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Visualizing elements of order 7 in the
Tate–Shafarevich group of an elliptic curve

Tom Fisher

Abstract

We study the elliptic curves in Cremona’s tables that are predicted by the Birch–Swinnerton-
Dyer conjecture to have elements of order 7 in their Tate–Shafarevich group. We show that in
many cases these elements are visible in an abelian surface or abelian 3-fold.

1. Introduction

Let E/Q be an elliptic curve. Two groups of particular arithmetic interest associated to E
are the Mordell–Weil group E(Q) and the Tate–Shafarevich group X(E/Q). While the study
of these groups is intimately related, it seems much easier to write down elements of the
first group than the second. In an attempt to remedy this, Mazur [19] suggested visualizing
elements of X(E/Q) as cosets of E inside some larger abelian variety.

We recall some basic definitions. A torsor (or principal homogeneous space) under E is a
pair (C, µ) where C is a genus-1 curve, and µ : E × C → C is a morphism inducing a simply
transitive action on Q-points. We may view C as a twist of E by a cocycle taking values in E
(acting on itself by translations) and so as an element of the Weil–Châtelet group H1(Q, E).
The identity in this group corresponds to the torsors with a Q-point, or equivalently those
that are isomorphic to E. The Tate–Shafarevich group X(E/Q) is the subgroup consisting of
torsors that are everywhere locally soluble, that is, have a Qv-point for all places v.

Let ι : E → A be an inclusion of abelian varieties. If C is the twist of E by ξ ∈ H1(Q, E),
and V is the twist of A by ι∗(ξ) ∈ H1(Q, A), then there is a natural inclusion C → V . One
might say that C is visible in V . Accordingly, the subgroup of H1(Q, E) visible in A is

VisAH
1(Q, E) = ker(H1(Q, E)

ι∗−→ H1(Q, A)).

The visibility dimension of ξ ∈ H1(Q, E) is the least dimension of an abelian variety A such
that ξ ∈ VisAH

1(Q, E).
To construct a suitable abelian variety A, we usually start with an abelian variety F/Q chosen

so that E and F have a common finite Galois submodule ∆. We then take A = (E × F )/∆
where the quotient is by the diagonal embedding of ∆.

Cremona and Mazur [3, 10] gave some examples of elliptic curves E/Q and elements of order
n ∈ {2, 3, 4, 5} in X(E/Q) that are visible in an abelian surface. For this they take F to be a
second elliptic curve (often of the same conductor as E) with E[n] ∼= F [n] as Galois modules.
An argument using restriction of scalars (see [2, Proposition 2.4]) shows that if ξ ∈X(E/Q)
has order n then it has visibility dimension at most n. Mazur [19] showed that elements of
order 3 in X(E/Q) are always visible in an abelian surface. In [13] we gave some examples
of elements of orders 6 and 7 that are not visible in an abelian surface.
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visibility of tate–shafarevich groups 101

In this paper we give examples of elements of X(E/Q) of order 7 that are visible in an
abelian surface or abelian 3-fold. Continuing the work of Cremona and Mazur, our data shows
that, at least for curves of small conductor, the visibility dimension is often much smaller than
the bound coming from restriction of scalars.

Theorem 1.1. (i) There are 222 isogeny classes of elliptic curves E/Q with conductorNE <
105 that do not admit a rational 7-isogeny, but are predicted by the Birch–Swinnerton-
Dyer conjecture to have X(E/Q)[7] 6= 0.

(ii) Of these examples, at least 79 are explained by visibility in an abelian surface, and at
least a further 14 are explained by visibility in an abelian 3-fold.

The list in Theorem 1.1(i) is taken from Cremona’s tables [9]. In each case rankE(Q) = 0
and the Birch–Swinnerton-Dyer conjecture predicts that #X(E/Q) = (7m)2 for some integer
m coprime to 7. We chose to investigate the following example in greater detail.

Theorem 1.2. Let E/Q be the elliptic curve

67080r y2 = x3 − x2 + 782367544x+ 10114340277756.

Then E(Q) ∼= Z/2Z and X(E/Q) ∼= (Z/7Z)2. Moreover:
(i) every element of X(E/Q) is visible in an abelian 3-fold isogenous to E × Jac(C) where

C/Q is the genus-2 curve y2 = x(x+ 4)(x4 + 2x3 − x− 3);
(ii) conditional on the Generalised Riemann Hypothesis, none of the non-zero elements of

X(E/Q) are visible in an abelian surface.

The computer calculations in support of this work were carried out using Magma [7],
Pari/GP [21] and Sage [29].

2. Background on visibility

In this section we review some basic facts about visibility. References for this include [2, 3, 10].
Let E and F be abelian varieties over a number field K, with common finite Galois

submodule ∆. Let A = (E × F )/∆, where the quotient is by the diagonal embedding of ∆.
Let F ′ = A/E and E′ = A/F . There is then a commutative diagram

0

��
F

��

ψ

  
0 // E //

φ   

A //

��

F ′ // 0

E′

��
0

where the row and column are exact sequences of abelian varieties, and the diagonal maps φ
and ψ are isogenies with kernel ∆.
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102 t. a. fisher

There is a commutative diagram with exact rows:

0 // ∆ //

��

F
ψ //

��

F ′ // 0

0 // E // A // F ′ // 0

Taking the long exact sequence of Galois cohomology gives

F (K)
ψ //

��

F ′(K) // H1(K,∆)

��
E(K) // A(K) // F ′(K)

π // H1(K,E) // H1(K,A)

(1)

It follows by a diagram chase that there are short exact sequences

0→ A(K)

E(K) + F (K)
→ F ′(K)

ψF (K)
→ VisAH

1(K,E)→ 0

and (swapping the roles of E and F )

0→ A(K)

E(K) + F (K)
→ E′(K)

φE(K)
→ VisAH

1(K,F )→ 0.

