
JFP 15 (3): 477–502, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005514 Printed in the United Kingdom

477

Loci: a rule-based framework for parallel
multi-disciplinary simulation synthesis

EDWARD A. LUKE

Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA

(e-mail: luke@cse.msstate.edu)

THOMAS GEORGE

Department of Computer Science, Texas A & M University, TX 77843-3112, USA

(e-mail: tgeorge@cs.tamu.edu)

Abstract

We present a rule-based framework for the development of scalable parallel high performance

simulations for a broad class of scientific applications (with particular emphasis on continuum

mechanics). We take a pragmatic approach to our programming abstractions by implementing

structures that are used frequently and have common high performance implementations on

distributed memory architectures. The resulting framework borrows heavily from rule-based

systems for relational database models, however limiting the scope to those parts that have

obvious high performance implementation. Using our approach, we demonstrate predictable

performance behavior and efficient utilization of large scale distributed memory architectures

on problems of significant complexity involving multiple disciplines.

1 Introduction

The current state-of-the-art in the development of scalable parallel numerical

applications is primarily achieved using traditional sequential languages and library

calls to the message passing libraries such as MPI (1997), PVM (Geist et al., 1994), or

BSPLib (Hill et al., 1997). These applications are typically executed on distributed

memory machines. Although this programming solution has demonstrated great

success in numerous applications, this model remains tedious, and costly in practice.

Often developers of such applications must pay a great deal of attention to parallel

communication and resource management issues when time may be spent more

productively on numerical methods. There have been many attempts to automate

parallel application development with various degrees of success. The best known

of these, High Performance Fortran (HPF, 1993), consists of a set of data-parallel

extensions to Fortran. However, this approach failed to reliably deliver portable

performance largely attributable to the lack of a consistent performance model.

An alternative but less scalable approach that has been somewhat more successful

in the context of shared memory machines is OpenMP (1997, 1998). OpenMP

provides a set of loop parallelizing directives that allows users to incrementally

parallelize sequential Fortran, C, and C++ codes and works reasonably well on

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

478 E. A. Luke and T. George

tens of processors. Although not currently popular, we should mention the well

known declarative approach to parallel numerical computing, SISAL (Cann, 1992).

SISAL produced competitive performance results in the development of serial and

shared memory applications in its day. Unfortunately, a scalable distributed memory

implementation of SISAL was never fully demonstrated (Pande et al., 1994).

What is a numerical software developer to use that would allow them to focus a

little less on parallel processing and more on numerical model development? One

strategy might be to use a coordination language such as PCN (Foster et al., 1992).

A coordination language holds the promise of allowing users to develop parallel

or distributed application using the languages, libraries, or tools that are most

appropriate for any particular computational task while allowing the coordination

language to manage resources of a parallel or distributed implementation. These

coordination languages usually have relatively large overheads making them imprac-

tical to apply at a fine-grain level (e.g. each computational entity). Unfortunately,

the work required in the manual management of entity aggregation and associated

inferred intra-aggregation data access is similar to the work required to parallelize

applications. Thus, coordination languages are limited to contexts where the main

objective is hooking together larger application level components where the relative

overhead is suitably small. It would be helpful to have a coordination language that

could manage aggregation as well. To address this issue, we have developed the

Loci1 coordination framework that is capable of coordinating and aggregating

computations. The framework is unique in the sense that it uses a relational

model of computations that naturally facilitates a fine-grain description that can be

automatically aggregated using appropriate relational queries. A declarative logic-

based strategy is used to define computations using an abstraction that is roughly a

subset of the Datalog (Ullman, 1988) language for relational database queries. This

facilitates an efficient and automatic data-parallel programming model that allows

for coordination of computations that have fine-grained descriptions. Here we

use fine-grained descriptions to indicate that computational abstractions are about

the natural computational entities of the respective algorithms and not artificial

aggregations created to achieve performance. Although the resulting programming

model is not general, it is able to describe a wide range of numerical algorithms.

We have implemented within the framework both finite-volume fluid mechanics

solvers as well as finite-element solid mechanics models. In addition, we were able

to seamlessly and easily couple these models to produce scalable parallel multi-

disciplinary simulations.

2 Related work

Logical and functional declarative models have long been touted as having particular

benefits as parallel programming languages. Since the order of computation is not

explicitly specified, but rather emerges from data dependencies inherent in the

1 Loci is not an acronym. The name Loci was given to represent its approach of discovering computation
loop bounds at the locus of computational inputs.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 479

algorithm description, it is argued that declarative languages provide a naturally

parallel description of algorithms. In addition, referential transparency offered by

these programming paradigms makes it easier to reason about parallel execution

and to design optimizing transformations. In the early nineties there were several

successful languages such as SISAL (Cann, 1992), Strand (Foster & Taylor, 1990),

and NESL (Blelloch et al., 1993) that had designs that were particularly suited to

high performance computational architectures. As mentioned already, these efforts

have not adapted well to more recent distributed memory architectures. More recent

research on distributed memory architectures has included distributed implementa-

tions of declarative parallel languages such as Haskell (Trinder et al., 1998), Eden

(Breitinger et al., 1997) and GdH (Pointon et al., 2000). Many of these distributed

memory approaches have included some form of explicit concurrency control in the

form of embedded coordination languages (Trinder et al., 2002). Unlike SISAL, the

applicability of these efforts to scientific high performance computation is not certain.

An alternative approach to increasing automation in high performance compu-

tation is the development of domain specific computational frameworks such as

Overture (Bassetti et al., 1998) for computations on overset grids, or the Cactus

Code (Gabrielle et al., 2000) for Cartesian adaptive mesh refinement solvers. These

frameworks provide facilities for quickly building applications and automatically

managing parallel resources. However, these frameworks typically make specific

assumptions about the approach used to solve a given problem. If the numerical

strategy is sufficiently similar to the model used in the framework they can be

quite helpful, but each appears to have rather narrow range of applicability. More

recently, work on the Common Component Architecture (CCA) (Armstrong et al.,

1999; Govindaraju et al., 2003) may provide a more generic approach for the

creation of reusable components for high performance numerical simulations. To

facilitate more efficient interactions among numerical components, a new Scientific

Interface Description Language, SIDL (Cleary et al., 1998), is used as it facilitates

low overhead component interfaces, particularly when components happen to reside

on the same architecture. We are beginning to see applications developed using

these new standards for scalable linear system solvers, laser plasma simulations and

adaptive mesh refinement applications (CASC, 2003).

A unique idea that is central to the approach described in this paper is that

scientific computations are appropriately modeled using relational abstractions.

Though this is not a common perspective, we have found a couple of examples

where this observation has also been made. For example, the Janus (Gerlach et al.,

1998) C++ library for developing high performance simulations uses relations as

an abstraction for the construction and manipulation of parallel data-structures. A

much more bold use of the relational abstraction for high performance computations

is employed in the development of a compiler for high performance sparse matrix

solvers (Kotlyar et al., 1997). Their compiler allows users to develop algorithms

for sparse matrices by mapping much more terse dense matrix algorithms onto

descriptions of sparse matrix data-structures. The compiler used relational repres-

entations of sparse data-structures facilitating the transformation of dense matrix

loops into relational queries. These queries are then optimized in the compilation

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

480 E. A. Luke and T. George

of parallel high performance sparse matrix solvers custom-tuned to arbitrary sparse

storage formats. Although their focus is on the compilation of optimized sparse

matrix algorithms from much more compact dense matrix algorithm descriptions,

the notation and strategy used to describe their optimizations is strikingly similar

to the strategies used in the Loci framework.

