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Abstract

We introduce the concept of pseudo S-asymptotically periodic functions and study some of the qualitative
properties of functions of this type. In addition, we discuss the existence of pseudo S-asymptotically
periodic mild solutions for abstract neutral functional differential equations. Some applications involving
ordinary and partial differential equations with delay are presented.
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1. Introduction

In this paper we introduce the concept of pseudo S-asymptotically periodic functions,
establish some of the qualitative properties of functions of this type and study the
existence of pseudo S-asymptotically periodic mild solutions for a class of abstract
neutral differential equations of the form

d
dt

(u(t) − F(t, ut)) = Au(t) + G(t, ut), t ≥ 0, (1.1)

u0 = ϕ ∈ C, (1.2)

where A is the generator of a uniformly exponentially stable semigroup of bounded
linear operators (T (t))t≥0 defined on Banach space (X, ‖ · ‖), the history ut belongs to
C = C([−r, 0]; X) and F,G : [0,∞) × C→ X are suitable functions.

A bounded continuous function f : [0,∞)→ X is called pseudo S-asymptotically
periodic if there exists ω > 0 such that

lim
l→∞

1
l

∫ l

0
‖ f (s + ω) − f (s)‖ ds = 0.

The concept of pseudo S-asymptotically periodic functions is a natural
generalisation of the concept of S-asymptotically periodic functions introduced

c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

238

https://doi.org/10.1017/S0004972712000950 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000950


[2] Pseudo S-asymptotically periodic functions 239

recently in the literature. The literature on S-asymptotically periodic functions is very
recent and extensive. For some relevant work on S-asymptotically periodic functions,
we cite the pioneering work of Pierri et al. [9], the papers [8, 9, 17, 19] for qualitative
properties of this class of functions, the works [1, 4, 5, 8, 9, 17] related to abstract
differential equations and [15, 20, 22] for problems involving ordinary differential
equations on finite-dimensional spaces.

Neutral differential equations arise in many areas of applied mathematics, and for
this reason this type of equations has received much attention in recent years. Partial
neutral differential equations arise, for example, in the theory elaborated by Gurtin
and Pipkin [7] and Nunziato [18] for the description of heat conduction in materials
with fading memory. In the classical theory of heat conduction, it is assumed that
both the internal energy and the heat flux are linearly dependent on the temperature
u and its gradient ∇u. Under these conditions, the classical heat equation describes
sufficiently well the evolution of the temperature in different types of materials.
However, this description is not satisfactory in materials with fading memory. In the
theory developed in [7, 18], the internal energy and the heat flux are described as
functionals of u and ux. In connection with the above, we note that the system

d
dt

(
c0u(t, x) +

∫ t

−∞

k1(t − s)u(s, x) ds

)
= c14u(t, x) +

∫ t

−∞

k2(t − s)4u(s, x) ds,

u(t, x) = 0, x ∈ ∂Ω,

has frequently been used to describe this phenomenon; see, for instance, [16, 21]. In
this system, Ω ⊆ Rn is open and bounded with smooth boundary; (t, x) ∈ [0,∞) ×Ω;
u(t, x) represents the temperature in the position x and at the time t; c1, c2 are
physical constants; and ki : R→ R, i = 1, 2, are the internal energy and the heat flux
relaxation respectively. By assuming that the initial distribution of temperature u is
known on (−∞, 0] ×Ω and that k1 = k2 = 0 on a compact subset of (−∞, 0], we can
transform this system into the abstract problem (1.1)–(1.2). For additional details
on neutral differential equations we refer the reader to [10–13] and the references
therein.

Next, we introduce some notation and concepts used in this paper. Let (Z, ‖ · ‖Z)
and (W, ‖ · ‖W) be Banach spaces. We denote by L(Z, W) the space of bounded linear
operators from Z into W endowed with the norm of operators denoted by ‖ · ‖L(Z,W)

and we write L(Z) and ‖ · ‖L(Z) when Z = W. In addition, Br(z, Z) denotes the closed
ball with centre at z ∈ Z and radius r in Z and the symbol Z ↪→W is used in the case
where Z is continuously included in W.

As usual, Cb([a,∞); Z) is the space formed by all the bounded continuous functions
defined from [a,∞) into Z endowed with the uniform convergence norm denoted by
‖ · ‖Cb([a,∞);Z), and C0([a,∞); Z) denotes the subspace of Cb([a,∞); Z) formed by all
the functions f such that limt→∞ f (t) = 0.

https://doi.org/10.1017/S0004972712000950 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000950


240 M. Pierri and V. Rolnik [3]

We include now some well-known concepts on almost periodic functions.

D 1.1. A function f ∈Cb(R; Z) is called almost periodic if, for all ε > 0, there
exists a relatively dense subset of R, denoted byH(ε, f ), such that ‖ f (t + ξ) − f (t)‖Z <
ε for every t ∈ R and all ξ ∈ H(ε, f ).

D 1.2. A function f ∈Cb([0,∞); Z) is said to be asymptotically almost
periodic if there exist an almost periodic function g and a function h ∈C0([0,∞); Z)
such that f = g + h. If g is ω-periodic, the function f is said to be asymptotically
ω-periodic.

In the rest of this paper, AAPω(Z) denotes the subspace of Cb([0,∞); Z) formed by
all the asymptotically ω-periodic functions.

From [9, Definition 3.1] we note the following concept.

