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Packable hyperbolic surfaces with
symmetries

Maria Dostert and Alexander Kolpakov

Abstract. We discuss several ways of packing a hyperbolic surface with circles (of either varying radii
or all being congruent) or horocycles, and note down some observations related to their symmetries
(or the absence thereof).

1 Introduction

Let Sg be a hyperbolic surface1 of genus g ≥ 2, i.e., a connected complete compact
closed orientable topological surface of genus g endowed with a Riemannian metric
of constant sectional curvature −1. Let � be a discrete subgroup of PSL2(R) acting by
isometries on the upper half-plane model of the hyperbolic plane H2 with compact
quotient: in this case, � is called co-compact. Then the surface Sg can be equivalently
described as the quotient Sg = H2/� for an appropriate co-compact torsion-free � <
PSL2(R).

Let C be a set of geodesic circles embedded in Sg with nonintersecting interiors.
Let TC be the packing graph whose vertices are the centers of the circles in C, which
are connected by an edge whenever the corresponding circles are tangent.

The surface Sg is called packable by circles in C if its packing graph TC viewed as
embedded in Sg with geodesic edges provides a combinatorial triangulation of Sg .
Here and below, by a (combinatorial) triangulation of Sg , we mean Sg as a topological
surface with an embedded locally finite graph T such that Sg ∖ T is a union of
topological triangles.

The uniformization theorem of Beardon and Stephenson [1, Theorem 4], which
is a generalization of the classical Köbe–Andreev–Thurston theorem, asserts that for
every combinatorial triangulation of a topological genus g ≥ 0 surface with graph T,
there exists a constant sectional curvature metric on it (with curvature normalized to
−1, 0, or +1) and a set of geodesic circles C in this metric such that TC is isomorphic
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104 M. Dostert and A. Kolpakov

to T. For more information about packable surfaces, we refer the reader to the
monograph [21].

The circles in C may have different radii, and the packing that they provide is
combinatorially “tight”: the tangency relation for circles is transitive. This notion has
to be contrasted with the notion of a circle packing where all circles are supposed to
be congruent (i.e., isometric to each other).

A circle packing on Sg is a set P of congruent radius r > 0 geodesic circles
embedded in Sg with nonintersecting interiors such that no more radius r circle can
be added to it. We shall assume that, in general, r is less than inj rad Sg , the injectivity
radius of Sg .

The density of such a packing P equals the ratio of the area of Sg covered by the
circles in P to the total area of Sg . Let us recall that the Gauß–Bonnet theorem implies
Area(Sg) equals 4π(g − 1). This definition agrees with the usual definition of local
density if one lifts the circle packing P of Sg to the universal cover H2. Indeed, once
we find a fundamental domain D for the action of � such that Sg = H2/�, the packing
P lifts to H2. Then the local density of P equals the area of D ∩ {γ(p) ∣ γ ∈ �, p ∈ P}
divided by the total area of D. This definition is independent on the choice of D.
Moreover, given �, one can classify its fundamental domains which can be useful
for computational purposes [14, 15].

In what follows, we shall show that, in some cases, it is easy to see that a surface is
packable provided it has enough symmetries. More precisely, let Sg be an orientable
genus g ≥ 0 surface (with a given metric on it), and let Iso+(Sg) be the group of
orientation-preserving self-isometries of Sg .

Theorem A (Theorem 2.2) Let Sg be a hyperbolic surface of genus g ≥ 2 such that
∣Iso+(Sg)∣ > 12(g − 1). Then Sg is packable.

In the case of a cusped hyperbolic surface S, we shall consider its packing by
horocycles instead of ordinary geodesic (i.e., compact) circles. Let � < PSL2(R) be a
discrete subgroup with finite-area fundamental domain D: such � is called co-finite.
As before, we have that S = H2/� for an appropriate co-finite torsion-free subgroup
� < PSL2(R). If P is a set of horocycles in S, then P can be lifted to H2 and we can
define its local density similar to the case of compact circles by taking the ratio of the
area of D ∩ {γ(p) ∣ γ ∈ �, p ∈ P} to the total area of D. This again turns out to be the
same as the area of the cusps of S determined by the horocycles in P divided by the
area of S. The maximal horocycle packing density in H2 is known to equal 3

π (cf. [2,
7, 11]). We show that only a special class of cusped hyperbolic surfaces may achieve
maximal packing density.