These two exact sequences immediately give the following lemma.

Lemma 2.1. If E′(K)/φE(K) = 0 then F ′(K)/ψF (K) ∼= VisAH
1(K,E).

Next we give some local conditions under which the visible subgroup of H1(K,E) is actually
a subgroup of X(E/K). Let d = |∆| be the degree of φ and ψ.

Theorem 2.2. If E′(K)/φE(K) = 0 and
(i) all the Tamagawa numbers of E and F are coprime to d; and
(ii) A has good reduction at all places v | d; and

(iii) writing p for the rational prime below v, e(Kv/Qp) < p− 1 for all places v | d;
then F ′(K)/ψF (K) ∼= VisAX(E/K).

Proof. We write A0(Kv) for the subgroup of A(Kv) consisting of points whose reduction mod
v belongs to the identity component of the special fibre of the Néron model. The following
three facts are established in [2].

(1) The unramified subgroup of H1(Kv, E) has order equal to the Tamagawa number
cv(E) = [E(Kv) : E0(Kv)].

(2) If v -d then ψ : F 0(Knr
v )→ F ′0(Knr

v ) is surjective.
(3) If A has good reduction at v and e(Kv/Qp) < p−1 then A(Knr

v )→ F ′(Knr
v ) is surjective.

We consider the diagram (1) with K replaced by Kv. To prove the theorem it suffices to
show that πv : F ′(Kv)→ H1(Kv, E) is the zero map for all places v of the number field K. It
is clear that the image of πv is killed by multiplication by d. So by fact (1) and our hypothesis
on the Tamagawa numbers of E, it suffices to show that every element in the image of πv is
unramified. This follows by fact (2) if v -d and by fact (3) if v | d.

Finally, we note that by hypothesis (iii), d is odd, and so there are no local conditions to
check at the infinite places.
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3. Visibility in abelian surfaces

In this section we give some examples of elements of order 7 in X(E/Q) that are visible in an
abelian surface.

Elliptic curves E and F are said to be n-congruent if E[n]∼=F [n] as Galois modules. We
write XE(n) (respectively, X−E (n)) for the twist of the modular curve X(n) whose non-cuspidal
points parametrise the elliptic curves n-congruent to E via an isomorphism of n-torsion
subgroups that preserves (respectively, reverses) the Weil pairing. In the case n = 7 these
curves are twists of the Klein quartic X(7) = {x3y+ y3z+ z3x = 0} ⊂ P2. Since each element
of (Z/7Z)× is plus or minus a square, each elliptic curve 7-congruent to E corresponds to a
rational point on either XE(7) or X−E (7).

Theorem 3.1 [17, Théorème 2.1]. Let E be an elliptic curve with Weierstrass equation
y2 = x3 + ax+ b. Then XE(7) ⊂ P2 has equation

ax4 + 7bx3z + 3x2y2 − 3a2x2z2 − 6bxyz2 − 5abxz3 + 2y3z + 3ay2z2 + 2a2yz3 − 4b2z4 = 0.

In [22, § 7.2] an equation for X−E (7) is derived from that for XE(7). Formulae for the families
of elliptic curves parametrised by XE(7) and X−E (7) are given in [17] and [12].

Example 3.2. Let E be the elliptic curve 3364c in [9]. (By convention a Cremona label
without a final number refers to the first curve in the isogeny class.) We take a = −4062871
and b = −3152083138 in Theorem 3.1. We then make the change of coordinatesxy

z

←
 2320 0 −3509
−2716430 1682 4042687
−2 0 3

xy
z


so that XE(7) ⊂ P2 has equation

x4 + 2x3y + x3z + 3x2y2 + 3x2yz + 3x2z2 + 2xy3

− 3xy2z + 6xyz2 + 12xz3 − 3y3z − 3y2z2 + 6yz3 − 2z4 = 0.

The Magma function PointSearch (with height bound 106) finds only two rational points
(0 : 1 : 0) and (1 : −1 : 0) on XE(7), and no rational points on X−E (7). These rational
points correspond to the elliptic curves E = 3364c and F = 10092c. In particular, this proves
that E and F are 7-congruent.

We performed a similar search for rational points on XE(7) and X−E (7) for each of the elliptic
curves E/Q in Theorem 1.1(i). Many of the 7-congruent elliptic curves we found had rank 0
or 1, but in the 79 cases listed in Table 1 we found an elliptic curve F/Q of rank 2. In the small
number of cases where we found more than one such F , we just kept the one with smallest
conductor. The elliptic curves F beyond the range of Cremona’s tables were as follows (in
these cases we label the curve by its conductor followed by a ∗):

561090∗ y2 + xy = x3 + x2 + 95243x− 147561011,

3140928∗ y2 = x3 − 8580204x+ 8146637424,

2967232150∗ y2 + xy + y = x3 − 3223101295946x+ 3747757318724534268,

6659445∗ y2 + y = x3 − x2 − 67728609901x+ 7329794977161867,

25859475∗ y2 + y = x3 − 31493068950x− 6675516099954594.
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Theorem 3.3. Let (E,F ) be any one of the 79 pairs of elliptic curves listed in Table 1.
Then F (Q) explains a subgroup of X(E/Q) isomorphic to (Z/7Z)2.

