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1. Introduction

By a linear canonical system we mean a system of linear differential
equations of the form

(1) / * ' = H(t)x,

where J is an invertible skew-Hermitian matrix and H(t) is a continuous
Hermitian matrix valued function. We reserve the name Hamiltonian for
real canonical systems with

J = ( ° h

J \-h 0
where Ik denotes the k x k unit matrix. In recent years the stability properties
of Hamiltonian systems whose coefficient matrix H(t) is periodic have been
deeply investigated, mainly by Russian authors ([2], [3], [5], [7]). An
excellent survey of the literature is given in [6]. The purpose of the present
paper is to extend this theory to canonical systems. The only work which
we know of in this direction is a paper by Yakubovic [9].

The plan of the paper is as follows. In § 2 we give necessary and suf-
ficient conditions for a periodic canonical system to be strongly stable.
This question is discussed in the paper by Yakubovic cited above. However
our treatment differs somewhat from his and the results are fundamental
for what follows. In § 3 we carry over to canonical systems the elegant
theory of stability domains due to Gelfand and Lidskii [3]. In § 4 we prove
perturbation theorems analogous to those obtained by Diliberto [2] in the
Hamiltonian case. The problem of extending these results to canonical
systems was proposed by Krein in the discussion following Diliberto's
address.

The following notation will be adopted throughout the paper. We
will denote by "f" the vector space formed by all vectors x = (|1; • • •, £M)
with complex coordinates. We will suppose that Y is normed in some
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way and we will denote by |x| the length of the vector x. For any nxn
matrix A, representing a linear transformation of "V, we set

\A\ = sup \Ax\.

The conjugate transpose of A will be denoted by A* and the diagonal
matrix with diagonal elements Alf * • •, Xn will be denoted by [Alf • • •, AJ.

In studying the canonical system (1) there is no loss of generality in
supposing that

(2) Mi" -,)•
where 0 ^ p, q and p+q = n. We will always assume that / has this form,
although many of our results will be independent of this assumption.

2. Strong Stability

For purposes of comparison with later results we first derive some
well-known properties of an arbitrary homogeneous linear system

(3) x' = A{t)x,

whose coefficient matrix A(t) is continuous and periodic:

A{t+o>) = A(t).

The system (3) is said to be (two-sided) stable if each solution x[t) is bounded
for — oo < t < oo. If X{t) denotes the fundamental matrix for (3) such
that X(0) = / then (3) is stable if and only if X(t) is bounded, since the
solutions of (3) are given by x(t) = X(t)c for an arbitrary constant vector c.
Now

X{t+w) = X{t)X{co),

since both sides are fundamental matrices for (3) and they take the same
value for t = 0. It follows by induction that for any integer m

X{t+mw) = X(t)Xm{w).

Since X(t) is certainly bounded for 0 5S t ^ <o it will be bounded for all
real t if and only if the integral powers of the matrix X(co) are bounded.
The matrix X(co) is called the monodromy matrix of the system (3).

We will say that an invertible matrix S is stable if there exists a positive
constant a such that

\Sm\ ^ a (m = 0, ± 1 , ±2, •••).

Then the preceding argument is summed up in
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THEOREM 1. The system (3) is stable if and only if its monodromy matrix
is stable.

We must now determine under what conditions a matrix is stable.
Before doing so, however, we recall some general facts about matrices.

Let A be an eigenvalue of the matrix A. The set of all vectors x such
that Ax = he is a subspace yx oi the re-dimensional vector space y, called
the eigenspace of A corresponding to the eigenvalue A. The set of all vectors
x such that

(A-XI)mx = 0

for some positive integer m is also a subspace WK, called the root space
of A corresponding to the eigenvalue A. Evidently ~fx Q Wx. We will have
strict inclusion, yx C iTx, if and only if there exists a vector xt such that

x2 = [A— M)x1 =̂ 0 and Ax2 = A»2.

If X1, • • •, Ar are the distinct eigenvalues of the matrix A the whole
vector space y is the direct sum of the corresponding root spaces:

We will denote by Pk the corresponding projection of y onto ifk. Let
y be a positively oriented smooth simple closed curve in the complex plane
which does not pass through any eigenvalue of A. Then ([8])

where the summation on the right is over all projections Pk whose cor-
responding eigenvalues As lie inside y.

We will now establish necessary and sufficient conditions for a matrix
to be stable.

THEOREM 2. A matrix is stable if and only if its eigenvalues all have
absolute value 1 and its eigenvectors span the vector space y,
(This result can also be formulated in the following manner: a matrix S
is stable if and only if there exists an invertible matrix T such that
S = TDT'1, where

D = [e<e\ • • -, eie']

is a diagonal matrix with diagonal elements of absolute value 1.)
Let 5 be a stable matrix. Then it is invertible and so does not have

zero as an eigenvalue. If x is an eigenvector, belonging to the eigenvalue
A ^ 0 then Smx = Xmx for all integers m. Since S is stable it follows that
|A| = 1. If the eigenvectors of S did not span the entire space there would
exist an eigenvalue A and non-zero vectors xx, x2 such that
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Then for all positive integers m

Smxx — Xm

which contradicts the assumption that S is stable.
Conversely let S be a matrix satisfying the two conditions of the

theorem. If Xk (k = 1, . . ., r) are the distinct eigenvalues of S and lTk

(k = 1, • • •, r) the corresponding eigenspaces then

Let Pfc denote the corresponding projection of "V onto y s . Then for any
xe'T

x = PlX-{ \-PTx

and hence

Smx = AfP^-l \-V?PTx,
\S™x\ < ({P^ • • •+\Pr\)\x\.