Theorem B (Theorem 4.1) Let S be a hyperbolic surface with cusps. Then S is packable
by congruent horocycles with packing density 3

π if and only if S = H2/� for some � <
PSL2(Z), up to an appropriate conjugation in PSL2(R).

Let us recall that one can define three types of “circles” in H2. First, compact circles
that are centered at points of H2. Second, horocycles that are centered at ideal points
on ∂H2. Equivalently, in the upper half-plane model ofH2, horocycles are represented
by circles tangent to ∂H2 and also by horizontal lines. Third, hypercycles that are
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Packable hyperbolic surfaces with symmetries 105

centered at hyperideal points or, equivalently, represented by curves equidistant from
a geodesic line.

Here, we would like to stress the fact that, in general, circle packings (respectively,
horocycle packings) in the hyperbolic plane H2 behave in a drastically different way,
and that their packing density is not necessarily a well-defined quantity [4]. This
difficulty can be alleviated by studying local densities and packings that are invariant
under the action of a co-compact (respectively, co-finite) Fuchsian group as discussed
above.

2 Compact packable surfaces

The Teichmüller space Tg contains a dense subset of packable surfaces, for all g ≥ 2, in
the compact case [5]. All cusped hyperbolic surfaces are packable [27]. Moreover, by
[16], if Sg is packable, then Sg = H2/�, where � < PSL2(R ∩Q), so that Sg is defined
over algebraic numbers. Thus, being packable puts strong constraints on the metric
of Sg .

Now, let Og be an orbifold genus g surface with k ≥ 0 orbifold points of orders
n1 , . . . , nk ≥ 2, or, in another words, let Og be an orbifold of signature (g; n1 , . . . , nk).
Then we say that Og is packable by a set of circles C if all the orbifold points of Og are
circle centers, and the tangency relation between the circles in C is transitive (like in
the manifold case). Thus, if O′g′ is an orbifold cover of Og , circles lift always to circles
and O′g′ is also packable.

In what follows, S(p, q, r) will be the standard notation for the hyperbolic
“turnover” orbifold of genus g = 0 with three orbifold points of orders p, q, r ≥ 2
such that 1/p + 1/q + 1/r < 1. Such an orbifold can be obtained by identifying two
copies of a hyperbolic triangle with angles π/p, π/q, and π/r along their respective
isometric sides. This orbifold is geometrically “rigid” meaning that the hyperbolic
metric on it is completely determined by the orbifold angles.

The following is a simple observation that follows from the facts that S(p, q, r) can
be packed by three circles, so that any orbifold covering of S(p, q, r) is packable as
noted above.

Lemma 2.1 Let a hyperbolic surface Sg of genus g ≥ 2 be a branched covering of
S(p, q, r) with 1/p + 1/q + 1/r < 1. Then Sg is packable.

Indeed, it is well known that each S(p, q, r) can be obtained from a hyperbolic
triangle T with dihedral angles π/p, π/q, and π/r by making a “turnover” (i.e., “glue-
ing” two copies of T isometrically along their boundaries or, equivalently, “doubling”
T along its boundary). Let a, b, and c be the respective side lengths of such a triangle,
as shown in Figure 1. Then the three circular segments of radii x, y, and z centered at
the corresponding vertices become circles in S(p, q, r) centered at the orbifold points.
Here, we set x = a−b+c

2 , y = a+b−c
2 , and z = −a+b+c

2 , and the side lengths a, b, and c can
be determined from the hyperbolic rule of cosines [19, Theorem 3.5.4].

Let Iso+(Sg) be the group of orientation-preserving self-isometries of Sg , which
is known to be finite and isomorphic to NH(�)/�, once Sg = H2/�, where NH(�) is
the normalizer of � in H = Iso+(H2) ≅ PSL2(R).
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106 M. Dostert and A. Kolpakov

Figure 1: A hyperbolic triangle T with side lengths a, b, and c, such that the three circles of
radii x, y, and z are tangent at points on its sides. Taking the intersection of T with the circles
and “doubling” it along the boundary produces a packable “turnover” orbifold (and its circle
packing).

One can say that “most” surfaces in Tg are asymmetric (i.e., have trivial group of
self-isometries), if g ≥ 3, because such surfaces form an open dense subset of Tg . All
genus 2 surfaces are hyperelliptic, and thus admit an order 2 isometry: however, most
of them (in the above sense) have only their hyperelliptic involution as a nontrivial
isometry.