D 1.3. A function f ∈Cb([0,∞); Z) is said to be S-asymptotically periodic if
there exists ω > 0 such that limt→∞( f (t + ω) − f (t)) = 0. In this case, we say that f is
S-asymptotically ω-periodic.

We denote by SAPw(Z) the subspace of Cb([0,∞); Z) formed by all the S-
asymptotically ω-periodic functions.

We now introduce the concept of pseudo S-asymptotically periodic function.

D 1.4. A function f ∈Cb([0,∞); Z) is called pseudo S-asymptotically
periodic if there exists ω > 0 such that

lim
h→∞

1
h

∫ h

0
‖ f (s + ω) − f (s)‖Z ds = 0.

In this case, we say that f is pseudo S-asymptotically ω-periodic.
We denote by PSAPw(Z) the subspace of Cb([0,∞); Z) formed by all the pseudo

S-asymptotically ω-periodic functions.

To prove our main result on the existence of pseudo S-asymptotically periodic
mild solutions for the problem (1.1)–(1.2), we need to study conditions under which
the functions s 7→ us, s 7→G(s, us) and s 7→ F(s, us) are pseudo S-asymptotically ω-
periodic. To this end, it is convenient to introduce a special class of pseudo S-
asymptotically ω-periodic functions.

D 1.5. Let p > 0 and u ∈ PSAPw(Z). We say that u is pseudo S-
asymptotically ω-periodic of class p if

lim
l→∞

1
l

∫ l

p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖Z ds = 0.

Denote byPSAPw,p(Z) the subspace of Cb([0,∞); Z) formed by functions of this type.
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D 1.6. We say that a function H ∈C([0,∞] × Z; W) is uniformly (Z, W)-
pseudo S-asymptotically ω-periodic of class p if

lim
l→∞

1
l

∫ l

p
sup

τ∈[s−p,s]
sup
‖z‖Z≤R

‖H(τ + ω, z) − H(τ, z)‖W ds = 0,

for all R > 0. Denote by PSAPω,p(Z, W) the set formed by functions of this type.

For additional details on almost periodic, asymptotically almost periodic and S-
asymptotically periodic functions, we refer the reader to [1–5, 8, 9, 14, 17, 23] and the
references therein.

In the next section we study some qualitative properties of the class of pseudo
S-asymptotically periodic functions. Specifically, we discuss conditions under
which a pseudo S-asymptotically periodic function is S-asymptotically periodic
or asymptotically periodic. In Section 3 we study the existence of pseudo S-
asymptotically periodic mild solutions for the problem (1.1)–(1.2). In the final section
we consider some applications on the existence of pseudo S-asymptotically periodic
solutions for ordinary and partial neutral differential equations.

2. On pseudo S-asymptotically periodic functions

In this section we study some properties concerning pseudo S-asymptotically
ω-periodic functions. To begin, we establish without proof the following proposition.

P 2.1. The following conditions are satisfied.

(a) PSAPw(X) is a Banach space and AAPω(X) ↪→SAPw(X) ↪→PSAPw(X).
(b) If f ∈ PSAPw(X) is differentiable and f ′ is uniformly continuous, then f ′ ∈

PSAPw(X).

From [17] we know that AAPω(X) , SAPw(X). In the next examples we note that
PSAPw(X) , SAPw(X).

E 2.2. Let f : [0,∞)→ R be the function defined by

f (t) =


n2t − n3 + 1, t ∈

[
n −

1
n2
, n

)
, n ∈ N,

−n2t + n3 + 1, t ∈
[
n, n +

1
n2

)
, n ∈ N,

0 otherwise.

Since f ∈Cb([0,∞); R)
⋂

L1([0,∞); R), we have that f ∈ PSAPw(R) for all ω > 0.
On the other hand, for ω > 0,

lim
n→∞

( f (n + ω) − f (n)) = −1 and lim
n→∞

(
f
(
n +

1
n2

+ ω
)
− f

(
n +

1
n2

))
= 0,

which shows that f < SAPw(R).
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E 2.3. In Example 2.2, the function f belongs to L1([0,∞); R) which implies
that f ∈ PSAPw(X). Next, we consider a function g ∈ PSAPw(X) such that g <
L1([0,∞); R) and lim infl→∞(1/l)

∫ l

0
g(s) ds , 0.

Let (bn)n∈N be a sequence of real numbers such that limn→∞ bn = 0, bn , 0 for all
n ∈ N and the sequence (an)n∈N = (

∑n
i=1 bi)n∈N is bounded, nonconvergent and an ≥ 1

for all n ∈ N.
Let g : [0,∞)→ R be defined as g(t) = an+1 + (an+1 − an)(t − n − 1) for t ∈ [n, n + 1]

and n ∈ N. From [17, Example 2.1], g ∈ SAPw(R) for all ω > 0, which implies
that g ∈ PSAPw(R) for all ω > 0. On the other hand, by noting that

∫ n+1

n
g(s) ds ≥

min{an, an+1} ≥ 1 for all n ∈ N, we obtain that lim infl→∞(1/l)
∫ l

0
g(s) ds ≥ 1.

In the following propositions, we establish conditions under which a pseudo S-
asymptotically ω-periodic function is S-asymptotically ω-periodic or asymptotically
ω-periodic.