Thus S is stable.

For autonomous linear systems we can obtain more complete results.

THEOREM 3. The autonomous linear system

(4) x' = Ax
is stable if and only if the eigenvalues of the constant matrix A are all pure
imaginary and the corresponding eigenvectors span the vector space "f~.

The proof is similar to that of the preceding theorem. If x0 is an eigen-
vector of A belonging to the eigenvalue A then

x(t) = etAx0 = extx0

is a solution of (4) which is bounded for all real t if and only if A is pure
imaginary. If there existed an eigenvalue A and non-zero vectors xlt x2

such that

Ax± = kc1-\-x2, Ax% = fac2

then

x(t) = etAxx = e>-*(x1+txi)

would be an unbounded solution of (4).
This proves the necessity of the conditions. Conversely if the con-

ditions are satisfied there exist n linearly independent bounded solutions
of the form x(t) = eXtx0.
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We now restrict attention to systems (1) of canonical form. If X(t)
is the fundamental matrix for (1) such that X(0) = I then

X*(t)JX(t)=J

for all real t. In fact, differentiating,

(X*JX)' = X*JX'+X'*JX
= X*JX'-(JX')*X
= X*HX-X*HX = 0.

Thus X*JX is a constant matrix whose value can be found by setting

A matrix S such that

(5) S*JS = J

is said to be J-unitary. Any J-unitary matrix S is invertible and S"1 =
J~1S*J. It follows that if X is an eigenvalue of a /-unitary matrix S then
I'1 is also. Thus the spectrum of a /-unitary matrix is invariant under
inversion in the unit circle. The set of all /-unitary matrices is a group
with respect to matrix multiplication. We will always denote this group
by &. If / = ±il a /-unitary matrix is unitary in the ordinary sense.

If H is a constant Hermitian matrix then eJ~%H is /-unitary, since
X(t) = e*"7 1JI is the fundamental matrix for the autonomous system
Jx' = Hx such that X(0) = I.

The system (1) is said to be strongly stable if all neighbouring canonical
systems are stable, i.e. if there exists an e > 0 such that the system

Jx' = K(t)x

is stable for any continuous Hermitian matrix K(t) of period co satisfying

\K{t)-H{t)\ ^ e for 0 ̂  t ^ co.

We will say that a /-unitary matrix S is strongly stable if there exists an
e > 0 such that any /-unitary matrix T satisfying

\T-S\ ^ e

is stable. The connection between these two concepts is provided by

THEOREM 4. The system (1) is strongly stable if and only if its monodromy
matrix is strongly stable.

It follows at once from Theorem 1 that the system (1) is strongly
stable if its monodromy matrix X(a>) is strongly stable, since the solutions
of (1) depend continuously on the coefficient matrix. Suppose on the other
hand that the monodromy matrix is stable without being strongly stable.

https://doi.org/10.1017/S1446788700026756 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026756


174 W. A. Coppel and A. Howe [6]

Then by the proof of the following Theorem 5 in any neighbourhood of
X(w) there exists a /-unitary matrix T which has an eigenvalue of absolute
value greater than 1.

The mapping A -> eA maps a neighbourhood of 0 in the space of all
»X(i matrices topologically onto a neighbourhood of / in the group of all
invertible matrices ([1], p. 7). Thus we can write

where \A\ is small. Since X~1(w)T is /-unitary we have

e-A = J-1£A'J = eJ-*A>J

Therefore, since the mapping is 1 — 1,

-A = J-XA*J.
Thus we can write A = (oJ"lC, where C is Hermitian.

Now Y(t) = Xitfe"'10 satisfies Y(0) = / and is a fundamental matrix
for the system

Jx' = K(t)x,
where

K(t) = H(t)+JX{t)J-iCX-i{t)

is Hermitian. Moreover Y(a>) = T. It is possible that K(co) T^K(0), but
in any case

for some positive constant a independent of C By altering K(t) slightly
for values of t near at we can ensure that K(a>) = K(0), while Y(«) remains
so close to T that it still has an eigenvalue of absolute value greater than 1.
Thus the system (1) is not strongly stable.

We must now determine under what conditions a /-unitary matrix
is strongly stable. We first introduce a metric into our vector space V by
defining for any two vectors x, y

(x, y) = i-^Jx.

Evidently
\{x, y)\^\J\\x\\y\.

Since i~~xJ is Hermitian we have («/, x) = [x, y). The real number (x, x)
will be called the (J-)norm of the vector x. A subspace W of "T will be
said to be non-negative if (x, x) 2g 0 for every xfW and positive if (x, x) > 0
for every x jf= OeW. Similarly for non-positive and negative subspaces.
Two vectors x, y such that (*, y) = 0 will be said to be orthogonal. If x is
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orthogonal to every vector y then Jx = 0 and hence x = 0. A matrix S
is /-unitary if and only if

{Sx, Sy)={x, y)

for all vectors x, y. If we set

«! = (1, 0, • • -, 0), e2 = (0, 1, • • -, 0), • • - , « „ = (0, 0, • • -, 1)

then by (2)

(6) («„ «*) = 0 for j ^ k ,

{ejt ef) = 1 for l-^j<,p, = — 1 for p <j <Ln.

LEMMA 1. The eigenspaces of a stable J-unitary matrix S are mutually
orthogonal.

For suppose x, y are eigenvectors belonging to the distinct eigenvalues
X, p. Then

Xfi{x, y)=(Sx, Sy) = (x, y).