As mentioned above, most surfaces are not packable, although packable ones form
a dense subset in Tg . This motivates the question: “Given a surface Sg ∈ Tg with a
certain number of symmetries, can we guarantee that Sg is packable?”

We also know, by the Hurwitz automorphism theorem, that ∣Iso+(Sg)∣ ≤ 84(g − 1),
for any Sg ∈ Tg with g ≥ 2. The next straightforward combinatorial argument shows
that given enough symmetries, we can always guarantee that Sg covers a turnover
orbifold (an observation mentioned earlier in [20]).

Theorem 2.2 Let Sg be a hyperbolic surface of genus g ≥ 2 such that ∣Iso+(Sg)∣ >
12(g − 1). Then Sg is packable.

Proof We have that Sg is a branched covering of O = Sg/H, where H = Iso+(Sg).
Hence, we can apply the Riemann–Hurwitz formula to it.

Let us suppose that O is a genus h ≥ 0 surface with k ≥ 0 orbifold points of orders
m1 , . . . , mk . Thus, the ratio τ = Area(O)/(2π) satisfies

τ = 2h − 2 +
k
∑
i=1
(1 − 1

m i
) = 2g − 2

∣H∣ <
1
6

.(2.1)

First, if h ≥ 2, then τ ≥ 2, which is impossible by the above inequality. If h = 1, then
in order for O to be an orientable hyperbolic orbifold, we need k ≥ 1. Then, τ ≥ 1

2 .
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Figure 2: The Lambert quadrilateral Q: all of the plane angles are right, except one angle of
π
3 . One side length ρ is known to be variable within a certain interval. The double of Q along
its boundary is the orbifold O with signature (0; 2, 2, 2, 3) and fundamental group πorb

1 (O) =
⟨a, b, c, d∣a2 , b2 , c2 , d3 , abcd−1⟩.

Finally, let h = 0. In this case, the fact that O is an orientable hyperbolic orbifold
implies that either we have k = 3 with∑3

i=1
1

m i
< 1, or we have k = 4 and m1 , m2 , m3 ≥

2, whereas m4 ≥ 3, or k ≥ 5 with m i ≥ 2, 1 ≤ i ≤ k. The latter two possibilities give us
τ ≥ 1

6 and τ ≥ 1
2 .

Thus, our case-by-case check implies that O = S(m1 , m2 , m3), with ∑3
i=1

1
m i
< 1,

and Sg is packable by Lemma 2.1. ∎

Remark 2.3 Note that in Theorem 2.2, we cannot allow Iso+(Sg) be 12(g − 1) as
the following example shows. Let O be an orbifold with signature (0; 2, 2, 2, 3). The
corresponding Fuchsian group is known to be maximal [8], which means that O does
not cover a smaller orbifold. We can map πorb

1 (O) = ⟨a, b, c, d∣a2 , b2 , c2 , d3 , abcd−1⟩
onto the symmetric group S4 as a ↦ (2, 3), b ↦ (1, 2)(3, 4), c ↦ (3, 4), and d ↦
(1, 2, 3). Then the kernel of this map ϕ is torsion-free and corresponds to a cover S
of O of degree 24. By the Riemann–Hurwitz formula, S is a genus 3 surface.

Moreover, we can choose O to be nonarithmetic. Indeed, there exists a one-
parameter family of orbifolds with signature (0; 2, 2, 2, 3) coming from a family of
Lambert’s quadrilaterals Q shown in Figure 2. A “double” of the quadrilateral Q along
its boundary is an orbifold O with signature (0; 2, 2, 2, 3). One of its sides can be given
length ρ varied, so that cosh(ρ) is a transcendental number. Then O is nonarithmetic
by [26, Theorem 4] (because the trace of ab equals 2 cosh(ρ)), and the argument from
[9, Theorem 1] shows that S has exactly ∣S4∣ = 24 symmetries.

By [16, Chapter 9] (cf. also [13, Theorem 3] as a more accessible reference),
any packable hyperbolic surface has to be defined as H2/� with � < PSL2(R ∩Q).
In our case, however, � contains the element r = (ab)2 with transcendental trace
2 cosh(2ρ) = 4 cosh2(ρ) − 2 ∉ Q. Since r ∈ ker ϕ, then S cannot be packable.

However, a packable surface does not need to have any symmetries at all. One
should compare the following theorem with the results of [9, 10].

