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FIXED POINT PRINCIPLES FOR CONES 
OF A BANACH SPACE FOR THE MULTIVALUED MAPS 

DIFFERENTIABLE AT THE ORIGIN AND INFINITY 

DONALD VIOLETTE AND GILLES FOURNIER 

ABSTRACT. In [6] and [7], Krasnosel'skiï proved several fundamental fixed point 
principles for operators leaving invariant a cone in a Banach space. In [9], Nussbaum 
extended one of the results, the theorem about compression and expansion of a cone, 
to k-set contraction maps, k < 1. Other versions for completely continuous maps were 
given by Fournier-Peitgen [2] and G. Fournier [1]. 

The purpose of this paper is to generalise some of these results to upper semi con
tinuous multivalued maps which are &-set contractions, k < 1, and differentiable at the 
origin and infinity. 

0. Notations and definitions. Let E and E' be two real Banach spaces. In this paper, 
all multivalued maps F.E—+E' are assumed to satisfy F{x) is compact for every x G E.F 
is upper semi-continuous (u. s. c.) at x G E if for any neighborhood V of F(x), there exists 
a neighborhood U of x such that F(y) C V for any y G U. F is upper semi-continuous 
on E if for each open subset V of E\ the set F~l(V) = {x G E | F(x) C V} is an open 
subset of E. F is lower semi-continuous (1. s. c.) on E if for every open set V C Ef, the 
set {x G E | F(x) H V ^ 0} is an open subset of E. If F is both u. s. c. and 1. s. c. on E, we 
say that F is continuous on E. 

PROPOSITION 0.1. IfF: E-+E' is u. s. c, the image F(K) = \JxGK F(x) of a compact 
set in E is also compact. 

If F: E —> E' and G: E' —• E" are two u. s. c. multivalued maps, then the composition 
G o F: E —• E" is u. s. c. A point x G E is called a fixed point of F: E —> E if x G F(x). 
A u. s. c. multivalued map F.E—+E' is acyclic if for every x G E, F(x) is acyclic with 
respect to the Cech homology functor H with rational coefficients i.e. F(x) is non-empty, 
H0(F(X)) ~ Q and Hq(F(xj) = 0 for all q > 1. 

A multivalued map F: E —-> E' is called homogenous if F{kx) = kF{x) for any x G E 
and k G R. We say that F is semi-linear positive if F(E"=1 */*/) C E"=i t{F{xi) for every 
je, G £, J, > 0 and £?=i f,- < 1. In this case F(0) = 0 and F(co A) C co F(A) where co A 
is the convex hull of A C E. 

A real number A is an eigenvalue of F: E —• E if there exists i G £ such that Ax G F(JC) . 
x is called an eigenvector corresponding to A. 
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For A C F, we define the measure of non-compactness 7(A) of A (due to Kuratowski) 
to be 7(A) = inf{r > 0 | there exists a finite covering of A by subsets of diameter at 
most r}. 

We have the following properties: 
(0.2) 0 < 7(A) < 6(A) where 6(A) is the diameter of A, 
(0.3) If A C B C F, 7(A) < 1(B). 
(0.4) 7(AU£) = max{7(A),7(#)}, 7(A+£) < 1(A)+1(B) mdl(N€(A)) < 7(A) + 2e 

where Ne(A) — {x G F \ d(x,A) < e} and d(x,A) = infy^ ||JC — y\\. 
(0.5) 7(œÂ) = 7(A). 
(0.6) 7(A) = 0 if and only if A is relatively compact. 
(0.7) If K\ D K2 D • • • D Kn D • • • where Kn is closed and non empty for any n 

and lim„_oo l(Kn) — 0, then Kœ — f|n>i Kn is non-empty and compact and for 
any neighborhood V of KQQ, there exists an integer nv such that Kn C V for all 
n > nv. 

The measure of non-compactness of F: E —• E' is 1(F) = inf j& | l(F(A)) < kl(A) 
for all bounded A C #}. 

DEFINITION 0.8. A u. s. c. multivalued map F.E —^ E is called k-set contraction if 
there exists k < 1 such that l(F(A)) < kl(A) for every bounded subset A of E i.e. if 
1(F) < 1. 

Let iF(£) be the set of all non empty bounded closed sets in a Banach space E. For 
A,B G 7(E) define p(A,B) = sup{d(x,B) | 1 G A} and let p(A,B) = 
sup{p(A,B), p(5,A)}, J// is called the Hausdorff metric in ^F(£). We write ||A|| in place 
ofdH(A,0) = supfl6A||a||. 

We have the following property: 
(0.9) dH(A, B)<eif and only if A C Ne(B) and B C Ne(A). 

