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DECOMPOSITION OF PROJECTIONS 
ON ORTHOMODULAR LATTICES'1» 

BY 

G. T. R(JTTIMANN(2) 

1. Introduction. The set of projections in the BAER*-semigroup of hemi-
morphisms on an orthomodular lattice L can be partially ordered such that the 
subset of closed projections becomes an orthocomplemented lattice isomorphic to 
the underlying lattice L. The set of closed projections is identical with the set of 
Sasaki-projections on L (Foulis [2]). Another interesting class of (in general non-
closed) projections, first investigated by Janowitz [4], are the symmetric closure 
operators. They map onto orthomodular sublattices where Sasaki-projections map 
onto segments of the lattice L. 

In this paper we consider products of Sasaki-projections with symmetric closure 
operators. A necessary and sufficient condition is given for such a product to be 
a projection on L. Then we prove that every projection Y on L can be represented 
as the product of a Sasaki-projection with a symmetric closure operator. This de­
composition of Y is not unique. However, the Sasaki-projection is uniquely deter­
mined by Y and among the symmetric closure operators decomposing Y there is a 
smallest one. 

2. Preliminaries, An orthomodular lattice L is an orthocomplemented lattice 
which satisfies the condition x<y (x,y EL)=>X V (x' A y)=y. A sublattice M 
of L which is closed under the orthocomplementation of L is itself an orthomodu­
lar lattice; we say — M is an orthomodular sublattice of L. A segment [x; y] is a 
sublattice of L and becomes an orthomodular lattice by means of the mapping 
z e [x;y]-+z&: = (x V z') Ay e [x;y] as orthocomplementation (this orthocom­
plementation is meant if we consider a segment as an orthomodular lattice). 
For basic results concerning orthomodular lattices see [1, p. 52; 3]. 

A mapping E:L-+L is a hemimorphism provided (i) Eo=o and 3 ( x V j ) = 
Ex V Sy, (ii) there exists another mapping 3 * with 3*0=0 and E*(xV y)= 
3*x V S*j such that E(E*x)'<x' and E*(Ex)'<x'. Clearly S* is a hemimorphism 
too and is called adjoint hemimorphism of 3 . A given hemimorphism has exactly 
one adjoint hemimorphism. The set of hemimorphisms of L is an involution 
semigroup (with zero) with "function composition" as multiplication and the 
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mapping E->E* as involution. A hemimorphism Y for which Y * = Y o Y = Y is 
valid, is called projection on L. The set of projections on L is a poset by means of 
the ordering relation ^ i ^ ^ 1 ^ ^ 0 ^ ^ ! ' The mapping zeL—n/>az: = 
(a' V z) A a G L is a projection on L. Mappings such as (f>a (a e L) are usually 
called Sasaki-projections [6; 5]. Further properties of Sasaki-projections are proved 
in [3]. Let H be a hemimorphism, then the mapping E->E':=<£ ( s n K makes the 
involution semigroup of hemimorphisms into a BAER*-semigroup [2], 

A subset A of a lattice L is called weakly meet-complete (weakly join-complete) 
whenever E0(A; z):={x | z<x; x e A} (E°(A; z):={x | x<,z\ x e A}) has a smal­
lest (largest) element for every z e L. Notice that a weakly meet- (join-) complete 
subset contains the largest (1) (smallest (o)) element if it exists in L. Furthermore 
A E0(A; z) (V E°(A; z)) exists in L for all z e L, whenever A is a weakly meet-
(join-) complete subset of L. A weakly meet-complete subset of an orthocomple-
mented lattice which is closed under orthocomplementation is also weakly join-
complete and vice versa. 