Theorem 2.4 There exists an infinite family of genus g ≥ 14247 packable hyperbolic
surfaces Sg with g →∞ such that Iso+(Sg) ≅ {id}.

https://doi.org/10.4153/S0008439522000133 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000133


108 M. Dostert and A. Kolpakov

For convenience, we shall refer to the following technical lemma, while the proof
of Theorem 2.4 comes right after.

Lemma 2.5 All rational primes of the form p = 3 ⋅ 5 ⋅ 7 ⋅ n − 1, n ∈ N, split completely
in the field k = Q(

√
5, cos(π/7)).

Proof Let us consider k1 = Q(
√

5), and k2 = Q(cos(π/7)). Any prime of the form
p = 3 ⋅ 5 ⋅ 7 ⋅ n − 1 splits completely in both k1 and k2, and thus p splits completely in
their compositum, which is k (cf. [17, Exercise I.8.3]).

In k1, we have that ( 5
p) = 1 by using quadratic reciprocity, and thus p splits

completely in k1 by applying [17, Proposition I.8.3].
In k2, we have that k2 = Q(θ) with θ = 2 cos(π/7) that has minimal polynomial

x3 − x2 − 2x + 1 with discriminant 49 = 72. Thus, any prime that is a cubic residue
modulo 7 splits completely in k2 by applying [17, Proposition I.8.3] again. ∎

Proof of Theorem 2.4 Let us consider the nonarithmetic S(3, 5, 7) orbifold [24]
with fundamental group � = ⟨a, b ∣ a3 , b5 , (ab)7⟩. Moreover, as follows from [8], � is
a maximal Fuchsian group.

The trace field k = Q(
√

5, cos(π/7)) of � coincides with its invariant trace field.
The strong approximation theorem [18, Section 7.4] implies that � surjects on all but
a finite number of finite simple groups PSL2(Rk/P) where Rk is the ring of integers
in k and P a prime ideal in Rk .

Note that any nontrivial normal subgroup of � is torsion-free: by using the
presentation, we easily obtain that any homomorphism ϕ with ϕ(a) or ϕ(b) trivial
has trivial image.

By Dirichlet’s theorem on prime progressions, there are infinitely many rational
primes of the form p = 3 ⋅ 5 ⋅ 7 ⋅ n − 1. Moreover, such primes p all split completely in
k by Lemma 2.5:

pRk = P1 ⋅ P2 ⋅ ⋯ ⋅ P6 ,

with Pi being distinct prime ideals of Rk with norms N(Pi) = p, i = 1, . . . , 6. Thus,
R/Pi = Z/p = Fp , i = 1, . . . , 6.

Consider the epimorphisms ϕp ∶ �→ PSL2(Fp) where p is a rational prime of
the form p = 105 ⋅ n − 1, as above. From the description of the subgroup structure of
PSL2(Fp) from [12, Theorem 2.1] (cf. also [6]), it follows that PSL2(Fp) contains a
dihedral group Dp−1 of order p − 1 = 105 ⋅ n − 2.

From the order of Dp−1, we have that it does not contain any elements of order 3,
5, or 7. By the above discussion of normal subgroups of �, the kernel of ϕp is torsion-
free. Hence, the preimage �p of Dp−1 is torsion-free. Moreover, Dp−1 is a maximal
subgroup of PSL2(Fp) [12, Corollary 2.2] (cf. [6]), and so �p is a maximal nonnormal
subgroup of �.

Let Sp = H2/�p . Then Sp is an asymmetric surface, since Iso+(Sp) = NPSL2(R)(�p)/
�p = N�(�p)/�p = {id}. From the previous discussion, Sp is clearly packable.

As Dp−1 has index p(p + 1)/2 in PSL2(Fp) by [12, Theorem 2.1(d)] (cf. [6]), the
genus of Sp grows quadratically with p and its exact value can be computed by using
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the Riemann–Hurwitz formula:

g(Sp) =
p(p + 1)

4
⋅ (1 − 1

3
− 1

5
− 1

7
) + 1 = 17

210
p(p + 1) + 1.