DEFINITION 0.10. A cone C of E is a closed convex subset of E such that AC c C 
for all A > 0 and CH(-Q = {0} where -C = {-x \ x E C}. 

Now, we present briefly the fixed point index for composition of multivalued acyclic 
maps in Banach spaces. This generalises the index given by Siegberg-Skordev [10] which 
is defined for compositions of multivalued acyclic maps defined on open subsets of com
pact polyhedra. For more details, the reader can consult [3]. 

Le t / = (Fn,... ,Fo) be a sequence of acyclic maps F/:X/ —> X/+i where each X/ 
is Hausdorff for any / = 0 , 1 , . . . , n and Xç, — U is an open subset of Xn+i = X. The 
sequence/ is said to be an acyclic decomposition for F if F = Fn o • • • o FQ. Moreover/ 
is admissible if Fix F = {x G U \ x G F(x)} is compact in U. 

We shall write X G 7 if X is a closed subset of a Banach space F from which it 
inherits its metric and if X has a locally finite covering by closed convex subsets of X. If 
in addition the covering is a finite covering, we shall write X G %. 

DEFINITION 0.11. An admissible sequence/ = (Fn,..., Fo) of acyclic maps is com
pacting, if there exists an open set W and a sequence {Kn} C % such that 
(0.11.1) Fix(F) C WC WC tfwhereF = F„o . . -oF 0 : £ / -+XandXG 7\ 
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(0.11.2) WCKX CX; 
(0.11.3) F(WnKn)CKn+l C #„ for all n G N+; 
(0.11.4) linv l_o o7(^) = 0. 

We have the following theorem: 

THEOREM 0.12. Iff = (F n , . . . , FQ) is a compacting sequence, then the fixed point 
index, ind(£/,/,X), is defined. 

Although this index depends on the decomposition/, it has nevertheless the following 
property: 
(0.13) ind(*/,/,*) = ind(tf,(Fn , . . . ,F /+i,F/ o F M , ^ _ 2 , . . . ,F0),X), provided that 

Fi o Fi-\ is still acyclic. 

REMARK. If F: C —-> C is a u. s. c. multivalued map with convex values such that F 
is a £;-set contraction, then F is compacting. Hence the index of F is defined and unique 
by (0.13). 

This fixed point index has the usual properties of the index (see [3]), including a 
homotopy property which is a new result even in the single-valued case. We have also a 
Lefschetz theorem. 

Finally, we will recall our notion of differentiable multivalued maps (see [4]). 
Let F, E' be two real Banach spaces and U an open subset of E. 

DEFINITION 0.14. A multivalued map T:U—> F' is differentiable at the point x G U 
if there exists a u. s. c. multivalued map Sx: T(x) x E —> E\ (z, h) —> Sx(z, h), such that 
the map Sxy. E—+E' defined by Sx,z(h) — Sx(z, h) is u. s. c , homogenous and semi-linear 
positive and such that for any e > 0, there exists 8 = 8(e,x) > 0 such that if \\h\\ < 8, 
then 

dH(nx + h\ U (z + Sx(z,hj)) <e\\h\\. 
V zeT(x) J 

The map Sx is called a differential of T at x. If T is differentiable at every point of U, 
T is said to be differentiable on U. We don't have the uniqueness of the differential at a 
point. However, our differential is not necessarily a map with convex values. 

REMARK 0.15. The map Sxy. E—^E'is continuous in h for all (x,z). 

PROOF. Since SXjZ is u. s. c. at 0 G F, then for any e > 0, there exists 8 > 0 such 
that \\h\\ < 8 implies that Sx,z(h) C Ne(0). Since SXtZ is homogeneous and semi-linear 
positive, Sx,z(x' + h) C Sx,z(x') + SXtZ(h) where x' G U and then \\h\\ < 8 implies 
Sx,z(x

f + h) C Sx,z(x
f) + Ne(0) C Afe(Sx,z(jc')). Moreover, if y G SXtZ(xf) D V, where V 

is open, there exists e > 0 such that N€(y) C V. As above (replacing x' by xf — h and then 
h by —/i), there exists 8 > 0 such that ||/z|| < 6 implies that SXjZ(xf) C Ne(SXjZ(x' +/z)) and 
thus 5^(y + / i ) n V ^ 0 . 