D 2.4. Let f ∈Cb([0,∞); X) and p > 0. We say that f is asymptotically
(p, ω)-norm oscillating if, for all ε > 0, there is Lε > 0 such that

sup
s∈[t,t+ω]

‖ f (s + ω) − f (s)‖ ≤ sup
τ∈[θ,θ+p]

‖ f (τ + ω) − f (τ)‖ + ε,

for all t ≥ Lε and each θ ∈ [t, t + ω].

R 2.5. There are many examples of asymptotically (p, ω)-norm oscillating
functions. We note, for instance, that an asymptoticallyω-periodic function is (nω, ω)-
norm oscillating for all n ∈ N.

D 2.6. Let v ∈C([0,∞); R+) and f ∈Cb([0,∞); X). We say that f is v-pseudo
S-asymptotically periodic if there exists ω > 0 such that

lim
l→∞

1
l

∫ l

0

‖ f (s + ω) − f (s)‖
v(s)

ds = 0.

In this case, we say that f is v-pseudo S-asymptotically ω-periodic.

In the next result, for f ∈Cb([0,∞); X) and p ≥ 0, we use the notation H f ,p for the
function H f ,p : [0,∞)→ R+ given by

H f ,p(s) = sup
τ∈[s,s+p]

‖ f (τ + ω) − f (τ)‖.

P 2.7. Let v ∈C([0,∞), R+) and f ∈ PSAPw(R). Suppose that f is
asymptotically (p, ω)-norm oscillating, v is nonincreasing and either of the following
conditions is satisfied:

(a) H f ,p is v-pseudo S-asymptotically ω-periodic and {v(s)s | s ≥ 0} is bounded;
(b) the set {(1/r)

∫ r

0
(H f ,p(s)/v(s)) ds | r ≥ 0} is bounded and lims→∞ v(s)s = 0.

Then f ∈ SAPw(R).
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P. In both (a) and (b), for ε > 0, there is Lε > ω such that

sup
ϑ∈[t,t+ω]

‖ f (ϑ + ω) − f (ϑ)‖ ≤ sup
τ∈[θ,θ+p]

‖ f (τ + ω) − f (τ)‖ + ε,

v(s)s
ω

(
1
s

∫ s

0

H f ,p(τ)

v(τ)
dτ

)
≤ ε,

for all t ≥ Lε, every θ ∈ [t, t + ω] and each s ≥ Lε. Then, for s > Lε,

‖ f (s + ω) − f (s)‖ =
1
ω

∫ s+ω

s
‖ f (s + ω) − f (s)‖ dθ

≤
1
ω

∫ s+ω

s
sup

τ∈[s,s+ω]
‖ f (τ + ω) − f (τ)‖ dθ

≤
1
ω

∫ s+ω

s
v(θ) sup

τ∈[θ,θ+p]

‖ f (τ + ω) − f (τ)‖
v(θ)

dθ +
1
ω

∫ s+ω

s
ε dθ

≤
v(s)s
ω

(
1
s

∫ s

0

H f ,p(θ)

v(θ)
dθ

)
+ ε,

≤ 2ε,

which implies that limt→∞ ‖ f (t + ω) − f (t)‖ = 0 and f ∈ SAPw(R). �

The next corollary follows directly from [19, Proposition 2.4] and Proposition 2.7.
From [19] we note that a function f ∈Cb([0,∞), X) is ω-normal on compact sets if
for every sequence of natural numbers (mn)n∈N with mn→∞ as n→∞, there exist a
subsequence (mn j ) j∈N and F ∈Cb([0,∞), X) such that fmn jω

→ F as j→∞ uniformly
on compact subsets of [0,∞), where fmn jω

(t) = f (t + mn jω) for t ≥ 0.

C 2.8. Suppose that the assumptions in Proposition 2.7 are fulfilled, f is ω-
normal on compact sets and

∑
j≥0 v( jω) <∞. Then f is asymptotically ω-periodic.

We conclude this section with the following result.

P 2.9. Assume that X is a Banach space over the complex field C. If f
is asymptotically almost periodic and f ∈ PSAPw(X), then f is asymptotically ω-
periodic.

P. Suppose that f = g + ϕ, where ϕ ∈C0([0,∞); X) and g is almost periodic.
Since f and ϕ are pseudo S-asymptotically periodic, it follows that g ∈ PSAPw(X).
By noting that the function Gw : [0,∞)→ X given by Gω(t) = g(t + ω) − g(t) is almost
periodic, from the results in [23] we known that Gω has an associated Fourier series∑∞

n=1 Ĝω(λn)eiλnt, where (λn)n∈N is a sequence of numbers and the coefficients Ĝω(λn)
are given by

Ĝω(λn) = lim
T→∞

1
2T

∫ T

−T
e−iλn sGω(s) ds.
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Moreover, from the theory of almost periodic functions (see the last part of the proof
of [23, Theorem 10.1]) we see that

‖Ĝω(λn)‖ =

∥∥∥∥∥ lim
T→∞

1
2T

∫ T

−T
eλn sGω(s) ds

∥∥∥∥∥
≤ lim

T→∞

1
2T

∫ T

−T
‖Gω(s)‖ ds

≤ lim
T→∞

1
T

∫ T

0
‖Gω(s)‖ ds,

which implies that Ĝω(λn) = 0 for all n ∈ N. Finally, from the uniqueness of the Fourier
series [23, p. 111] we obtain that Gω(s) = 0 for all s ≥ 0 and that g is ω-periodic. Thus,
f is asymptotically ω-periodic. �

3. Pseudo S-asymptotically ω-periodic mild solutions for abstract
neutral equations

In this section we study the existence of pseudo S-asymptotically periodic mild
solutions for the problem (1.1)–(1.2). In the rest of this paper, A : D(A) ⊂ X→ X is
the generator of a C0-semigroup of bounded linear operators (T (t))t≥0 on (X, ‖ · ‖) and
M, γ are positive constants such that ‖T (t)‖L(X) ≤ Me−γt for all t > 0.

