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THE HODGE COHOMOLOGY AND CUBIC EQUIVALENCES
HIROSHI SAITO

In 1969, Mumford [8] proved that, for a complete non-singular alge-
braic surface F over the complex number field C, the dimension of the
Chow group of zero-cycles on F is infinite if the geometric genus of F'is
positive. To this end, he defined a regular 2-form 7, on a non-singular
variety S for a regular 2-form 5 on F and for a morphism f:S— S"F,
where S"F is the n-th symmetric product of F, and he showed that 7,
vanishes if all 0-cycles f(s), s € S, are rationally equivalent. Roitman [9]
later generalized this to a higher dimensional smooth projective variety
V. For we HY(V, 2%), he has defined w, € H'(S"V, 29) and proved that w,
has the following property: if f, g: S — S*V are morphisms such that the
zero cycles f(s) and g(s) are rationally equivalent for every se S, then
f*w, = g*w,. We may say this property, roughly, like this: f*w, cannot
distinguish the rational equivalence relation. The rational equivalence
is the finest equivalence relation among the adequate equivalence rela-
tions (cf. [12]). We can therefore pose the problem: which equivalence
relation can f*w, distinguish and which one can f*w, not?

On the other hand, Samuel has defined the cubic equivalences in
[12]. Consider an algebraic family of cycles on a smooth projective
variety V over an algebraically closed field %, parametrized by a smooth
variety S. We can regard this family as a “function” on S with values
in the set of cycles on V. A cycle algebraically equivalent to zero can
be considered as the difference of values at two points for an appropriate
“function” on a smooth projective curve. We shall assume that the
parameter space S is a product of two curves C, X C,. Then we can
define a difference of the second order: take two points a¢® and a{® on
C, i =1, 2, respectively, and form a difference of values at (a{”, a{”) and
(@, ai”). We also form a difference between (a{”, a{’) and (a{”, a{’). The
difference of the second order is the difference of these two differences.
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Similarly we can consider the differences of higher order. The totality
of differences of the ¢-th order with values in the cycles on V defines
an equivalence relation on the set of cycles on V, which we call the
{-cubic equivalence relation. This equivalence relation behaves nicely,
i.e., if X and X’ are cycles on V, {-cube equivalent, then, for a morphism
f, the direct images f,X and f,X’, or the pull-backs f*X and f*X’, if
defined, are also ¢-cube equivalent.

Now we assume, for simplicity, £ = C and let f be a family of effec-
tive r-cycles on V parametrized by S. To an element we H**"(V) =
H7(V, 279, we can attach a regular ¢-form f'o on S, generalizing
Roitman’s f*w,. Then one of our theorems (5.7) replies partially to the
problem raised above, by saying that ff‘» cannot distinguish the ¢’-cubic
equivalence relation for £ < #’; but f*w happens to distinguish the ¢-cubic
equivalence, cf. (5.14). Our answer is, however, incomplete, as the
following example indicates: if S is a point and ¢ = 0, then f*w is the
dual of the fundamental class of Im (f), and it occurs that ffw = g» but
Im (f) and Im(g) are not algebraically equivalent, i.e., not 1-cube equiv-
alent by the example of Griffiths [3, 7].

Regarding the Hodge cohomology H**(V) as a functor from the
category of smooth projective varieties to that of C-vector spaces, we
shall denote by *H**(V) the minimum subfunctor covariant and contra-
variant of H**(V), stable by the multiplication, and containing all the
fundamental classes of algebraic cycles and H*'(V). Then *H»(V) =10
for p > g and *H?-*?(V) can be interpreted as the tangent space for the
algebraic part of the p-th intermediate Jacobian. If gr’CH?(V) is the
set of cycles on V of codimension p, ¢-cube equivalent to zero modulo
(¢ + 1)-cubic equivalence, then the theorem (5.14) states that *H?-%7(V)
+ 0 implies gr'CH?(V)® Q + 0. This shows that a part *H?-?(V) of
the Hodge cohomology H?-%“?(V) controls the structure of Chow group
of codimension p.

In Chapter 1, we describe relations between cycles on S X V and the
rational maps from S to the Chow schemes of V, which are reformula-
tions of well-known facts about Chow schemes. In Chapter 2, we gen-
eralize a part of Roitman’s theory to the case of cycles of intermediate
dimension and see that f‘»w never distinguishes the rational equivalence.
The statements of the propositions in this Chapter and their proofs,
which we refer to [9] with slight modification, are the prototypes of
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theorems in Chapter 5. In Chapter 3, we define cubic equivalences and
describe the elementary properties of them. We also remark an interest-
ing theorem essentially due to Swan: if the ground field is the algebraic
closure of a finite field, then the theorem of square holds for arbitrary
cycles on a smooth projective variety. In Chapter 4, we show that the
set of rational maps from a projective scheme into another forms a
scheme as Homg (X, Y) does, for use in the following chapter. Chapter
5 is devoted mainly to the statements and the proofs of the theorems
mentioned above.

§1.

(1.1) Let k be an arbitrary field, and V be a geometrically integral
algebraic k-scheme, r an integer >0. By an r-cycle on V, we understand
a formal sum > n,X; of r-dimensional integral subschemes X, of V, where
n,eZ. If n,>0, X is said to be effective. We say also X a cycle on V
of codimension (m —r) where m = dim V. If K/k is a field extension, we
have a morphism ¢, of schemes Vi, =V xX,K— V. Given an integral
subscheme X of V, we define ¢}, (X) by

ok (X) = 23 length ((g,x’x,,,)y s

where y runs over the maximal points of X,. By linearity, we can extend
0%, to a map from the set of cycles on V to those on V,. A cycle X’
on V, is said to be rational over k if there exists a cycle X on V such
that X’ = ¢%, ,(X). Note that such X is unique.

(1.2) Suppose further V projective over k and fix an embedding
V=P over k and take an algebraically closed field 2 D k. Then we
can speak of the degree of an r-cycle on V and the Chow scheme C.(V,),
of effective r-cycles of degree d on V,. C,(V,), is defined over &, i.e., there
exists a scheme C,(V), over k such that C(V,), = C(V),i. The Q-valued
points of C,(V,), correspond bijectively to the set of r-cycles on V, of
degree d. Let X be an effective r-cycle on V, of degree d and X the
corresponding £-valued point of C.(V),. We say that ¥ is rational over
k if k(x) = k for the image x of x by C.(Vy)y= C.(V)yp —C.(V), If X
is rational over k, then X is rational over k; conversely if ¥ is rational
over k, then there exists a purely inseparable finite extension K of k such
that X is rational over K (cf. [11], p. 47). Therefore if chark = 0 and %

is rational over k, X is rational over k.

https://doi.org/10.1017/5002776300002081X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002081X

4 HIROSHI SAITO

(1.3) If K|k is a field extension, and if T is a variety over k such
that k(T) = K then for r-cycle X’ on V., we can define an r-cycle X’
on T X V by the following procedure: if X’ is an integral subscheme of
Vi, X’ = the schematic image of X’ by V,— T X V. For general X’, we
define X’ by linearity. If X is an integral subscheme of 7' X V such that
X c T x V- T is surjective, then X, is an integral subscheme of V.. For
X=>nX,if X,CcTXV—T are surjective for all i, n,#0, we say
that X is non-degenerate on T. For a cycle X on T X V non-degenerate
on T, we can define the cycle X, by linearity. Then X’ — X’ and X — X
define a one-to-one correspondence between the set of r-cycles on V, and
the set of cycles on 7' X V of codimension p = m — r, non-degenerate on
T.

For a cycle X on T X V nondegenerate on T, if d is the degree of
the cycle X, on V., X, determines a K-rational point of C,(V),, hence
a k-rational map f: T C,(V),. Conversely, given a k-rational map
f: T-»C(V), we denote by x the image of the generic point of T.
The corresponding cycle is rational over a purely inseparable extension
K’ of K. If K’ = K (true when char k£ = 0), let X’ be the corresponding
cycle on V. and X the cycle on T X V, the ‘“closure” of X’; then X is
(effective and) non-degenerate on 7 and X, = X’ is of degree d. If f: T
> C(V), is obtained by a cycle on T X V as above, then we may assume
K’ =K and X = X. Starting from a rational map f: T---> C(V), and if
K’ = K, we obtain a cycle X on T X V. The rational map induced from
the cycle X is the rational map f. If char k& = 0, it therefore follows that
the correspondences X — f and f~ X define bijective maps between the
set of rational maps of T to C.(V), and the set of cycles X on T X V of
codimension p which is non-degenerate on T and such that X(¢) for
general te T is degree d.

Remark (1.3.1). Let f: T---» C,(V), be a rational map and K’ a purely
inseparable extension of k(T) over which the corresponding cycle is ra-
tional. If there exists a smooth projective variety 7”7 with the function
field K’, we have a cycle X on 77 X V with the properties described
above. Note that if C is a projective curve and if K’[k(C) is a purely
inseparable finite extension, there exists a smooth projective model C’ of
K’; and if C is of genus zero, so is C’. Taking this fact into account,
the reader will convince oneself that the propositions (2.2) and (2.3), and
the theorems (5.5) and (5.6) below hold even in the positive characteristic
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case (provided that £ is uncountable if necessary).

(1.4) Let k be algebraically closed, V smooth projective, T' smooth
quasi-projective and X a cycle on 7' X V of codimension p, non-degenerate
on T. There exists a normal projective variety T containing 7T as an
open set. Let X be the closure of X in T x V, and d the degree of the
cycle X,z on V. X induces a k-rational map f/: T-> C(V),, or f: T
> C(V),. If teT is a closed point such that X(¢) is defined, then f’(¢)
is defined and corresponds to X(¢) (cf. [11], p. 107, and Zariski Main
Theorem). Conversely, if a closed point ¢, € 7" is in dom (f), then X(¢,) is
defined. In fact, let Y be the cycle on V corresponding to f(¢,). Since
T x V is smooth, if X(¢,) is not defined, Supp (X) N (¢, X V) is of dimension
>r. Hence there exists an irreducible component X of Supp (X) whose fibre
over ¢, is not in Supp Y. Let C’ be an irreducible curve in the component
such that C’ has a point x € V not in Supp Y and C’, #+ ¢, where Tj is
the open subset in T of points £ e T such that X(¢) is defined. We denote
by C the image curve of C’ on T and by C its normalization ¢: C — T.
Putting ¢,: Cy, = Cpy — T,, we have a cycle X, = (¢, X id)*(X;,x) on C, X
V such that if X, is its closure in C X V, we have X (s) = X(¢,(s)) for
all seC,. Moreover the rational map induced by the cycle X, is the
morphism C LA -f-; C.(V),, hence the point f"o¢(s)e C(V), corresponds
to the cycle X(s) for se C. But if s, is a point with ¢(s)) = ¢, Supp (Xy(f,))
will contain the point x, whence Xy(s,) # Y. This contradicts the fact
foo(s) = f(t).