But Xp ^ 1, because X has absolute value 1 and X ^ /t. Therefore (#,«/) = 0.
Since a non-zero vector cannot be orthogonal to the whole of rT we

have as a

COROLLARY. An eigenvector of a stable J-unitary matrix cannot be
orthogonal to the eigenspace to which it belongs.

We next prove

LEMMA 2. / / an eigenspace W of a stable J-unitary matrix is non-
negative then it is positive.

Suppose x e "W and (a;, x) — 0. We must show that x = 0. For any
vector y e W and any scalar X

0 rg (y+Xx, y+Xx) = (y, y) + 2®X{x, y).

If (x, y) were different from zero we could make the right side negative
by suitable choice of X. Therefore x is orthogonal to if', and so by the
preceding corollary x = 0.

THEOREM 5. A stable J-unitary matrix is strongly stable if and only
if each of its eigenspaces is definite (i.e. positive or negative).

Let S be a stable /-unitary matrix and suppose that for some eigenvalue
X with \X\ — 1 the corresponding eigenspace is not definite. Then by Lemma
2 there exist eigenvectors corresponding to the eigenvalue X with both
positive and negative norms. Hence we can find eigenvectors x1, x2 such that

(*i, *i) = 1, {xu x2) = 0, (xs, x2) = —1.
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Choose x3, • • •, xn orthogonal to x1 and z% so that xx, • • •, xn form a basis
for V and define a linear transformation T by setting

Txx = A (cosh aa^+sinh our2)
Tx2 = A(sinh ax1+cosh ax2)
Txk = Sxk if k > 2.

It is easily verified that (Txs, Txk) = (x}, xk) for all /, k. Thus T is /-unitary.
Moreover x1-{-xi is an eigenvector of T belonging to the eigenvalue Xe",
so that T has an eigenvalue outside the unit circle for any a > 0. On the
other hand T is arbitiarily close to S if a is sufficiently small. Hence S is
not strongly stable.

Suppose now that 5 is a stable J-unitary matrix each of whose eigen-
spaces is positive or negative. Let Xk (k — 1, • • -, r) be the distinct eigen-
values of S and let y \ (k = 1, • • -, r) be the corresponding eigenspaces,
so that

If yh is the positively oriented circumference of a circle with centre Xk

and radius so small that it contains no other eigenvalue of S then

denotes the corresponding projection of "V onto ir
k. Since the eigenspaces

are definite there exists a positive constant a such that

|(a;, a;)| ^ a|a;|2 for xe"Tk {k = 1, • • ; r).

If the matrix T is close enough to S every eigenvalue of T will lie
inside one of the circles yk. Then

is a projection which commutes with T and TT is the direct sum of the
invariant subspaces Wk = Qki^ (k = 1, • • •, r). For i t e f , we have

(x, x) = {Qkx, Qkx)
= (Pkx, Pkx) + [(Qk-Pk)x, {Qk-Pk)x)

+2@(Pkx, (Qk-Pk)x).

If in addition \x\ = 1 then

\Pkx\ ^ \Qkx\-\Qk-Pk\ \x\ = 1-|0*-P*|

and hence
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\{x, x)\ S> «(1-|<?*--P*|)2-|/ | |<?*-P, | 2-2 | / | \Pk\ \Qk-Pk\.

Consequently if T is sufficiently close to S then

| (a;, a;)| ^ |a|a;|2 for x e!Tk (k = 1, • • •, r).

If T is also /-unitary then, since iTk is invariant under T, we have for
all

^ 2a"1!(Tmx, Tmx)\

= 2a-1|(a;, x)\ ^ 2«-i|/| |*|«.

Thus there exists a positive constant /S such that

\Tmx\ < (L\x\ for x eWk (k = 1, • • •, r).

But for any a; € TT

x = Qxx-\ \-Qtx
and hence

Thus all /-unitary matrices near S are stable, and S is strongly stable.
We can obtain more explicit results by using the specific form (2) of

the matrix / .

THEOREM 6. A matrix S is a stable J-unitary matrix if and only if it
can be represented in the form

(1), S = GDG~\

where G is a J-unitary matrix and

(7), D = [ei9\ • • ; eiB>]

is a diagonal matrix whose diagonal elements have absolute value 1.
If S has the form (7) then it is stable, by Theorem 2, and /-unitary

because G and D are /-unitary. Conversely, let 5 be a stable /-unitary
matrix and let X be any eigenvalue of S, of multiplicity r say. By the Corol-
lary to Lemma 1 we can choose an orthonormal basis xlt • • •, xr for the
eigenspace "fx so that

(x,, xk) = 0 if / # *, = ± 1 if / = k (j, k = l,--; r ) .

By stringing together orthonormal bases for each of the eigenspaces we
obtain, by Lemma 1 itself, an orthonormal basis glt • • •, gn for the whole
space. We can suppose the eigenvectors gi,'",gn ordered so that

(gt. gk) = 0 if 1 ¥= k,
{g,,g,) = l Hj^P', = - 1 if j>P'-
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By (6) and the law of inertia for Hermitian forms we must have p' = p.
Let eiei be the eigenvalue associated with the eigenvector^ (/ = 1, ••• ,») .
We will say that the eigenvalues eie' (j = 1, • • •, p) are of positive type
and the eigenvalues eiS/ (j = p+\, •••,«) of negative type.

If G is the matrix with columns glt • • •, gn then (7) holds. Moreover
G is /-unitary, since

(Gejt Gek)={gj, gk) = {es, ek).

