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FOURIER-YOUNG COEFFICIENTS OF A FUNCTION
OF WIENER'’S CLASS V,

RAFAT N. SIDDIQI

1. Introduction. N. Wiener [12] introduced the idea of the class 1,. A
2m-periodic function f is said to have bounded p-variation V,(f)(1 < p < ),
or to belong to the class V,, if

n 1/p
(1)  Vo(f) = lim sup {Z [£(t) —f(ti_l)[p} < 00,
0 p(P)<e \i=1

where P : 0 =ty < t; <ty < ... < t, = 2mis an arbitrary partition of [0, 27]
with u(P) = maxi<is, [t; — ti_1]. We write simply V,, for the class of functions
of bounded p-variation on [0, 2r]. When p = 1, 1, is an ordinary class of
functions of bounded variation. We have V,, C V,, (1 £ p1 < p» < ),
(see [11]), a strict inclusion. Hence for (1 < p < ), Wiener's class V, is
strictly larger class than the class 17;. In connection with the existence of
Riemann-Stieltjes integral of functions of V7, Young [13] proved the following
theorem.

THEOREM A. Ifanf € V,and a g € V,wherep,q > 0,1/p + 1/q > 1, have
no common points of discontinuity, their Stieltjes integral f}z)"fdg exists in the
Riemann sense.

From Theorem 4, f'(n) defined by

fn) = (27r)“lfo ”ei'”df(t) m=0,=%1,£2,...)

exists for every f € V,(1 £ p < ). We shall call the series >-Z_ f'(k)e“" the
Fourier-Young series of f and f(n) will be called a sequence of Fourier-Young
coefficients of f € 1,(1 < p < ).

2. An infinite matrix A = (\,;,)(n, kB =0,1,2,...) of real or complex
numbers is called admissible if sup,=o 2 iz |\, | < 0. A sequence s} is said
to be summable A if lim, ., Y o\, 5, exists; it is said to be summable Fy if
lim, ., 2 %0 MsSees exists uniformly in v = 0, 1, 2,.... The summability
method Fj carresponding to the arithmetic mean is called «lmost convergence
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[7]. Recently Siddiqi [10] generalized a classical theorem of Fejér (3] on deter-
mination of jump of a function of the class V7.

THEOREM B. If A = (\,.1) 15 an admissible matrix, then for every f € Vi and
for every x € [0, 27], the sequence

@) {J(R)e™ + J(—=k)e=™ — 771D (x)}

is summable A (or Fy) to zero if and only if {cos kt} is summable A (respectively,
Fy) to zero for all t 2 0 (mod 27), where D(x) = f(x 4+ 0) — f(x — 0).

In this paper we study the problem of summability of the sequence (2) and
of allied sequences in the strictly larger class V,(1 < p < o). This enables us
to obtain extensions of various theorems of Fejér [3], Wiener [12], Lozinskii (8],
Matveyev (cf. Bari [1, p. 256]), Keogh and Petersen [6], Siddiqi [10] and
DeLeeuw and Katznelson [2]. We give a simple proof of Theorem 1 which
depends only on the application of Fatou's lemma and on the properties of
limit superior. More precisely we prove the following theorem.

TurEOREM 1. If A = (\, 1) is an admissible matrix such that {cos kt} 1is summable
A (or Fy) to zero for all t # 0 (mod 27), then for every f € V,(1 < p < ) and
for every x € [0, 27], the sequence (2) is summable A (respectively, Fy) to zero.
Conversely, if

lim (z) Noi (f(R)e™ + F(—R)e ™ — W—lp(x)) =0

for every f € Vi and for every x € [0, 27], then
lim i:o Apzcoskt =0
for all t # 0 (mod 27).
3. Proof. We shall give the proof of summability A only. The proof of

summability /'y is similat. Suppose that {cos k¢} is summable A to zero for all
t # 0 (mod 27). We can write

Flk)e™ + f(—k)e ™ = W_1f0 wcos k(x — t)df(t).