D 3.1. A function u ∈C([−r,∞); X) is said to be a mild solution of (1.1)–(1.2)
if u0 = ϕ and

u(t) = T (t)(ϕ(0) − F(0, ϕ)) + F(t, ut) +

∫ t

0
AT (t − s)F(s, us) ds

+

∫ t

0
T (t − s)G(s, us) ds, ∀t ≥ 0. (3.1)

To establish our results we consider the following conditions.
(H1) There exist a Banach space (Y, ‖ · ‖Y ) continuously included in X and constants

α ∈ [0, 1), C > 0 such that ‖AT (t)‖L(Y,X) ≤Ce−γtt−α for every t > 0. The function
F belongs to C([0,∞) × C; Y) and there exists LF ∈Cb([0,∞); R+) such that
‖F(t, ψ1) − F(t, ψ2)‖Y ≤ LF(t)‖ψ1 − ψ2‖C for all (t, ψi) ∈ [0,∞) × C.

(H2) The function G belongs to C([0,∞) × C; X) and there exists LG ∈Cb([0,∞); R+)
such that ‖G(t, ψ1) −G(t, ψ2)‖ ≤ LG(t)‖ψ1 − ψ2‖C for all (t, ψi) ∈ [0,∞) × C.

In the next two lemmas we study conditions under which the functions s 7→ us,
s 7→G(s, us) and s 7→ F(s, us) are pseudo S-asymptotically ω-periodic.

L 3.2. Let u ∈Cb([−r,∞); X) and assume that u|[0,∞) ∈ PSAPω,p(X). Then the
function s 7→ us belongs to PSAPω,p(C). Similarly, if u ∈Cb([−r,∞); Y) and u|[0,∞) ∈

PSAPω,p(Y), then the function s 7→ us belongs to PSAPω,p(C).
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P. We consider separately the cases p ≥ r and p < r. First, we assume r > p. Let
k ∈ N such that kp > r. For l > p + r

1
l

∫ l

p
sup

τ∈[s−p,s]
‖uτ+ω − uτ‖C ds

≤
1
l

∫ l

p
sup

τ∈[s−p,s]
sup

θ∈[−r,0]
‖u(τ + ω + θ) − u(τ + θ)‖ ds

≤
1
l

∫ l

p
sup

τ∈[s−p−r,s]
‖u(τ + ω) − u(τ)‖ ds

≤
1
l

∫ l

p

( k−1∑
i=−1

sup
τ∈[s−r+ip,s−r+(i+1)p]

‖u(τ + ω) − u(τ)‖
)

ds

≤

k−1∑
i=−1

1
l

∫ l−r+(i+1)p

p−r+(i+1)p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

≤

k−1∑
i=−1

1
l

∫ l+kp−r

p−r
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

≤

k−1∑
i=−1

1
l

∫ p

p−r
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

+

k−1∑
i=−1

1
l

∫ l+kp−r

p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

≤ 2(k + 1)
r
l
‖u‖Cb([0,∞);X) + (k + 1)

(l + kp − r)
l

1
l + kp − r

×

∫ l+kp−r

p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds,

from which we infer that

lim
l→∞

1
l

∫ l

p
sup

τ∈[s−p,s]
‖uτ+ω − uτ‖C ds = 0

and that the function s 7→ us belongs to PSAPω,p(C).
Now we suppose that p > r. Let k ∈ N such that kr > 2p. For l > kr + p, we see that

1
l

∫ l

p
sup

τ∈[s−p,s]
‖uτ+ω − uτ‖C ds

≤
1
l

∫ l

p
sup

τ∈[s−p−r,s]
‖u(τ + ω) − u(τ)‖ ds

≤
1
l

∫ rk

p
sup

τ∈[s−p−r,s]
‖u(τ + ω) − u(τ)‖
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+
1
l

∫ l

rk
sup

τ∈[s−p−r,s]
‖u(τ + ω) − u(τ)‖ ds

≤
2(rk − p)

l
‖u‖Cb([0,∞);X) +

1
l

∫ l

rk
sup

τ∈[s−2p,s]
‖u(τ + ω) − u(τ)‖ ds

≤
2(rk − p)

l
‖u‖Cb([0,∞);X) +

1
l

∫ l

rk
sup

τ∈[s−2p,s−p]
‖u(τ + ω) − u(τ)‖ ds

+
1
l

∫ l

rk
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

≤
2(rk − p)

l
‖u‖Cb([0,∞);X) +

1
l

∫ l−p

rk−p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

+
1
l

∫ l

p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds

≤
2(rk − p)

l
‖u‖Cb([0,∞);X) +

2
l

∫ l

p
sup

τ∈[s−p,s]
‖u(τ + ω) − u(τ)‖ ds,

which implies that liml→∞(1/l)
∫ l

p
supτ∈[s−p,s] ‖uτ+ω − uτ‖C ds = 0 and s 7→ us belongs

to PSAPω,p(C). This completes the proof. �

L 3.3. Assume that condition H1 is satisfied and F ∈ PSAPω,p(C, Y). If u ∈
Cb([−r,∞); X) is such that u|[0,∞) ∈ PSAPω,p(X), then the function s 7→ F(s, us)
belongs toPSAPω,p(Y). Similarly, if condition H2 is satisfied, G ∈ PSAPω,p(C, X) and
u ∈Cb([−r,∞); X) is such that u|[0,∞) ∈ PSAPω,p(X), then the function s 7→G(s, us)
belongs to PSAPω,p(X).

