for every $f \in V_p(1 the sequence$

$$\left\{ |\hat{f}(k)|^{2} + |\hat{f}(-k)|^{2} - (2\pi^{2})^{-1} \sum_{j=0}^{\infty} |d(x_{j})|^{2} \right\}$$

is summable Λ (respectively, F_{Λ}) to zero. The converse is also true in the sense of Theorem 1.

Applying Theorem 3 and Schwarz's inequality, we obtain the following extended version of a theorem of Wiener [12].

THEOREM 4. If $\Lambda = (\lambda_{n,k})$, is a positive admissible matrix such that $\{\cos kt\}$ is summable Λ (or F_{Λ}) to zero for all $t \neq 0 \pmod{2\pi}$, then for every $f \in V_p(1 , the following statements are equivalent:$

(1) f is continuous.

- (2) $\{|\hat{f}(k)|^2 + |\hat{f}(-k)|^2\}$ is summable Λ (respectively, F_{Λ}) to zero.
- (3) $\{|\hat{f}(k)| + |\hat{f}(-k)|\}$ is summable Λ (respectively, F_{Λ}) to zero.

If f is a real-valued function of V_p , then $|\hat{f}(k)| = |\hat{f}(-k)|$. Hence under the hypothesis of Theorem 4, the statements (1), (2) and (3) will be equivalent to

RAFAT N. SIDDIQI

the statement that the sequence $\{|\hat{f}(k)|^2\}$ or $\{|\hat{f}(-k)|\}$ is summable Λ (respectively, F_{Λ}) to zero.

Since f^* exists for the values of $1 \leq p < 2$ only, the theorems of Wiener [12], Keogh and Petersen [6], Lozinskii [8], Matveyev (cf. Bari [1, p. 256, Exc. 9]) and of Siddiqi [10] can be extended to the class $V_p(1 \leq p < 2)$ by making special choices of the matrix $\Lambda = (\lambda_{n,k})$.

5. Now we shall give some applications of our theorems. Recently, DeLeeuw and Katznelson [2] have given some results for the convergence of $\{|\hat{f}(n)|\}$ of functions of the class V_1 only. More precisely, they [2] proved the following theorem.

THEOREM C. If $\{|\hat{f}(n)|\}$ converges to zero then $\{|\hat{f}(-n)|\}$ converges to zero as $n \to \infty$ for all $f \in V_1$.

They [2] also gave an example of a function $f \in V_1$ for which

$$\overline{\lim_{n\to\infty}} |\hat{f}(n)| \neq \overline{\lim_{n\to\infty}} |\hat{f}(-n)|.$$

Applying Theorem 4, we can extend Theorem C into strictly larger class V_p in the following way.

THEOREM 5. Let $\Lambda = (\lambda_{n,k})$ be a positive admissible matrix such that $\{\cos kt\}$ is summable Λ (or F_{Λ}) to zero for all $t \neq 0 \pmod{2\pi}$. Then for every continuous function f of the class $V_p(1 \leq p < 2)$, the sequence $\{|\hat{f}(k)|\}$ is summable Λ (respectively, F_{Λ}) to zero if and only if $\{|\hat{f}(-k)|\}$ is summable Λ (respectively, F_{Λ}) to zero.

Proof. If $f \in V_p$ and is continuous, then from Theorem 4, we have that the sequence defined by

(12)
$$\{|\hat{f}(k)| + |\hat{f}(-k)|\}$$

is summable Λ (respectively, F_{Λ}) to zero. The equivalence of the summability of the sequences $\{|\hat{f}(k)|\}$ and $\{|\hat{f}(-k)|\}$ follows immediately from the summability of the sequence (12).

Remark. If we drop the hypothesis of continuity in Theorem 5, we can establish a criterion for the summability of the sequences $\{|\hat{f}(k)|\}$ and $\{|\hat{f}(-k)|\}$ to a number different from zero.

References

- 1. N. Bari, A treatise on trigonometric series, Vol. I (Oxford, Pergamon Press, 1964).
- 2. K. DeLeeuw and Y. Katznelson, The two sides of Fourier-Stieltjes transform and almost idempotent measures, Israel J. Math. 8 (1970), 213-229.
- 3. L. Fejér, Über die Bestimmung des Springes einer Funktionen aus ihrer Fourierreihe, J. Reine Angew Math. 142 (1913), 165–168.
- **4.** T. H. Hildebrandth, *Introduction to the theory of integration* (New York, Academic Press, 1963).

758

- 5. Y. Katznelson, An introduction to harmonic analysis (New York, Wiley, 1968).
- 6. F. R. Keogh and G. M. Petersen, A strengthened form of a theorem of Wiener, Math. Zeit. 71 (1959), 31-35.
- 7. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- S. Lozinskii, On a theorem of N. Wiener, Comptes rendus (Doklady) de l'académie des sciences de l'URSS 49 (1945), 542–545.
- 9. H. L. Royden, Real analysis (New York, Macmillan, 1963).
- J. A. Siddiqi, A strengthened form of a theorem of Fejér, Compositio Math. 21 (1969), 262-270.
- 11. R. N. Siddiqi, The order of Fourier coefficients of function of higher variation, Proc. Japan Acad. 48 (1972), 569-572.
- N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72-94.
- L. C. Young, An inequality of Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251–282.
- 14. A Zygmund, Trigonometric series, Vol. I (Cambridge, 1959).

Université de Moncton, Moncton, New Brunswick