If d(x,) denotes the jump of fatx; € [0, 2], then X 5 [d(x;)]” < V,(f) which
is finite (cf. Wiener [12, p. 76]). Hence we can define

@) k() = f@) — 7 i ;) ot — x)

where ¢(t) = (# — £)/2 (0 <t < 27), ¢(0) = ¢(27) = 0, and outside of
[0, 27], ¢ is defined by periodicity. It is clear that 2 € 7, (1 £ p < ) and is
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continuous everywhere, and hence we can define

{Ar(x)}

{f(k)eikx +f(—k)e_m — 2 d(x;) cos k(x — xj)}

27
r—lf cos k(x — t)dh(t),
0

so that

<) 2r
> Mpdi(x) = r_lf K,(x — t)dh(t)
k=0 0
where
K, () = Z A, COS kL.
k=0

Breaking K, (¢) into its positive and negative parts, we can write
KnO) = Kn+(t) - Kn_o“)

where K,*(t) = max (K,(), 0) and K,~(¢) = max (0, —K,(¢)). We also
denote

6. = | K~ 0an)

(4)

fZWK,f(x — Ddh(t) — fzﬂK,f(x — 1)dh ()

¢n+(x) - ¢n_(x)
Using the properties of limit superior (cf. Royden [9, p. 36]), we obtain

Il

() lim gux) < lim ¢,"(x) — lim ¢, (x).

But by Fatou's lemma (cf. Hildebrandth [4, p. 25]), we have

— 27‘-———
lim ¢, (x) < f lim K" (x — t)dh(t) and
0
(6) 2T
—lim ¢, (x) = —f lim K, (x — t)dh(t)
0

Adding (6) together and using (5), we obtain
r

(7) lim ¢,(x) < f (im K, (x — t) — lim K, (x — t))dh(t).
. am

But lim K, " (x — t) = lim K,~(x — ) by hypothesis, hence

8) lim ¢,(x) < 0.
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Similarly using Fatou’s lemma [4] again and by the properties of limit in-
ferior, we obtain

©)  Tim ¢,(x) = lim ¢,(x) = lim ¢," (x) — lim ¢, (x)

v

2 I

f (lim K, (x — t) — lim K, (x — t))dh(¢).
, =1

which is equal to zero by hypothesis. Hence

(10) lim ¢,(x) = 0.

From (8) and (10), we conclude that lim ¢,(x) = 0. Also it follows from (9)
that lim ¢,(x) = 0 and from (8), we have lim ¢,(x) = 0. Hence lim ¢,(x) = 0,
and hence we obtain finally

(11)  lim ¢, (x) = 0.

n-yco

This implies that if K,(() >0 as n — o0 for all { # 0 (mod 2r), then the
sequence {4, (x)} and hence the sequence

FE)e™ + F(—k)e ™ — 27D (x)}

is summable A to zero for every f € V, and for every x € [0, 27]. Conversely if

lﬂ(; A (F(B)™ + f(—R)e™ ™ — W_ID(x)) =0

for every f € 1, and for every x € [0, 2x], then we choose f(¢) = 2¢(t) where
¢ (¢) has already been defined in (3). It can easily be verified that f € V,(1 <
p < oo)and f(k) = f(—k) = 1, D(x) = 0 so that
f(B)e™ 4 F(—R)e™™ — 77'D(x) = 2 cos kx.

This completes the proof of Theorem 1.

Theorem 1 contains as a special case the following extended version of
Fejér's Theorem (cf. Zygmund (14, p. 107, Theorem 9.3]).

CoroLLARY 1. Let f € V,(1 < p < ) and let x € [0, 27]. Then

n+v

lim (m + 1) Z Ap(x) =0

n->co

uniformly inv = 0,1, 2, .. ..

Using an argument similar to the proof of Theorem 1, we can prove the
following:

THEOREM 2. If A = (\,.x) ts an admissible matrix such that {e™*'} is summable
A to zero for all t 2 0 (mod 2w) then for every f € V,(1 < p < o) and for every
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x € [0, 2n), the sequences {f(k)e™ — F(—k)e=#7} and { f(£k)ex™ — (20)~1D (x)}
both are summable Fy to zero. The converse is also true in the sense of Theorem 1.