3 Key abstractions

A distinct feature of many numerical computations is the relative stasis of data-

structures. In numerical computations, usually the same flow of information is

repeatedly reused with different values as many iterations proceed. For example, in

the conjugate gradient iterative matrix solver, the bulk of the algorithm is involved

in sparse matrix-vector multiply operations on the same non-zero matrix structure.

In fluid dynamic simulations, the same grid is reused over many time-steps, and

within a time-step, many values are overlayed on the entities that form the discrete

representation of space. Computations of this form end up having radically different

run-time system requirements than more dynamic algorithms such as those found

in typical sorting or computational geometry applications.

Because of this data-structure stasis, it is usually wise to spend significant

computational effort on the organization of data for efficient resource utilization

given that this cost shall be recovered during the value computation phase. Since

the data-relationships change fairly infrequently, any expensive optimizations that

are applied in organizing the representation of this data are easily amortized over

many following iterations providing a much higher overall performance. Usually

techniques applied to more dynamic algorithms ignore this distinction, and so, many

systems that are tuned on dynamic algorithms where data relationships change

frequently fail to perform well in numerical contexts.

We associate the relatively static data-structures as being primarily responsible for

several unique attributes of most numerical software: usually this software is array-

based, tends to use pointers infrequently, and has a distinct division between symbolic

(data-structure assembly) and computational phases. Based on this observation, we

identify two attributes of software abstractions that facilitate high performance

numerical computation: (1) the abstraction should facilitate a staged execution model

that alternates between symbolic and computational phases, and (2) the abstraction

should support efficient mechanisms for overlaying new values on static computa-

tional data-structures. The first attribute implies that data-structures should exist in

two distinct modes: one which is optimized for dynamic editing, and a second which

is optimized for repeated accesses to the same static structure. A suitable “sorting”

procedure is placed between these two stages to optimize for efficient access when

in the static form. The second attributes implies that an efficient overlay mechanism

is required to interface to the static form of these data-structures since most values

have lifetimes that are relatively short compared with the static data-structure.

3.1 Two-phase model

The term two-phase was coined in the Janus library (Gerlach et al., 1998) to

describe containers that have two phases: 1) a write-only phase where the container

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 481

 Freeze

Dynamic Phase Static Phase

Fig. 1. An illustration of the two-phase data-structure concept.

was created, and 2) a read-only phase where the container was used. The spirit of

this idea is applied in Loci in a slightly generalized form. In Loci, data-structures

exist in two phases: A dynamic phase where data and relationships are created in an

arbitrary fashion and a static phase where data are accessed in an orderly fashion at

lower cost. The dynamic phase supports fast insertion and editing with a relatively

high access cost and the static phase supports dense memory management schemes

using arrays for low access costs. The basic distinction is illustrated in Figure 1.

In the dynamic-phase, the data-structure supports dynamic association of various

components. The dynamic-phase data-structures use hash-tables to support dynamic

and independent insertion of new entities and relationships. The static-phase data-

structures use arrays that provide fast and efficient access to consecutively numbered

entities. The process of converting from the dynamic to static phases is essentially

a sorting process whereby entities of like type are grouped together to facilitate

efficient random access.

3.2 An abstract model for containers

We find that a suitable abstraction for value containers in irregular computations

is bags of tuples. The first entry of the tuple is the entity identifier. The second

entry may either be a value or another entity identifier. Using this abstraction,

it is possible to overlay values on existing data-structures by creating tuples that

share the same entity identifiers as used in the tuples that define the irregular data-

structure. When implemented using hash tables, the first entry of the tuple is hashed.

Since hashed containers have no ordering associated cost, entity identifiers may be

allocated as needed without a significant performance penalty. After freezing, when

entity identifiers are numbered in contiguous allocations with respect to attribute

assignments, arrays are used to store these values providing fast random access

for computations. In addition, instead of using iterators to access these containers,

entity sets can be used to describe aggregate accesses. These entity sets can be

used to determine aggregated communication requirements of an aggregate access.

Thus, this abstraction facilitates an efficient approach to manipulating distributed

data-structures.

4 Logic Abstractions for Numeric Computations

We find that a logic abstraction is useful for describing numerical computations

as it facilitates decoupling values from computations of values. For example, a

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

482 E. A. Luke and T. George

1
2

3

4

5

6
3
4
5
6

(0.00, 0.00)
(2.00, 0.75)
(1.75,-1.75)
(4.00,-1.00)

posId

n1 n2 n3

1
2

3
5

4
4

5
6

Id

Fig. 2. A relational representation of an unstructured computational mesh.

description of the computation of momentum from velocity and mass should not

contain assumptions about what values are required to compute velocity. Momentum

is a product of mass and velocity regardless of context. A rule-based specification

satisfies this requirement. When combined with the observation that a relational

model is an appropriate model for representing the role of data-structures in these

irregular numerical computations, it becomes interesting to consider a knowledge-

base model of computing similar to Datalog (Ullman, 1988).

Consider how we may represent an unstructured computational mesh that is

created from a triangular tessellation. A common way to represent such a mesh is in

a tabular form. Spatial coordinates are associated with the vertices and triangular

elements of the tessellation are represented by listing the three vertex identifiers that

form any given triangle, for example see Figure 2. Thus a triangular tessellation of

a two dimensional space may be represented using four relations: one relation that

associates positions with vertex identifiers and three relations that associate each

triangle with its defining three vertices.

Let us consider how one performs computations once given a data structure

as above. Typically each relation described in figure 2 is represented as an array,

where n1, n2, and n3 are index arrays (arrays containing indices) and pos is an

array containing positions. Suppose that we require the areas of the triangles for a

computation, we could provide a subroutine for computing areas such as described

in the following pseudo-code:

Compute-Areas(n1, n2, n3, pos, set)

1 for i ∈ set

2 do vec1← pos[n2[i]]− pos[n1[i]]

3 vec2← pos[n3[i]]− pos[n1[i]]

4 area[i]← 1
2
(vec1× vec2)

5 return area

In this subroutine line one represents a loop over the triangles for which we need

to compute areas. Lines 2 and 3 define the vectors of two edges of the triangle, and

line 4 computes the area of the triangle using the cross product of edge vectors.

Note that to use this subroutine, we need to not only pass in the appropriate

arrays, but we need to also pass in the appropriate set of indices. In the case of

computing the area for the two triangles in Figure 2 we would need to pass in the

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 483

set {1, 2}. In the development of complex applications, many similar subroutines

are chained together. Coordinating these subroutine calls and the sets passed

to them can become a rather complex task. For example, we may have both

triangular and quadrilateral faces, each having different techniques for computing

areas and requiring different sets of indices. For distributed memory applications, the

complexity increases further as some subset of triangles may be computed on other

processors and communicated, while others may be computed locally by the above

subroutine. To simplify this process, we would like to annotate these subroutines so

that the process of assembling them into an application is automatic. In addition,

we would like the set passed to the subroutine to be consistent with the subroutines

particular constraints (e.g. it would be incorrect to call the above subroutine with

the set {3, 4, 5, 6} when using the tables shown in Figure 2).

In Loci, we augment the above subroutine with a data access description. This

data access description allows Loci to automatically schedule the execution of the

subroutine when it is required by other computations and to automatically compute

the set of indices that are passed to the loop. We derive these sets and a schedule of

subroutine calls using a logic programming model similar to Datalog.

4.1 The applicability of the Datalog logic model

Since the logic model used in Loci is closely related to Datalog we find it useful to

first describe how the above subroutine would be implemented in Datalog and what

we might gain from such a description. In later sections, we will describe how Loci

differs from Datalog. A detailed description of the Datalog logic model can be found

in chapter 3 of Ullman’s text (Ullman, 1988). We will only give a cursory description

of this model here.