The smallest prime p = 105 ⋅ n − 1 is 419, which corresponds to g(Sp) = 14247. ∎

Remark 2.6 By using GAP [25], among the 335 different genus 3 surfaces that cover
the nonarithmetic orbifold S = S(2, 6, 9), we find 254 asymmetric ones. In order to
obtain these numbers, we need to use LowIndexSubgroupsFpGroup routine
to classify all index 18 subgroups of πorb

1 (S) = ⟨a, b ∣ a2 , b6 , (ab)9⟩ without torsion,
and then choose those that correspond to conjugacy classes of length 18. These are
self-normalizing, and by the same argument as in Theorem 2.4, we get the smallest
examples of packable surfaces without nontrivial isometries, with all genus 2 surfaces
being hyperelliptic.

3 Packing density on surfaces

In this section, we shall consider circle packings of surfaces with congruent circles.
More precisely, let Sg be a hyperbolic surface of genus g ≥ 2 with a packing of
K congruent radius r circles on it, where 0 < r < inj rad Sg . Then the area covered
by the circles is 2πK(cosh r − 1), whereas the total surface area equals 4π(g − 1).
Then the packing density is simply ρ(Sg , r) = K

2 ⋅
cosh r−1

g−1 . The largest packing density
of radius r > 0 circles associated with a given genus g ≥ 2 is defined as ρ(g , r) =
supSg∈Tg ,r

ρ(Sg , r), where Tg ,r = Tg ∩ {Sg ∣ inj rad Sg > r}. By convention, supremum
over the empty set equals 0. Then the packing density associated solely with the genus
g ≥ 2 is ρ(g) = supr>0 ρ(g , r).

Proposition 3.1 The following limit identity takes place: lim supg→∞ ρ(g) = 3
π .

Proof The idea is to pick an orbifold Σ = S(p, p, p) such that p ≥ 4 is an arbitrarily
large natural number, and construct its manifold cover Sp . Since the orbifold fun-
damental group πorb

1 (Σ) ≅ ⟨a, b ∣ ap , bp , (ab)p⟩ is a finitely generated matrix group,
then, by Selberg’s lemma, such a cover Sp always exists, and its degree has to be at least
p by a simple observation about the order of torsion elements. Thus, the genus gp of
Sp satisfies gp ≥ const ⋅ p.

Then we obtain a surface Sp = H2/� of genus gp such that gp →∞, and Sp is
packable by a set Cp radius rp circles, such that cosh rp = 1

2 csc π
2p . What remains is to

compute the ratio of the area covered by circles on Sp to the area of Sp . As it follows
easily from the covering argument, this is the ratio of three 1

2p -th pieces of a radius rp

disc to the area of an equilateral triangle with angles π
p .

The area in H2 enclosed by a radius r > 0 circle equals 2π(cosh r − 1). Thus, we
obtain

ρ(Sp , Cp) =
3π
p (cosh rp − 1)

π − 3π/p = 3
p − 3

( 1
2

csc π
2p
− 1) → 3

π
,(3.1)

as p →∞, by using the Laurent csc(x) = 1
x +

x
6 + O(x2) for csc(x) at x = 0.
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Moreover, all circles and their Voronoi domains in the packing of Sp are congruent
to each other (because the order 3 central symmetry of Σ lifts to Sp as the latter is a
normal cover). The same holds for the lift of the packing to H2. The local density
of each circle in its Voronoi domain is then equal to ρ(Sp , Cp). The former can be
estimated above by the simplicial packing density d(2r), associated with a regular
triangle of side length 2r. However, the latter is exactly what we already computed
above, i.e., simply ρ(Sp , Cp) = d(2r) ≤ d(∞) = 3

π , as stated in [3, 11]. The proposition
follows. ∎

Remark 3.2 Numerically, in Proposition 3.1, we have ρ(g) ≈ 0.954929658551 for
large enough genus g, which means that some of the genus g surfaces may be very
densely packed. However, some other ones across Tg may be packed quite poorly.

Remark 3.3 It is also clear from Proposition 3.1 that the best packing density in H2

achieved by invariant circle packings (i.e., circle packings invariant under the action
of a co-finite Fuchsian group) coincides with the best local packing density achieved
by packing congruent horoballs in the ideal triangle [3, 11].

4 Surfaces with cusps

As a generalization of the above facts to the case of hyperbolic surfaces with cusps, let
us consider packing by horocycles instead of compact circles. In this case, the above
question about a surface being packable can be restated without much alteration. The
paper [27] shows that each cusped hyperbolic surface is known to be packable by
circles, whereas horocycle packings seem to be less studied in this context.