Proof. By construction these elliptic curves are 7-congruent, and do not admit any rational
7-isogenies. They also have ranks 0 and 2. So by Lemma 2.1 we have

(Z/7Z)2 ∼= F (Q)/7F (Q) ∼= VisAH
1(Q, E).

The Tamagawa numbers of E and F (at all bad primes) are coprime to 7. So in the 50 cases
where E and F have good reduction at 7, it follows by Theorem 2.2 that VisAH

1(Q, E) is a
subgroup of X(E/Q). In a further four cases (27930bj, 31311h, 71148bh, 84966ea) the elliptic
curves E and F attain good reduction over K = Q7( 4

√
7). Since [K : Q7] is coprime to 7 and

e(K/Q7) < 6, this again suffices to check local solubility.
The right-hand square in (1) gives a commutative diagram

0 // E(Q7)/7E(Q7) // H1(Q7, E[7]) // H1(Q7, E)[7] // 0

0 // F (Q7)/7F (Q7) //

π7

33

H1(Q7, F [7]) // H1(Q7, F )[7] // 0

where the rows are the Kummer exact sequences for E and F . To complete the proof it
suffices to show that π7 is the zero map. This follows by Theorem 3.4(i) in 20 examples, and

Table 1. Pairs of 7-congruent elliptic curves.

E F E F E F E F

3364c 10092c 31311h 31311k 60885r 60885q 84150gk 84150gl

6552y 6552ba 31800e 31800f 61200gv 61200gu 84474w 84474u

9450p 9450t 34974h 174870bi 61950q 61950o 84672kg 84672kd

9510e 561090∗ 35682k 35682j 65088be 65088bc 84681e 84681h

10800y 10800u 36270l 36270j 68805d 68805c 84966ea 84966dx

11970o 11970s 36300br 36300by 69440z 69440ba 85050s 85050x

12927e 12927d 36414u 36414y 71148bh 71148bg 88305h 88305g

18832a 1712d 40362s 40362t 72384o 72384n 88450f 2967232150∗
19350q 19350s 41616cw 41616cx 73416g 10488b 89211c 681c

20544v 20544u 43296g 43296f 74400h 74400j 91035c 18207a

21312ce 21312cd 43350q 43350p 75075f 75075d 91800be 91800bd

21696l 21696k 45494e 45494d 75712bz 10816bf 92778r 92778t

23232dv 23232dt 45738ca 45738bz 76176cd 76176cg 92862j 13266e

26600m 26600l 46704k 6672i 76362r 76362q 92950be 92950bd

26640bu 26640bt 46800ew 46800fa 76608bl 3140928∗ 93795e 6659445∗
27930bj 27930bh 47232bu 47232bp 78210k 7110h 95040cd 95040ci

28314bn 28314bp 49938i 49938h 78400dg 235200eb 96558i 5082d

29400di 29400do 51600m 51600l 79350cy 79350cx 97470bp 97470br

30276r 30276q 54450gm 54450go 79530a 15906c 98325x 25859475∗
30996b 30996a 57150g 57150e 81600ho 81600hn
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by Theorem 3.4(ii) in four examples (46704k, 73416g, 75712bz, 92862j). In the remaining
example with E = 84672kg we found that E[7] ∼= F [7] has a unique cyclic Gal(Q7/Q7)-
submodule, and were able to prove that π7 is the zero map by a brute-force calculation using
Lemmas 4.1, 4.3(i) and Velu’s formulae [31].

Theorem 3.4. Let E and F be 7-congruent elliptic curves over Q7. Suppose that either
(i) E and F have potentially multiplicative reduction; or
(ii) E has non-split multiplicative reduction and F has good reduction.

Then E(Q7)/7E(Q7) and F (Q7)/7F (Q7) have the same images (via the Kummer exact
sequence) in H1(Q7, E[7]) ∼= H1(Q7, F [7]).

Proof. These are special cases of Theorems 4.2 and 4.4 below, applied over either Q7 or a
quadratic extension.

4. Conditions for local solubility

In this section K will be a p-adic field, that is, a finite extension of Qp, with discrete valuation
vK (normalised to take integer values) and valuation ring OK . Let ` be an odd prime. We
write ζ` ∈ K for a primitive `th root of unity, and jE for the j-invariant of an elliptic curve E.

Lemma 4.1. Let φ : E → E′ be an `-isogeny of elliptic curves over K, with dual isogeny
φ̂ : E′ → E. Then the following are equivalent:

(i) E′(K)/φE(K) ∼= H1(K,E[φ]);

(ii) E(K)/φ̂E′(K) = 0;
(iii) the images of E(K)/`E(K) and H1(K,E[φ]) in H1(K,E[`]) are the same.

Proof. There is a commutative diagram with exact rows and exact right-hand column

E(K)
φ // E′(K)

δφ //

φ̂

��

H1(K,E[φ])

��
E(K)

φ

��

` // E(K)
δ` // H1(K,E[`])

��
E′(K)

φ̂ // E(K)
δ
φ̂ // H1(K,E′[φ̂])

(2)

By Tate local duality, δφ is surjective if and only if δφ̂ has trivial image. The remaining
statements follow by a diagram chase.

Theorem 4.2. Let E and F be `-congruent elliptic curves over K, both with split
multiplicative reduction. Suppose that either ζ` 6∈ K or vK(jE) 6≡ 0 (mod `). Then
E(K)/`E(K) and F (K)/`F (K) have the same images (via the Kummer exact sequence) in
H1(K,E[`]) ∼= H1(K,F [`]).