P. We only prove the first assertion. Let R = ‖u‖Cb([−r,∞);X). Since the function
s 7→ us belongs to PSAPω,p(C) (see Lemma 3.2), for ε > 0 there exists Lε > 0 such
that

1
l

∫ l

p
sup

τ∈[s−p,s]
sup
‖x‖C≤R

‖F(τ + ω, x) − F(τ, x)‖Y ds ≤ ε,

‖LF‖Cb([0,∞);R)
1
l

∫ l

p
sup

τ∈[s−p,s]
‖uτ+ω − uτ‖C ds ≤ ε,

for all l ≥ Lε. Under these conditions, for l ≥ Lε,

1
l

∫ l

p
sup

τ∈[s−p,s]
‖F(τ + ω, uτ+ω) − F(τ, uτ)‖Y ds

≤
1
l

∫ l

p
sup

τ∈[s−p,s]
‖F(τ + ω, uτ+ω) − F(τ, uτ+ω)‖Y ds

+
1
l

∫ l

p
sup

τ∈[s−p,s]
‖F(τ, uτ+ω) − F(τ, uτ)‖Y ds
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≤
1
l

∫ l

p
sup

τ∈[s−p,s]
sup
‖x‖C≤R

‖F(τ + ω, x) − F(τ, x)‖Y ds

+ ‖LF‖Cb([0,∞);R)
1
l

∫ l

p
sup

τ∈[s−p,s]
‖uτ+ω − uτ‖Y ds

≤ 2ε,

which proves the assertion. �

The next result is the key to proving our main theorem.

L 3.4. Let u ∈Cb([−r,∞); Y) and v : [−r,∞)→ X be the function defined by
v(t) = 0 for t ∈ [−r, 0] and v(t) =

∫ t

0
AT (t − τ)u(τ) dτ for t ≥ 0. If u|[0,∞) ∈ PSAPω,p(Y)

then v ∈ PSAPω,p(X).

P. We analyse separately the cases p < 1 and p ≥ 1, and for the sake of simplicity
we consider the function h : [0,∞)→ R+ defined by h(ξ) = ‖u(ξ + ω) − u(ξ)‖Y .

To begin, we note that from the Bochner’s criteria for integrable functions and the
estimate ∥∥∥∥∥∫ t

0
AT (t − s)u(s) ds

∥∥∥∥∥ ≤ ∫ t

0
‖AT (t − s)‖L(Y,X)‖u(s)‖Y ds

≤ C
∫ t

0

e−γ(t−s)

(t − s)α
‖u(s)‖Y ds

≤ C‖u‖C([0,∞),Y)

(1
γ

+
1

1 − α

)
,

it follows that v is well defined and v ∈Cb([−r,∞); Y).
Assume that p < 1. Let q > 1 + p and k ∈ N such that kp > 1. For l ≥ q,

1
l

∫ l

p
sup

τ∈[s−p,s]
‖v(τ + ω) − v(τ)‖ ds

≤
1
l

∫ l

p
sup

τ∈[s−p,s]

∫ ω

0
‖AT (τ + ω − ξ)u(ξ)‖ dξ ds

+
1
l

∫ l

p
sup

τ∈[s−p,s]

∫ τ

0
‖AT (τ − ξ)(u(ξ + ω) − u(ξ))‖ dξ ds

≤
C
l

∫ l

p
sup

τ∈[s−p,s]

∫ ω

0

e−γ(τ+ω−ξ)

(τ + ω − ξ)α
‖u(ξ)‖Y dξ ds

+
C
l

∫ q

p
sup

τ∈[s−p,s]

∫ τ

0

e−γ(τ−ξ)

(τ − ξ)α
h(ξ) dξ ds

+
C
l

∫ l

q
sup

τ∈[s−p,s]

∫ τ

0

e−γ(τ−ξ)

(τ − ξ)α
h(ξ) dξ ds

= I1(l) + I2(l) + I3(l).
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We estimate the terms Ii(l) separately. First, we see that

I1(l) ≤
C
l

∫ l

p
e−γ(s−p) sup

τ∈[s−p,s]

∫ ω

0

e−γ(ω−ξ)

(ω − ξ)α
‖u(ξ)‖Y dξ ds

≤
C
l

∫ l

p
e−γ(s−p)‖u‖Cb([0,∞);Y)

w1−α

1 − α
ds

≤ C
eγp

γ
‖u‖Cb([0,∞);Y)

w1−α

1 − α
1
l
,

from which we infer that I1(l)→ 0 as l→∞. Next,

I2(l) ≤
C
l

∫ q

p
sup

τ∈[s−p,s]

