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TAIL PROBABILITIES FOR WEIGHTED SUMS OF PRODUCTS OF
NORMAL RANDOM VARIABLES.

B. GAIL IVANOFF AND N.C. W E B E R

Weighted sums of products of independent normal random variables arise naturally
as distributional limits for various statistics. This note investigates the rate at which
the tail probability of these sums approaches zero.

1. INTRODUCTION

oo

Random variables of the form £ AnJ5nCn, where (Bn) and (Cn) are independent
n=l

sequences of independent, zero mean, normal random variables and (An) is a square
summable sequence of non-negative constants occur as distributional limits for various
statistics. Kallenberg [6] has shown that terms of this form arise in the characterisation
of continuous, separately exchangeable processes and so these distributions can arise
when studying processes that involve multiparameter indexing sets and certain forms
of exchangeability. Examples of statistics of this type can be found in the study of
generalised [/-statistics [1, 9], in the study of symmetric statistics [10] and in the study
of row and column exchangeable processes [4].

There has been considerable attention paid to the order of the tail probabilities of
oo

random variables of the form £ ^n{B^ — EB%) that arise in the study of quadratic forms
n=l

(see, for example, [2]) and while the distribution of the product of two normal random
variables has been investigated and tabulated (see, for example, [8]) the weighted sum of
products has not.

In this paper we shall establish the exact order of the tail probabilities for the
weighted sums of products of normal random variables. This result has potential appli-
cations in a number of different areas. For example, it is used in [5] to establish tightness
when proving invariance principles for statistics with limiting distributions of the above
form, and knowledge of the exact tail behaviour is needed when calculating asymptotic
relative efficiencies for such statistics.
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2. MAIN RESULT

Let (Bn) and (Cn), n = 1,2,... be two independent sequences of independent iV(0,1)
n

random variables. First we shall consider the finite sum of products W = £ BjCj. Note
that W is symmetric about 0. The following Lemma establishes the rate at which the
tail probabilities of W approach 0.

LEMMA. For n ^ 1,

In particular, ifn = 2 then P(\W\ > x\ = e~x.

P R O O F : AS noted in Kendall and Stuart [7, p.290], W is equal in distribution to
the difference U — V, where U and V are i.i.d. gamma(n/2, 1) random variables. Thus
for x > 0, W has density

where c = T(n/2) 2. So

(1) f(x) = cxn~x<Tx fo°° (v + v2){"/2)~le-2vxdv.

Thus if n = 2 then P(\W\ > x) = e~x.
If n = 1, then from (1)

P(\W\>x) = 1 J™ J™ (v+v2yl/2e-(2v+1>dvdu

= 1 r L + vA-ll\2v + l)-le-V"+V*dv
7T- JO v '

Thus,

lim x^2exP{\W\ > x) = lim — f°° (v + v2)~1/2(2v + l ) "^

Finally, if n > 2 then

P(\W\ >x)= 2c f (v + Jf™'1 {£ u^e-^^du) dv.

Using integration by parts it is easy to show that
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lim xl-lnMexP(\W\ > x) = lim 2c f ° (v + t ; 2 ) ( " / 2 ) ~V 2 (2 t ; + l)'le-2vxdv

D
Let (An), n = 1 ,2 ,3 , . . . be a nonincreasing sequence of positive real numbers. Let

f x = Ai = . . . = Ani > An i + 1. Similarly, we define ^ to be the j t h largest of the An and

rij its multiplicity. Let S = E kBiCi. Thus, S = E ZjWj where £x > £2 > . . . ^ 0 and
i=l j=l

ni+...+rij

Wj = E B<C4.
«=ni + ...+nj_i+l

THEOREM. Let (An), n = 1,2 ,3 , . . . be a nonincreasing sequence of positive real

numbers such that E A2 < oo. If S = E Ai^Cj then PflSI < oo) = 1 and
t=i »=i v '

P(\S\>x)<KP(\W1\>x/X1),

where K is a finite, positive constant.

P R O O F : That P[\S\ < ooj = 1 is shown in [6]. It is easily shown that S has moment

generating function TT (1 - t2!?) ' f o r t < ^ ] " 1 .