A closure operator Y on a lattice L is a mapping T.L-+L such that (i) z<ÇTz, 
(ii) z1<z2=>Vz1<Tz2 and (iii) T(Tz)=Tz. The range YL of a closure operator Y 
is a weakly meet-complete subset of L and Yz= A £ 0 ( r £ ; z). This implies that 
a closure operator is uniquely determined by its range. Every weakly meet-complete 
subset A of a lattice is the range of a closure operator, namely r{^}z : = A E0(A ; z). 
A closure operator Y on an orthomodular lattice L is called symmetric, whenever 
Tz=z implies Tz'=z' [4]. 

3. The decomposition theorem. In the following, L denotes always an ortho-
modular lattice. 

THEOREM 1. A mapping TiL-^L is a projection if and only if Y satisfies the fol­
lowing conditions: 

(i) z ^ z ^ Y z ^ Y z ^ 
(ii) YÇ¥z)=zand 

(iii) Y ( Y z ) ' < z ' ( z , z l 5 z 2 e L ) . 

Proof. The crucial point in the proof is to show that a mapping satisfying 
(i), (ii) and (iii) preserves joins of elements of L [4]. 

LEMMA 2. Let Y be a closure operator on L. Y is a symmetric closure operator if 
and only if it is a projection. 

Proof. Suppose Y is a symmetric closure operator. Since r(Tz) = r z and z<Yz, 
it follows that r ( r z ) ' = ( rz ) , <z ' . Conversely, suppose that Y is a projection. If 
z is an element such that Yz=z, we get z ' < r z ' = r ( r z ) ' < z ' . Hence Yz'=z. QED 

THEOREM 3. A subset A^L is the range of a symmetric closure operator if and 
only if A is a weakly meet-complete, orthomodular sublattice of L. 
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Proof. Let A be the range of a symmetric closure operator V. From the definition 
it follows immediately that A is a weakly meet-complete subset of L closed under 
orthocomplementation. By Lemma 2 Y is also a projection, hence VL=A is also 
closed under the join operation. This proves that A is an orthomodular sub-
lattice of L. Conversely, suppose that A is a weakly meet-complete orthomodular 
sublattice of L. Clearly, A is the range of a closure operator I \ If Tz=z, then 
z G A ; but being an orthomodular sublattice, it follows that z' e A and thus 
I Y = z ' . QED 

LEMMA 4. A projection Y is a symmetric closure operator on an orthomodular 
lattice L, providedYl = 1. 

Proof. Let Y be a projection with ¥ 1 = 1. From Y(Yz)'=Y(Y(Yz))'<(Yz)' 
we get by orthomodularity of L 

Y(Yz)' = (Yz)' A (Yz V Y(Yz)'). 
But 

Yz V Y(Yz)' = Y(Yz v (Yz)') = Y l = 1, 

thus Y(Yz)'=(Yz)' . Since Y(Yz)';£z', it follows that (Yz)';<z' and finally z^Yz . 
This result together with theorem 1 shows that Y is a closure operator; hence by 
lemma 2 a symmetric closure operator. QED 

LEMMA 5. The restriction of a projection^ on L to the segment [o; Y l ] makesY 
into a symmetric closure operator on the orthomodular lattice [0; Y l ] . 

Proof. By monotony of the projection Y, we get Y z < Y l for all zeL. Conse­
quently, the restriction of Y to [0; 1#] (1# :=Y1), denoted by Y # , maps this 
segment into itself. Clearly, Y # is monotone and idempotent; furthermore 
Y#(Y#z)#=Y[(Yz) ' A Yl ]<Y(Yz) ' A Y l < z ' A Y l = z # for z e [0; 1#]. Thus, by 
theorem 1, Y # is a projection on [0; 1#]. But we also have Y # 1 # =Y(Y1)=Y1 = 1#, 
hence, by lemma 4, Y # is a symmetric closure operator on the orthomodular lattice 
[0;1#]. QED 

THEOREM 6. Let Y be a projection on L. Then YL U (YL)' (where (YL)'= 
{z I z G YL}) is the range of a symmetric closure operator. 