Proof. By the Tate parametrisation there is an isomorphism of Gal(K/K)-modules

E(K) ∼= K
×
/qZ for some q ∈ K× with vK(q) = −vK(jE). We consider the `-isogenies

φ : E → E′ and φ̂ : E′ → E given on K-points by

K×/qZ → K×/q`Z

x 7→ x`
and

K×/q`Z → K×/qZ

x 7→ x.
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Since the second of these maps is surjective, the conditions in Lemma 4.1 are satisfied. As
Galois modules we have E[φ] ∼= µ` and E′[φ̂] ∼= Z/`Z, and so an exact sequence

0 −→ µ` −→ E[`] −→ Z/`Z −→ 0. (3)

If the isomorphism E[`] ∼= F [`] identifies the submodules µ`, then applying Lemma 4.1 to both
E and F proves the theorem. If the submodules µ` are not identified then µ` ∼= Z/`Z and (3)
splits, in which case ζ` ∈ K and vK(jE) ≡ 0 (mod `), contradicting our hypotheses.

Another way to check the conditions in Lemma 4.1 is provided by the following lemma. We
write cK(E) for the Tamagawa number of E/K.

Lemma 4.3. Let φ : E → E′ be an `-isogeny of elliptic curves over K, with dual isogeny
φ̂ : E′ → E. Let ω and ω′ be Néron differentials on E and E′.

(i) We have φ∗ω′ = αω and φ̂∗ω = βω′ for some α, β ∈ OK satisfying αβ = `; and

#(E′(K)/φE(K))

#E(K)[φ]
= |α|−1K

cK(E′)

cK(E)
.

(ii) If E and E′ have good reduction, E(K)[φ] 6= 0 and e(K/Qp) < p− 1 then α is a unit.

Proof. (i) See [23, Lemma 3.8].
(ii) We suppose p = ` as otherwise α is a unit by (i). Since e(K/Qp) < p − 1 the theory

of formal groups shows that E(K)[φ] ∼= Z/pZ cannot belong to the kernel of reduction.
Therefore, arguing exactly as in the proof of [28, Chapter X, Theorem 4.2], the image of δφ
in (2) lies in the unramified subgroup. Since K has a unique unramified extension of degree p
it follows that #(E′(K)/φE(K)) divides p, and so α is a unit by (i).

Theorem 4.4. Let E and F be `-congruent elliptic curves over K. Suppose that E has
non-split multiplicative reduction and F has good reduction. If p = ` then further suppose
that e(K/Qp) < p − 1. Then E(K)/`E(K) and F (K)/`F (K) have the same images (via the
Kummer exact sequence) in H1(K,E[`]) ∼= H1(K,F [`]).

Proof. Let L be the unramified quadratic extension of K. By the Tate parametrisation there
is an exact sequence of Gal(K/K)-modules

0→M1 → E[`]→M2 → 0

with M1
∼= µ` and M2

∼= Z/`Z over L. Since [L : K] is coprime to `, the proof of Theorem 4.2
shows that E(K)/`E(K) and H1(K,M1) have the same image in H1(K,E[`]). Since

E[`] ∼= F [`], there are `-isogenies φ : F → F ′ and φ̂ : F ′ → F with kernels M1 and M2.
By our assumption that E has non-split reduction, the action of Gal(L/K) on M2 is non-

trivial. Applying Lemma 4.3(ii) to the isogeny φ̂ : F ′ → F over L, and then Lemma 4.3(i) to

the same isogeny over K, shows that F (K)/φ̂F ′(K) = 0. We are again done by Lemma 4.1.

5. Visibility in abelian 3-folds

In this section we give some examples of elements of order 7 in X(E/Q) that are visible in an
abelian 3-fold.

Let E/Q be one of the elliptic curves in Theorem 1.1(i). We may use the modular symbols
algorithms in Magma or Sage to look for modular forms f ∈ S2(Γ0(NE)) satisfying a p-
congruence with E for some prime p|7. Table 2 lists the first few examples we found with
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Q(f) 6= Q. Each f is a normalised Hecke eigenform with Q(f) = Q(
√

2) and satisfies ap(f) ≡
ap(E) mod (3+

√
2) for all primes p with p < 1000. By work of Shimura [25] we may associate

to each f a modular abelian surface Af with real multiplication by
√

2. Our data suggests
that Af [3 +

√
2] ∼= E[7] as Galois modules. If Af is isogenous over Q to the Jacobian of a

genus-2 curve C/Q then for each prime p of good reduction for C we have (see [14, § 2.1] or
[20, Lemma 3])

Trace(ap) = p+ 1− n1,
Norm(ap) = (n21 + n2)/2− (p+ 1)n1 − p,

(4)

where n1 = #C(Fp) and n2 = #C(Fp2). We used the following result to help find the
corresponding genus-2 curves. (An alternative approach is described in [15, 33].)

Theorem 5.1 [5, Theorem 4.1]. Let g(x) =
∏3
i=1(x2−αix+Pα2

i +Qαi+R) where α1, α2, α3

are the roots of x3 +Ax2 +Bx+ C = 0 and A,B,C, P,Q,R ∈ Q with P 6= 0 and

R = 4P, B = (Q(PA−Q) + 4P 2 + 1)/P 2, C = 4(PA−Q)/P.