In the context of horocycle packings of a cusped surface S, we suppose that all
horocycles are centered in the cusps of S, as shown in Figure 3. The packing graph
T is formed by taking the completion S of S, with cusps “filled” by adding a number
of points c1 , . . . , ck (where k ≥ 1 is the number of cusps of S), and then letting the
vertices of T be exactly c i ’s, while two vertices are connected by an edge whenever the
corresponding horocycles are tangent. Then, we say that S is packable by horocycles
if T triangulates S, i.e., S ∖ T is a collection of topological triangles.

Theorem 4.1 Let S be a hyperbolic surface with cusps. Then S is packable by congruent
horocycles with packing density 3

π if and only if S = H2/� for some � < PSL2(Z), up to
an appropriate conjugation in PSL2(R).

Proof Let S be packed by congruent horoballs centered at its cusps, so that the
packing graph T triangulates S, then each triangle Tm , m = 1, . . . , k, in S ∖ T is an
ideal triangle that contains some parts of horocycles in its vertices. Let ρm be the local
density of the horocycles in Tm , i.e., the ratio of the area contained in the horocycles to
the total area of Tm . It is well known from hyperbolic geometry that all ideal triangles
are isometric and have area π.

Another important fact is that the best local density of horoballs in the ideal
triangle Tm , which is 3

π , is achieved by three congruent horoballs bounded by the
respective horocycles Cm

k , k = 1, 2, 3, centered at the vertices of Tm . Each pair Cm
i and
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Figure 3: A surface with three cusps at which the corresponding horoballs (shaded) are mutually
tangent. By closing up the cusps (which are topologically punctures) with extra points c i , i =
1, 2, 3, we compactify the surface and obtain the packing graph on it with vertices exactly c i ,
i = 1, 2, 3. The surface depicted above appears to be nonpackable.

Figure 4: An ideal triangle Tm with its maximal horoball configuration. It splits into six triangles
with 0, π/3, and π/2 angles centered around Om (one of the triangles is shaded).

Cm
j is tangent at a point pm

i j on the respective side of T. The perpendiculars to the
sides at pm

i j ’s intersect in the common point inside Tm , which we shall call its center
Om , as shown in Figure 4. Let us call such a configuration of horoballs in Tm the
maximal configuration, which is known to be unique. The density and uniqueness of
the maximal configuration are discussed in [2, Theorem 4], [7, Section VIII.38, pages
253–254], and [11, Proposition 2.2] (see also the remarks thereafter).

Let ρ(C) be the density of the horocycle packing C = {C1 , C2 , . . . , Ck} of S. Then,
by assumption, we have that ρ(C) = 1

k ∑
k
m=1 ρm = 3

π , whereas ρm ≤ 3
π by the above
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bound on horoball density in ideal triangles. This implies that ρm = 3
π , and each

triangle Tm has the maximal density configuration of horoballs. Thus, we can drop
three perpendiculars from the center Om of Tm onto its sides, and split Tm into six
congruent hyperbolic triangles Δ with dihedral angles 0, π/3, and π/2. Since the
surface S becomes tessellated by copies of Δ such that each copy can be obtained from
one of the neighbors by reflecting in one of the sides, we obtain that S covers the
reflection orbifold OΔ = H2/W(Δ), where W(Δ) is the Coxeter group generated by
reflections in the lines supporting the sides of Δ. Since S is orientable, then S → OΔ
factors through the orientation cover, and we obtain S = H2/�→ O+Δ , where O+Δ is
the orientation cover of OΔ and πorb(O+Δ) = ⟨a, b, c ∣ abc, b2 , c3⟩ ≅ PSL2(Z). Thus,
� < PSL2(Z), up to conjugation in Iso+(H2) = PSL2(R).

If, up to conjugation, � < PSL2(Z), then S covers the reflection orbifoldH2/W(Δ),
where Δ is the triangle with 0, π/3, and π/2 angles as above, and W(Δ) is its reflection
group. We take the maximal horoball bounded by the horocycle C centered at the
ideal vertex of Δ such that C is tangent to the opposite side (exactly at the right-
angled vertex). Then the local density of C in Δ is 3

π (by a straightforward computation
similar to that of Proposition 3.1). Thus, C ∩ Δ is lifted to a horocycle packing on S with
packing density exactly 3

π . ∎

Remark 4.2 A more general case of horoball packing where horoballs are allowed to
have different types at different vertices of the respective Coxeter tilings are considered
in [22, 23].
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