4. If f € V,(1 < p < ©), then from Theorem A, the convolution of f
defined by

r@ = o™ [ e+ 0d®

exists for every point x of continuity of f and for the valuesof 1 = p < 2 only.
If x, is a point of discontinuity of f, then we define f*(x;) = lim,_,; f*(x). It is
easily seen (cf. Zygmund [14, p. 108]) that f* € V,(1 = p < 2) and its
Fourier-Young series is .=, |} (k)|2¢"*. Since

It follows that

) = fH(=0) = @) 3 ldG)!

where summation is over all points of discontinuity of f in [0, 27] and /% is
defined above in (3). Hence applying Theorem 1 at x = 0 for the Fourier-
Young series of f* we deduce the following generalization of a theorem of
Wiener [12].

THEOREM 3. If A = (\,1) ©s an admissible matrix such that {cos kt} is summable
A (or Fy) to zero for all t # 0 (mod 27), then for every f € V,(1 < p < 2) the
sequence

{f]‘(k>l2 + f-BI = e 3 id(xw}

j=0

is summable A (respectively, Fy) to zero. The converse is also true in the sense of
Theorem 1.

Applying Theorem 3 and Schwarz's inequality, we obtain the following
extended version of a theorem of Wiener [12].

THEOREM 4. If A = (1), 1S ¢ positive admissible matrix such that {cos kt} s
summable A (or Fy) to zero for all t # 0 (mod 2r), then for every f € V,(1 <
p < 2), the following statements are equivalent:

1) f is continuous.

) {IF(R)> + |J(—R)|2} is summable A (respectively, Fy) to zero.

3) {If &) + [F(=k)|} is summable A (respectively, Fy) to zero.

If f is a real-valued function of V,, then |f(k)| = |/(—k)|. Hence under the
hypothesis of Theorem 4, the statements (1), (2) and (3) will be equivalent to
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the statement that the sequence Hf(k){"} or {|f(—k)f} is summable A (respec-
tively, Fy) to zero.

Since f* exists for the values of 1 =< p < 2 only, the theorems of Wiener [12],
Keogh and Petersen [6], Lozinskii [8], Matveyev (cf. Bari [1, p. 256, Exc. 9])
and of Siddiqgi [10] can be extended to the class 1,(1 < p < 2) by making
special choices of the matrix A = (\, ;).

5. Now we shall give some applications of our theorems. Recently, DeLeecuw
and Katznelson [2] have given some results for the convergence of {|f(n)|} of
functions of the class V; only. More precisely, they [2] proved the following
theorem.

TureoreM C. If {[f(n)|} converges to zero then {kf(—n)|} converges to zero as
n— 00 forall f ¢ V.

They [2] also gave an example of a function f € V; for which

Tim [f(n)|  Tim [f(—n)].

n-yoo n-00
Applying Theorem 4, we can extend Theorem C into strictly larger class V,, in
the following way.

THEOREM 5. Let A = (\,.;) be a positive admissible matrix such that {cos kt} is
summable A (or Fy) to zero for all t # 0 (mod 2w). Then for every continuous
function f of the cluss V,(1 £ p < 2), the sequence {|f(k)|} is summable A
(respectively, I'y) to zero if and only if | \f‘(—k)[} is summable A (respectively, Fy)
to zero.

Proof. If f € 17, and is continuous, then from Theorem 4, we have that the
sequence defined by

(12) {f®)| + [f(—=k)|}

is summable A (respectively, F4) to zero. The equivalence of the summability
of the sequences {|f(k)|} and {|f(—Fk)|} follows immediately from the summa-
bility of the sequence (12).

Remark. If we drop the hypothesis of continuity in Theorem 35, we can
establish a criterion for the summability of the sequences {|f(k)|} and
{1/ (—k)|} to a number different from zero.
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