We observe first that 5 has a density fs and we shall use the method exploited by
Hoeffding [3] to show that

for some finite constant K, where / is the density of ^Wi and G is the distribution

function of E tjWj. Thus, for x > 0,

(3) P(\S\>x)^KP(\£lW1\>x).

In what follows, the Kt's are finite, positive constants although their values are not
always explicitly stated.

To prove Equation (2), we again use the observation in [7] that ^Wi is equal in
distribution to the difference of two independent gamma(ni/2, l / A ^ random variables.
Let K = A p T ( n i / 2 ) ~ 2 . Then

f(x) = Ke-"» ("
J-xVO

and so

f(x) =
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since we may assume (by symmetry) that x > 0. Thus when ri\ = 2

~"i/2

That C is finite follows from the fact that ^ > £ , Vi ^ 2 and that £ "i£2 = £ A? <
t=2 t=ni + l

OO.

We next prove Equation (2) when n\ > 2. Consider the right hand side of Equation

(4) and assume first t ha t z < 0.

f°° I 2 \ ("i /2)- l _2v/Xl ,

J (y2 + xy-zy) e 2y/Xldy

(6) = ^

On the other hand,

f (

(7) =JftT2(l+a ; )
( n i / 2 ) -1 .

Therefore,

(8) f H^ldGiz) < f ^(1 +
y-oo J(x) J-oo I\2S

The convergence of the integral in (8) is clear since G is a distribution function and
(1 + |z | ) ( n i / 2 ) -V/ A l is bounded for z < 0.

Now assume that z ^ 0. Since for all y ^ 0, (x — z)y ^ xy, we have that
f(x-z)/f{x)^ez'x\ and so

~ n i / 2

Thus we see that for ni ^ 2, (2) is satisfied with K =• K3 + £.

The case n\ = 1 is somewhat more delicate since in this case, /(0) is undefined. Let
00

g denote the density of J2 €jWj. For x > 0,

M i ) = /"oc /000 ez/A' fa2 + xy -
/(x) =
/(x)

J* /0°° e-/A- fa2 + ^ - zy)-lf2e-*>>/>«g{z)dydz

JT J~x e*/*' (t/2 + xy - zy)-1/2e-^g(z)dydz
[ f°°(y2 + ) - l / 2
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The right hand side of (10) is bounded above by

/°ooe*/A' /0°° (y2 + xy)-1/2 dz <

To bound (11) and (12) we shall apply Equation (5) to the sum

5' = XB2C2 + XB3C3 + £

-n^/2

where A! > A > A2, so that fs>{z) < </(2A)~1e-'J=l>'A, where (' = U ( l - (£2/

However, since A > A2 ^ A3, the density of XiBiCi is uniformly bounded above by the

density of ABjCj multiplied by X/Xit i = 2,3. Thus, there exist finite constants K4,K5

such that g{z) ^ Kifs'{z) ^ Jsr5e~lzl/A. We observe also that

(y2 + xy)~1/2e-2y/x>dy\' ^ tf6 max ( l ,

for some constant K6. Thus, defining a = (I/A) - (1/Ai) > 0 and J^7 = K5K6,

(11) ^ tf7 max ( l ,

^ K7 max ( l ,

< K8max(l,y/x')e-ax J* eauu-1/2du

( K8 Jo1 u'^du if a: < 1

^ j QI/2) /0
l/2 u ' ^ d u + ^ / i Xf/2 e

audu] if i > 1

(14) ^ /f9.

Finally, making the change of variable u-y-(z-x),

(12) ^ tf7max(l,Vi) l°° f°°e-az(u2 + (z-x)uyU2e-2u'Xle-2{*

^ K7 max (l, ^)e~ax /°° c-^-^^^+^^'jz - x)~l/2dz f° vr

(15) ^ Kn.

This completes the proof. D

COROLLARY 1 . The tail probability P(\S\ >x)= O(a;("i/2)-ie-x/A,)

COROLLARY 2 . Using the notation of the Theorem, if m is a positive constant
then

E\S\m ^ K ^ 2
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P R O O F : The result follows from

E \S\m = m f°° z^PflSI > x)dx
Jo * '

and the inequality

P(|m| >
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