(1.5) Let T be smooth projective over k and +: T--» C(V), a rational
map corresponding to a cycle X, and te T a point. If C is a smooth
projective curve and f: C— T is a morphism such that f(C) N dim » # ¢,

then we have a rational map g: C~f+ T-TIQ C,(V),, which in fact is a
morphism. If ¢ e C is a point with f(a) = ¢, then as a cycle on V, g(a) €
C,(V), is uniquely determined up to rational equivalence, not depending
on the choice of C,f and a, and is in the rational equivalence class x(t),
where xe CH?(T x V) is the class of X: If 7 is a zero-cycle on T
supported by dom +, by [v.(7)] we shall understand the cycle > n;[y(£.)],
where 7 = > nJt) (n;eZ) and [(¢)] is the cycle on V corresponding
to the Chow point (). Note first that if 7 and 7’ are 0-cycles
rationally equivalent on 7, if dim T'= 1 (hence + is a morphism) and
if 4 cortesponds to a cycle on T X V, then +,(F) and +,(F’) are
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rationally equivalent. Now we return to the general case. There exists
a cycle 7 on C supported by f~'(dom ) such that 7 and the cycle (@) are
rationally equivalent. Then [g(a)] ~ [g4(N] = [V (f(M)] = x(f (M), () =
f+(@) ~ [4() on T, hence the class of [g(a)] = x(f.(7)) = x(2).

§2.

(2.1) Let V be a smooth projective variety of dimension m over an
algebraically closed field % of characteristic 0, with an embedding V C P,,
C(V), its Chow scheme of effective r-cycles of degree d on V. We put

EL(V),={X, Y)e C(V)y X C(V)s; X~ Y on V}.

Prorosrition (2.2). EZ(V) is a countable union of closed subsets of

C.(V)y X C(V),. More precisely, for integers = >0, d’, d”’ >0, let
EZ (V)
_x v ife Hom*(P,, C(V), X C(V),.) such that }

* 7 X + priof(0) + pryef(e0) = Y + priof(eo) + pryof(0))
Then E?,(V), is the union of EZ(V)>¥Y and the closures of the latter
subsets in C(V), X C(V), are contained in EZ,(V),.

The proof is similar to that of [9], Theorem 1, replacing S"X by
C. (V)

Note that if an integral subvariety F of Py is a countable union of
closed subsets F,, then there exists an n such that F = F, provided that
k 1s uncountable (This holds even if char & =+ 0).

ProrositioN (2.3). If k is uncountable and f, g: T— C(V) are two
morphisms from a smooth quasi-projective variety T to the Chow scheme
such that for all te T, f(!) and g(f) are rationally equivalent, then there
exists a smooth quasiprojective variety S, a dominant morphism e: S — T
and a morphism H: P, X S— C(V), X C(V),. such that

foe + (prio Hlps) + (pryo Hl.xs) = 8oe + (prio Hl...s) + (pryo Hpys)

where 47 denotes the summation on the Chow scheme which are
morphisms of the form C.(V); X C(V)y— C,(V)g,g-

Again the proof is similar to [9], Theorem 2.

(2.4) We shall recall the definitions and elementary properties of the
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Hodge cohomology. For a smooth quasi-projective variety U, we set
H»(U) = HY(U, 27).
Then if f: U——> V is a morphism of such varieties, we obtain a map
f*: H»4(V) — H?Y(U)

with the functorial property. If f is proper, i.e., projective, we can define
a map™

fr: HP(U) —> Hr-45-4(V)

where d = dim U — dim V. If U and V are projective, then f* and f, are
dual provided that H»%U) and H?~%¢ 4 V) are regarded as the duals of
H*»"qU) (n =dim U) and H™?»™"-4V) (m =dim V =n — d) respec-
tively by Serre duality. Let V, be an open subscheme of V and consider
the Cartesian diagram:

f
—

\%4
I
U—V,.
fo

Then the diagram
Hro(U) L5 Ho-0a-o(V)

H"(U,) “")f H?-%1=4V))

commutes.
The direct sum of H”»%U) for 0 < p, ¢ < dim U has a bigraded (anticom-
mutative) ring structure, and f* is a ring homomorphism. For a proper
morphism f: U— V, the projection formula holds, i.e., f.(x.f*() = f.(%).y
for x e H**(U) and ye H**(V).

To a closed integral subscheme Z of U of codimension p, we can
attach an element {Z} of H»?(U), called the fundamental class of Z.*%
By linearity we can attach an element {Z} of H»?(U) to a cycle Z of

* cf. [4]. The problem is to define f, for a closed immersion f. Use the isomor-
phism &« (Op, 2 HN=0®02%"% (i= -d), 0 (i#—d), where o is A% of the normal bundle
of U in V [6].

*9 Define, for example, {Z}=(—1)P"1cp(0z)/(p—1)!, where ¢p(?) is the p-th Chern class
of ?; note that ch(0z)={Z}+“higher terms” so that the compatibility with pull-back,
or with multiplication is obvious. The compatibility with direct image results from
Riemann-Roch theorem, cf. [4], p. 151.
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codimension p on U. If Z and Z’ are cycles on U properly intersecting,
then {Z 2’} ={Z}{Z}. If f: U— V and Y is a cycle on V such that f*Y
is defined, then {f*Y} = f*{Y}; if f is proper, and X is a cycle on U,
{f:X} = f,{X}. Hence, if Zf;l\g/ 0, then {Z} = 0.

Let V be a smooth projective variety and f: T'— C.(V), a morphism
from a smooth quasi-projective variety into the Chow scheme of V, cor-
responding to a cycle X on T X V non-degenerate on T. For wec H™*%"(V)
(¢ > 0). we define f*o by

(24.1) ffo = pr.({X}.prio) =: {X}(0) = X(0).
Hence we obtain a map
ft: H (V) —> H*Y(T) .

(24.2) If g: S— T is a morphism, we have (fog) = g*ft. In fact
(g x id,)*X 1is defined, cf. (1.4), and corresponding to fog, and we get

(fo8)w = prid{(g X id,)*(X)}, priw)
= pri(g X idy)*{X},(g X id,)* priw)
= prs(g X id,)*({X}.priw)) (Kiinneth formula)
= g*(pr({X}.priw)) = g*fto.

243) I f: T—C(V), and g: T — C(V),, are morphisms, we have

fr g T CV) X CUV)e —E5C (Vo

Then (f + g2)f = f* + g% In fact if X and Y are corresponding to f and g,
respectively, then f + g corresponds to the cycle X + Y, from which the
equality follows immediately.

ProrositioN (2.5). Under the same hypothesis as in (2.3), we have
ff=g

The proof is similar to [9], Theorem 4.

(2.6) Let CH(V) be the Chow ring and CH?(V) the codimension p
part of CH(V). A map £ of a smooth quasi-projective variety 7'to CH?(V)
(p +r=m=dim V as before) is said to be regular if there exist a smooth
quasi-projective variety S, ze CH?(S X V) and a commutative diagram

S

(2.6.1) gl \f(?>
T——— CH*(V),
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where g is proper surjective, and 2(s) = if(2), i,: Vs x VC S X V, the
immersion. Cutting S by hyperplanes transversal to the generic fibre of
g, and choosing an irreducible component dominating T and finally de-
singularizing it, we may assume that g is generically finite. Let Z be a
representative of z and Z’ the sum (with multiplicity) of components of
Z non-degenerate on S, and Z” = Z — Z’. Then each component of Z”
is degenerate on S. Since 2'/(s) = 0 for s S where 2" is the class of Z”
in CH(S X V), we may assume that Z is non-degenerate on S. Z is a
difference of two effective cycles Z* and Z-. Let d, and d_. be the
degrees of Z*(s) and Z-(s) for general seS. Then Z defines a rational
map f: S-»> C(V),, X C(V),_ such that for se S with Z(s) defined, Z(s)
= pryo f(s) — pryof(s). Resolving the indeterminancy of the rational map
f, we can assume that f is a morphism, and we have a commutative
diagram

S C(V).. X CAV),_ 5 (X, Y)
gl 0
T—~;—> CH?(V) s the class of X — Y.

We suppose now that k2 is uncountable. For we H"*»"(V), we put

o = g (fio — fiw)/deg g,

where f, = pr;of (i = 1, 2). For £‘w to be well-defined, we must show that
the second member is independent of S, f and g chosen. Let

s L eV x C(V)ae
g 0
T———> CHXV)

be another one. We can find a smooth quasi-projective variety S, mor-
phisms h: S” — S and A’: 8" — S’ proper surjective and generically finite
such that goh = g’och’. So we may assume S = S’ and g = g’ because
of h,h* = degh and Al A'* = degh’. Since g is surjective, fi(s) — fis) =
fi(s) — fys) for se S, ie., fi+ fi =f. + fi. The proposition (2.5) and (2.4.3)
show that «*w is well-defined. We have further g*s*o = fiw — fiw. In fact,
we have R(T) C k(S). Let K be a finite Galois extension of k(T") contain-
ing k(S), and S’ be a non-singular model of K such that there exists a
proper morphism S’ — S inducing the inclusion k(S) C k(S’) = K. If g’
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denotes the composite S’ — S LA T, it is sufficient to show that g'*t'w =

Yo — fiw, where f/: S’ — S ﬁ» C(V)s,. We can therefore assume k(S)/k(T)
is a finite Galois extension. Let ¢ be a k(T)-automorphism of k(S).
Then ¢ induces a rational map ‘e: S--» S such that go‘c = g. Let S) be

the domain of definition of ‘¢ and we put T, = T\g(S\S{), an open subset
of T and S, = g~ (T,):

. S'.
S, —>S
\ lg
T,cT

J
The restriction g,: S, — T, of g to S, is proper surjective. Setting £’ = koj

y t
and ‘g,: S, AT INA S, we have two morphisms foi, fo’s,: Sy — C(V),, X
C(V),_ covering #’. The argument above shows
(fiod)fo — (fyod)o = (fio'a)o — (fyo o) o,
ie., *(flo — fio) = ‘of(flo — flo),
which in turn implies fiw — fiw viewed as a rational 4-form on S is in-
variant under the action of the Galois group. There is therefore a rational
¢-form o’ on T such that g*e’ = fiw — fiw, from which
o = g,(flo — flw)/deg g = rlw, ie. g*tto = flo — fiw.

Note that if Z is a cycle on S X V of codimension p whose components
are degenerate on S, then {Z}(?): H**"(V) — H*°(S) is a zero map, since
if S, C S is an open subset such that Z, = Z|,,, is zero, then

0 = {Z}?): H " (V) —> H*Y(S) —> H*Y(S,).

Thus #*o is characterized as follows: if in the diagram (2.6.1), g is gener-
ically finite, x*w € H*(T) is the element o’ € H*%(T) such that g*o’ = z(w).