COROLLARY. A stable J-unitary matrix S is strongly stable if and only
if in the representation (7)

(8) 0,. =£ 6k (mod 2.n) for 1 ^ / < p < k < n.

For this is the condition that an eigenvalue should not be simultaneously
of positive and negative type, i.e. that each of the eigenspace be definite.

Finally we consider autonomous linear canonical systems.

THEOREM 7. The linear canonical system

(9) / * ' = Hx,

where H is a constant Hermitian matrix, is stable if and only if there exists
a J-unitary matrix G such that

(10)! F = G*HG

is a real diagonal matrix:

(10). F=[A 1 ( - - - ,A n ] .

If (10) holds then

J~lH = G(J-1F)G~1

and (9) is stable by Theorem 3. Conversely, suppose (9) is stable. Then by
Theorem 3 the eigenvalues of A = J~XH are pure imaginary and the
corresponding eigenvectors span the vector space ~V. For any two vectors
x, y we have

(Ax, y) = (x, J'lA*Jy) = - ( * , Ay),

since J~XA *J = —A. If x, y are eigenvectors corresponding to the distinct
eigenvalues A, fi then

l(x, y) = (Ax, y)= —(x, Ay) = -fi{x, y).

Since — p, = [i # I it follows that (x, y) = 0. Hence, as in the proof of
Theorem 6, we can find n linearly independent eigenvectors g1( •••,£„
such that
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fe. £*) = 0 if / ^ k,
to. gt) = 1 if / ^ P, = - 1 if / > P>

The matrix G with columns gi, • • •, gn is /-unitary and

A = G(J-iF)G-i,

where JF is a real diagonal matrix. Substituting A = J^H we obtain (10)!.

COROLLARY. The autonomous canonical system (9) is strongly stable,
for given a> > 0, if and only if in the representation (10)

(11) Xj+Xk^O ( m o d 2nja>) for l<j^p<k^n.

In fact the monodromy matrix of (9) is e"JXH and

Thus the monodromy matrix has the form (7) with

£ ) _ j^-«wAi( . . . ( g-iuA,^ giwA,,.,.^ . . #> giwAnj

and the result follows from the Corollary to Theorem 6.

3. Domains of Stability

It follows at once from the definition of strongly stable systems that
they form an open set in the space of all linear canonical systems. Like any
open set this set can be represented as a union of disjoint connected (non-
empty) open sets, which we will call domains of stability. Two strongly
stable systems belong to the same domain of stability if and only if they
can be continuously deformed into one another without ceasing to be strongly
stable. Two questions immediately arise: how many stability domains are
there, and how can we decide to which domain a given strongly stable
system belongs?

There is a 1 — 1 correspondence between canonical systems (1) with
continuous periodic coefficient matrix H{t) and continuously differentiable
curves X(t) (0 <; t ^ o>) in the /-unitary group IS such that X{0) = I
and X'(w) = X'(0)X(a>), the correspondence being given explicitly by

Thus we are led to ask when two such curves in ^ can be continuously
deformed into one another.

We first consider a related but somewhat simpler question: when can
two strongly stable /-unitary matrices be continuously deformed into one
another without ceasing to be strongly stable? To answer this question we
associate with any strongly stable /-unitary matrix S a sequence of p
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plus signs and q minus signs, corresponding to the eigenvalues of S as the
circumference of the unit circle is described positively, starting from 1.
A plus sign is used to represent an eigenvalue of positive type, a minus sign
for an eigenvalue of negative type, and multiple eigenvalues are repeated
as often as their multiplicity. For example, the sequence (-) \--\—)
corresponds to the distribution of eigenvalues shown in the figure.

Fig. l.

We call the signature of a strongly stable /-unitary matrix the cor-
responding sequence of -f- and — signs without regard to their cyclic
order. Thus we identify the sequence in the example above with the sequence
(+H 1—). The determination of the total number of different signa-
tures * is an interesting combinatorial problem, which was discussed by
Jablonski [4]. If p or q is zero there is of course only one signature. If p
and q are positive and relatively prime the total number is (»—l)\fp\q\
In the general case the total number is

<p(d) (nld)\
- 2

where (ft, q) is the greatest common divisor of p and q and <p(d) is Euler's
^-function.

THEOREM 8. Two strongly stable J-unitary matrices can be continuously
deformed into one another without ceasing to be strongly stable if and only if
they have the same signature.

The necessity of the condition is immediate, since if it were not satisfied
then in the course of transforming one strongly stable /-unitary matrix
into the other an eigenvalue of positive type would have to coincide with
an eigenvalue of negative type.

* This number is equal to the number of different rings of p white and q red beads.
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Suppose on the other hand that the two strongly stable /-unitary
matrices Sx and S3 have the same signature. By Theorem 6 we can write

where Gh is /-unitary and Dh is diagonal (h—1, 2). Moreover we can
suppose that the diagonal elements of Dt have the same cyclic distribution
on the unit circumference as the corresponding diagonal elements of D2.
Evidently Dx can be continuously deformed into D2 through diagonal
matrices with diagonal elements of absolute value 1 without violating the
condition (8). Then Gx can be continuously deformed into G2 along a curve
in 0. (The connectivity of 8? follows from results established later). Through-
out the whole process of deformation we remain within the set of strongly
stable /-unitary matrices, by Theorem 6 again.

We have seen that to every strongly stable canonical system there
corresponds a curve X(t) (0 ^ t ̂  a>) in the group 'S. The result which
has just been established tells us when the ends X(a>) of two such curves
can be continuously deformed into one another without ceasing to be the
monodromy matrices of strongly stable systems. This is necessary but not
sufficient for the whole curves X(t) to be continuously deformable into one
another without ceasing to be the fundamental matrices of strongly stable
systems. To proceed further we must study the topological structure of
the /-unitary group.