The Datalog model defines logic operations on relations. Logical rules similar to

Prolog are used to describe how new relations can be derived from other relations.

We typically start with an initial set of relations that are stored in a database. This

initial set of relations is called the extensional database (EDB). In addition to the

EDB relations, new relations may be created through the application of logical

rules. These derived relations become part of the intensional database (IDB). Also

note, as with Loci, the predicate symbols of Datalog rules are relations in either the

intensional or extensional database.

At this point we can describe how the area computation mentioned earlier can be

expressed as a Datalog rule. First we note that the data described in Figure 2 can

be described by a set of four EDB relations given as n1, n2, n3, and pos. Given

these relations, we can define the area of the triangles as an IDB relation which we

give here as area. Given this, the triangle area computation can be described by

the Datalog rule:

area(T, A) : − n1(T, I1) & pos(I1, P1) &

n2(T, I2) & pos(I2, P2) &

n3(T, I3) & pos(I3, P3) &

A =
1

2
(P2− P1)× (P3− P1).

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

484 E. A. Luke and T. George

In this rule we see that the derived relation, area(T,A), is given as the head of the

rule; and, the input to the computation is given by relations in the body. Note that

we use a natural join for example between relations n1(T,I1) and pos(I1,P1)
to achieve the same result as indirect access used in the pseudo-code for the area

computation (as pos[n1[i]] in COMPUTE-AREAS). This rule performs the exact

same computation as the previous pseudo-code, however it has the advantage that

it is context independent. For example, it can become part of knowledge-base of

rules that can be applied to a certain class of data-structures. In such a form, values

for areas emerge wherever sufficient information is present to compute them, while

if there is no need for areas the rule is just another relationship in the body of

descriptive rules of data properties. Unlike the subroutine version, there is no need

to express the control for the loop as this spontaneously emerges from the logic

model. In more complex problems, the advantage of the approach becomes more

obvious as rather sophisticated selections of subsets of relations can be created.

For example, the specification of a particular computation that is only valid at

the interface between two different models (say fluid and solid materials) can be

automatically applied to the interface simply by the logical implication of where

data will be obtained. (For example, only at the interface would both fluid and solid

properties be available.)

Note that we are not interested in re-implementing Datalog for scientific com-

putations (although such a goal would likely prove to be interesting). Instead we

are interested in capturing a higher level of abstraction for the methodologies that

are presently used in numerical computations, particularly those that operate on

irregular grids. Therefore, we have constructed a set of abstractions that is largely

a subset of Datalog. It is important to identify this subset since it represents natural

abstractions of approaches that have already been applied in the development of

current high performance software. Thus, we expect that these abstractions will

support similar performance to traditional message passing methodologies, only

with greater levels of automation. By using this approach, we expect that the

resulting abstractions will provide reasonable performance without requiring user

explicit knowledge of particular high-performance idioms. If instead we attempted to

maximize expressiveness, then the user would be burdened with remembering which

peculiar subset of the programming model achieves predictable high performance.

The remainder of this section will provide a quick overview of what specific

abstractions are provided in Loci. Since the data model used in Loci is similar

to the Datalog model, we will express these abstractions in comparison and contrast

to Datalog.

4.2 Relations in Loci

In Datalog a relation may be an arbitrary k-arity tuple with no specific constraints

on the types of the fields. In Loci however, we only support binary relations. In

addition, the first entry in our tuple is always an index (or a key, or entity Id), while

the second field may be either an index type or a value type. A value type is any data

that does not contain any explicit index information (for example: the positions in

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 485

parameter
relates many indices
to a single value

store
relates indices
to values

→ 11 → 1n

constraint
specifies a subset
of indices

index map
relates indices
to indices

n m→

Fig. 3. The four types of binary relations found in Loci.

the triangular mesh). Relations where the second field is a value type may come in

two forms: a store or a parameter. The store is simply a relationship between indices

and values, while the parameter describes a value that is shared among a group of

indices. If the second field is an index, then the relation is called an index map. We

use index maps to create relationships between entities in the data-structure, such

as the n1 relation used in the triangular mesh example. Finally, for the restricted

case of the identity index map, we define a constraint. The constraint provides a

mechanism to associate a valueless property with some subset of entities. These

relations are illustrated in Figure 3 where we denote indices as open circles and

values as filled circles.

In Loci, these four types of relations are provided by the user as EDB relations.

The user (or an application program) also provides a set of transformation rules

(which are simply documented subroutines). These rules can be used to create new

IDB relations. However, since we are only concerning ourselves with programs that

have static data-structures, we only consider rules that compute either store or

parameter relations.

4.3 Loci rule signatures

In Loci, we add documentation to the COMPUTE-AREAS subroutine such that it

can be viewed as an implication rule on relations. Once this specification is in place,

the subroutine can be automatically scheduled in response to user queries. The Loci

planner automatically computes sets of indices that are passed to the subroutines

to be used for computation loop bounds. Since these sets are computed using the

logic model of Datalog, they guaranteed to be consistent with the defined data-

structures. We use the rule signature to document subroutine inputs and outputs.

The grammar for the rule signature, given in Figure 4, is defined by a head and

body. Both the head and body may contain a list of variables (names of relations

in the intensional or extensional database). These relations may be composed with

index map variables using the -> operator. For example, the pos[n1[i]] access in the

COMPUTE-AREAS subroutine is denoted by n1->pos and has the same meaning

as the n1(T,I1) & pos(I1,P1) in the given Datalog rule. Note that these index

map composition operators can appear in the head or body of the rule. In addition,

the rule signature may have a specified conditional execution argument. Finally,

rules fall into five categories – Pointwise, Singleton, Unit, Apply, and

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

486 E. A. Luke and T. George

signature: head ’<-’ body

head: maplist

body: maplist optconditional ’:’ ruletype

maplist: mapseq
 | maplist ’,’ mapseq

mapseq: NAME
 | mapseq ’->’ NAME

optconditional:
 | ’,’ ’conditional(’ NAME ’)’

ruletype: ’Pointwise’
 | ’Singleton’
 | ’Unit’
 | ’Apply’
 | ’BlackBox’

Fig. 4. Rule signature grammar.

BlackBox – that determine the nature of the computations and how computed

values are combined to form a resulting store or parameter.

4.4 Rule semantics

The rule signature is used to determine when a rule should be executed and what set

of indices should be passed to the subroutine. The set of indices is called the context

of the rule. The context of the rule can be determined from the rule signature by

identifying the set of entities that satisfy all of the inputs. For example, a subroutine

for the triangle area computation described earlier would have a signature of

area<-n1->pos,n2->pos,n3->pos:Pointwise,

where the explanation of the pointwise rule type will follow. The body of this rule

documents the indirect accesses used to obtain the positions of the tree triangle

nodes. Note that from this signature we are able to infer the set of indices that can

be passed to the subroutine in order to compute areas. To do this, we first find

the valid sets for each individual composition of index map and store, for example

n1->pos, by forming a join between the two relations (e.g., solving n1(T,I1)&
pos(I1,P1)). In the case of n1->pos, the valid set is {1, 2} as only these indices

satisfy the composition accessing a valid n1 and pos. A valid context of the rule is

formed through the intersection of the valid sets for all inputs.

4.4.1 Pointwise aggregation

The most common type of rule used in Loci applications is the pointwise rule.