Proof. By theorem 3, we have to show that YL U (YL)' is a weakly meet-com­
plete, orthomodular sublattice of L. Since Y # is a symmetric closure operator on 
[0; 1#] (lemma 5), Y L = Y # [0; 1#] is, by theorem 3, a weakly meet-complete, 
orthomodular sublattice of [0; 1#] and therefore also a weakly join-complete 
subset of [0; 1#]. 

Since L°(YL; z)=L°(YL; z A Yl ) for all Z G L , it follows that YL is also a 
weakly join-complete subset of L. 

Suppose now that z ^ [0; 1#]. Then there is no x e YL such that z<.x. This im­
plies the equality E0Ç¥L u (YL)'; z)=L0((YL)'; z). 
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As remarked above E°Ç¥L; z') has a largest element, hence E0Ç¥L u Ç¥L)' ; z)= 
E0(Ç¥L)'; z)=[E°Q¥L; z')]' has a smallest one. If z G [O; 1#], then E0Ç¥L; z) has 
a smallest element, say a. Suppose further that there is a j e (YL)' such that 
z<y. Then z<a Ay=a A ( / ) ' = a A ( / ) ' Ax¥l=a Ay'# eYL; thus a < a Ay<y . 
This implies that a is also the smallest element of E0Q¥L u CF^)'; z). Hence 
weakly meet-completeness of YL u Q¥L)' is proved. 

It remains to show that this subset is an orthomodular sublattice of L. 
YL is a sublattice of L, thus, whenever zl9 z2 eYL, resp. zl9 z2e (YL)', it follows 

immediately that zx V z2 EYL^YL U Ç¥L)'9 resp. zx V z2=(z[ A zj)' e CFL)'ç 
YL u CFL)'. If zx eYL and z2 G (TL)', then zx V z 2 >z 2 >0Fl ) ' . Thus zx V z2= 
(zj ATI) ' V z2=(z?Y V z2e (YL)\ since zf, z2 G T L and consequently zf A z2 G 
YL. ThusTL U (YL)' is closed under the formation of joins. Of course this subset 
is also closed under orthocomplementation of L. QED 

LEMMA 7. The product of two projections is a projection if and only if the pro­
jections commute. 

Proof. Let Y 1 ? Y 2 and Y l 0 Y 2 be projections. Then T x oT 2 =CF 1 oY2)* = 
T* o T Î = T 2 o ^ , Conversely, if two projections Y l 9 Y2 commute then Yx o Y 2 = 
(Y, oY2)* = CF1o Y2) o (Yx o Y2). QED 

THEOREM 8. Let Y be a symmetric closure operator on L and ae L. Then <j>a o Y 
is a projection if and only ifYa=a. 

Proof. Let Ya=a. From <f>az<a we get, using monotony of Y, Y(<f>az)<Ya=a. 
Thus (f>a[r((f)az)] = T((f)az) for all z G L or equivalently <j>a o Y o <£a=r o <£a. Now 
T o <f>a=cj>a o r o ^ a = ( ^ a o T o <£a)* = ( r o & ) * = & o r thus, by lemma 7, ^ o T 
is a projection. Conversely let <j>a © T be a projection. Hence <£a o r = T o <£a and in 
particular Y{<f>aa)=^(f)a(Ya). Thus ra==</>a(IV)<a. Y being a closure operator, 
we get a< Y a and finally a=Y a. QED 

LEMMA 9. Let I \ , T2 6e symmetric closure operators and a e L such that 
<f>a ° r*t- 0 '=1, 2) are projections. Then <f>a o r x = ^ a o T2 //* tffltf? 6>«/y z/ I \L n 
[o;a] = T2L n [o;a]. 