LEMMA 3. If p and q are both positive the J-unitary group is homeo-
morphic to the topological product of a torus and a simply-connected, connected
topological space.

Any invertible matrix S can be represented in the form S = PU, where
P is positive Hermitian and U is unitary. Moreover the representation is
unique and P and U depend continuously on S, since P = (SS*)*. We
will show that if S is /-unitary the factors P and U are also /-unitary.
In fact, substituting PU for S in the relation (5):

s = /-i(s*)-y
we obtain

PU = j-ip-wj = V-

Since by (2) the matrix / is unitary the factors J^P'1] and J~XUJ are
respectively positive Hermitian and unitary. It follows from the uniqueness
of the polar factorisation that

p = j-ip-y, u = J-HU*)-IJ,

which is what we wished to prove.

https://doi.org/10.1017/S1446788700026756 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026756


182 W. A. Coppel and A. Howe [14]

Every positive Hermitian matrix P can be uniquely represented in
the form P = eH, where H is Hermitian. Moreover the mapping H -> eP
establishes a homeomorphism between the set of all Hermitian matrices
and the set of all positive Hermitian matrices ([1], p. 14). If P is also
/-unitary then

and hence, from the uniqueness of the representation,

H--J-WJ.
If

H1 IH-\m
is the partition of H corresponding to the partition (2) of / the preceding
condition is equivalent to Ht = Ha = 0. Thus the set of all positive Her-
mitian matrices in & is homeomorphic to the set of all matrices of the form

/ 0 H
\H* 0

i.e. to a Euclidean space of dimension 2pq.
We consider next the set of matrices which are both unitary and / -

unitary. The unitary matrix

: )u =
' U3 U,

will be also /-unitary if and only if U — J~XUJ, therefore by (2) if and
only if U2 = Us = 0. Thus the set of all unitary matrices in 3? coincides
with the set of all matrices of the form

0 C74

where U1 and U4 are unitary matrices of dimension ftxp and qxq.
The unitary group is the topological product of a circumference and

the group of unitary matrices with determinant 1, the latter of which is a
connected and simply-connected topological group ([1], pp. 37, 60—1).
Since the topological product of two connected and simply-connected spaces
is again connected and simply-connected it follows that the group of / -
unitary matrices is homeomorphic to the product of two circumferences,*

* Only one circumference is present if p or q is zero.

https://doi.org/10.1017/S1446788700026756 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026756


[15] On the stability of linear canonical systems with periodic coefficients 183

i.e. a torus, and a simply-connected connected space. This completes the
proof of the lemma.

When S = S(t) (0 sS / ?g «) describes a closed curve in ^ its projections
will describe the two circumferences a certain integral number of times,
say n+ and n_ times. We will call n+ and n_ the indices of the closed curve
S(t). Two closed curves in 'S are homotopic if and only if they have the same
positive and negative indices.

For any J-unitary matrix

< £)•
We define

arg+ S = arg det Slt arg_ S = arg del S4.

These arguments are many-valued functions of S, different branches dif-
fering by multiples of 2n. However if S(t) (0 ^ t <i (o) is any curve in
<S then

\l = arg+ S(a>)-arg+ S(0)

and

arg_ S(OIJf = arg_ 5(aj)-arg_ S(0)

are uniquely determined real numbers when the argument of S(a>) is ob-
tained from that of S(0) by continuous variation along the curve S(t).

If S = PC/ is the polar factorisation of S then St = Px Ux and 54 = P4 Ut,
where Pt and P4 are sections of the positive Hermitian matrix P and hence
have positive determinants. Consequently the indices of any closed curve
S(t) (0 =S t :g co) may be calculated from the formulae

(12) n+ = 1 arg+ S(t)\l n_ = i - arg_ S(0|?.

Consider now the set ^ = 2 {a) of all strongly stable /-unitary matrices
with given signature a. By Theorem 8 2 is a domain (= connected open
set) in the group 5? of all /-unitary matrices. We propose to study the
possible indices of closed curves in 2.

THEOREM 9. Suppose p and q are both positive. Then the indices n+,
n_ of any closed curve in @l have the form

ra+ = hp, «_ = hq,

for some integer h. Moreover for any integer h there exists a closed curve in Si
with these indices.
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In fact let S(t) (0 g < g 1) be a closed curve in 3> and for each t let

S(t) = C(t)D(t)G-i(t)

be a representation of the form (7). It may be shown that G{t) and D(t)
can be chosen to depend continuously on t and so as to satisfy the con-
ditions

D(0) = D(l), G(0) =

Since each eigenvalue ete'w of S(t) returns to its original value as t increases
from 0 to 1 then 0,(2) must change by some multiple of 2JI. Moreover 6,(1)
(/ ŝ p) must change by the same multiple of 2n as Bk(t) (k > p), since
otherwise the condition (8) would be violated at some point of the curve.
Hence all 0,(t) (j = 1, •••,») change by the same amount 2hn. It follows
from (12) that the indices of the closed curve D(t) (0 ^ t^ 1) are

n+ = hp, n_ — hq.

Let m+, m_ be the indices of the closed curve G(t) (0 5g t ^ 1) and set

a = —2nm+, /} = — 2nm_.