If g(x) has distinct roots in Q then y2 = g(x) defines a smooth curve of genus 2 whose Jacobian
admits real multiplication by

√
2, defined over Q, and fixed by the Rosati involution. Moreover,

every such genus-2 curve arises in this way, up to quadratic twist.

By searching over A,P,Q ∈ Q of small height, we found for each of the modular forms in
Table 2 a genus-2 curve satisfying (4) for all good primes p < 1000. We record the genus-2
curves (and Cremona labels for E) in Table 3 and the values of A,P,Q in Table 4.

At this point we abandoned the computation of modular forms (which is increasingly time-
consuming as the level increases) and took the following more naive approach. We used
Theorem 5.1 to draw up a list of genus-2 curves by looping over A,P,Q ∈ Q of small height
and keeping only those curves whose primes of bad reduction are smaller than some threshold.

Table 2. Hecke eigenvalues ap(f).

E a2 a3 a5 a7 a11 a13

6622b −1 −
√

2− 1
√

2− 2 −1 1 2
√

2− 2

9510e −1 −1 1
√

2− 3 −2
√

2− 2 −5

14938n 1 −2
√

2− 2 −1 −1 −2

15219c −
√

2− 1 0 −1 2
√

2− 2 −5 −2
√

2 + 3

20502ba 1 0 −
√

2− 3 −
√

2− 3 3
√

2− 2
√

2− 2

Table 3. Genus-2 curves.

6622b y2 = 20x6 + 44x5 − 23x4 − 10x3 + 81x2 − 52x+ 4

9510e y2 = 9x6 − 12x5 + 2x4 − 84x3 + 437x2 + 528x+ 144

14938n y2 = 4x6 + 36x5 + 37x4 − 150x3 − 47x2 − 72x+ 16

15219c y2 = −7x6 + 18x5 − 93x4 + 18x3 + 117x2 − 36x+ 64

20502ba y2 = 36x6 + 108x5 + 381x4 + 474x3 + 849x2 + 504x+ 144
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Table 4. Pairs of elliptic curves and genus-2 curves.

E κ A P Q δ #tors rank 7 | cp p = 7

6622b 1 41/4 1/5 0 1 1 4 {11} m

(9510e) 1 29/5 18 53 2 1 4 g

14938n 1 9 1/4 3 1 2 4 m

15219c 1 9/8 −4/7 −6/7 1 1 4 g

20502ba 1 6 9/16 7/4 1 1 4 g

21771b 1 81/8 2 12 2 1 4 g

23025c 19 −52/3 −3/4 3 5 2 2 {19} g

23085h 1 6 3/5 22/5 1 1 4 g

23744v 1 −7 −2 9 1 1 4 m

24432j 1 −8 −3/4 7 15 1 4 g

25296a 37 9 2/5 5/2 1 1 6 {31, 37} g

26166h 1 83/12 4 95/6 1 1 4 {3} g(3)

29445c 1 −14/3 −1/2 5/2 1 1 4 g

39984bf 1 3 4 11 1 1 4 g(3)

40764a 1/3 8 2 7 1 1 4 g

40950u 1 9 4/5 29/5 5 4 4 m

41616l 1 23/3 9 40 1 1 4 g

45770c 1 4 1 −1 1 1 4 {5} g

54327c 1 47/7 7/6 4 42 2 4 m

54663a 1 −6 −1/8 13/8 1 2 4 m

61320v 1 53/6 1 14/3 1 1 4 m

67032cf 1 2 3/16 5/4 7 2 4 m∗

67080r 1/5 7 9 37 1 2 4 g

67179c 1 6 7/4 31/4 1 2 4 m∗

70950bc 1 27/5 1 29/10 1 1 4 {2} g

72128j 1 8 8/7 31/7 14 2 4 m∗

(75712bz) 17/7 5 4 17 −26 2 2 {17}
(76176cd) 1 12 −1/4 1 1 1 4 g

(76608bl) 11 2/7 7/6 −1/3 −14 1 4 m

78400le 1 8 −4/7 −29/7 1 2 4 g(4)

(84474w) 49 17 3/4 7 7 1 4

90650i 1 −8 −1 3 −35 1 4 m∗

90950i 1 7 8 27 1 1 4 g

90950m 1 1 4/5 1 5 1 4 g

96300bd 1 8 10/3 43/3 1 1 4 g
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For each curve C on our list, we computed the right-hand sides tp and np in (4) for all p < 100.
Then for each elliptic curve E in Theorem 1.1(i) we tested to see whether

ap(E)2 ± tpap(E) + np ≡ 0 (mod 7) (5)

for some choice of sign ±. If this test is passed for many primes p then it seems likely that E
and the Jacobian of C satisfy a congruence up to quadratic twist. Indeed, in all such cases we
were able to replace C by a quadratic twist so that (5) holds with a minus sign for all good
primes p < 1000.

The examples we found are recorded in Table 4, except that we list just one genus-2 curve
C for each elliptic curve E. In cases where we found more than one C, it appears that the
Jacobians of these curves are isogenous. The data recorded is as follows.

The elliptic curve E/Q. This is specified by its reference in Cremona’s tables [9]. An entry in
brackets indicates that this curve already appeared in Table 1.

The ratio of levels. The odd part of the conductor of F = Jac(C), computed using Liu’s
program genus2reduction in Sage, is (κNodd)2 where Nodd is the odd part of the
conductor of E, and κ is recorded in the second column of the table. In most cases
κ = 1, as we would expect if E and F correspond to newforms of the same level.

The genus-2 curve C/Q. This is specified as the quadratic twist by δ of the curve in
Theorem 5.1 with parameters A,P,Q.