A pointwise rule documents a subroutine where the dependency of each iterate is

explicitly through the (possibly indirect) accesses documented in the rule body. The

computation that results from these accesses is referentially transparent and uniquely

defines the resulting value that is placed in the output store described in the rule

head. As a result, pointwise rules always generate store relations in the intensional

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 487

database; however, they may read either store or parameter relations, possibly using

index maps to access other relations indirectly. It is possible for multiple pointwise

rules to generate the same relation provided that they assign values to independent

indices. For example, it is possible to have many rules that compute areas, such as

for both triangle and quadrilateral facets, provided that their outputs form a proper

partition.

4.4.2 Singleton computations

Singleton rules are used to describe computations that derive one parameter relation

from other parameter relations. Since parameter relations only have a single value

that is associated with a group of indices, there is a single computation associated

with these rules. Thus we identify such rules as singleton rules. By the nature of

these computations, singleton rules are restricted to only have parameter relations

as inputs or outputs.

4.4.3 Global and local reductions

In addition to pointwise and singleton rules, we provide a mechanism for performing

reductions. We characterize reductions into two basic categories: Global and Local.

In reductions, we introduce an associative (and commutative) operator to combine

a set of values. In a global reduction, we combine all values to form a single result,

whereas in a local reduction we combine subsets of values that are implicitly defined

by index maps. In Loci, global reductions produce parameters as output, while local

reductions produce stores. Figure 5 illustrates the difference between local and global

reductions in Loci. In this figure, the open circles represent entity identifiers (indices),

while the filled circles represent values. In the global reduction, we first use the input

values to perform some computation, f(x), and then we combine the results of

these computations using a provided operator, ⊕. The result is stored in the value

field of a parameter relation. In the local reduction, an index map is typically used in

the head of the rule. We use this map to create a parallel computational reduction

structure as shown in Figure 5. Here, we again perform some computation, f(x),

and then combine it using the structure of the index map provided in the head of

the rule.

Reductions are specified in Loci using two different rule specifications. A Unit
rule is used to initialize the values of the reduction to the identity of the reduction

operator. In addition, a set of one or more Apply rules define the application of

functions that will be accumulated to their outputs as illustrated in Figure 5. Once

all possible apply rules execute, the value is made available for use as inputs to other

rules.

4.4.4 BlackBox interface to external libraries

In some cases, we would like to relegate computation to external sources such

as highly tuned numerical libraries. However, none of the previous rule types can

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

488 E. A. Luke and T. George

store

f(x)

f(x)

f(x)

f(x)

parameter

store

f(x)

f(x)

f(x)

f(x)

storeindex map

Global Reduction: Many-to-One

Local Reduction: Many-to-Many

Fig. 5. Data flow in global and local reductions.

be used for this purpose since external libraries are likely to include internally

generated relationships between values that constrain how the computation should

be scheduled. Unlike pointwise rules, where the computations can be broken into

cache sized chunks and computed in parts, the solution of external libraries (for

example, consider a solver for a system of linear equations) must be performed as

one monolithic operation. Thus, the semantics of an external library (particularly

with respect to typical performance tuning transformations) is sufficiently different

from other computations that it demands a unique interface. For documentation of

calls to external libraries we reserve the BlackBox rule class. This rule class is used

to inform the Loci planner that this computation is monolithic and contains hidden

synchronization and communication that is not managed by Loci.

4.5 Similarities and differences with Datalog

As mentioned earlier, the logic model used in Loci is a restricted version of Datalog.

The pointwise rule has semantics similar to a Datalog rule except that it is constrained

in the following important ways: (1) in Loci all relations are binary with the first

entry of the relation always representing an entity identifier (index), (2) joins between

relations are restricted to either the shared entity identifier in the first field or simple

index map compositions using the Loci -> operator, and 3) results of pointwise rules

are restricted to store type relations that only associate new values with already

defined indices. Similar to Datalog, Loci support recursive specifications. However,

we do not support stratified negation (although it could be added easily). Also,

since our relations are implemented using arrays, we add a restriction that a value

is uniquely associated with each entity of a relation. When this is violated, it is

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 489

detected and provided as an error of model over-specification. Datalog does not

define separate types of rules for singletons and reductions. However, the need for

these rule types are primarily dictated by the restrictions that we have placed on

the pointwise rule. In addition, the rule categories used in Loci represent standard

idioms used in irregular numerical computations. For example, similar classifications

exist in the directives of OpenMP.

5 Implementation

The Loci framework is implemented in C++. The framework provides a basic

infrastructure for building numerical applications. The central component of the

Loci framework is a planner that schedules subroutine calls, memory allocation,

communication, and thread synchronization calls for execution on shared and/or

distributed memory architectures. Here we only present the details of the distributed

memory implementation.

In Loci, the user provides the Loci planner with a collection of rules (documented

subroutine calls), the EDB relations that describe the problem, and a goal. The

collection of rules are stored in dynamically shared objects and may be a combin-

ation of prepared rule libraries (for example libraries of standard time and space

integration rules) and application specific rules that the user provides. In addition,

Loci provides basic file reading functionality that builds many of the standard

relations required to implement finite-volume or finite-element solvers.

5.1 Basic facilities

Several facilities are provided to support the planner. The most fundamental of

these components are classes that describe sets of entity identifiers. Entity sets

represent unordered sets of entity identifiers which are stored as a sorted list of

disjoint intervals to support efficient set operations such as union and intersection.

This compressed form makes them particularly efficient when manipulating large

collections of entities that are consecutively numbered2.

In addition to entity sets, Loci provides containers that implement the four

types of relations described in Figure 3: the store, index map, parameter, and

constraint. These containers have an interface that appears to be array-like in that

the traditional array operator in C++ is overloaded to take an entity identifier.

The array operator returns the value associated with the given entity identifier.

Each container is provided in two forms, dynamic and static. The dynamic version

implements association of indices with values using a radix trie. The dynamic versions

support automatic allocation as new values are inserted and have facilities for editing

relations as they are being generated. Static versions of these containers use a simple

array and require consecutively numbered indices for memory efficiency (since they

2 In this form, the entity set {[1, 1000], [2001, 3000]} represents a set of 2000 entity identifiers using
two intervals. The union of this set and the set of entities identified by {[1, 2000]} produces the set
represented by a single interval, {[1, 3000]}.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

490 E. A. Luke and T. George

allocate an array from the minimum to maximum indices). Static containers require

that their entity index space is allocated prior to insertion of values. Generally

users build the EDB relations using dynamic containers. This facilitates using a

global entity numbering strategy. During planning, Loci automatically converts the

EDB relations into their static counterparts once an appropriate local numbering is

determined. More details on this is described in the section on the Loci planner.

The fact database manages the extensional and intensional databases. It provides

facilities for associating containers with symbolic names. As such, the fact database

plays a key role in managing the flow of data between executing subroutines. The

fact database also manages the distributed allocation of entity identifiers. Distributed

allocation is provided by a collective call to the fact database where every processor

requests a number of entities. The returned allocation is guaranteed to be a globally

contiguous set of unique entity identifiers.

The rule database provides a mechanism for managing the rules that will be used

by the planner. There are facilities for loading rules into the rule database from

compiled shared object files. The rules in the shared object files are formed from

instantiations of rule classes. These classes provide a constructor that documents

the rule signature, an interface to obtain containers from any given fact database,

and a compute method that is passed a set of entity identifiers that represents the

context of the rule. The user can either manually loop over each interval in the set

and perform the computation, or use a provided C++ template to automatically

and efficiently iterate over the given context.

5.2 The Loci planner

The Loci planner assembles a schedule consisting of memory management, sub-

routine calls, and communication operations from a given fact database, rule

database, and a user provided goal. Provided that only parameters or stores in the ex-

tensional database change, the plan can be repeatedly executed without regeneration.

