DISTRIBUTION OF THE SUM OF TRUNCATED BINOMIAL VARIATES

Henrick John Malik

1. Introduction. Let X be a random variable defined by a Bernoullian probability function
(1) $f(x)=\binom{N}{x} p^{x} q^{N-x}$

$$
\begin{aligned}
& x=0,1,2, \ldots, N \\
& p+q=1, p>0, q>0 .
\end{aligned}
$$

The probability function of the restricted random variable which is truncated away from zero is then
(2) $\quad f *(x)=\frac{\binom{N}{x} p_{q} x_{q}^{N-x}}{1-q^{N}}$

$$
x=1,2, \ldots, N .
$$

The divisor $1-\mathrm{q}^{\mathrm{N}}$ arises from the condition excluding zero.
Finney (1949) has treated the truncated binomial distribution and has mentioned several practical problems in which a truncated binomial distribution might be met. In this note the distribution is obtained for the sum of n independent identically distributed truncated binomial random variables.
2. Distribution of the sum. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a population with probability function (2). We shall try to find a distribution of

$$
Y=\sum_{j=1}^{n} X_{j}
$$

Now the characteristic function of a random variable X having probability function $\underset{f}{*}(x)$ is given by

$$
\stackrel{*}{\phi}(t ; x)=\sum_{x=1}^{N}\binom{N}{x}\left(p e^{i}\right)^{x} q^{N-x} / 1-q^{N}
$$

$$
\begin{equation*}
=\left[\left(q+p e^{i t}\right)^{N}-q^{N}\right] / 1-q^{N} \tag{3}
\end{equation*}
$$

Since the X_{j}^{\prime} s are assumed independent, the characteristic
function $\stackrel{*}{\phi}(t ; y)$ of the sum $Y=X_{1}+X_{2}+\ldots X_{n}$ is given
(4)

$$
\begin{aligned}
\stackrel{*}{\phi}(t ; y) & =\left[\left(q+p e^{i t}\right)^{N}-q^{N}\right]^{n} /\left(1-q^{N}\right)^{n} \\
& =\sum_{r=0}^{n}\left({ }_{r}^{n}\right)(-1)^{r}\left(q+p e^{i t}\right)^{N(n-r)} q^{N r} /\left(1-q^{N}\right)^{n}
\end{aligned}
$$

or

$$
\begin{equation*}
\stackrel{*}{\phi}(t ; y)=\sum_{r=0}^{n} b_{r}\left(q+p e^{i t}\right) N(n-r) q^{N r} \tag{5}
\end{equation*}
$$

where

$$
b_{r}=\binom{n}{r}(-1)^{r} /\left(1-q^{N}\right)^{n}
$$

Since $\left(q+p e^{i t}\right) N$ is the characteristic function of $\left(\frac{N}{x}\right) p_{q}{ }_{q} N-x$, the r th term of (5), excluding b_{r}, is the characteristic function of

$$
\binom{N(n-r)}{y} \quad p^{y} q^{N(n-r)-y}
$$

Thus, we have the exact distribution of the sum $Y=\sum_{j=1}^{n} X_{j}$.
(6) $\quad f(y)=\sum_{r=0}^{n-1} b_{r}\binom{N(n-r)}{y} p_{q} y_{q} N(n-r)-y$

$$
\mathrm{y}=\mathrm{n}, \mathrm{n}+1, \ldots, \mathrm{~N}(\mathrm{n}-\mathrm{r})
$$

where $\binom{N(n-r)}{y}$ is defined to be zero when $y>N(n-r)$.

The author is thankful to the referee for his helpful comments.

REFERENCES

D. J. Finney (1949). The truncated binomial distribution. Annals of Eugenics, 14, 319-328.
M. G. Kendall and A. Stuart (1963). The advanced theory of statistics, Vol. 1 (2nd ed.). (London, Griffin.)

University of Guelph