The Mordell–Weil group of F = Jac(C). We used Magma to compute the order of the torsion
subgroup and the rank of F (Q). For the latter, we used Stoll’s implementation of
2-descent to bound the rank, and then the functions Points and ReducedBasis to find
sufficiently many independent points of infinite order. Since F (Q) is a Z[

√
2]-module, the

rank is necessarily even. It is striking that in nearly all cases we have rankF (Q) = 4.

The primes with Tamagawa number divisible by 7. The Tamagawa numbers cp(E) are
coprime to 7 in all cases. We list the primes p for which the Tamagawa number cp(F )
is divisible by 7. These entries were computed using Liu’s program genus2reduction

in Sage, Donnelly’s programs RegularModel and ComponentGroup in Magma, and
our own calculations for curves with multiplicative reduction, following [14, § 3.4]
and [6, Theorem 9.6.1]. There was one case (E = 76608bl and p = 2) not covered
by these methods. Liu’s program nonetheless reports that the potential stable reduction
is the union of two elliptic curves. The Jacobian F therefore has potential good reduction,
and so by a result of Silverman [27] the Tamagawa number is coprime to 7.

The reduction behaviour at p = 7. We write g in cases where E and F both have good
reduction, and m in cases where they both have multiplicative reduction. We write m∗

if the
√

7-twists of E and F both have multiplicative reduction. The label g(n) indicates
that E and F attain good reduction over Q7( n

√
7).

Theorem 5.2. Let (E,F ) be any one of the 16 pairs of elliptic curves and genus-2 Jacobians
listed in Table 4, for which the Cremona reference for E appears in bold. Then F (Q) explains
a subgroup of X(E/Q) isomorphic to (Z/7Z)2.

Proof. In Theorem 6.3 we show that (making an appropriate choice of sign for
√

2) we have
E[7] ∼= F [3+

√
2] as Galois modules. The ranks of E and F are 0 and 4, and they have torsion

subgroups of order coprime to 7. Since F (Q) is a Z[
√

2]-module, it follows by Lemma 2.1 that

(Z/7Z)2 ∼= F (Q)/[3 +
√

2]F (Q) ∼= VisAH
1(Q, E).
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For the examples highlighted in bold:
(i) all Tamagawa numbers of E and F are coprime to 7; and
(ii) E and F have potential good reduction at 7, and this good reduction is achieved over

an extension of Q7 of degree less than 6.
It follows by Theorem 2.2 that VisAH

1(Q, E) is a subgroup of X(E/Q).

Remark 5.3. We expect that Theorem 5.2 is true for all the pairs (E,F ) in Table 4 with
rankF (Q) > 4. Moreover, in all cases except the one with E = 84474w, this would follow from
an appropriate generalisation of Theorem 4.2.

Remark 5.4. We checked (using the method in [8, p. 158], [30]) that the genus-2 Jacobian
F is absolutely simple in all cases except the one with E = 78400le. In the exceptional case
the formulae in [5, § 5] show that F is isogenous to the restriction of scalars of the Q-curve

y2 = x(x2 + 5(7 +
√
−7)x+ 70(1 +

√
−7)).

In this case we were able to check the congruence E[7] ∼= F [3 +
√

2] using Theorem 3.1.

6. Checking the congruences

In Table 4 we gave a list of pairs (E,F ) where E/Q is an elliptic curve and F is the Jacobian of
a genus-2 curve C/Q. The genus-2 curves C were constructed using Theorem 5.1, and so their
Jacobians are known to have real multiplication by

√
2. We suspect (on the basis of comparing

traces of Frobenius for all good primes p < 1000) that E[7] ∼= F [3 +
√

2] as Galois modules.
In this section we prove that this is indeed the case.

It would of course be interesting to prove this using modularity, or by finding a result
analogous to Theorem 3.1, but we take a more direct approach, based on that used in [18, § 5]
to exhibit a pair of 7-congruent elliptic curves.

Proposition 6.1. Let E/Q be an elliptic curve and F/Q a genus-2 Jacobian with real
multiplication by

√
2, defined over Q, and fixed by the Rosati involution. Suppose that:

(i) the Galois representation ρE,7 : Gal(Q/Q)→ GL(E[7]) is surjective;
(ii) there are non-zero torsion points P ∈ E[7] and Q ∈ F [7] whose images in E/{±1} and

F/{±1} have the same field of definition. (By (i) this is a degree-24 number field.)
Then for some choice of sign ± the Gal(Q/Q)-modules E[7] and F [3±

√
2] are isomorphic up

to quadratic twist.

Proof. We write Q = Q+ + Q− where Q± = (−3 ±
√

2)Q ∈ F [3 ±
√

2]. Let L,L± be the
fields of definition of the images of Q,Q± in F/{±1}. It is clear that L+ and L− are subfields
of L and that [L : L1L2] 6 2. By our hypotheses on E, the subfields of L correspond to
the subgroups H with {(±1 ∗0 ∗)} ⊂ H ⊂ GL2(F7). In particular, L has degree 24, and its only
non-trivial subfield has degree 8. So either L = L+ or L = L−. Suppose it is the former. Then
replacing Q by Q+ we may assume that Q ∈ F [3 +

√
2].

Since
√

2 is fixed by the Rosati involution, it is self-adjoint for the Weil pairing e7 : F [7] ×
F [7]→ µ7. In particular, F [7] = F [3 +

√
2]× F [3−

√
2] is an orthogonal decomposition with

respect to e7. Since the Weil pairing is alternating and non-degenerate we have

∧2E[7] ∼= ∧2F [3±
√

2] ∼= µ7.