Plan generation is roughly divided into five steps: graph processing, partitioning/re-

numbering, existential deduction, pruning and communication scheduling, and finally

plan generation.

5.2.1 Dependency analysis and Proto-Plan

The graph processing step involves determining dependencies among rules as

provided by the names of the relations found in the rule signatures as well as

the names of EDB relations. The graph contains vertices for both relations and

computations (rules). The graph is constructed from the goal, progressing toward

known values. Once the dependency graph is generated, it is partitioned (based on

functional groups such as iteration, or recursion) such that planning is managed

over a collection of directed acyclic sub-graphs. These directed sub-graphs are

used to create a proto-plan that is represented by a sequence of sets of rule

signatures and relation names. This sequence can be considered as a set of data-

parallel super-steps. In each step, the rules in the set can be executed concurrently,

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 491

Given EDB Relations:

Store: A,B,C
Index Map: M

Given Rule Signatures:

D<-M->A
E<-M->C
E<-D,M->B
F<-E,A
M->G<-D,E

D<-M->A
E<-M->C

E<-D,B

F<-E,A
M->G<-E,D

A,B,C,M

D

E

F,G4

Proto-Plan

3

2

1

step Rules RelationsA

B

C

M

D<-M->A

D

E<-D,B

F<-E,A

F

G

E

E<-M->C

M->G<-E,D

Directed Acyclic Subgraph

Fig. 6. Generation of a four step Proto-Plan.

while the relation names in the set are transitioning from being produced to being

consumed. A communication step may be required with each super-step to achieve

a consistent representation of the relations named in the step. In generating the

proto-plan, we select an ordering that minimizes the number of steps by executing

all rules that can execute in every step. Figure 6 illustrates a four step proto-plan

generated from a given set of relations and rule signatures. In this plan, the first

step contains no rules. Instead it includes all the given EDB relations. In the

following step two rules are computed that contribute two IDB relations, D and

E. However, only the relation D will be synchronized at the end of the step as

other rules still will contribute other parts of the relation to E. The following step

completes the computation of relation E. The last step of the schedule computes

two additional relations, F, and G, that depend on E. The proto-plan is used to order

both the computation and communication steps for the following planning stages.

Since the proto-plan is based on the dependencies of relation names, and not on

their contents, this plan is relatively cheap to generate. The proto-plan generation

is duplicated on all processors. Once completed, every processor in the system

has an identical proto-plan to base the communication of the remaining planner

stages.

5.2.2 Partitioning and local numbering

The extensional database is typically filled with dynamic containers that were created

by the user. This facilitates economical construction of distributed data-structures

using a global entity numbering strategy. While these containers are optimized for

the creation of data structures, they are not efficient for computations. The next

step in the process is to identify an efficient distribution of entities across processors

and to create an ordering of entities such that entities of like type are consecutively

numbered. Once this ordering is established, we can convert the dynamic containers

into their static array-based counterparts for efficient computations (e.g. freezing the

data structures). If the EDB relations are generated by one of Loci’s provided file

readers, then the distribution will already be optimized. Remaining non-optimized

relations are distributed by using Parallel Metis (Karypis & Kumar, 1998) to partition

the graph formed by the provided index maps.

Once we have an efficient distribution of entities, we need to identify entities that

each processor will access. First, by definition, a processor will access all entities that

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

492 E. A. Luke and T. George

have been allocated to it by the distribution step. However, due to the use of index

maps in rules, each processor will also access some subset of entities that it does not

own. These entities will need to be duplicated or ‘cloned’. We identify entities that

need to be ‘cloned’ by finding the image of the entities each processor owns through

all of the index maps documented in the rule signatures of the proto-plan. This step

provides each processor with a set of owned entities and cloned entities. However, if

we keep a global numbering at this stage, we will not be able to construct a compact

contiguous numbering of the entities that each processor accesses.

We obtain a contiguous numbering by identifying a local numbering on each

processor that establishes continuity not only for the entities each processor owns, but

also the entities that each processor will access. The purpose of this local numbering

is to organize relations such that they can be stored and accessed efficiently using

static array-based containers instead of the more costly dynamic containers. The first

element of the binary relation tuples is the index key. The domain of a container is

the set of all index keys held in this first element. For the dynamic containers, there

is no particular restriction on its domain. Static containers, however, need to have

domains that are contiguously numbered for memory efficiency (as the gaps must

be allocated as well). However, since the domains of several different containers

may overlap, particular care must be taken to ensure that a numbering is able to

give each container a contiguous numbering, or at least minimize the extent of gaps

that are formed. To find an appropriate numbering for the entities in containers,

we first identify the categories of entities formed by overlapping container domains.

A category is defined by a set of relation names. An entity is in a category if the

entity is in the domains of each relation in the category while also not in any other

relations’ domain. Numbering entities to reduce the non-contiguous numbering of

relation domains amounts to a problem of finding the appropriate order in which

to number categories.

The general problem of ordering categories to minimize wasted gaps in allocation

is somewhat similar to a knapsack problem. We use a heuristic approach that works

well in practice. It will find the minimum for the case where the domains of relations

are proper subsets of other relation domains. Our strategy for numbering categories

is illustrated in Figure 7. In this example we have five relations that form five

categories. The relationship between categories is illustrated in the Venn diagram.

We start with a table of category sizes as listed in the leftmost table. Note, that

if we numbered categories as found in the table, we would produce a gap in the

numbering of relation B of size 1000. In our approach, we first compute the size

of each relation. We then sort the relations in order of decreasing size. From this

we are able to encode the category into a binary string where the bits of the string

are one when that field’s relation is in the set of relations that define the category.

We order this bit string such that the most significant bit is the largest relation. We

then sort the categories according to this binary string as illustrated in Figure 7.

We then number the entities in each category in their sorted order. Within each

category, we number the entities that we own first, and then number the cloned

entities. This ensures that computed entities that are passed to subroutine compute

loops form contiguous numberings as well. Once this ordering is established, we

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 493

Sorted Categories
key category

00001
10000
10100
10110
11000

E
A
A,B
A,B,C
A,D

A

C

E

Venn Diagram

1200
1000
100
25
10

A
D
B
C
E

relation size

Relation Sizes

100
75
1000
25
10

A
A,B
A,D
A,B,C
E

category size

Category Sizes

B
D

Fig. 7. An illustration of sorting categories to obtain contiguous numbering.

freeze our dynamic relations converting them into a local numbering that is suitable

for their more efficient static forms.

5.2.3 Existential deduction

The next step in the process is to determine the existence of values (parameters

and stores) that will become IDB relations. We perform this step by starting with

the EDB relations, and then proceeding down the proto-plan. At each step we first

evaluate the values that would be created in the IDB by the application of the rules

given in the current step of the proto-plan. This evaluation starts by computing the

set of entities that form the context of the rule. The context of the rule is simply the

intersection of all of the inputs defined in the rule body. If an input contains the

indirection operator (->) , then a pre-image of the index map must be performed.

Since the entity sets that are intersected are stored in compressed form and entities

are numbered in contiguous segments in the previous step, set intersections are

economical. The most expensive procedure in the rule context determination is the

index map pre-image operation. Since the same indirection operator is often used

repeatedly, we cache these pre-images for later re-use. Once we have the rule context

we are able to compute the creation of new parameters and stores for the IDB

relations described in the head of the rule. If an indirection operator exists in the

head of the rule, we find the image of the rule context through the given index map

before computing the new existence entity set for the IDB relation. If any of the

entities in the new IDB relation had previously been assigned a value, we identify

this as a model consistency error and inform the user of the problem. Once we

complete the IDB contributions of the rule in the current proto-plan step, we then

perform a communication of the results for the synchronized relations listed for the

current proto-plan step.