(2.6.2) Suppose ¢: 77 — T is a morphism. Then £+ is also regular
and

(ko b) = Yot

(2.6.3) If U is a smooth projective variety and ue CH™*Y(V X U), we
have a map
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u(?): CH*(V) —> CHYU), x —> u(x) = pry{u, pri(x)).
Then w(?)or: T — CHYU) is also regular and
() or) = rtotu: H* -2~ 4(U) —> H"Y(T).

These assertions follow readily from the above characterization of £*w.

2.6.4) If «,: T— CH?(V) (i =1, 2) are regular maps, then &, + #,: T
— CH?(V) is also a regular map and (k, + «,)* = &} 4+ «i. In fact, let 2z, ¢
CH?(S; x V) and g,:S; — T be proper surjective morphisms such that
k08 = 2(?) (1 = 1,2). We are immediately reduced to the case S, =S,
and g, = g,. Then the assertion is evident.

Lemma (2.7). If k: T— CH?(V) is regular, then for any x < CH*(V),
£ '(x) in T is a countable union of closed subsets.
In fact we have

S—Ls oV, x C(V),.

gl d
T*~K—> CH*(V).

Then g-'(x'(x)) = f~'(0-'((x)). If x is the class of a difference of effective
cycles X, e C(V),, and X_e C/(V),., then

07(x) = {(Y,, Y)e C(V)y, X C(V)y_; Y, + X_ o Y.+ X.}.
Ifd, —d_+d, —d_,r'(x) = ¢;ifd, —d_ = d’. — d’, we have a morphism

F: CT(V)IZA X CT(V)(I_ —> C?'(V)d” X CT(V)d”y
Y, Y)——X. +Y X +7Y,),

where d” =d, +d_. d7'(x) is a countable union of closed subsets in
C(V)y, X C{V),_ by 67 '(x) = F-(Er,(V),) and by (2.2). This implies that
g 't '(x)) is a countable union of closed subsets of S. Since g is proper
surjective, £ '(x) = g(g~'(xr"'(x)) is a countable union of closed subsets of

T.

§3.

(3.1) We shall recall the definition of the cubic equivalences. Let
k be an algebraically closed field of arbitrary characteristic, V a smooth
projective variety over k.
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DerFmNiTION (8.1.1) cf. [12]. Let ¢ be a positive integer. Two cycles
X and Y on V of codimension p are said to be /¢-cube equivalent and
denoted by X g Y if there exist ¢ curves (smooth projective over k)

C, - C,acycle Zon C, X -XC, XV of codimension p, points a{”,
a® of C; (i=1,---,£) such that
(3.1.2) Z(a{™, - - -, af?) are defined for all 7, ---,i, =0, 1,
(3.1.3) X—Y= 3 (=Drta, -, af?).
3 i ,=0,1

i1500051,=0,

For ¢ = 1, ¢-cubic equivalence is no other than the algebraic equi-
valence. 2-cubic equivalence is also called square equivalence and 3-
cubic equivalence is called simply cubic equivalence. For convention
we say that any two cycles on V are 0-cube equivalent.

Remark (3.1.4). Our definition is a priori different from Samuel’s
one because in our definition the objects are defined over k, while in
Samuel’s, they are considered over the universal domain.

ProposITION (3.2). 1) The f-cubic equivalence is an adequate equi-
valence relation (cf. [12]) so that the set of cycles on V modulo £4-cubic
equivalence is naturally equipped with a structure of commutative rings
and has functorial properties; in particular the ¢-cubic equivalence is coarser
than the rational equivalence.

2) If ¢/ < 4, the {-cubic equivalence is finer than the /(-cubic equi-
valence.

3) If X is a cycle on V, {-cube equivalent to zero and if X' is a
cycle on V', {’-cube equivalent to zero, then the cycle XX X' on VXV’
is (¢ + ¢')-cube equivalent to zero.

The proofs, more or less formal, can be found in [12].

(8.3) We denote by F‘CH?(V) the cycles on V of codimension p, ¢-
cube equivalent to zero modulo rational equivalence and by F‘CH?(V)
the direct sum of F‘CH?(V) for 0 < p < dim V. We also write F*CH?(V)
= FCH(V) if p+r=dim V. By definition, F°'CH(V) = CH(V). We
have thus a descending filtration

CH(V) = F'CH(V) > F'CH(V) > - . FCH(V) D F&+'CH(V) D - - - .

We put: griCH*»(V) = gr'‘CH(V) = F‘CH*(V)/F*'CH?(V).
gr*CH*(V) = @ gr'CH(V).

£,0<p<dim ¥V
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By (3.2.3)), gr*CH*(V) has a structure of bigraded commutative rings, the
multiplication being induced by that of CH(V). For a morphism f: V —
V', f*: CH(V’) — CH(V) induces a homomorphism of bigraded rings

f*: gr*CH*(V') —> gr*CH*(V);
fx: CH(V)— CH(V’) induces a group homomorphism

fi: gr*CH*(V) —> gr*CH*(V")
such that f,(gr‘CH/(V)) C gr'CH,(V’).

ExamprLEs (8.4) 1) gr'CH?(V) is the so-called Néron-Severi group
of codimension p.

2) gr'CH'(V) is isomorphic to the Picard variety of V as groups.

3) We have griCHy(V x V') = gr'CH(V) X gr'CHy(V’) which results
from the formula

> n(xs, ¥)) ~ {2 ni(x)} X (y0) + () X {22 ny)},

@)

where x;, x,€¢ V, and y, y,€ V/ and n, are integers such that > n, = 0.
In particular, if V is a product of curves,

gr'CH(V) —> Alb V.

Lemma (8.5) (cf. [12, 13]). Let X be a cycle on V of codimension p
and ¢ a positive integer. Then the following conditions on X are equivalent:

a) X is 4-cube equivalent to zero.

b) There exist { smooth projective varieties T, ---, T, over k, a cycle
Zon T, x ---XT,xV of codimension p and points a!® and a® on T,
(1< i< ) satisfying the conditions (3.1.2) and (3.1.3) with Y = 0.

c¢) The same condition as b), but we further require T's to be jacobian
varieties.

Clearly c) implies b). a) follows from b) because any two points on
a variety can be joined by a smooth projective curve not necessarily in
the variety. It therefore suffices to show that a) implies ¢). Let C, Z
and o’ be as in (3.1.1) with Y =0. We shall show that there exists a
cycle X’ on V satisfying the condition c¢) such that X and X’ are ra-
tionally equivalent. We assume that the genera of Cjs are positive, since
if one of C, is rational, we can take X’ = 0. First we suppose Z is a
prime cycle, i.e., Z is a variety. Let J; be the jacobian of C; and g, the
genus of C,. For 1 <j, < g, let
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‘/fjl-'-h: Cizl XX C?‘———)Cl X X CZ

be the product of j,-th projections C$* — C; for i =1, ---, 4, and Y the
reduced subscheme of C§ X ... X C¢ X V with underlying closed subset

U gy X 1dy)7(Z)
Tl Je

If S,, is the symmetric group of degree g, G =S, X---X S,, acts on
Cs x ... x C& X V and Y is stable by the action of G. Moreover

(C§1X~--XC§’XV)/G:Sg‘C,X-”XS“CZXV.

LEMMA (38.5.1). Let L/K be a finite Galois extension with the Galois
group G. If X' is an algebraic K-scheme and Y is a G-stable reduced
subscheme of X = X’ X L, then Y/G is a closed reduced subscheme of X

K

and (Y/G) X L =Y.
K
Consider the diagram

L «——X,«—7Y

1

KX «——Y =YG.

We have the natural morphism k: Y — Y{,,, We shall show that k: Y —
Y/, is an isomorphism, which implies Y’ = Y/G — X’ is a closed im-
mersion. Y’ is reduced because of reducedness of Y, Y/, is also reduced
since L/K is a finite separable extension. Y -> Y/, — X is a closed im-
mersion by hypothesis. Hence k: Y — Y{;, is also a closed immersion, so
that it is sufficient to show that k: Y — Y/, is bijective, or surjective.
Let p be a point of Y/{,,. There is a point g of Y such that the image
of ¢ in Y’ is equal to that of p, by the surjectivity of Y — Y. G acts
on Y{,, and the actions of G on Y{;, and on Y are compatible with the
morphism k. Since the action of G on a fibre of Y{,, — Y’ is transitive,
there exists a o€ G such that ¢-g =p. As Y is G-stable, p is a point
of Y.

We shall continue the proof of (3.5). Let 5 be the generic point of
C§ X --- X C¢. Then Y, is a reduced closed subscheme of V,,. Hence
if K = (y)°, there exists a closed subscheme Y’ of V, such that Y’ I>{< k(p) =

Y,. If 5/ is the generic point of J, X ---X ¢, then «(y') = K; therefore
Y, = Y’ for the schematic closure Y’ of Y’ in J,X---XJ, X V. Let

n;: C8 — J, be the canonical morphism and
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g=a, X X CO X XC8 > X---Xd,.

We have {(z X id,)"(Y")}, = Y,. Let F be the union of irreducible com-
ponents of (z X id,)"%(Y’) degenerate on C% X-..-X C&; F is a closed
subset of C§ X ---Xx C¢ x V disjoint from V,.,. If we denote by U the
open subset

X X INIM(F—> Cf X -+ X Cf —>J, X -+ X J),
we have
(my Xid) (X' N U)X V)= Nz (U) X V.

Shrinking U if necessary, we can assume that z~'(U) X V— U x V is flat,
hence denoting the associated cycles also by the same symbols, we have

(ny X id)*(Y’|U) x V) = (Y|z~(U)) X V.
By definition we have Y = >3, .., (V;,.....;, X id,)*(Z), hence for x € z='(U),
V@) = 3 2t ()
By virtue of the moving lemma, for any xe C% X ... X C&, we have
Y (n(x)) = ij.’HZ(ﬂlm,...,n(x)),

where 7 and z are the ratinoal equivalence classes of Y’ and Z, respec-
tively. By linearity, we may suppose that this equality holds for an
arbitrary cycle Z on C, X--- X C, X V. Denoting @’ = (¢, af®, ---, a)
eCs» (1< h<4,i=0,1), we have

. Z . (_1)i1+‘~.+iey/(n.(—a‘ii1), —— aﬁi‘)))
Taseenytg=0,
= Z (_1)i1+-u-,—ig ‘ Z Z(‘!fj, ..... j,(d§i’), .. G;i"’)))
¢

T1yeenstg=0,1 P,
:jlzjé i1 ..;';:0 1 (——1)i1+m+”z(‘!’11 ~~~~~ J'z(a?l)’ Ty a_ém))
= >, (=Dbrrig(gi, ... af®) = the class of X,
T1yeeerig=0,1

since if one of j,, ---,j, is greater than 1, say j, > 1, then

R ”(c_zii‘), cee a;iz)) — ( - a,(f), .. ) .