The proposition is now a special case of the following lemma.
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Lemma 6.2. Let ` > 5 be a prime, and let M1, M2 be Galois modules each isomorphic to
(Z/`Z)2 as an abelian group. Suppose that ∧2M1

∼= ∧2M2. Suppose also that:
(i) the Galois representation Gal(Q/Q)→ GL(M1) is surjective; and
(ii) the Galois representation Gal(Q/Q(M2))→ SL(M1) is not surjective.

Then M1 and M2 are isomorphic up to quadratic twist.

Proof. This is a variant of [24, Lemme 8], the difference being that we have removed the
hypothesis that Gal(Q/Q)→ GL(M2) is surjective.

Let B1 and B2 be finite groups and H a subgroup of B1 × B2 with pr1(H) = B1 and
pr2(H) = B2. We identify B1 with B1 × {1} in B1 × B2 and let N1 = B1 ∩H. Likewise, we
put N2 = B2 ∩H. Then N1 is normal in B1, and N2 is normal in B2. Moreover, the image of
H in B1/N1 ×B2/N2 is the graph of an isomorphism α : B1/N1 → B2/N2.

We apply the above with Bi the image of Gal(Q/Q) → GL(Mi) for i = 1, 2, and H the
image of Gal(Q/Q)→ GL(M1)×GL(M2). Hypothesis (ii) shows that N1 is a proper subgroup
of SL(M1). Since N1 is normal in B1

∼= GL2(F`) it follows that N1 ⊂ {±1}. Hence B1/N1
∼=

GL2(F`) or GL2(F`)/{±1}. The only index-2 subgroup of GL2(F`) is the subgroup of elements
with determinant a square. By inspection of the centres we see that this subgroup is not
isomorphic to GL2(F`)/{±1}. Since B1/N1

∼= B2/N2 it follows that B2
∼= GL2(F`). In other

words, we have shown that Gal(Q/Q) → GL(M2) is surjective. The proof in [24] (using the
fact that every automorphism of PGL2(F`) is inner) now applies.

Theorem 6.3. Let (E,F ) be any one of the pairs in Table 4. Then for some choice of sign
± we have E[7] ∼= F [3±

√
2] as Galois modules.

Proof. In each case it is easy to find a good prime p for which fp(X) = X2 − ap(E)X + p is
irreducible mod 7, and another good prime p 6= 7 for which fp(X) has distinct roots mod 7.
It follows by [24, § 4] that ρE,7 : Gal(Q/Q)→ GL(E[7]) is surjective.

Let L be the number field of degree 24 defined by the x-coordinate of a 7-torsion point on E.
As noted in [18], the degree-8 subfield is K = Q(θ) where θ is a root of

(X2 + 5X + 1)3(X2 + 13X + 49)− jEX = 0. (6)

We specify points on F = Jac(C) by pairs of points [P1, P2] on C corresponding to the divisor
class [P1 +P2 −Ω], where Ω is a canonical divisor. We also write Pi = (xi, yi) for i = 1, 2. Let
β0 be the rational function specified on [8, page 18]. Then there is a morphism

F → P3; [P1, P2] 7→ (1 : x1 + x2 : x1x2 : β0)

whose image is the Kummer surface K ⊂ P3. This is a quartic surface isomorphic to F/{±1}.
We use the machinery for computing with analytic Jacobians in Magma [32] to compute

(numerical approximations to) 24 points [(x1, y1), (x2, y2)], representing the pairs of inverse
elements in F [3 +

√
2] − {0}. In all cases except E = 78400le (discussed in Remark 5.4) we

have EndC(F ) = Z[
√

2], and so the only ambiguity in choosing
√

2 is up to sign. We arrange
the 24 points into 8 sets of 3 corresponding to the action of (Z/7Z)×/{±1}. We anticipate
that each set of three points (or rather their images in K) will be jointly defined over K.

Let [(x1, y1), (x2, y2)] be one of the points. Let g and h be the minimal polynomials of
x1 + x2 and x1x2 over K. Let c be one of the coefficients of g or h. We compute the minimal
polynomial of c over Q by first computing the coefficients numerically and then recognising
them as rational numbers. We then find a root of this polynomial in K. If we are unable to
find a root then we either increase the precision, or go back and change the sign of

√
2. In this

way we compute cubic polynomials g, h ∈ K[X].
We then solve for a point Q = (1 : ξ2 : ξ3 : ξ4) ∈ K(L) where ξ2 and ξ3 are roots of g and h.

For this we try all pairs of roots of g and h and use the equation for K to solve for ξ4. Since
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the multiplication-by-m maps on the Kummer surface are implemented in Magma it is then
easy to check (now by an exact calculation) that 7Q = (0 : 0 : 0 : 1). Moreover, in each case
we found that L = Q(ξ2).

Proposition 6.1 now shows that E[7] ∼= F [3±
√

2] up to quadratic twist. But any quadratic
twist would be supported on the bad primes. So our earlier comparison of traces of Frobenius
for all good primes p < 1000 is more than sufficient to finish the proof.

7. Proof of Theorem 1.2

Let E be the elliptic curve 67080r. Theorem 5.2 shows that X(E/Q) contains a subgroup
(Z/7Z)2 visible in an abelian 3-fold. Moreover, the abelian 3-fold is as described in Theorem 1.2,
since, taking (A,P,Q) = (7, 9, 37) in Theorem 5.1, we have

9(x+ 1)6g

(
−x− 2

x+ 1

)
= x(x+ 4)(x4 + 2x3 − x− 3).