∫ τ

0

h(ξ)
(τ − ξ)α

dξ ds

≤
C
l

∫ q

p
‖h‖Cb([0,∞);Y)

s1−α

1 − α
ds

≤ 2C‖u‖Cb([0,∞);Y)
q1−α

1 − α
q − p

l
,

which implies that I2(l)→ 0 as l→∞. Finally,

I3(l) ≤
C
l

∫ l

q
sup

τ∈[s−p,s]

(∫ τ−1

0

e−γ(τ−ξ)

(τ − ξ)α
h(ξ) dξ +

∫ τ

τ−1

e−γ(τ−ξ)

(τ − ξ)α
h(ξ) dξ

)
ds

≤
C
l

∫ l

q
sup

τ∈[s−p,s]

∫ τ−1

0
e−γ(τ−ξ)h(ξ) dξ ds +

C
l

∫ l

q
sup

τ∈[s−p,s]

∫ τ

τ−1

h(ξ)
(τ − ξ)α

dξ ds

≤
C
l

∫ l

q
e−γ(s−p) sup

τ∈[s−p,s]

∫ τ−1

0
eγξh(ξ) dξ ds +

C
(1 − α)l

∫ l

q
sup

ξ∈[s−p−1,s]
h(ξ) ds

≤
Ceγp

l

∫ l

0

∫ s

0
e−γ(s−ξ)h(ξ) dξ ds +

C
(1 − α)l

∫ l

q

k−1∑
i=−1

sup
τ∈[s−1+ip,(s−1)+(i+1)p]

h(ξ) ds

≤
Ceγp

l

∫ l

0

∫ l

ξ

e−γ(s−ξ)h(ξ) ds dξ +
C

(1 − α)l

k−1∑
i=−1

∫ l−1+(i+1)p

q−1+(i+1)p
sup

τ∈[s−p,s]
h(ξ) ds

≤
Ceγp

l

∫ l

0
eγξh(ξ)

(e−γξ − e−γl

γ

)
dξ +

(k + 1)C
(1 − α)l

∫ l+kp

p
sup

τ∈[s−p,s]
h(ξ) ds

≤
Ceγp

γl

(∫ p

0
h(ξ) dξ +

∫ l

p
h(ξ) dξ

)
+

(k + 1)C
(1 − α)l

∫ l+kp

p
sup

τ∈[s−p,s]
h(ξ) ds

≤
2Ceγp p
γl

‖u‖Cb([0,∞);Y) +
Ceγp

γ

1
l

∫ l

p
h(ξ) dξ

+
(k + 1)C(l + kp)

(1 − α)l
1

l + kp

∫ l+kp

p
sup

τ∈[s−p,s]
h(ξ) ds,

which shows that liml→∞ I3(l) = 0 and completes the proof that v ∈ PSAPω,p(X).
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To finish the proof, we next assume that p ≥ 1. Let q > 2p + 1. If Ii(l), i = 1, 2, 3,
are defined as above, for l ≥ q it is easy to see that

1
l

∫ l

p
sup

τ∈[s−p,s]
‖v(τ + ω) − v(τ)‖ ds ≤ I1(l) + I2(l) + I3(l)

and liml→∞(I1(l) + I2(l)) = 0. Thus, to complete the proof it remains to show that
liml→∞ I3(l) = 0.

From a review of our estimates above for I3(l), it is easy to see that

I3(l) ≤
C
l

∫ l

q
e−γ(s−p) sup

τ∈[s−p,s]

∫ τ−1

0
eγξh(ξ) dξ ds +

C
(1 − α)l

∫ l

q
sup

ξ∈[s−p−1,s]
h(ξ) ds,

C
l

∫ l

q
e−γ(s−p) sup

τ∈[s−p,s]

∫ τ−1

0
eγξh(ξ) dξ ds ≤

Ceγp

γl

∫ l

0
h(ξ) dξ.

Therefore,

I3(l) ≤
Ceγp

γl

∫ l

0
h(ξ) dξ +

C
(1 − α)l

∫ l

q
sup

ξ∈[s−p−1,s]
h(ξ) ds

≤
Ceγp

γl

∫ l

0
h(ξ) dξ +

C
(1 − α)l

∫ l

q
sup

ξ∈[s−2p,s]
h(ξ) ds

≤
Ceγp

γl

∫ l

0
h(ξ) dξ +

C
(1 − α)l

∫ l

q

(
sup

ξ∈[s−2p,s−p]
h(ξ) + sup

ξ∈[s−p,s]
h(ξ)

)
ds

≤
Ceγp

γl

∫ l

0
h(ξ) dξ +

C
(1 − α)l

(∫ l−p

q−p
sup

ξ∈[s−p,s]
h(ξ) ds +

∫ l

q
sup

ξ∈[s−p,s]
h(ξ) ds

)
≤

Ceγp

γl

∫ l

0
h(ξ) dξ +

2C
(1 − α)l

∫ l

p
sup

ξ∈[s−p,s]
h(ξ) ds

≤
Ceγp

γl

∫ p

0
h(ξ) dξ +

(Ceγp

γ
+

2C
(1 − α)

)1
l

∫ l

p
sup

ξ∈[s−p,s]
h(ξ) ds

≤
2pCeγp

γl
‖u‖Cb([0,∞);Y) + C

(eγp

γ
+

2
(1 − α)

)1
l

∫ l

p
sup

ξ∈[s−p,s]
h(ξ) ds,

which implies that liml→∞ I3(l) = 0. This completes the proof. �

The following lemma is proved by arguing as in the proof of Lemma 3.4.