From the moving lemma we deduce that there exists a cycle Z’ on
J, X -+~ X dJ, X V, rationally equivalent Y’ such that Z'(z(@®, -- -, a"))
are all defined. Putting n(a!”’) = @[ edJ, (j =0, 1), and
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Xl = Z Z/(a{(il), tt Ty alé(i‘)) )

115000y T0=0,1

we have our assertion. If one of C,; is rational, letd,, - - -, J, be arbitrary
jacobians, a}® and a/® arbitrary points on J;, and Z’ = 0. Since X and
X’ are rationally equivalent, there is a cycle Z* on P, X V non-degenerate
on P, (hence the components are flat over P) such that Z*(0) = X and
Z*(1) = X’. Consider a rational function on J; X---XdJ, defined in a
neighbourhood of the finite set {(a{®”, - - -, ;9); i, - - -, 1, = 0, 1}, with its
value 0 at (e[, ---, a;®), and with its value 1 at the other points of the
finite set. Let I' be the closure of its graph in J, X---X J, X P, and
Z" =ToZ* a cycle on J;, X--- X dJ, X V; since Z* is “flat” over P, the
cycle is defined. The following first member is defined and

‘ Z*0)=Xifi,=--- =7,=0
2@, -+, a0 = .
Z*(1) = X’, otherwise,
hence,
S (D 4 2O, - af) = X X — X = X,
1,0 ey ig=0,1
q.e.d.
(3.6) Let A te an arbitrary abelian variety over k. We set
I, = F'CH(A),
and let * denote the Pontrjagin product.

LEmmA (38.6.1). The elements of F'CH?(V) are the elements of the form
2(1), where ze CH?(A X V), reI% and A is an abelian variety.

In fact since I}’ c F!CH(A), 2(r)e F'CH?(V). Conversely, let xe
F!‘CH?(V) and X a cycle on V representing x. Then X is /-cube
equivalent to zero and by (3.5),

X = X (=1 ezaf®, -, aft),

where Z is a cycle on JJ; X --- X J, X V, and J;, are jacobian varieties.
Let A=J, X --XdJ, and z the class of Z. Then

x = X (— 1 aal®, -, a)

= 2({(@”) — (@)} X - -+ X {(@f”) — (@)} .

But we have
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{(@”) — @)} X --- X {(@) — (@)}
= {@®,0,.--,0) — (a0, ---,0)}
o5 (0, - -+, 0,a®) — (0, ---,0,aM)},

which belongs to I}, so that x is of the form above.

F DATT ADV (2R D) Lo o n divirihlo, gramm for_any 7> 1
= e e ——

This follows from the fact that I*¢ is divisible.

THEOREM (3.7). If k is the algebraic closure of a finite field, then
F*CH?(V) = 0 for any integer p and smooth projective variety. In other
words, the theorem of square holds for cycles of arbitrary codimension on
a smooth projective variety.

By [1], I%¥* = 0 for an abelian variety over k; the theorem follows
from the lemma (3.6.1).

LEMmA (3.8). 1) Let X be an r-cycle on V. The following are equi-
valent:

1) X is Z-cube equivalent to zero.

1) There exist £ smooth projective curves C,, - - -, C,, a rational map

01 Cy XX Cpor C(V)y X CAV)

and points of” and ai® on C, such that ¢(a{™, - -+, al*®) are defined for all
iy, -+-,1, =0, 1, and

X= 2, (Drrrprieg@™, -y al)] = [preela®, - -, al)l}

Q1yeeeyig=

1i) In i1), we require Cls to be jacobian varieties in stead of cmooth
projective curves.

2) Let C, (i=1,---,4) be projective curves (not necessarily smooth
but irreducible), o: C, X -+ - X Cy-» C(V), a rational map, a® and o’ points
of C;(i =0, ---,4). For each (i, ---,1i,), consider a smooth curve " and o
morphism . I'— C, X --- X C, such that y~{dom ¢ N Reg (C, X - X C))
#*¢ and y{(x) = (a{", -+, al®) for some xel. Then the rational map
gor: I CAV), is @ morphism and lei X, ..., = oo y{X)]. The cycle

c

(_1)i1+.-.+iinl .... i

i1y0005%4=0,1

is then (-cube equivalent to zero.

https://doi.org/10.1017/5002776300002081X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002081X

18 HIRGSHI SAITO

1). i)=1i) follows from (1.4) and the fact that, in the definition
(3.1.1), we may suppose Z non-degenerate on C, X---X C,. Assume ii).
Replacing C/s by their purely inseparable coverings and lifting the points
a{? to points on the covering if necessary, we may suppose that ¢ cor-
responds to a cycle on C; X ---X C, X V; then i) results from (1.4). The
equivalence of 1) and iii) follows similarly, noticing (3.5).

2). Considering the normalization C; of C,, replacing it by a purely
inseparable covering (if necessary) and taking account of the fact that
I' lifts to a curve I" such that the following diagram commutes:

]—:"—‘>61><"‘><C;g

l l

I' —C x---xCy,

we may assume that C’s are smooth projective and the rational map ¢
corresponds to a cycle on C, X---X C, X V. Then 2) is a consequence
of (1.5) and the fact that the /-cubic equivalence is coarser than the
rational equivalence.

Remark (3.9) Consider the condition on F'CH?(V):

(B) There exist an abelian variety A and a group isomorphism
h: F*CH?(V) 5 A such that for any ue CH?(T X V), where T is a smooth
projective variety, the map

7" FICHY (V) —=> A

is a morphism; here ©’ is a map of the form ¢ — w((®) — (¢)), t, e T.

Then it is immediate that if F*CH?(V) # 0, then F'CH?*(V) never
satisfies the condition (B). Note that the condition (B) is a kind of
boundedness condition on CH?(V).

§ 4.

(4.1) Suppose that k is an arbitrary field, that X and Y are algebraic
k-schemes and that X is reduced. Let f: X--» Y be a k-rational map, V
the domain of definition of f, an open subset of X, and f,: VY a
representative of f. Consider the graph I'C V >k< Y=VXYoff. Let

U be the schematic closure of I" in X X Y. Since V=TI is reduced,
(1) U is also reduced. We have a morphism UC X X Y—X. By base
change V- X, 2) I' = Uy, — V is an isomorphism and (3) Uy, = I is
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dense in U. By the definition of rational map, (4) V is dense in X.
Conversely, suppose given a closed subscheme U of X X Y and an open
subset V of X with properties (1) ~ (4). Then by (2), we have a morphism
fo: V>U,;,>UcC XX Y—Y. The property (4) implies that f, defines a
k-rational map f: X--» Y. It is readily checked that the correspondence
I' — U is one-to-one. We can therefore identify the set of k-rational
maps from X to Y with the set of closed subschemes U of X X Y such
that there exists an open subset V of X satisfying the properties (1) ~ (4).
If a k-morphism from Y to X is given, the set of k-rational sections is
identified with a set of closed subschemes of Y with some similar properties,
cf. (4.2.1) ~ 4)) below.

(4.2) Let S be a locally noetherian scheme, X and Y S-schemes of
finite type, and p: X — Y an S-morphism:

X2,y
px\ /py
S

Let "5, (X/Y) be the set of closed subschemes U of X flat over S such
that there exists an open subscheme V of Y satisfying the following
conditions:

{4.2.1) py: Uy — V induced by p’: UC X — Y via base change V— Y is
an isomorphism;

(4.2.2) For each se S, V,C Y, is dense,

(4.2.3) U, C X, is geometrically reduced for all seS;

“4.2.4) (U, C U, is dense for all se S.

Note that given U, there exists the maximum open subschems V of Y
satisfying the above conditions. Given T'— S, U+~ U, induces a map

FS~ra\:(X/ Y) —> PTq’z\L(XT/ YT) .

We get therefore a contravariant functor
(4.2.5) @' (X]Y): (loc. noetherian schemes/S) — (Sets).

ProrosITION (4.3). Suppose X projective over S, and Y projective and
flat over S. Then the functor I's..(X|Y) is represented by an open sub-
scheme of the Hilbert scheme Hilby .

It is sufficient to show the following: Suppose U a closed subschemse
of X flat over S. For some se S, if there exists an open dense subset
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V’ of Y, such that U, — V’ is an isomorphism, that U, is dense in U,
and that U, is geometrically reduced, then there exist an open subset S,
of S containing s such that there exists an open subset V of Y satisfying
the conditions (4.2.1) ~ 4)) above when we replace S by S,. First of all,
by [6], IV, 12.1.1, vii, and by the properness of U over S, the set of s S
satisfying the condition (4.2.3) is open. The set U’ of x e U such that x
is isolated in p’~'(p’(x)) is open. Since p’ is proper and p/(U\U) N V’
=¢, Y, = Y\p'(U\U’) is open in Y and contains V’. Then U, = p’~(Y,)
is proper over Y, and flat over S. The morphism p/,,: U, — Y, is finite.
Let U, = Spec A with A a coherent 0,,-Algebra. Define the coherent
Oy,-Modules N and C by the exact sequence

0—> N Op,—> A—> C—>0.
For ye V’, the sequence
Oy, Jm, —> A, /m,A, —> C,[m,C,—>0

is exact. U, =~y implies C,/m,C, =0, hence C, =0, i.e.,, Supp CN V’
= ¢. Denote by Y, the open subset Y,\Supp C of Y, containing V’, and
set U, = p’"(Y). We have a diagam

U— U, — U

Lol

Vi—Y —Y, —>Y— 8.

Since V7 is open in Y,, there is an open subset Y| of Y such that V' =
Y; N Y,. Replacing Y, by Y, N Y{, we may assume V' = (Y)),. We denote
the restriction of A to Y, also by A. Since U is flat over S, A is flat
over 8. We therefors get the exact sequence

0 —— N/m,N — 0, ,/m,0, —> Alm A >0.

(U), = (Y), = V' implies N/m N = 0, or IN = m,N, a fortiori, N, = m,N,
for ye V/. Hence N, =0for ye V' or Supp NN V' =4¢. V=Y \Supp N
is open in Y and contains V’. 1t is clear that U, — V is an isomorphism.

The following lemma will complete the proof of the proposition.

LevMA (4.3.1). Suppose Y proper flat over S, V an cpen subsel of Y,
se 8. If V, is dense in Y,, then there exists an open subset S, C S such
that for each 8’ ¢ S,, V. is densec in Y,.
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F = Y\V is a closed subset of Y. Denote the restriction of p,: F —
S by p’. We define d° and d’ by

d°: Y—> Z, y+——>dim,(p7'(py(y),
d: F—Z, y+——dim,(p'"'(p'(y).

Then d’ is upper semi-continuous, and d° is continuous since Y is flat
over S. The restriction d of d° to F'is also continuous. Clearly we have
d(y) > d’(y) for ye F. The denseness of V,in Y, is equivalent to d(y) >
d’'(y) for all ye F,. By the continuity of d° and the upper semi-continuity
of d’, for each y e F,, there exists an open neighbourhood N(y) of y in F
such that d(y) > d'(y") if ¥ e N(y). If O = J,er, N(y), O is open in F
with F,C OC F and d(y’) > d’(y’) for ¥ € O. By the properness of py,
py(F\O) is closed. We have on the other hand s ¢ p,(F\O) by F, C O. Let
S, be the open subset S\p,(F\O)in S. Thense S, If s’eS,andifyecF,,
then y e O so that d(y) > d’(y), hence V, is dense in Y,.