Since the diagonal matrix

F{t) = [eita, 1, • • •, 1, 6*"]

commutes with D(t) we can replace G(t) by G(t)F(t). But

and hence the indices of the closed curve G(t)F(t) are both zero. Thus the
closed curve G(t)F(t) can be continuously deformed into a point within 2?
and we may take this point to be the unit matrix. This shows that the
closed curve S[t) is homotopic in 3i to the closed curve D(t). It therefore
has the same indices, which proves the first part of the theorem.

The second part is trivial, since if

Do = le'\ • • -, «»•]

is a diagonal matrix in Q) then

D(t) = [e*i0x+to"t), • • -, e«0.+2*<">] (o <, t <: 1)

is a closed curve in 2 with indiced n+ = hp, n_ = hq.
Let <# = <&(o) denote the set of all curves X(t) (0 ^ t ^ co) in <S

which start from the unit matrix and end in some point of 2. We divide
<& into subsets ^i>m (0 < j < p; m = 0, ± 1 , • • •) in the following way.
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Let X0{t) (0 g < g o)) be a fixed curve in # and let So = X0{a>). Let
Xx(t) (0 sS t ;S o>) be any other curve in # ending in the point Sx = Xx(co).
We join So to Sx by a curve Sx(t) (0 ^ t ^ 1) in 0 , so that

S^O) = S0) Sx(l) = Sx.

Then

for some integers /, m. It follows from Theorem 9 that by suitable choice
of the curve Sx(t) we can suppose 0 ^ / < p. With this restriction on j
the integers ;, m are uniquely determined by the curve Xx(t) and we put
Xx{t) in the corresponding set <%j>m.

We will now show that two curves Xx{t), X%(t) in ̂  can be continuously
deformed into one another without their endpoints leaving 2 if and only
if they belong to the same subset ^ > m . For let

St(QlS = arg+ Xt{t)

be the corresponding equations for X2(t), where S2(t) is a curve in B joining
So to S2 = X2(o>). Then by subtraction we get

where S(t) is a curve in S> joining Sx to S2. But Xx(<) can be continuously
deformed into Xz(t) without its endpoint leaving Si if and only if there
exists a curve R(t) in 3i joining Sx to 52 such that

arg+Xx(*)|»+ arg+ R(t)\\ = arg+X2(t)\%,
aig-^iWlo+ arg_ 22(0|J = arg_Z2(<)IS>.

Comparing these equations with the previous ones we see from Theorem 9
that such a curve exists if and only if

/' = j+hp, m' = m+hq

for some integer h. On account of the restrictions on /, j ' this is equivalent
to /' = /, m' = m.

We show next that none of the sets Vitm is empty. Let

So = {eie\ '• • ; eiB«-\

be a diagonal matrix in 3) and let

X0(t) = [e"»«/w, • • -, «"»•/»] (0 ^ t ^ to).
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Evidently

For the curve X^t) we take

Xx{t) = X0(t) [««-, 1, • • -, 1, e*^],

where a = —2jnja> (0 ^ / 5g >̂) and /3 = —2mnja>. This curve has the
same endpoint So and

2> n

Finally we return from curves in *& to linear canonical systems. Let
X^t), X2(t) (0 5S 2 si co) be the fundamental matrices for two strongly
stable systems. We suppose that the monodromy matrices X^co), X2(m)
have the same signature a, i.e. they belong to the same domain 3i — 2[a),
and moreover that -X'i(i); X2(t) belong to the same set #^m. Then Xx{t)
can be continuously deformed into X2(t) in 'S without its endpoint leaving
Si. It is not difficult to see that by modifying the deformation slightly
we can arrange that every intermediate curve X(t) is a fundamental matrix
for some linear canonical system, i.e. it is continuously differentiable and
satisfies the relation X'{<co) = X'(0)X(a>). Consequently we can sum up
the whole of the preceding argument in

THEOREM 10. / / p and q arc both positive the stability domains of the
linear canonical system (1) are characterised by a signature a *, an integer j
such that 0 jS / < p, and an arbitrary integer m.

Moreover, in principle at any rate we have a means of determining
to which stability domain a given strongly stable system belongs. The
above result requires modification if p or q is zero. In this case there is only
one signature a and the domain 2 consists of all unitary matrices. It is
easily seen that there exist closed curves in 3l with arbitrary index, from
which it follows that there is just one domain of stability.

4. Perturbation Theory

Suppose we have a linear canonical system

(13) / * ' = H(t, e)x

* That is, a sequence of p plus and q minus signs, without regard to their cyclic order.
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depending analytically on a parameter s and suppose the unperturbed
system

Jx' = H(t, 0)x

is strongly stable. Then the system (13) will be stable for all small e. It
follows from Floquet's theorem and from Theorem 7 that for each such e
there exists a /-unitary matrix S (t, e), which is continuously differentiable
in t with period w, such that the change of variables x = S(t, e)y transforms
(13) into an autonomous system

Jy' = F(e)y,

where F(e) is a real diagonal matrix. However these results tell us nothing
about the dependence of F on s. The object of the present section is to
show that S can be chosen to be analytic in s, so that F is also analytic in E.

Let Jf denote the set of all n x n Hermitian matrices. Corresponding
to the partition (2) of J we can write for any matrix C

where Hlt H2 are Hermitian matrices of dimension fiXp, qxq respectively
and S is some pxq matrix. A matrix A etf? commutes with / , i.e. J~XA
is skew-Hermitian, if and only if 5 = 0. A matrix B eJf anticommutes
with / , i.e. J~XB is Hermitian, if and only if H1 = H2= 0.