L 3.5. Let u ∈Cb([−r,∞); X) and v : [−r,∞)→ X be the function defined by
v(t) = 0 for t ∈ [−r, 0] and v(t) =

∫ t

0
T (t − τ)u(τ) dτ for t ≥ 0. If u|[0,∞) ∈ PSAPω,p(X),

then v ∈ PSAPω,p(X).

We can now establish the main result of this paper. In the next theorem, ic denotes
the inclusion map from Y into X and Y is the space in condition H1.
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T 3.6. Assume that conditions H1, H2 are satisfied, G ∈ PSAPω,p(C, X), F ∈
PSAPω,p(C, Y) and the functions ‖G(·, 0)‖, ‖F(·, 0)‖Y belong to Cb([0,∞); R). If

Θ = ‖LF‖Cb([0,∞);R)

(
‖ic‖L(Y,X) + C

(1
γ

+
1

1 − α

))
+

M
γ
‖LG‖Cb([0,∞);R) < 1,

then there exists a unique mild solution u ∈ PSAPω,p(X) of the problem (1.1)–(1.2).

P. Let B = {u : [−r,∞)→ X | u0 = ϕ, u|[0,∞) ∈ PSAPw,p(X)} endowed with the
metric d(u, z) = ‖u − z‖C([0,∞);X) and let Γ :B→B be the map defined by (Γu)0 = ϕ
and

Γu(t) = T (t)(ϕ(0) − F(0, ϕ)) + F(t, ut) +

∫ t

0
AT (t − s)F(s, us) ds

+

∫ t

0
T (t − s)G(s, us) ds, t ≥ 0.

Next, we prove that Γ is a contraction on B. Let u ∈B. From the estimate∥∥∥∥∥∫ t

0
T (t − s)G(s, us) ds

∥∥∥∥∥ +

∥∥∥∥∥∫ t

0
AT (t − s)F(s, us) ds

∥∥∥∥∥
≤

∫ t

0
Me−γ(t−s)LG(s)‖us‖C ds +

∫ t

0
Me−γ(t−s)‖G(s, 0)‖ ds

+

∫ t

0
Ce−γ(t−s) LF(s)

(t − s)α
‖us‖C ds +

∫ t

0
C
‖F(s, 0)‖Y

(t − s)α
ds

≤
M
γ
‖LG‖Cb([0,∞);R)‖u‖Cb([−r,∞);X) +

M
γ
‖G(·, 0)‖Cb([0,∞);X)

+ ‖LF‖Cb([0,∞);R)C
(1
γ

+
1

1 − α

)
‖u‖Cb([−r,∞);X)

+ C
(1
γ

+
1

1 − α

)
‖F(·, 0)‖Cb([0,∞);Y),

we infer that Γu ∈Cb([0,∞); X), and from Lemmas 3.2–3.5 it follows that Γu ∈B.
Moreover, for u, z ∈B and t ≥ 0, we see that

‖Γu(t) − Γz(t)‖ ≤ ‖ic‖L(Y,X)LF(t)‖u − z‖Cb([0,∞);X)

+

∫ t

0

Ce−γ(t−s)

(t − s)α
LF(s) ds‖u − z‖Cb([0,∞);X)

+

∫ t

0
Me−γ(t−s)LG(s) ds‖u − z‖Cb([0,∞);X),

which implies that d(Γu, Γz) ≤ Θd(u, z) and there exists a unique mild solution u ∈
PSAPω,p(X) of (1.1)–(1.2). The proof is complete. �
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4. Applications

In this section we discuss the existence of pseudo S-Asymptotically ω-periodic
mild solutions for neutral differential equations. To begin, we consider the ordinary
neutral differential equation

d
dt

(
u(t) − λ

∫ t

t−r
C(t − s)u(s) ds

)
= Au(t) + λ

∫ t

t−r
B(t − s)u(s) ds − η(t) + q(t), t ≥ 0,

(4.1)

u(θ) = ϕ(θ), θ ∈ [−r, 0], (4.2)

which arises in the study of the dynamics of income, employment, value of capital
stock, and cumulative balance of payments; see [6] for details. In this system, λ ∈ R,
the state u(t) ∈ Rn, C, B are n × n matrix continuous functions, A is a constant n × n
matrix, η represents government intervention and q private initiative.

In this case, our results are easily applicable since the assumption H1 is
automatically satisfied with Y = X = Rn and α = 0. To represent this system in the
abstract form (1.1)–(1.2) we introduce the functions F,G : [0, a] × C→ X defined by

F(t, ψ) = −λ

∫ 0

−r
C(−s)ψ(s) ds and G(t, ψ)(t) = λ

∫ 0

−r
B(−s)ψ(s) ds − η(t) + g(t).

In the next result, which is a consequence of Theorem 3.6, we say that a function
u ∈Cb([−r,∞); X) is a mild solution of (4.1)–(4.2) if u is a mild solution of the
associated abstract problem (1.1)–(1.2). In the rest of this section p, w are positive
real numbers.

P 4.1. Assume that η, q ∈ PSAPw,p(R), there are positive constants M, γ
such that ‖etA‖ ≤ Me−γt and

‖C‖L1([0,r];L(Rn,Rn))

(
1 + M‖A‖

(1
γ

+ 1
))

+
M
γ
‖B‖L1([0,r];L(Rn,Rn)) < 1.