(4.4) Given a locally noetherian scheme S, and S-schemes X and Y,
we shall put

4.4.1) Homg o (X, Y) = I's(X X Y/X),
S

i.e., the set of closed subschemes U of X X Y, flat over S such that U,
S

is geometrically reduced for se S and such that there exists an open
subset V of X satisfying the conditions 1) Uy, — V is an isomorphism,
2) V, is dense in X, for s€ S and 3) (U,), is dense in U, for se S. We
denote further g (X >S< Y/X) by

(4.4.2) Homg (X, Y).
For a geometric point § of S, if X; is reduced,
(4.4.3)  Homg (X, Y)3) = I 5 _a(X; ?s<) Y/ X5)
= the set of «(3)-rational maps from X; to Y;.
The proposition (4.3) immediately implies the

ProposiTION (4.5). Let S be a locally noetherian scheme, Y a projective
scheme over S, and X a flat projective scheme over S. Then the functor
Homg .. (X, Y) is representable by open subscheme Homg_..(X, Y) of Hilbyy/s.

N

(4.6) Given an S-morphism f: Z — X, we define
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Homg..(Z, f; X, Y)

as the set of pairs (p, U) of ¢ € Homy(S, Z) and a closed subscheme U of
X >S< Y flat over S such that U, is geometrically reduced for s € S and such
that there exists an open subscheme V of X satisfying the conditions:
(4.6.1) the morphism U, — V induced from UcC X >S< Y— X is an iso-
morphism;

(4.6.2) YV, is dense in X, for se S;

4.6.3) (Ugy,), is dense in U, for se S;

(4.6.4) foe(S)C V.

Note that the condition (4.6.4) is the same as (fo¢)"'(V) = S. The set
Homg ..(Z,f; X, Y) is a subset of Hom(S, Z) X Homg ,,(X, Y). For a
morphism T — S, the correspondence (p, U) — (¢,, U,) defines a map

HomS—ran(Z, (X Y)—> HomT—rat(ZT5 frs X, YY)
and a contravarient functor
(4.6.5) Homg .. (Z, f; X, Y): (loc. noetherian schemes/S) —> (Sets)

Clearly this is a subfunctor of 2, X Homg (X, Y). For a geometric point
5 of S, if X, is reduced, with the above identification,

(4.6.6) Homg..(Z,f; X, Y)(®3)
z e Z(3),
={(z, ¥); ¥: X;-» Y; is a x(8)-rational map,
f(2) is in the domain of definition of +

ProposiTION (4.7). Let S, X and Y be as in (4.5) and f: Z — X be an
S-morphism. Then the functor Homg .(Z, f; X, Y) is representable by an
open subscheme Homg_ ., (Z,f; X, Y) of Z X Homg_,,.(X, Y).

S

It is sufficient to show that if se€ S and if (¢, U) € Homy(S, Z) X
Homg (X, Y) is such that (¢,, U,) € Hom, ..(Z,, f,; X,, Y,), then there exists
an open neighbourhood S, of the point s in S such that, for s’e S,
(ps, Uy) € Hom, ., (Z,, f,; X,, Y,), where s = Spec (£(s)) and s’ = Spec («(s")).
If V’ is an open subset of X, satisfying the conditions (4.6.1) ~4)) (where
we replace S and V by s and V’, respectively), then by the proof of (4.3),
there exist an open neighbourhood S; of s in S, and an open subscheme
V, of X;, satisfying the conditions (4.6,1)~3)) such that (V,), = V’. Then
S, = (fop)~'(V)) is the required open subset.

https://doi.org/10.1017/5002776300002081X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002081X

HODGE COHYOMOLOGY 23

(4.8). Suppose (¢, U) € Homg_...(Z, f; X, Y). With the above notations,
fop: S— X is factorized as S—Vc X. If p”: Uy, = V is induced from
Uc X X Y— X by the base change V — X, then we obtain a morphism

S

v S—> VX LU, cXXY—>7Y.
S

Thus we get a map

Homg . «(Z, f; X, Y) —> Homy(S, Y), (o, U) ——> ¥,
and a collection of this kind of maps defines a morphism of functors
(4.8.1) ev: Homg_,..(Z, f; X, Y) —> k.

In particular, if the hypothesis of (4.7) is satisfied, we obtain a morphism
of schemes ev: Homg ,.(Z,f; C, Y) = Y.

If (2, ¥) € Homg_.(Z, f; X, Y)(5), where 5 is a geometric point of S, and
if X; is reduced, then ze€ Z(5) and +: X;.-» Y, is a rational map with

f(2) € dom , and ev((z, ¥)) = W(f(2)).

§5.

(5.1) Let V be a smooth projective variety of dimension m over an
algebraically closed field & of characteristic zero, and p an integer > 0.
For integers d, ¢ >0, we put

(L) EXV), = {(X, Y) e C(V), X CAV)s; X Yon V},

where r = m — p, and we identify the cycles on V with their Chow points.
We shall prove the analogues of Propositions (2.2), (2.3) and (2.5).

(5.2) There exists a countable number of families of smooth irre-
ducible projective curve & /¥, (v € M) such that for any smooth irreducible
projective curve C, there exist a #e€ M and a point se &, such that C =~
(Z,),; the indexing set M is countable and #, — ¥, is smooth projective
and each fibre is irreducible of dimension 1. Note that the set of
@, p, -+, pyd’,d”) formed of Qe Q[T), pyy -, u.€ M and of positive
integers d’, d”” is countable.

(5.3) Fix for a moment g, ---, ¢, € M and @ € Q[T], and denote the
set of maps from [1, 4] to {0,1} by 2™, where [1, ¢] is the set of integers
between 1 and 4. To simplify the notations, we shall write:
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F.=F,,
F =F X XF,,
F =L, XX Py

2

Then, & is a scheme smooth projective over .. For ¢e 29 we shall
define the .#-morphism

(5.3.1) a:ff>;%=(.%zm”fl)x---x(ﬁlzﬁg)—ﬂfl><--~><97,;=3‘“,
by 1 l

(x®, 20, + o+, %0, XD s (D, L gl@)
Recall that Hom? ,.(F X F,6; F, S X C(V), X C,(V),,) is an open sub-
scheme of the quasi-pronctive sheme (F X %) X Hom,_ ..(F, ¥ X C(V), X
CAV)y), where Q ¢ Q[T] is the correspondying Hilbert polynomial. Consider
(6.32) W= (O Homl.(F >§ F,0;F, S XCV)y X C(V),),

seall,f]
an open subscheme of (# X %) X Hom, (¥, ¥ X C(V)sy X C(V),.. For

o €2 we have a morphism

(5.3.3) ou: W C Homl .. F X F,6; F, S X CV)y X CAV)y)

s X CV)a X OV 2B C(V)u X CV)ar
For g €24 we put |¢]| = > ,cic,0(). We define the morphism
(5.3.4) >V W — C(V)y X C(V)y, N =2-'(d’ + d”),
by
21 (x) = (MZ.;O DI 0 04(%) +!§1 pr; 0 04(%), WZE Pr; 0 04(X) +l§_‘0 pr; 0 04(x))

where = means “modulo 2” and “-+” are the morphisms of the form
CT(V)d X CT(V)d' —_—> CT(V)d+d'? (X7 Y) I X + Y’

and pr,, pr, are the projections on C(V), and C(V),. Finally consider
the morphism

(5.3.5) SiCV)y X CAV) X W —5 CAV) iy X CAV)yuw
w W

X Y, 2) —> (X, Y), 27/ (%))
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where @: C(V)y X C(V); X C(V)y X CV)y = C(V)yun X C(V)s.y is
such that (X, Y, X/, Y)) — (X + X/, Y+ Y’). We put W = >-(4), 4 being
the diagonal of C(V),,y X C(V)s.y. We shall then set

(5.3.6) EP(V)@memedst — pre W,

where pr: C.(V), X C(V), X W — C(V), x C(V), is the projection; hence
pr W is a constructible subset of C(V), x C(V),.

(5.4) Let ¢: S— W, ie., o W(S). Since Wc C(V), X C(V), X W/,
¢ is of the form ¢ = (f, g, h) € C.(V)u(S) X CAV)i(S) X W'(S). Note that

Fs=F XS=(F, X+ XF) X S=(‘¢1)S>S<"’>§(gzé)5)

where (¥ ,); = %, >; S. By definition,
W (S) = O Hom$ ... (F >§ F,5; F,F X C(V)y X CV)y)S)
= (Y Hom§.oi (Fs X Fs, 053 Fs5, S X CAV)ar X CAV)ar)
C (Fs X FNE) X Homg 1oy (Fs, § X CV)ar X CUV)a)
(Fs X FNS) = F(S) X F(S) X -+ X FLS) X FLAS).

SO h = (s{0>, Sil)y t 820)7 szl)a {!;) fOI' 87(.].) € ‘?'L<S)> j = O’ 1; i = O? Tty 47 and
for ¥ € Hom?.,,. (¥ 5, SX C(V), X C(V),). Then - defines a rational map

Yo Fg e C(V)y X CAV)gor
By definition, os’ are defined for any o€ 2™, where
87 = s X ... X 8D e ((F)s é< X (F(S) .
The definition of W implies that

f+||z=opr1°‘1’°s" + 25 pryoyros

lo|=1

(5.4.1)

in C(V)q:n(S).

Conversely, suppose S = Speck and suppose that p,, -, pu, € M,
S— &, are given. Hence & can be defined as above. Let f, g€ C.(V)u(S),
and ¥ = 1 F g C(V)y X C(V)y = SX C(V)y X CV),. be a rational
map. If s¢? € #(S) satisfy the conditions Im s* C dom +» for ¢ € 2 and
if the equality (5.4.1) holds, then ¢ = (f, g, h) € W(S), h = (s{, s{", - - -, [,
s, ), where W is defined as above for an appropriate @ € Q[T].
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THEOREM (5.5). Under the hypotheses the notations as above, we have:
(5.5.1) ExV), = U EYV)Rro-rednd  (qg closed points),

where the union is taken over all Qe Q[T), p, -+, u. € M and positive
integers d’ and d”.

(5.5.2) EXV), D EN(V)@m it

for arbitrary @, pn;, and d’ and d”, where the bar denotes the closure in
C(V)y X C(V)y. In particular, E2(V), is a countable union of closed
subsets of C(V), X C(V),. Moreover, if we replace & ,/%’s by their asso-
ciated families of jacobians in (5.3), then the equality (5.5.1) also holds.