We will denote by Jf _ the set of all Hermitian matrices of the form

,0

and by ffi + the set of all Hermitian matrices of the form
S'

S* o)

Evidently Jf _ and Jf+ are subspaces of the real vector space Jf. Moreover
any C e Jf can be uniquely represented in the form

where A eJ4e_ and B e ^ . It is easily verified that if A eJf_ then
exp {J-1A) is unitary and if B eJf?+ then exp (J~XB) is Hermitian (cf.
the proof of Lemma 3).

Let

F =
1 ' F,
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where

are real diagonal matrices such that

(14) l,+pk # 0 (/ = 1, • • -, f; k = 1, • • •, q).

The matrix F will be fixed throughout the argument which follows.

LEMMA 4. If H(e) e^f is analytic in e at e = 0 and H(0) = F there
exist unique matrices A(e)eJ(?_ and B(e)eJ^+ analytic in s at s = 0
such that

4(0) = F, B(0) = 0

and

(15) exp [/-iJB(e)]*fl(e) exp [/"^(e)] = 4(«).

We define a mapping / of 34? into itself in the following way:

for C = A+B{AeJf_, BeJ^+)

we set

f(C) = T*AT, where T = exp t / - 1 ^ ) .

Thus f(F) = i7 since in this case A = F, B = 0. The relation (15) is
equivalent to H(e) = f[A(e) — B(e)].

Since the non-zero elements of A and B are equal to the corresponding
elements of C and since B eJf+ implies T* = T the elements of f(C) are
analytic functions of the elements of C. Hence, by the implicit function
theorem for analytic mappings, it is sufficient to show that the Jacobian
matrix fx is invertible at F.

For any C e 3P the function

<p(t) = f(F+tC)

has the derivative <p'{0) = fx{F)C. The matrix fx{F) will be invertible if
(/(0) = 0 implies C = 0. But if C = A+B, where A e^f_ and BeJf+,
then

<p(t)=etJ-1B{F+tA)etJ'1B

and hence

9/(0) = J~lBF+A+FJ-lB.

Thus we need only show that

L{B) = / - 1 B F + F J - 1 B

maps #?+ into itself and L(B) = 0 implies B = 0. Suppose
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M s - o)-
Then

and L(B) = 0 only if SF^+F^ = 0. But if S = (sjk) then

Therefore, by (14), S = 0 and B = 0. This completes the proof.
By permutations of their diagonal elements, which is equivalent to

replacing F by T*FT for a particular /-unitary matrix T, we can write
Fx and F2 as block diagonal matrices:

F2 =

where A, # A,, if / # /', l^k^f^k if ft ^ ft' and A,
ft = 1, • • •, i). Corresponding to the partitions

we define
form

0 (/ = 1, • • -, s;

" ' +P,> 9 — 9i+ ' ' ' +9t

to be set of all matrices A e J^.. of the block diagonal

A = [H1,--;H,,K1,--;Ktl

where Hs and Kk are Hermitian, and 3f+{II*) to be the set of all matrices
B e 3f_ of the form

( 0

(16) B =

Si,

1 It l 2t o>
Evidently Jf_(i7) and .3f_(i7*) are subspaces of 3V_ and every C
can be uniquely expressed in the form

C =

andwhere A

LEMMA 5. / / H(«) e J^_ is analytic in s at e = 0 £Ae« there exist unique
matrices A (e) eJf_(II) and B(e) e=3f_(/7*) analytic in s at s = 0 such that
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A(0) = F, B{0) = 0
and

(15) exp [/-iB(e)]*ff («) exp {J-^B(«)] = A (e).

The proof is similar to that of the previous lemma. We define a mapping
/ of 3P_ into itself by setting for

C = A+B ( )
f(C) = T*AT, where T = exp (J~lB).

Obviously f(C) e 3C. A matrix in 3? belongs to 3tf_ if and only if it commutes
with / . Thus J commutes with A and B and hence with f{C), which proves
that /(C)eJf_.

Evidently f{F) = F. Since the non-zero elements of A and B are equal
to the corresponding elements of C and since B e Jf_ implies T* = T~l

the elements of /(C) are analytic functions of the elements of C. We need
only show that the Jacobian matrix of the mapping / is invertible at F,

For any

put

V{t) = f(F+tC) = e-w"

Then

9/(0) = -J-*BF+A+FJ-*B.

It is sufficient to prove that

L(B) = FJ-iB-J-iBF
maps 3e_(II*) into itself and L(B) = 0 implies B = 0. But it is easily
verified that if B has the form (16) then L(B) has the same form with
Sr t replaced by — i(kt—Ak)Sik and Tjk replaced by i^—fi^T^. This shows
at once that L(B) = 0 only if B = 0.

The following theorem establishes the possibility of reducing auto-
nomous canonical systems to diagonal form.

THEOREM 11.7/ the Hermitian matrix H(e) is analytic in e at s = 0
and H(0) = F then there exists a J-unitary matrix T(e) analytic in e at
e=0 such that J(0) =1 and,

F(e) = T*(s)H{s)T(s)

is a real diagonal matrix.
By Lemma 4 there exists a /-unitary matrix Z\(e) = exp Ur~1B1(e)],

where Bx(e) e=3f+ is analytic in e at e = 0 and £i(0) = 0, such that
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and Ht(0) = F. Then by Lemma 5 there exists a /-unitary matrix
T2(s) = exp L/-152(s)], where B2(e) e Jf_(i7*) is analytic in e at e = 0
and B2(0) = 0, such that

Tt&H^Ttie) = Ht(e) e Jf_(/7)

and H2(0) = F. Since we can treat the diagonal blocks of H2(e) separately
this reduces the theorem to the case in which / = ±*7 and F = XI. We
suppose from now on that / and F have these forms.