5.2.4 Pruning and communication discovery

Once the existential analysis is complete, we know the entities for which new IDB

relations can be created. However, some of these values may not be required for

a given goal. We follow the existential deduction process with a pruning phase

to determine which computations are required. This step begins at the end of

the proto-plan and works in reverse toward the beginning. In this case, we are

evaluating requests for information and passing these requests to preceding rules in

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

494 E. A. Luke and T. George

the proto-plan. First, we communicate any requests for relations listed in the current

step of the proto-plan to the processors that own the requested entity. Since these

communications will represent actual data communications in the final plan, we

save these communication requests for plan generation. For the rules, we process the

requests and compute the requested rule context. This value is saved for generating

the computational loop bounds for the plan generation section. The pruned rule

context is used to generate requests for the variables inputs. In turn, these requests

will generate communication requests in the preceding relation synchronization steps

in the proto-plan.

5.2.5 Plan generation

After the information on the communication requests and pruned rule contexts

is computed from the pruning stage, we are ready to generate an execution plan.

Note that the subroutines that the rules document are already compiled to machine

executable form. Thus, the purpose of the plan is to coordinate these subroutine

calls at run-time into an application that satisfies the user specified goal. The plan

is essentially a tree of execute modules where execute modules are abstract base

classes that can be specialized for specific functions such as executing a subroutine

or communication operation. The plan is generated directly from the proto-plan.

Each step in the proto-plan provides a set of subroutines (rules) to execute. The

loop bounds for these subroutines as computed from the previous pruning stage are

stored along with a function pointer to the subroutine in a subroutine execution

module and appended to the tree. The list of relations at each step in the proto-plan

may require communication if requests were transmitted during the pruning stage.

At this point, three different types of communication may be required: (1) point-

to-point message exchange for relations computed through pointwise rules, (2) a

global reduction for parameters computed using unit/apply rules, and (3) a local

reduction for stores computed using unit/apply rules. Each of these cases is dealt

with separately.

For the point-to-point communication, the data is likely to be scattered among

several relations at each step. In addition, for more complex objects, serialization

may also be required. We use the simplest approach for dealing with this scattered

data. We pack all of the data to be sent to each processor into a buffer for sending

using calls to MPI Pack(). This buffer is reused for each communication step

to reduce memory allocation overhead. In addition, we are able to anticipate the

size of the message buffer on the receiving side, and so are able to perform the

communication of the buffer efficiently using a sequence of immediate receive calls

followed by send calls.

For global reduction of parameters, all parameters that must be reduced are com-

bined collectively with a single call to MPI AllReduce. Before this communication

operation all processors parameters contain their respective partial reduction of the

values. When the operation is complete, all processor parameters contain the final

combined value. For singleton rules, the parameter computations are duplicated on

all processors, so no communication is necessary.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 495

For local reductions, partial results are sent to the processor that owns the entities.

The accumulated values are then sent to processors that request them using the

point-to-point communication operation described earlier. This is generally efficient

as the local reductions generally apply to low connectivity graphs (for example the

triangles that are neighbors to an edge), and so there would be little savings from a

more sophisticated approach.

5.3 Performance issues

For estimating parallel costs, the planning strategy fits nicely into a BSP (Valiant,

1990) like model of computation. Each step in the proto-plan is scheduled similar to

a BSP super-step, with the exception that some of the communications operations

at the end of the step include reduction operations. A loosely synchronous model

is adopted whereby an actual barrier between steps is not required, but is instead

implied by the two-sided message passing protocol. For the problem domains of

continuum mechanics, we find that the number of clone entities can be kept relatively

small (much smaller than the number of entities assigned to each processor). Similarly

the number of processors that own clone entities appears to remain relatively fixed

as we scale: the three dimensionality of the underlying graphs ensures high locality.

The cost of global reductions grows as a logarithm of the number of processors,

while the cost of local reductions is approximately twice that of the point-to-point

communication as both share the same clone entities and communication footprint.

We adopt a philosophy of assuming that the network has high latency. Therefore,

we attempt to combine communications as much as possible. For example, we

schedule the proto-plan such that we try to minimize synchronization steps. Similarly,

we combine all communications at each synchronization point as much as possible

to reduce startup and other latency induced costs. This may have the effect of

reducing constant factors associated with communication, but it is likely that the

absolute costs are significantly more complex. For example, in some cases it may

be more efficient to communicate less frequently with less volume of data by

duplicating some computations. We do not make this optimization. For some

configurations it may be more efficient to communicate more frequently directly

from memory rather than resorting to the pack/unpack approach that incurs extra

copying cost in exchange for a potential increased latency overhead. In addition we

make no attempt to hide communication costs behind computations. However, these

factors should have little effect on performance provided that our run-time remains

bounded by computation. For the production problems we currently solve, runs

appear to be computation dominated. It is likely that cache optimizations rather

than communication optimizations will have a more dramatic effect in these cases.

From a serial performance perspective, we gain performance by aggregating

computations over like type. While our specification is fine-grained, the computations

are performed by tight, highly optimized loops. Without this aggregation facility, we

would require dynamic dispatch within these tight loops if we wished to facilitate

the same fine-grained specification. Since the plan generated by the Loci planner

is calling pre-compiled subroutines and passing an aggregation of entities over

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

496 E. A. Luke and T. George

which to perform the computations, the cost of dispatching the subroutine call

is amortized over the aggregation. Since we compile loops over aggregations, the

compiler is able to perform low level optimizations for instruction pipeline and

register management that would be impossible to perform otherwise. In addition,

converting the containers to their static array-based counterparts means that the

actual computations are identical to the loops that would be used in a non-Loci

program. You could, for example, pass the memory pointers and loop bounds

directly to a Fortran subroutine if needed. In addition, we have found that using

the Loci built in looping template to define rules produces serial codes that have

practically the same execution time as similar C codes.

The generation of the plan is a unique cost of the Loci approach. Currently the

planning phase is completed in a matter of seconds on problems involving hundreds

of thousands of entities. Typically these problems run hours giving a negligible

amortized planning cost.

6 Results

Performance benchmarking is always difficult to do well. Generally, performance

can vary significantly with compilers and architecture as well as the amount of

time that is spent by the implementer tuning an approach. Application performance

usually includes a man-power cost that is often difficult to measure and include

in the overall assessment. With regard to Loci performance, we will discuss some

of our experiences that sets our baseline performance, and then use a application

of substantial complexity to demonstrate that the approach can be scaled up to

practical problems.

For simple applications, such as a two dimensional Laplace solver, we have

observed that the serial performance of Loci programs are essentially equivalent to

a similar C implementation(Luke, 1999). This is not surprising as the bulk of the

computation time is spent in essentially identical computational loops. However,

the Loci implementation was much more abstract as the implementation formed

a knowledge-base of rules that could be applied in other contexts. From this

experience, we note that Loci appears to provide a more abstract representation

with little abstraction cost.

Another result comes from a Loci implementation of a finite-element thermal

stress solver. For this case, we were able to compare the performance of a conjugate

gradient iterative linear equation solver implemented in Loci to the PETSc (Balay

et al., 2003) library implementation. We note that PETSc is a highly tuned parallel

library that has had tens of man years of development effort invested in tuning

its implementation for various architectures. In this case, we found the Loci

implementation to perform approximately 50% slower than the PETSc optimized

kernel. This was not surprising as this was comparing a naive Loci implementation to

a highly tuned PETSc implementation. However, the comparison is somewhat moot,

since instead of creating a less naive Loci implementation, we simply implemented

an interface to the PETSc solver using the BlackBox interface to remove this

performance penalty. This may seem like cheating, however, it is representative of

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 497

what is standard practice for application programmers: use highly optimized kernels

when possible.