The equality (5.5.1) follows from (3.8, 1)) and (5.4). To show (5.5.2),
notice first that E2(V)@m - redsd) — (V)R -4 ig constructible. Hence
it is sufficient to verify that if I is a curve (maybe singular or non-
complete, but irreducible) in E2(V){ %" then the closure I" of I' in
C(V), x C(V), is in E¥(V),. With the notations in (5.3), there exists a
curve I/ in W dominating I” via the morphism pr. Let R’ be the smooth
projective model of I/, and Rj the open subvariety of R’ such that Rj is
the normalization of ["’: R,—I"’. We get the morphisms

X Homy i (F, & X C(V)er X C(V)4)
—a F=F X XL —> L, i=1 -4,

and thus the smooth families of curves (%) /R, i =1, ---, ¢, by the base
change R’ —.%,. By virtue of [2], (2.7), if the genus of the generic fibre
of (# 1)156/R6 is > 2, there exist a smooth projective curve B, and a stable
curve F//B, such that B, is a covering of R’ and (¥ ;)Bg =~ (F:)s, where
B! = B, X R;. If the generic fibre of (#,)./R; has genus 1, by the argu-
ment in fZ], § 2, there exist a smooth projective curve B, which is a covering
of R/, and a flat family of curves F7/B,; such that (F ;)Bg =~ (¥ )s and such
that the (geometric) fibres of F'/B; are reduced and have at worst ordinary
double points. Finally, if the generic fibre is of genus 0, then there are
a smooth projective curve B; which is a covering of R/, and a flat family
of curves Fi/B; with fibres P, such that (F7)z =~ (ﬂ})Bg. Let R be a
smooth projective curve with R— B,, i = 1, - - -, 4, such that the morphisms
R — B, —» R’ are the same. The fibres of F’ ;g R = (F})z/R are reduced
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and have at worst ordinary double points and (F’), >< Ry ~ (F )r; >< R,
where R, = R X R). Blowing up (F)); at points over R\R if neceasary,
-

we obtain flat families of curves F,/R such that F, are smooth projective
surfaces and (F)g, = (# )p, X R, and such that the fibres of F,/R are
RY

reduced and have at worst ordinary double points. We put F = F, X - - -
i

X F,. Considering R, — R;— W, we are in the situation remarked in

R

(5.4): we have Rysections s{: Ry— (F)p,J =0,1;i=1, ..., ¢, arational
map

1/’: FRo """" > CT(V)d’ X CI(V)d” »

and morphisms f: B, - C(V), and g: R, — C(V), satisfying the equality
(5.4.1) in which

g = Si““” X oo X Séa(ﬁ)): Ro —_— FR0 — (Fl)Ro ;( A ;f (Fé)no,
0 0

and Im s° C dom . Since R is a smooth curve, and F,/R is proper, the
Ry-sections s have their extensions 3¢: R — F,. Moreover f, g: R, —
C.(V), are extended to f,g: R— C/(V), by the completeness of C.(V),.
Note that F' is integral because F/R is flat and the generic fibre of F/R
is integral. Since Fj, is an open subset of F, +» defines a rational map
i F» C(V), X C(V),.. Defining 5 as s’, ¥ 03" are morphisms and the
equality (5.4.1) holds replacing f, g, v and s’ by f, g, ¥ and §°, respectively.
To show ['e E?(V),, it suffices to prove that for any re R, we have
f(r)f(é\)jg(r). But by the extended version of the equality (5.4.1), it is
sufficient to verify

2. Prioyrod(r) ~ Z prioyos(r), 1=1,2

1oT=0 [

for any re R. To simplify the notations, replacing pr;o+ by +, we can
assume +r: F > C(V),. Let reR be a point such that some of (F)),
(i=1,. -, ¢ have singularities. We notice that the set of such r’s is a
finite set. For j, 1 <j < ¢, let L; be the set of points x e F, = (F,), X - - -
X (F,), at least j of whose projections onto (F,),’s fall to double points.
Then L, D L,D---D L, are closed subsets of F,, hence of F. We endow
the reduced subscheme structures to L;,’s. Blow up first F with center
L, to obtain F’ and let LD L;D---D L,., be the strict transforms of
L,D.--DL,,; then blow up F’ with center L,_, to obtain F”” and so on
until we blow up F virtually with center L, to obtain F and a morphism
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F—F. We assert:

I) F is non-singular at the points of the fibre over r ¢ R.

II) For each xe F, any two points of the fibre F~x are joined by a
finite numbers of rational curves in the fibre.
To show these assertions, we shall recall basic facts about the blowing-
ups: Let X be a scheme, Y D Z be its closed subschemes, X, the blowing-
up of X with center Z and Y the strict transform of Y. If X’ - X is a
flat morphism, setting Y’ = Y3, and Z’ = Z4,, X >§ X, is the blowing-up
of X’ with center Z’, and X’ >,§ Y, is the strict transform of Y’. Pick up

a point x € F and put & = Spec(¥,,) where @y, is the completion of @y,
with respect to the maximal ideal. Then we have a flat morphism & — F.
Denote by x, the image of x ¢ F by the projection F— F,. Rearranging
the numbers of indices, we can assume that x,, - - -, x,, are ordinary double
points and x,., ---, %, are smooth points. Hence we have xeL, but
xe¢L,.,. Since F, are smooth,

O,y ——> Op, .,
oo
R[] ——> El[w,, v, /(w0 — 9)
for i < ¢’ and
O,y ——> Op,.x,
l? ll
R[] —— kllu,, ] .

for i > ¢’. Also we have

@F,.r = (@Fhm@ e ® (aF,z)A

OR,r OR,r
= Ef{u,, vy, -+, Uy Vo, Uiy, -+ o, g, /(v — 8, - - -, UpUy — 1)

The ideal of 0, , defining (L); = L, is

(5.5.3) mj~ (u/l‘y Ul;, Tty ulu vli) ’
where the intersection is over those (4, ---, 4;) that satisfy 1 <2, <.
< 2,< . As we have remarked above, F; is obtained by the same pro-

cedure as F replacing F by F; and L,s by Ei’s. We note that the fol-
lowing are equivalent:
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——F is smooth at the points of the fibre over x;

——F; is regular at the closed points of the fibre over the unique closed
point X of &.

Moreover, we have FI ~ (F~,,;)5. Starting with

0 = SpeC (k[[ul) Ugy wv oy Ugry Uy Uyriy =00y Uy, t]]/(ulvl - t, sy UpUp — t))

and /; defined by the ideal of the form (5.5.3) in the affine ring of @, we
define @ by the same process as F, replacing F by @ and L/’s by 4,s.
We have an obvious flat morphism # — @ and L, = (4,)5. To verify the
assertions I) and II) above, it suffices to show that @ is smooth at the
points of the fibre over the point x, corresponding to the ideal (u, v, ---

Wy, Ugy Upssy + -+, Uy, ) and that @, has the property described in II), because
of ® x ® ~ F;. We shall prove our assertions by induction on 4, so that
?

we assume our assertions for
Spec (k[ula Uy = vty Uy Uy Urigy =00y Uy, t]/(ulvl - t’ ey, Uiy — t))
for n’ < n < ¢. Considering the smooth base change

Spec (k{ul, Uty =y Uy Ugry Ugrny =0 0y Uy, t]/(ulvl - t; sy UpUp — t))

- SpeC (k[ul, Uy =vvy Uy Ugy t]/(ulvl - t) sy UgUp — t))

we may assume £ = /.

In Spec(klu, vy, - -+, u, v]), @ is defined by
Uy, = --- =ul,=t.
Then 4, = x, is defined by u, = v, = -+ =y, = v, = ¢t = 0. The dlowing-
up @ of @ at A, is gluing of affine pieces of the following type: in the
coordinate system u,/u;, v,/ - - -, U, \f1e,, U,_1fUy, Uy, U/l ¢
(wfu)vfu) = -+ = (i Ju) (v, ifuy) = viluy,
(/i

t = ui(v,fu,) .

On the other hand, A,_, is the union of

U=V = - = U = U = Uy = U= s = U= U0, =0,
for i =1, -+, £; hence its strict transform A,_, in this piece is
wlu, = vfu, = - = U, 4fJu, = voyfu, = 0.

Moreover the strict transform A/_, in this affine piece is the union of
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wfu, = vifuy = .- = Uioifuy = Visyfuy = wyyyfu, = v00/u,

= - = U_fu, = v, 4/u, =0,

fori=1,---,4;---; and the strict transform 4; of 4, is, in the piece,
given by the union of

ufu, = vilu, = u;lu, = vj/ue =0,

for 1<i<j< 4. Denoting u, = u,ju, Vi=uvfu (i =1,---,¢ —1) and
t’ = v,/u,, we have

Q° = Spec (k[uiy U;, Tt u;»ly Ufz—u t/]/(u;U{ - t/’ Tty u2-1U2—1 - t/)) ’

and the ideal of 4} is of the form (5.5.3), replacing u, and v, by u) and
vi; hence by inducting hypothesis, we see the first assertion.

We shall verify the second assertion; let ¥ and &%’ be the points of @
whose images x and x’ in @ are identical, and let x; and x] be the images
of ¥ and ¥ in @. If x, = x{, then by induction hypothesis, we are
done. Suppose x, # x;. Since the morphism @ — @ is an isomorphism
outside 4,, we have x = x’ € 4,, so that x,, x{€ @;. We claim that there
exists a finite number of rational curves I, (i =1, - - -, n) in @}, such that
I's Ayforall i, x,el', xjel’, and I',N [';,, +# ¢ 1 < i< n); This claim
implies our second assertion: the curves ['’s lift to the rational curves
F,in @. Ify,el,NT,,, A<i<n), if j,el;, and §,,,el,,, are points
over y, and if ¥ and X’ are points on I, and on /", over x, and x| re-
spectively, by induction hypothesis, y; and y,,; can be joined by a finite
number of rational curves and the same is true for ¥ and x, and also for
% and ¥. Moreover ¥, and ¥, are on the curve I',, whence the assertion
II). We show the claim for arbitrary x,, x{e @ over 4, hence we may
assume that x, and x; are contained in the same piece of @’ above, say,
the above piece. We shall denote the varieties intersected with the above
affine piece by the same symbols as the varieties. The variety @}, is
defined by

(wilu)ifu) = - = (U Jud)(v,/u) = vlu,.
u,=t=20.