Let

be the power series expansion of H (s) which converges in some neigh-
bourhood of B = 0. If there exist scalars pm such that Hm = pml for all
m ^ 1 (e.g. if n = 1) then

and no further reduction is necessary. Otherwise there exists a least positive
integer r such that Hr ̂  pi for all real p. Then

H(e) = (A+fi/Ol+ • • • +er-l
Pr_1)I+e'H1(e),

where

Since the Hermitian matrix Hr is not a multiple of the unit matrix there
exists a unitary matrix C7j such that

U*HrU1=[a1Ini,--;ctIn>],

where the cr, (/ = 1, . . ., s) are distinct real numbers and s > 1. Let

H2(e) = UtH^U,.

Then by Lemma 5, corresponding to the partition 77:

n = %+ • • • +»„
there exists a unitary matrix f72(

e) = e xP [±4-^(e)]» where JB(s) eJ#*(II*)
is analytic in £ at « = 0 and JB(O) = 0, such that

U*{e)Ht[e)Ut{e) = Ht(e) 6

It follows that
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Since s > 1 this reduces the theorem to matrices of lower order. By repeating
the process at most n—1 times we obtain the theorem.

In order to carry over this result to non-autonomous systems we need
a form of Floquet's theorem for canonical systems depending on a para-
meter. We first prove

LEMMA 6. 1/ the J-unitary matrix S (e) is analytic in e at e = 0 then
there exists a matrix A (s) analytic in e at e = 0 such that

(17) J-*A*{e)J =-A(e)

and

(18) S(e) = eA{e).

PROOF (cf. [10]). Let Xx, • • •, Xr be the distinct eigenvalues of S(0).
We surround each eigenvalue Xt by a positively oriented simple closed
curve y, so small that it does not contain the origin or any other eigenvalue.
Moreover we may suppose that if Xk is obtained from A,- by inversion in the
unit circle then yk is obtained similarly from yt.

By the theory of functions of a matrix ([8])

2m S"iJYj

has the property (18). Moreover it is clearly analytic in e at e = 0. We
will show that it also has the property (17). In fact

= -L 2 f [CI-

If we denote by yt the reflection of y,-in the real axis, also described positively,
then

/-M»(8)/ = -L 2 f [CI-S^{s)rHnCdC

or, putting f = I"1 and letting y't denote tne inverse of y, in the unit circle,

= ^-. i f [s-v-s-i(e)r*?*inm
2m i-iJr/

Since the spectrum of the /-unitary matrix S(0) is invariant under in-
version in the unit circle the paths y] are just a permutation of the paths
yj. Also

|-2[|-ij_S-i]-i = f-ij_(|j_s)-i.

Since the origin lies outside each of the paths yt it follows that
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2m 4=1 Jyy

THEOREM 12. Le£ 2Ae Hermitian matrix H{t, e) be analytic in e at s = 0
and continuous in t with period o>. Then the fundamental matrix X(t, e) of
the system

(13) Jx' = H{t, e)x

can be represented in the form

(19) X(t, e) = P(t, s) e"-™,

where

(i) P(t, s) and K(e) are analytic in s at s = 0,

(ii) P(t, e) is continuously differentiable and has period co in t,

(iii) P(t, e) is J-unitary and K(e) is Hermitian.

The monodromy matrix S(e) = X(a>, s) is /-unitary and analytic in
e at e = 0. If A (s) satisfies the conditions of Lemma 6 we can write
A (e) = oiJ'^K^e), where K(e) is Hermitian and analytic in e at e = 0. Put

P(t, e) = X{t, e) e-^'1^.

Then P is /-unitary, because both factors are /-unitary, and

P{t+w, e) = X(t, e)X{co, e)e~A(E) e-"'1*^

= X{t, E)e-tJ'1K^ = P(t, s).

Thus P has period co in t. The other requirements of the theorem are ob-
viously satisfied.

We can now prove without difficulty the main result of this section.

THEOREM 13. Let the Hermitian matrix H(t, e) be analytic in s at e = 0
and continuous in t with period a>. Moreover let the system

Jx' = H(t, 0)x

be strongly stable.
Then there exists a J-unitary matrix S(t, e) which is analytic in e at

e = 0 and continuously differentiable in t with period co such that the change
of variables x = S(t, e)y transforms the perturbed system (13) into the auto-
nomous system

Jy' = F(e)y,

where F(e) is a real diagonal matrix analytic in e at e = 0.
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Let X(t, e) be the fundamental matrix of (13) and let P(t, s) be the
matrix appearing in the representation (19). The change of variables
x = P[t, e)y transforms (13) into the autonomous system

(20) Jy'=K{e)y.

Moreover the monodromy matrix e
wjr"1K<°) of the unperturbed system

Jy' = K{0)y is strongly stable. Therefore, by Theorem 7 and its Corollary,
there exists a /-unitary matrix G such that the change of variables y = Gz
transforms (20) into the system

Jz' = G*K{s)Gz,

where F = G*K(0)G is a real diagonal matrix:

and

Xj+Xk ^ 0 (mod 2jr/co) for l ^ j ^ p < k ^ n .

The result now follows at once from Theorem 11.
The condition Xt-\-Kk^O appears to be stronger than the condition

Aj+kk=£ 0 which is required for the application of Theorem 11. However
the matrix A (0) = wJ^Kfi) in Lemma 6 has the property that distinct
eigenvalues do not differ by multiples of 2ni and so the two conditions
are really equivalent.
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