Following the methods in [16], we show that this is all of X(E/Q). The bad primes of E
split in K = Q(

√
D) with D = −191. Computing L-values and using the Gross–Zagier formula

shows there is a point yK ∈ E(K) with canonical height ĥK(yK) ≈ 217958.077. Following [16,
§ 2.1], we find that ρE,p : Gal(Q/Q)→ GL(E[p]) is surjective for all odd primes p. Therefore,
by work of Kolyvagin,

vp(#X(E/Q)) 6 2 vp([E(K) : ZyK ]).

We found a point of infinite order P ∈ ED(Q) using 12-descent [11]. (This is quicker than
using Heegner points in this case.) Since the point is rather large, we record it as follows. Let
C4 ⊂ P3 be the 4-covering of the elliptic curve 2-isogenous to ED defined by

x21 + 6x1x2 + 7x1x3 + 23x1x4 − 3x22 + 12x2x3 + 8x2x4 − 30x23 + 54x3x4 − 60x24 = 0,

6x21 − x1x2 + 89x1x3 − 37x1x4 + 37x22 − 86x2x3 + 22x2x4 − 166x23 + 114x3x4 + 199x24 = 0.

The 4-covering map is given by formulae of classical invariant theory; see [4]. Then P ∈ ED(Q)
is the image, under the 4-covering map and the 2-isogeny, of the point

(847793227 : 2227947281 : 2665508726 : 1875455642) ∈ C4(Q).

We find ĥK(P ) = 2ĥQ(P ) ≈ 1112.031 and ĥK(yK)/ĥK(P ) ≈ 196.000. We checked using the
methods in [26] (specifically the Magma functions SiksekBound, Saturation and Points)
that P is a generator for ED(Q) modulo torsion. It was useful to exploit here that E has a
rational 2-torsion point.

Since E(K)tors ∼= Z/2Z, it follows that [E(K) : ZyK ] = 2a · 7 for some integer a. A 2-
descent shows that X(E/Q)[2] = 0, and we have already shown that X(E/Q) contains a
copy of (Z/7Z)2. Therefore X(E/Q) ∼= (Z/7Z)2.

To prove Theorem 1.2(ii) it suffices to show (see [13, Theorem 3.2]) that the only elliptic
curves 7-congruent to E are those isogenous to E. We take a = 1013948336592 and b =
471906827379024768 in Theorem 3.1 and then make the change of coordinatesxy

z

←
 102188568 −22341576 −103840044

73939908228192 94676367452256 135756936508464
−28 46 −151

xy
z
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so that C = XE(7) ⊂ P2 is defined by

F(x, y, z) = 6x4 + 25x3y − 39x3z − 3x2y2 − 15x2yz + 27x2z2 − 42xy2z

−141xyz2 − 87xz3 + 8y4 − 6y3z − 21y2z2 + 127yz3 − 15z4.

This curve has rational points P1 = (4 : 9 : 2) and P2 = (5 : −10 : 3), corresponding to E and
its 2-isogenous curve. To show that these are the only rational points on C, we closely follow
the methods in [22]. In view of this, we give just a few of the details.

Since C ⊂ P2 is a twist of the Klein quartic it has automorphism group G ∼= PSL2(F7).
By [1, Theorem 24.1], the G-invariant divisor classes on C form a cyclic group, generated by
Λ (say) of degree 2. Let K be the degree-8 number field, defined by (6), arising as the field
of definition of a cyclic subgroup of E[7]. A 2-descent on J = Jac(C) proves the following
theorem.

Theorem 7.1. If the class number of K is odd then J(Q) ∼= Z2, and G1 = [Λ − 2P1] and
G2 = [P1 − P2] generate a subgroup of finite index.

Both Magma and Pari/GP report that, conditional on the Generalised Riemann
Hypothesis, K has class number 1. We will now assume this is the case.

The reduction of C mod 7 has a unique singular point at (4 : 3 : 1). Since F(4, 3, 1) ≡ 35
(mod 49), this is a regular point. The smooth F7-points are parametrised by

s 7→ (4s4 + 2s2 + 2s+ 4 : 3s4 + 3s2 + 5s+ 5 : s4 + 4s+ 2).

Integrating these polynomials in s, and then summing over the points of a divisor, gives an
isomorphism J̃(F7) ∼= (Z/7Z)3, where J̃ is the special fibre of the Néron model of J/Q7. We

find that the images of G1 and G2 are linearly independent. The image of J(Q) ∼= Z2 in J̃(F7)

is therefore the subgroup generated by G̃1 and G̃2. The only smooth points P ∈ C̃(F7) with

[P − P̃1] belonging to this subgroup are P̃1, P̃2 and (1 : −1 : 0). Moreover, if P ∈ C(Q) is a
point reducing to (1 : −1 : 0) then

[P − P1] ∈ G1 + 4G2 + 7J(Q). (7)

We used Chabauty’s method to show that P1 and P2 are the only points in C(Q) reducing

to P̃1 and P̃2 (for this we show there is a differential on C/Q7 killing J(Q) whose reduction
mod 7 corresponds to x+ y+ 3z), and then the Mordell–Weil sieve with p = 41 to show there
are no points P ∈ C(Q) satisfying (7). Therefore C(Q) = {P1, P2}.

Since X−E (7) has no Q2-points, this completes the proof of Theorem 1.2.
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