We can therefore take (u,/u,, v./u, ---, v,-,/u, v,/u,) as the coordinate sys-
tem for @;,. Let (a, b, -, a,.,,6,-,,¢) and (a, b, -- -, a;_,, b;_,, ¢’) be the
coordinates of the points x, and x,. To show x, and x; joined by a
rational curve in @}, it is sufficient to find polynomial functions f(w),
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gl(w)9 o ';f£~l(w) and g2,1<lU) with fz(o) = @, gL(O) = bia fz(l) = a;ﬁ and gz(]-)
= b, such that

fw)g(w) = f(w)g,(w)

for all 1 < i <j < 4. Note that a point with v,/u, # 0 is not in 4;. First
we shall assume that ¢ and ¢’ are non-zero. Considering the functions
f({w) = a,w and g, (w) = bw, x, and the point (0, - --,0) are joined. Simi-
larly x; and the point (0, ---,0) are joined. Hence in this case we are
done. We then assume ¢ = 0. We shall show that x, and a point with
v,/u, #+ 0 can be joined by a rational curve. Since @b, = ¢ =0 for i < ¢,
a; or b, is zero. For simplicity, we suppose (and we can suppose) a, --- a
+0,b,=.---=b,=a,,,=b,,,=---=0b,_,=0. We put

v

fw) = a;, + 1 - a)w,
w* [ (a; + (1 — e)w) fi<y

I<j<y

gw) = J#e
w [] (a; + 1 — a)w) if v <i<{.
1<7<y
Thus x, and the point with coordinates (1, ---, 1) are joined by a rational

curve. Since any two points with v,/u, %= 0 can be joined by rational
curves, this completes the proof of our assertions.

Iterating the above procedure at the fibres containing a singularty
of F, we get a smooth projective variety, again denoted by F and a
morphism F — F such that for any x e F, the fibre of F over x has the
property II), or that the points of the fibre F’I are rationally equivalent
on F. If 2 denotes the rational equivalence class of the cycle on Fx V
corresponding to the rational map V: FoF.L C(V),, then 2/(a) (a’ € F )
depends only on the image a of ¢’ in F. Hence we denote the rational
equivalence class z/(a¢’) by z(a). We notice that the set of singular points
of F is of codimension > 3 in F and hence the complement of the domain
of definition of the rational map ¥: F-» C(V), is of codimension > 2.
Let re R be an arbitrary point and C} an irreducible component of (F)),
for each 1 <i< 4. Then (C{X---x C)) N dom+ # ¢, so that  deter-
mines a rational map+’: C{ X --- X C,--»> C(V),. Note that

T =dom+ N Reg F N Reg(C7 X ---%x C)

is a non-empty open subset of C{ X ---X C}. Let acC{X---x C}, I" be
a smooth complete curve, be I’ a point and ¢: " — C| X --- X C;, a mor-
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phism such that ¢ '(T) == ¢ and ¢(b) = a. Then V¢ is a morphism from
I to C(V),; we have therefore a cycle ¥ o¢p(b) e C(V),. Since ¢: [ —
C/x--+X C,C F lifts to ¢: " > F, and ¥ o = ' o, the cycle ¥ oq(b)
is in the class z(a) by (1.5). Since (F,), is connected for i =1, ---, 4,

there are points 3 = c0), - - -, c;(n,) = 5 on (F)), such that c(n) and
¢{n + 1) are on the same irreducible component of (F,), for n =0, ---,
n;, — 1.
§(o,o)(r) g(l,ﬂ)(r)
(FZ)r FT (ﬂ = 2)
s©i(r) 50(0)
(Fl)r

For (i, = -+, J0) << ny), let Xjryernrje = 2((c(jy), -+, cj)). In virtue of
(3.8, 2)), we have

(5.5.4) 22 (=DM, s0e € FECHP(V).

On the other hand, x,.,u,....n,0v 18 the class of ¥ 05(r) for any ¢ e 24
by (1.5). Summing (5.5.4) over 0 < j, <n;(E =1, ---,4), we see that the
rational equivalence class of >, (—1)!“'05°(r) is in F‘CH?(V), i.e.,

Z xT/OE:“(r)N ZZI{I;OEU(T'), qed

JaT=0 [

Cororrary (6.5.5). If k: T— CH?(V) is regular, then for any ¢ >0,
k-Y(F*CH?(V)) is a countable union of closed subseis of T.

The proof is similar to that of (2.7).

From now on, we suppose that k is uncountable.

TueoreM (5.6). Let V be a smooth projective variety, T a smooth quasi-
projective variety, f and g: T — C(V), morphisms such that for teT,
@ ~ 2(8). Then there exist a smooth quasi-projecitve variety S, families I';/S
of curves (resp. jacobian varieiies) over S (each fibre is a smooth projective
curve (resp. jacobian variety)), sections s©,sV: S — 1", (1 <i < ¥ of I',/S,
a dominant morphism e: S — T, and a rational map
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H: Fl?;“‘?g(Fz """" ’Cr(V)d'X CT(V)d"
(d’, d” > 0) such that

(5.6.1) H is defined on s°(S)c I'yx---x I,
S N
foe+ > prioHos” + . pr,oHos’
(5.6.2) 17=0 loT=1

=goe+ >, priocHos" 4+ > pr,oHos’,

lel=1 la|=0

where 8% = 8™ X ... X . S s X ... x I, for g e 24
S S

Consider h = (f,8): T — C(V), X C(V),. The hypothesis implies
Imh c EX(V),. Since Im h is constructible and T is irreducible, there
exists an irreducible open dense subset T, of Im A. Since E2(V)i#u:#0d>d™
are constructible in C(V), X C(V), and since £ is uncountable, by virtue of
(5.5.1), there exist @, 1, - - -, i, d’, and d” such that T, N} E(V)§woredsdm
contains a non-void open subset in T,. Employing the above notations,
consider

W x T——>W

Cr(V%

pr

7

pr
T-—C(V), x C(V),,

where W is that in (5.3) for @, u,, - - -, i, d’, d”. Then pr’ is a dominant
morphism; picking up some irreducible component S’ of the fibre product
dominating 7 and replacing S’ by some open subscheme of S/, we may
suppose that in the diagram

S—> W X T—> W C(V)y X W —> W —%F

Cr(V)%
(.63 \ l

T'—_——-é Cr(V)d X Cr<V)d ’

S is smooth and e: S — T is dominant. By the base change S — %, we
have families of curves (resp. jacobians) I', = (#,);. Then the theorem
follows from (5.4) and the commutativity of the diagram (5.6.3).

TueoreM (5.7). Let «: T — CH?(V) be a regular map, where T is a
smooth quasiprojective variety. If «(T) C F*CH?(V), then, for 0 < ¢’ < 4,
we have

e(H (V) =0,
where r + p = dim V.
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By the construction of «* it is sufficient to show that if f, g: T —
C/(V), satisfy the hypothesis of (5.6), then f*w = g'w for we H™**"(V).
By virtue of (5.6), there exist a smooth quasi-projective variety S, a
dominant morphism e: S — T, families I',/S of jacobians, their sections
s ST, 1<i<¥¢; j=0,1) and a rational map H: I’,Z(---);FZ-»

C,(V), x C(V),. satisfying the conditions (5.6.1) and (5.6.2). Note that
e*: HY(T, 2%) — H(S, 2*) is injective since e is dominant; it therefore
suffices to verify (foe)'w = (goe)fw. The theorem will result from the next
two lemmas, taking account of the property (2.4.3).

Lemma (5.7.1). Suppose S and T be smooth quasi-projective varieties
and we H*""(V). If ¢:T-»C(V), is a rational map, there exists an
element y e H"(T) such that, for any morphism f: S — T with f(S) C dom ¢
(hence ¢of is defined and a morphism), we have

(pof)o =f*y.

Let T, = dom ¢ and i: T, — T be the inclusion, ¢,: T; — C,(V), a repre-
sentative of ¢, X the cycle on T X V corresponding to ¢ and X, the cycle
on T, X V corresponding to ¢,. Then (i X id,)*X is defined and equal to
X,. We set » = X(w). Then, as shown in the proof of (2.4.2), we have
i*p = X(w). The morphism f as above is factorized as f: S ST 5T
Then by definition, ¢ of = ¢, f;, hence we have (¢ o f)w = (¢, o f)fo = [ (ptw)
= FEX() = F2G*0)) = Fon.

LemmaA (5.7.2). Let S be a smooth quasi-projective variety, I',|S families
of jacobian varieties (1 < i < ¢), and s{: S — I', their sections (1 <i< ¥;
J=0,1). For any e H>(I'; X --- X I'y), if ¢ < £, we have

S S

(=Ds7* () =0 in H"(S).

Since we are dealing with a finite number of varieties and morphisms,
and since H*%?) commutes with the extension of the ground fields, we
may assume k = C. Let S*, I'}, etc. denote the complex analytic manifolds
associated to S, I';, etc. Since the diagram

HOD X oo X T) = H( X o X Ly Q) ——> HT X - - X T, Q)
S S S S Sh Sh

s’ (%)

H*Y(S) = HY(S, ) > HY(S", 2°)

https://doi.org/10.1017/5002776300002081X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002081X

HODGE COHOMOLOGY 35

is commutative, where (s7)" = (s*)7 = (s{"™)* X - .- X (s{*“P)* and the hori-
zontal maps are obvious ones, and since they are injective, it suffices
to prove the lemma for the complex analytic version; we therefore omit
the superscript 4. The problem being local on S, we may suppose S an
open ball in C™, m = dim S. Since [",/S are families of jacobian varieties,
S X C™ are the universal coverings of I';,, where n, =dim I", — m. We
get S-morphisms S X C™ — I'; and

p:S><C"1><~--><C"f:(SxC"l)é‘-»;(SxC”)——>F,><--~><Fg.
S

N
Let 5: S——> 8 X C™ be liftings of s(: S —I",, and

3° = §id(1)) X oo X 5;0(5)) .

N S
We have (s7)*yp = (§°)*op*5. Let 2, ---, 27 be a coordinate system for
C™, and x, ---,x™ for SC C™ We set

dx’ = dx" N\--- A\ dx7,
dz;’i — dzjl/\. . ./\dzjv

for I ={i,<.-.--<i}and J,={j,<---<}j}. Then p*; is of the form
p*77 = Zf],]l ..... de’ /\ dZi’l /\ e /\ dZ“]‘

where the summation is over (I, dJ,, ---,d,) such that I {1, .-, m}, J, C
{1, -, n} with [I|+|J)| 4+ -+ |J,| = ¢, and where f; ,, ..., € (S X C™ X
--- X C™, (O). ForseS fixed, since (I', X --- X '), is compact, f;.,,....,(s, ?)
are constants. So we may regard f,,, .., €1'(S, ¥). Denoting

g(.z)

58S —>8SX C"—>CH,

and
Lo, J)) = (57)¥(dz])
we have
() op*n = 3 frsnendx A Ca, ) A+ A Lfa, ).
Hence,

2 (=D = 2 fredxt A D (=D o, J) N A Ldo, ST

where by the first > on the right side, we understand the summation over
(q,d, ---,dJ,) as above. For a fixed (I, J,, -, ), since |J,|+ -+ [J,]
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= ¢’ —|I| < ¢, there is a number i such that J, = ¢. Then the expression
in the bracket is equal to zero because

Z (_1)'0IC1(‘7, J)N - Ao, )
’ S

= Z (—1)'”lC1(0', JIN- N Ct(o', B WARERWAN Cz(o', J))

a(i)=0

S
+ Z (—I)MCl(‘T, JIN- - ANClo, J)N--- A Ce(ay Jy)

a(i)=1

=0,
where ? means the absence of ?. The lemma is thus proven.