We have also observed cases where Loci performance is better than naive

implementations. For example, a student that implemented a parallel version of

Conway’s game of life using MPI as a class assignment recently implemented the

same program using Loci. The resulting Loci program was faster, largely due to better

memory management policies. As a result, the Loci implementation performed less

data-copying. While the same savings could have been applied to the MPI program,

it would have made the logic somewhat more complex, and the program somewhat

less naive.

Based on these observations we find that the performance of Loci programs are

generally better than naive implementations, but worse than highly tuned kernels.

However, we suggest that when suitable highly tuned kernels are available, use the

external library interface to call these kernels instead of re-implementing them in

Loci. To evaluate the performance of Loci in a practical context we consider the

performance of an application of significant complexity: the CHEM (Luke et al.,

2001) code. The CHEM code is a finite-rate non-equilibrium Navier-Stokes solver for

generalized grids fully implemented using the Loci system. It implements a second-

order space and time unstructured finite-volume solver that uses advanced high

resolution approximate Riemann solvers, sophisticated multi-component transport

properties, and advanced turbulence models. The code is suitable for solving both

high and low speed combustion problems such as those encountered in space

transportation system design. The CHEM code is implemented using approximately

700 Loci rules that are described using approximately 60K lines of C++ code. The

CHEM code is in active and routine use by engineers at various NASA centers in

the support of rocket system design and testing.

Here we are particularly interested in demonstrating the practical scalability of the

approach. We wish to demonstrate that with reasonable per processor allocations

of work we can continue to make parallel overheads a small fraction of the overall

run-time. To demonstrate this, we select a representative problem and scale it

such that the per processor assignment of work remains constant and measure the

performance degradation.

Performance measurements were made on two platforms: (1) a 1038 processor

Beowulf cluster, and (2) a 64 Processor SGI Origin 2000 195 Mhz R10K system.

The 1038 processor Beowulf cluster is composed of dual 1.266 Ghz Intel Pentium

III processor nodes with 1.25 Gb RAM. These nodes are interconnected within

32 node cabinets using 100 megabit Ethernet with a single large gigabit Ethernet

switch connecting cabinets. No specialized high-speed low-latency communications

hardware is used in the Beowulf cluster. A scaled speedup measurement was used

to assess the scalability of the Loci/CHEM simulation. A simulation of hydrogen-

oxygen combustion reactions in a rocket nozzle is used in this measurement where the

problem size is increased for increasing number of processors by simply increasing

resolution (grid size). The problem is scaled such that the number of cells per

processor is held constant, and since the algorithm’s serial cost is proportional to

the number of cells, we are able to obtain the scaled speedup curve using the ratios

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

498 E. A. Luke and T. George

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of Processors −>

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

S
ca

le
d

sp
ee

d
up

 −
>

Scaled Speed Up Plot (Linux Beowulf Cluster)
~28500 cells per processor

Observed Speedup
Ideal Speedup

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Number of processors −>

80

82

84

86

88

90

92

94

96

98

100

S
ca

le
d

E
ffi

ci
en

cy
 (

%
)

−
>

Scaled Efficiency Plot (Linux Beowulf Cluster)
~28500 cells per processor

Fig. 8. Scaled speedup and efficiency curves for the Intel Beowulf cluster.

of serial to parallel per-cell execution times given by

Sscaled =
Npt1

Ntp
, (1)

where t1 is the time required to solve for N cells on one processor and tp is the

time required to solve for Np ≈ p × N cells on p processors. To ensure that the

scalability of the system was measured as it would typically be used, the parallel

execution time tp was the measured wall-clock time for the entire simulation process,

including file input and output, Loci parallel scheduling, and the simulation itself.

Simulation times were approximately one hour where an average of four runs is

used to estimate running time. With the exception of an occasional anomalous

timing measurements caused by unusual system loads, timing measurements were

largely consistent from one run to the next. The scaled speedup and efficiency

plots for the Beowulf cluster for up to 128 processors are shown in figure 8, while

the speedup results from the Origin 2000 for up to 32 processors are shown in

Figure 9. As these systems are in active production use, we were not able to measure

performance at full capacity (using all of the available processors). For the Beowulf

cluster, most of the efficiency is lost going from one to four processors where

efficiency drops to 88%. This is largely attributable to the transition from shared-

memory inter-node communications to the 100 megabit Ethernet. Another drop in

efficiency occurs from 8 to 32 processors, which can be attributed to an increased

amount of inter-cabinet traffic (We noted that the batch queuing software tended to

schedule jobs across cabinets for allocations larger than 8 processors, even though

there were 64 processors per cabinet). Considering the relatively low-performance

interconnect provided with this cluster, the scalability is quite good. In fact, no users

reported efficiencies much higher than 80% for 128 processors on this cluster using

other MPI based parallel simulation codes. Although the Origin 2000 speedup and

efficiency results measure up to only 32 processors, efficiency is much higher with a

32 processor efficiency of 91% compared to just 84% on the Beowulf cluster. This is

not surprising as the Origin has a better network to processor performance balance.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 499

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of processors−>

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

S
ca

le
d

sp
ee

du
p

−
>

Scaled Speed Up Plot (SGI Origin − 195MHz R10000)
~20000 cells per processor

Observed Speedup
Ideal Speedup

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of processors −>

80

82

84

86

88

90

92

94

96

98

100

S
ca

le
d

E
ffi

ci
en

cy
 (

%
)

−
>

Scaled Efficiency Plot − SGI Origin 2000(195MHz R10000)
~20000 cells per processor

Fig. 9. Scaled speedup and efficiency curves for the SGI R10K origin.

In addition to these performance measurements, NASA engineers (West, 2003)

reported an order of magnitude improvement in turn-around times in comparisons

of the Loci/CHEM code to a specialized simulation code written using Fortran using

the PVM message passing library. While some of this improvement is associated

with different numerical algorithms, a significant fraction of the improvement is

attributed to better parallel scalability of the Loci/CHEM software. However, this

scalability is not related to specific improvements in communication performance

or distinctions in other algorithm characteristics. Instead it is associated with the

ad-hoc message-based parallel model used in the specialized simulation code. The

ad-hoc implementation placed many constraints on how work could be partitioned

to processors. Since communication of information at processor boundaries was

incomplete, some simulated processes could not be accurately modeled across a

processor boundary. In addition, new features were often not supported in the

parallel implementation. However, since the Loci approach automated the parallel

communication and execution scheduling, users could decouple modeling decisions

from resource allocation decisions. This allowed users of the CHEM code to effect-

ively use more processors for any given problem. This case is included to document

the dangers of not including other costs in performance measurement. In the case

of the specialized simulation code, the man-hour cost of developing a completely

consistent MPI implementation was prohibitive and resulted in reduced effective

scalability. This cost was not present in the Loci implementation as communication

scheduling was automatic. This reliability of the parallel implementation contributed

largely to the practical scalability of the Loci/CHEM code.