Then there exists a unique mild solution u ∈ PSAPω,p(Rn) of (4.1)–(4.2).

We now consider some examples involving delayed partial differential equations.
Suppose that X = L2([0, π]) and A : D(A) ⊂ X→ X is the operator given by Ax =

x′′ on D(A) := {x ∈ X | x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A is the
infinitesimal generator of an analytic semigroup (T (t))t≥0 on X, A has discrete
spectrum with eigenvalues −n2, n ∈ N, and associated normalised eigenvectors zn(ξ) =

(2/π)1/2 sin(nξ). We note that {zn | n ∈ N} is an orthonormal basis of X, T (t)x =∑∞
n=1 e−n2t〈x, zn〉zn and ‖ T (t) ‖≤ e−t for all x ∈ X and each t ≥ 0. Moreover, in this

case we note that (−A)−1/2x =
∑∞

n=1(1/n)〈x, zn〉zn for x ∈ X, (−A)1/2x =
∑∞

n=1 n〈x, zn〉zn

for x ∈ D((−A)1/2) = {x ∈ X |
∑∞

n=1 n〈x, zn〉zn ∈ X}. In addition, ‖(−A)−1/2‖L(X) = 1 and

‖ (−A)1/2T (t) ‖L(X)≤
1
√

2
e−t/2t−1/2 for all t > 0.
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Consider the delayed partial differential equation

∂

∂t
u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

∫ t

t−r
b(s − t)u(s, ξ) ds + c(t)g(u(t, ξ)), (4.3)

u(t, 0) = u(t, π) = 0, (4.4)

u(θ, ξ) = ϕ(θ, ξ), −r ≤ θ ≤ 0, (4.5)

for t > 0 and ξ ∈ [0, π], where r is a positive real number, ϕ ∈C([−r, 0]; X), c ∈
PSAPw,p(R), b ∈C([−r, 0]; R) and g : R→ R is Lipschitz with Lipschitz constant Lg.

Let C = C([−r, 0]; X). By defining the function G : [0,∞) × C→ X by

G(t, ψ)(ξ) =

∫ 0

−r
b(s)ψ(s, ξ) ds + c(t)g(ψ(0, ξ)),

we represent (4.3)–(4.5) in the abstract form (1.1)–(1.2). Moreover, it is easy to see
that

‖G(t, ψ1) −G(t, ψ2)‖ ≤ (‖b‖L2([−r,0];R)r
1/2 + |c(t)|Lg)‖ψ1 − ψ2‖C, ψi ∈ C, t ≥ 0.

As above, we say that u ∈Cb([−r,∞); X) is a mild solution of (4.3)–(4.5) if u is a
mild solution of the associated problem (1.1)–(1.2). From Theorem 3.6, we have the
following result.

P 4.2. If (‖b‖L2([−r,0];R)r1/2 + ‖c‖Cb([0,∞);R)Lg) < 1, then there exits a unique
mild solution u ∈ PSAPω,p(X) of the problem (4.3)–(4.5).

We conclude this paper with an application to partial neutral differential equations
which arise in control systems described by abstract retarded functional-differential
equations with feedback control governed by a proportional integro-differential law;
see [12, Examples 4.2] for details. Specifically, we study the problem

∂

∂t

(
u(t, ξ) +

∫ 0

−r

∫ π

0
b(s, η, ξ)u(t + s, η) dη ds

)
=
∂2

∂ξ2
u(t, ξ) + a0(t)u(t, ξ) +

∫ 0

−r
a(t, s)u(t + s, ξ) ds, t ≥ 0, ξ ∈ [0, π], (4.6)

u(t, 0) = u(t, π) = 0, (4.7)

where a0 ∈ PSAPω,p(R), a ∈ PSAPω,p(L2([−r, 0]; R)), the functions b, (∂i/∂ζ i)
b(τ, η, ζ), i = 1, 2, are measurable, b(τ, η, π) = b(τ, η, 0) = 0 for every (τ, η) and

N1 := max
{∫ π

0

∫ 0

−r

∫ π

0

(
∂i

∂ζ i
b(τ, η, ζ)

)2

dη dτ dζ | i = 0, 1
}
<∞.

Let C = C([−r, 0]; X) and let F,G : [0, a] × C→ X be functions defined by

F(t, ψ)(ξ) :=
∫ 0

−r

∫ π

0
b(τ, η, ξ)ψ(τ, η) dη dτ,

G(t, ψ)(ξ) := a0(t)ψ(0, ξ) +

∫ 0

−r
a(t, s)ψ(s, ξ) ds.
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It is easy to see that F ∈C([0, a];L(C; X1/2)), G ∈C([0, a];L(C; X)), ‖ F(t, ·) ‖L(C;X1/2)

≤ (N1r)1/2 and ‖G(t, ·) ‖L(C,X)≤ |a0(t)| + ‖a(t)‖L2([−r,0];R) for every t ≥ 0. The next result
follows from Theorem 3.6 with α = 1

2 .

T 4.3. If

(N1r)1/2
(
1 +

4
√

2

)
+ ‖a0‖Cb([0,∞);R) + ‖a‖Cb([0,∞);L2([−r,0];R)) < 1,

then there exists a unique mild solution u ∈ PSAPω,p(X) of the system (4.6)–(4.7).
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