Remark (5.8). We have proven the /-cubic equivalence versions of
[9], Therems 1, 2 and 4. The results in [9, 10] deduced formally from them
are, of course, valid in the /-cubic equivalence case. Here, we shall
indicate two of such results (without proofs).

For any effective 0-cycle X on V of degree d let

Vi={xeV;(x)+Y ~ X  for some Ye S 'V},

(¢+1)

Then V, is a countable union of closed subsets of V. By dim V,, we
understand the maximum of the dimensions of “irreducible components”
of Vy and let codim V; = dim V — dim V. Then the set {X e S?V; codim
Vy < a} is a countable union of closed subsets of S¢V for any integer a,
so that there is a countable intersection U of open subsets in S¢V that
the maximum §, of codim V, for Xe S?V is attained on U. Then 5§, <
0441 and we set

d(V) =1lims, = 5, for d > 0.

d-ro0

Then 0 < d(V) < dim V and d(V) #+ 1. Clearly, d(V) = 0. By (3.4,3)),
d(V) =0 if V is a product of curves.

CoroLLARrY (5.8.1). If H(V, 29 #+ 0, ¢ > 2, and £ > q, then d(V) > q
(cf. [10], Theorem 3).

A canonical morphism V — Alb V induces the natural map F'CH(V)
Alb V, hence gr'CH,(V) — Alb V.

CoroLLARY (5.8.2). If d(V) =0, then gr'(V) — Alb V is an isomor-
phism of groups (cf. [10], Theorem 4), and vice versa.

One can ask whether d(V) < ¢ or not for each ¢. If this is true
for £ = 1, gr'CH,(V) is always isomorphic to Alb V. For an abelian variety
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V, d(V) =0 and gr'CH(V) =~ Alb V (cf. [12]).

(5.9) To state the next theorem, we shall define *H? (V).

Let A?(V) be the k-vector subspace of H”?(V) generated by the fun-
damental classes of algebraic cycles on V of codimension p. U*(V) =
@, U?(V) is a subring of H**(V) and stable by pull-backs or direct
images. Ior a positive integer ¢, let (H"'(V))* denote the image of

¢ times

HY V)@ - @ H (V) —> H(V)

induced by the multiplication of H**(V).

DEerFINITION (5.9.1). Let 0 < p < g be integers. *H”%(V) is by defini-
tion the k-vector subspace of H?”%(V) generated by the elements of the
form wu(x), where ueUr+4™7 (T x V), xe (H*(T))“ » and T is a smooth
projective variety. Similarly, *H?(V) is the k-vector subspace generated
by u(x), where weqr+4™7 (T'x V) and xe H**-?(T).

Clearly, *H?»%(V) C *"H?%V) and *H??(V) = *H??(V) = A?(V).

Lemma (5.10). 1) For any morphism f: U—V, f*(*H»«(V)) C *H"(U).

2) For any morphism f: U—V, f,(H?«(U)) C*H?-%-4V), where
d=dim U — dim V.

3 If xe*H»(U) and ye*H?"(V), then x X y e *tH?*» ¢+¢(U x V).
The similar properties hold for *H? (V).

1) Indeed, for ve A¥(T X V), ye (H*'(T))“-», we have
() = ((idy X ))*)() -

2) For ue (T x U), xe (H"{T))“», we have
falw(x)) = ((idy X f)s(@)(x) .

) HueA*(T X U), veWAN(S X V), xe (H*(T))“» and

yeH(S)w,
then w(x) X v(y) = u X v)(x X y), u X veA(T' X SX Ux V) and
x Xy e H(T X S)ywer,

COROLLARY (5.10.4). *H**(V) = @ycpe, "H? (V) is a subring of H**(V),
and similarly for *H**(V).

(5.11) We have clearly inclusions UA*(V) C *H**(V) C "H**(V) C
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H**(V). We shall show that in the definition of *H?% V), we may restrict
T to varieties of the form

T=Cx---xC,_,, C;: curves,

or to abelian varieties. Suppose, in fact, given subspaces H? (V) for all
p < q, with the properties 1), 2), and 3) above and assume that H»?(V)
D UA?(V) and H* (V) = H*(V) for all V and p. Then we have H”%V)
D*H”Y(V) for all p < q by the properties 1), 2), and 3). Denote the k-
vector subspace of H»%( V) which, in the definition of *H?(V), is obtained
by restricting 7' to abelian varieties (resp. products of curves as above)
by H?»¢(V). Since H»%V) has the properties 1), 2) and 3) above, and
H»?(V) = A*(V), we have only to check H*(V) = H*¥(V). In the case
of T being abelian varieties, if i: V— Alb V = A is a canonical morphism,
we have i*: H%(A) ~ H*(V); but since A is an abelian varieties, H*'(A)
= H*(A), so that H*(V) = i*H*(A) = i*H*(A) c H*(V) Cc H*(V). In
the case of T being products of curves, it therefore suffices to show that
H*Y(V) = H*'(V) for an arbitrary abelian variety V. We can find a
jacobian variety J and a homomorphism A: V—J with finite kernel.
Then since A*H*'(J) = H*'(V), we are reduced to the case where V is
the jacobian variety of a curve C of genus g&¢ We have a natural ge-
nerically finite morphism f: C¢ — V. By projection formula,

(deg f)id: H(V) L Ho(C) L2 BV,
hence f, is surjective. So if H*(C¢) = H*'(C?), we are done. The map
K: H*(C)® — H*(C?)
defined by

K(x, -+, x,) = 3. prix,
=1

is an isomorphism, where pr;: C¢# — C 1is the i-th projection. Since
H>Y(C) = H*(C), H*(C?) D H*»(C?®) > Im (K: H*'(C)®¢ - H*'(C?%)) = Im K
= H*'(C%). By a similar method, we can show that, in the definition of
*H®9(V), we can restrict T to varieties of dimension g — p.

CororLarY (5.11.1). For any V and p, *H?'»(V)=''H?»"»(V)C
Hr-42(V),

It is well-known that this subspace is equal to the tangent space of
the algebraic part of the p-th intermediate jacobian of V if & = C.
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ProrosiTiON (5.12). dim *H*YV) is a birational invariant of V for
each q.

If V! — V is the blowing-up of V with a non-singular center W, then
[*:*H*(V) —*H*Y(V’) is an isomorphism. In fact we have an isomor-
phism

H (V)& @ Hr=0 (W) —> Hoa(V),

oi<r

where r is the codimension of W in V, and this isomorpihsm and its in-
verse are composed of pull-backs, direct images and multiplications by
fundamental classes of algebraic cycles. Hence the isomorphism remains
valid when we replace H by *H. Since *H°-**-{(W) =0 for i > 0, f*:*H*«(V)
~*H%(V’)., Now if V and V’ are birationally equivalent, we have a
diagram

Vie—V,—> ... —V,—V, =1V,

where V,,, is a blowing up of V,; with non-singular center, and V, — V’isa
birational morphism. We have dim *H*%(V’) < dim *H*4(V,) = dim *H> (V).
Switching the roles of V and V’, we get the reversed inequality, hence
dim *H*%(V) = dim *H*4(V").

Remark (5.13). It is well-known that dim *H*%(V) = dim H*%(V) is a
birational invariant of V. We may ask whether H*%(V) = *H>4(V) for
any V and p, which is equivalent to

bH;ﬂ»q(V) — RH;u,q(V)
for any V and p < q.
TueEoREM (5.14). If *H?-%?(V) £ 0, then we have gr'CH?*(V)® @ + 0.
By hypothesis, we can find ¢ curves C,, - - -, C,, u e A**4(C; X - - - X C, X V)
and xe (H*'(C, X --- X C))t = H*(C, X ---X Cy) such that u(x) +0. We
may further assume that w is the fundamental class of a cycle U on
C, X+ X C,x V. By abuse of notation, we shall denote the rational

equivalence class of a cycle by the same symbol as the cycle itself. Fix
points a; of C; (1 < i < £), and consider the regular maps

£:C X - XC,—> CH(C, X ---x Cp
defined by
’C,(xu ceey ) = ((x) — (@) X---X ((xz) —(a)) .
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and
4 Uum
£:C X+ X C,—> CHY(C, X --- X C)—> CH*(V).

Im ' C F'CH(C, X - - - X C,) implies Im « © F‘CH?(V). On the other hand,
by (2.6.3), we have £* = "o ‘u(?), where

w(N: H+o"(V)—> H*(C, X --- X C));
but ‘u(?) is the transpose of
w?): H*(C, X - - - X C) —> H*~%2(V),

hence we see ‘w(?) = 0. If we write ¢ (x;, -+, %) = (x) X--- X (x) + R,
then R is a sum of elements of the form + (y,) X - -+ X (¥,), where at least
one of y,’s is a; and the rests are x;’s. In other words,

¢ =kt Dn,
where

ke Ci; XX C,——> CH(C, X +--x C)

is the regular map

Ko(Xy, -y X)) = () X - X (%)

and #; are regular maps such that

ki G X - X C£L>TJ-—E{—>CHO(CI><-~->< c)
with #; regular, a morphism f;, and dim 7, < 4. For pe H*(C, X - -- C)),
we have tp = £lp + 2. #%yp. But &y = 5, and %y = 0, because
2 13
g H°(C, X -+ - X C) —> H*(T;) —> H*°(C, X ---x C)

and dim 7', < ¢; thus #* = id on H*(C, X --- X C,) so that «* = ‘u(?) # 0
on H'+"(V). For each integer n >0, (nk)*(H *%"(V)) # 0, which implies
Im (nk) ¢ F*'CH?(V) in virtue of (5.7). Since

{ceC XX C ne(c) e F*'CH(V)}

is a countable union of closed subsets of C, X -..-x C, distinct from
C, X ---X C, for each n by (5.5.5),

UfceCix - X Cy ne(c) e F*'CHNV)} # C, X -+ - X Cy.

If ceCyxX---X C, does not belong to the first member, then for any
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n >0, ne(c) g F*'CH?(V), i.e., k(c) € F'CH?(V) gives a non-torsion elemant
of gr'CH?(V), hence gr‘CH*(V)® Q + 0.

Remark (5.15). From °H?-%?(V) + 0, we deduce only
(F'CH*(V)[F*'CH* (V) @ Q # 0

ExampLE (5.16). If V is an abelian variety, we have H*?(V) =
A? H*'(V), hence *H*Y(V) + 0 for 0 < ¢ < dim V, which in turn implies

FH» (V) £ 0 foral 0 < p<g<dimV,

by the Hard Lefschetz Theorem. Hence we find griCH»(V)® @ = 0 if
0<4<p<dim V. If Wis the associated Kummer variety, we have
H»?»(W) # 0 for p + ¢ = 0 (2), so that gr'CH*(W)® Q + 0 if ¢ is even
and 0 < ¢ < g < dim W. Notice that *H?”%(W) =0 for p -+ g =0 (2); it
would be interesting to know if gr‘CH?(W) = 0 for odd ¢.
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