7 Conclusions

Developing scalable high performance numerical applications for scientific and

engineering simulation is costly in part due to the tedious programming required us-

ing accepted parallel programming models. While many domain specific application

frameworks can reduce the difficulty of developing this software significantly, we find

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

500 E. A. Luke and T. George

that such frameworks usually commit the user to a specific discretization strategy and

numerical approach. Many other parallel and distributed programming tools require

coordinating coarse-grained computations to achieve efficiency; however, significant

work is involved in developing software to reliably aggregate computations. As

such, coarse-grained models are less helpful than they might first appear. To solve

this problem, we have developed a framework that is based on a relational model

of computation that facilitates automatic aggregation. Since such a model does

not make assumptions about the particular discretization strategy, we provide a

much more general abstraction. In addition, we find that it is useful to use a

rule-based declarative strategy for describing computations since this approach

allows developers to establish appropriate model invariants. In addition, a rule-

based approach decouples the needs of value producers from value consumers (the

consumer of values is not concerned with the particulars of how the value is created;

only that it exists where it is needed).

Although the declarative programming techniques used in this framework are

primitive by modern declarative language standards, the results of this work does

present a new interesting idea for the development of a more general declarative

model for high performance computing: the value of the relational model. We find

that the abstraction is an attractive natural match for irregular computations. In

addition, we demonstrate that a Datalog like abstraction can be used to develop

scalable high performance applications. This abstraction allows us to think about

computations at a fine-grain level, and allows the run-time system to manage

aggregation and distribution appropriately.

Acknowledgements

We would like to thank Donna Reese and Yang Zhang for their suggestions and

editing of the final draft of this paper. In addition we would like to thank the

anonymous reviewers for their excellent suggestions. Finally, the financial support

of the National Science Foundation (ACS-0085969), NASA GRC (NCC3-994), and

NASA MSFC (NAG8-1930) is gratefully acknowledged.

References

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S. and

Smolinski, B. (1999) Toward a common component architecture for high performance

scientific computing. Proceedings 8th IEEE International Symposium on High Performance

Distributed Computation. pp. 115–124.

Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M., McInnes, L. C., Smith,

B. F. and Zhang, H. (2003) PETSc 2.0 users manual. Technical report ANL-95/11, Revision

2.1.6. Argonne National Laboratory.

Bassetti, F., Brown, D., Davis, K., Henshaw, W. and Quinlan, D. (1998) OVERTURE: An

object-oriented framework for high performance scientific computing. High Performance

Networking and Computing (SC’98). IEEE Computer Society, CDRom.

Blelloch, G. E., Chatterjee, S., Hardwick, J. C., Sipelstein, J. and Zagha, M. (1993)

Implementation of a portable nested data-parallel language. Proceedings 4th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 102–111.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

A rule-based simulation framework 501

Breitinger, S., Loogen, R., Ortega-Mallén, Y. and Pene, R. (1997) The Eden coordination model

for distributed memory systems. Workshop on High-level Parallel Programming Models,

pp. 120–124. IEEE Press.

Cann, D. (1992) Retire Fortran? A debate rekindled. Comm. ACM, 35(8), 81–89.

CASC (2003) High-performance component technology. http://www.llnl.gov/CASC/sc2001

fliers/CompTech/CompTech01.html (Current Oct. 5, 2003).

Cleary, A., Kohn, S., Smith, S. G. and Smolinski, B. (1998) Language Interoperability

Mechanisms for High Performance Scientific Applications. Technical report, LLNL. UCRL-

JC-131823.

Foster, I. and Taylor, S. (1990) Strand: New concepts in parallel programming. Prentice-Hall.

Foster, I., Olson, R. and Tuecke, S. (1992) Productive parallel programming: The PCN

approach. J. Sci. Program. 1(1), 51–66.

Gabrielle, A., Benger, W., Goodale, T., Hege, H.-C., Lanfermann, G., Merzky, A., Radke,

T., Seidel, E. and Shalf, J. (2000) The Cactus Code: A problem solving environment for

the grid. Proceedings Ninth IEEE International Symposium on High Performance Distributed

Computing. pp. 253–260.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. (1994) PVM 3

Users Guide and Reference Manual. Technical report, Oak Ridge National Labratory, Oak

Ridge, Tennessee 37831.

Gerlach, J., Sato, M. and Ishikawa, Y. (1998) Janus: A C++ template library for

parallel dynamic mesh applications. Computing in Object-Oriented Parallel Environments,

Proceedings of the Second International Symposium, ISCOPE 98: Lecture Notes in Computer

Science 1505, pp. 215–222. Springer-Verlag.

Govindaraju, M., Krishnan, S., Chiu, K., Slominski, A., Gannon, D. and Bramley, R.

(2003) Merging the CCA component model with the OGSI framework. Proceedings of

CCGrid2003, 3rd International Symposium on Cluster Computing and the Grid. pp. 182–189,

IEEE Computer Society.

Hill, J. M. D., McColl, B., Stefanescu, D. C., Goudreau, M. W., Lang, K., Rao, S. B., Suel,

T., Tsantilas, T. and Bisseling, R. (1997) BSPlib: The BSP programming library. Technical

report PRG-TR-29-97, Oxford University Computing Laboratory.

HPF (1993) High Performance Fortran Language Specification. Technical report, Rice

University, Texas, USA.

Karypis, G. and Kumar, V. (1998) Multilevel k-way partitioning scheme for irregular graphs.

J. Parallel & Distributed Comput. 48(1), 96–129.

Kotlyar, V., Pingali, K. and Stodghill, P. (1997) Compiling parallel sparse code for user-defined

data structures. SIAM Conference on Parallel Processing for Scientific Computing, vol. 8.

Luke, E. A. (1999) Loci: A deductive framework for graph-based algorithms. In: Matsuoka,

S., Oldehoeft, R. and Tholburn, M., editors, Third International Symposium on Computing in

Object-oriented Parallel Environments: Lecture Notes in Computer Science 1732, pp. 142–153.

Springer-Verlag.

Luke, E. A., Tong, X. L., Wu, J., Tang, L. and Cinnella, P. (2001) A step towards “Shape-

shifting” algorithms: reacting flow simulations using generalized grids. Proceedings 39th

AIAA Aerospace Sciences Meeting and Exhibit. AIAA-2001-0897.

MPI (1997) MPI-2: Extensions to the Message-Passing Interface. Technical report, University

of Tennessee, Knoxville, TN.

OpenMP (1997) OpenMP Fortran Application Program Interface, Version 1.0. Technical report,

OpenMP Architecture Review Board.

OpenMP (1998) OpenMP C and C++ Application Program Interface, Version 1.0. Technical

report, OpenMP Architecture Review Board.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

502 E. A. Luke and T. George

Pande, S. S., Agrawal, D. P. and Mauney, J. (1994) A threshold scheduling strategy for

SISAL programs on distributed-memory machines. J. Parallel & Distributed Comput. 21(2),

223–236.

Pointon, R. F., Trinder, P. W. and Loidl, W.-H. (2000) The design and implementation of

Glasgow Distributed Haskell. International Workshop on the Implementation of Functional

Languages: Lecture Notes in Computer Scienc 2011, pp. 54–70. Springer-Verlag.

Trinder, P. W., Hammond, K., Loidl, H.-W. and Peyton Jones, S. L. (1998) Algorithm +

Strategy = Parallelism. J. Funct. Program. 8(1), 23–60.

Trinder, P. W., Loidl, H.-W. and Pointon, R. F. (2002) Parallel and distributed Haskells.

J. Funct. Program. 12(4 & 5).

Ullman, J. (1988) Principles of Database and Knowledgebase Systems, pp. 53–66. Computer

Science Press.

Valiant, L. G. (1990) A bridging model for parallel computation. Comm. ACM, 33(8), 103–111.

West, J. (2003) NASA Marshall Space Flight Center, Personal Communication.

https://doi.org/10.1017/S0956796805005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005514