Proof. Let (f>aY1^(f)a o T2. Clearly z G I \L n [0; a] if and only if Y{z=z<a 
(i = l, 2). If z G I \L n [o; a], then a > z = ( ^ a o r i)z=(<^a o T 2 )z=(r 2 o ^ ) z = r 2 z . 
Thus z G T2L n [o; a] or equivalently TXL n [0; a ] ç r 2 L n [0; 0]. In a similar 
way we get I \L n [0; a ]2T 2 L n [0; a]. Conversely, let Y±L n [0; a] = T2L n 
[0 ; a]. Since (f>az<a and a G I \L (/= 1, 2) (theorem 8), we get, using basic proper tie 
of closure operators, ( I \ o (f)a)z=Y1(cf>az)= A E^L; <f>az)= A L U ^ L n[o;a]; 
<t>az)= A X0(r2L n [o; a]; cf>az)= A L0(r2L; <£az) = r2(<£az)=(r2 o <£a)z for all z G 
L. QED 

THEOREM 10. Every projectionY on an orthomodular lattice L can be represented 
as the product of a Sasaki-projection and a symmetric closure operator. 

Among the symmetric closure operators which decomposed in this way, there exists 
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a smallest one: TÇ¥L u ÇPL)'}. The Sasaki-projection in this decomposition is 
uniquely determined: <£T1. 

Explicitly: 
T = ^ 1 o r { T L U ( T L X } 

Yz = A {x | [(Yl)' V Z ] A Y 1 < X ; X e YL U (YL)'}. 
Proof, (i) By theorem 6, YL \j (YL)' is the range of a symmetric closure opera­

tor, namely r : = r{YL u (YL)'}. By theorem 8, <j>wl o V is a projection since 
Yl eYLeYL u (YL)'. 

We now prove the equality T = ^ r (<£:=<£Ti). Since Y z e Y L u ( Y L ) ' 
and Yz<Yl, we get (</> o T oY)z=<£(r(Yz))=<£(Yz)==Yz for all z e L . Thus 
Y<<£ o r and Y ;£</>. T being a mapping of L onto YL u (YL)', we have two 
possibilities, either r z=Y* or Tz=(Yj)' for suitable x and j . In the first case we 
get (Y o <£ o I>=(<£ o Y)(rz)=(<£ o Y)(Y^)=^(Y(Yx))=^(Yx)=(0 o I > . In the 
latter case we have (Y o <£ o I > = ( Y o <£)(YJ) '=Y(<£(YJ) ' )=Y(YJ) # because 
^(Yy)'=(Yy)' A Y 1 = (YJ) # . Y# being a symmetric closure operator on 
[o; 1#] and Y#[o; 1#]=YL, it follows that ( Y J ) # G Y L ; thus Y(Yj)#=(Yy)#. 
Now again Ç¥yf=<f>Ç¥y)' = (<f> o I > . This proves that (Y o <£ o T)z= (<£ o T)z 
for all z G L or equivalently ^ ° T<Y. 

(ii) Suppose that Y=<£ai o V1=<f>ai o T2, then by theorem 8 V2a2=a2 and fur­
thermore tfi>(<£ai ° ri)a2=(^a2 ° r2)a2=^a2a2=a2. A similar argument leads to 
a2>av Hence ^=^2, which proves that the Sasaki-projection in this decompo­
sition of Y is uniquely determined. 

(iii) Let T be a symmetric closure operator on L such that Y=<ji o f. Since by 
(i) of the proof also </> o T{YL u (YL)'} = Y we get by lemmata 9 and 4TLn[o; 
Yl] = [YL u (YL)'] n [o; Yl]=YL. Thus YLsTL and since f is a symmetric 
closure operator, hence (fL)'=fL, we get Y L u ( Y L ) ' ç f L . Consequently 
f (r{YLU (YL)'}z)=r{YL U (YL)'}z for all zeL. Hence T{YL u (YL)'}^f. 

QED 
Note added in Proof: Similar results have been obtained by M. F. Janowitz 

in "Equivalence Relations induced by Baer*—semigroups", Journal of Natural 
Sciences and Mathematics 11, 83-102 (1972). See also T. S. Blyth and M. F. 
Janowitz "Residuation Theory", Pergamon Press (1972). 
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