EXAMPLE 0.16. Let F: £/ —• r be the map defined by T(x) = co(T\(x)9..., Tn(xj) 
where F,: IRn —̂  IR" is a single-valued differentiable map on an open subset U of Rn. Then 
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T is differentiable on U and the map Sx: T(x) x R " - * R " defined by 

Sx(z,h) = \j2diDTi(x)(h)\ j^atUx) = z9at > 0 and f>> = 1 j 
w=i ' /=i /=i i 

is a differential of T at x G £/. 
The differentiable multivalued maps have the following properties: 

(0.17) Let T: U —• E' be a multivalued map differentiable at JC G £/. Then there exists 
S > 0 and there exists fc > 0 such that \\Sx(z,h)\\ < k\\h\\ for \\h\\ < 6 and for 
every z G T(x). 

(0.18) If T: £/ —• £' is a multivalued map differentiable at the point JC G U, then 7 is 
continuous at that point. 

We have also a mean-value theorem and a remainder theorem (see [4]). 

1. Expansion and compression of cones. We need the following results to prove 
the principal theorems of this paper. In the following and for all the sections, .Eisa real 
Banach space and U is an open subset of E. 

PROPOSITION 1.1. LetF:U—> E be a differentiable multivalued map at the point x G 
U such thatx G F(x). If F is a k-set contraction, k < 1, then SXyX is a k-set contraction. 

PROOF. By hypothesis, there exists k < 1 such that 7(F(A)) < ky(A) for every 
bounded subset A of E. Let e > 0 be such that 2e < 1 — k. Since F is differentiable at 
x G U, there exists^ > 0 such that \\h\\ < 6 implies thatx+SXyX(h) C UzeFU) (^+^,z(^)) c 

Nem(F(x + h)). 

Let y G A C A^(0), then by the positive semi-linearity of SXrX, SXyX(A) C SXrX(A — y) + 

SXjc(y)> Hence 

K(SXS(AJ) < l(SXrX(A - v)) + 0 = l(x + SXrr(A - yj) 

<l(Nm)(F(x + A-yj)) 

<l(F(x + A -yj) +2eè(A) 

< kl{A) + 2e£(A) 

< (k + 2e>5(A) = fc'<S(A) 

where Jfc' = k + 2e < 1. 

If A = U?=i^i i s s u c h t h a t ^(A/) < FTT7(A)' w e h a v e 7 ( 5 ^ ( A ) ) < 
max /=iv..)rt7(^(A,)) < m a x ^ , . . ^ * : ' ^ ) < fc"7(A) where ^ = ^ < 1. 

Then l(SXj(A)) < k"l(A) on Afe(0) and by homogeneity of S^ we have 7(5^(A)) < 
k"l(A). 

DEFINITION 1.2. Let T: U -^ E' a multivalued map such that T(x) is compact for 
every x G U where (7 = {JC G £ | ||JC|| > M > 0}. T is differentiable at infinity if for any 
e > 0, there exists 8 > 0 such that ||/z|| > 5 implies 

dH(nh),S(hj)<e\\h\\ 

where 5: £ —> E' is a u. s. c , homogenous and semi-linear positive map. 
The map S is called a differential of T at infinity. 
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PROPOSITION 1.3. If F: U —• E is a differentiable multivalued map at infinity such 
that F is a k-set contraction, then the differential S is a k-set contraction. 

PROOF. Let 0 < k < 1 such that 7(F(A)) < ky(A) where A is an arbitrary bounded 
subset of E. We must show that 7 (S(A)) < k'l{A) where k! = ^- < 1. We distinguish 
two cases: 

PARTICULAR CASE. If 0 < r = d(0, A), it is sufficient to show that there exists R > 0 
such that l(S(RA)) < k'l(RA) since S is homogenous and 1(RA) = Rl(A). 

Let e > 0 be such that 2e||A|| < (kf - k)l(A) + ^ 7 ( A ) . Since F is differentiable at 
infinity, there exists 6 > 0 such that \\h\\ > S implies that S(h) C Ne\\h^F(h)y Choose 
R > 0 such that rR > 6. Then S(RA) C NeRM (F(RA)) and 

l(S(RA)) < 2eR\\A\\ +l(F(RA)) 

<2eR\\A\\+la(RA) 

< ^~k\(RA) + kl(RA) = k'KRA)-

GENERAL CASE. Since S is u. s.c, there exists S > 0 such that S(N6(0)) C 
^7 ( A )(0).Then 

7(S(A))<maxJ7(s(A\A^(0)) ,7(s(^(0)nA))} 

< max{^7(A \ N6(0J), k'l(A)) = k'l(A) by the first case, 

and we get the conclusion. 

LEMMA 1.4. If C is a cone of E, there exists y G C such that \\x + \y\\ > \\x\\ for 
every x G C and for all X > 0. 

PROOF. See [8]. 

LEMMA 1.5. Let C be a cone in E and S: C —> C a homogeneous multivalued map 
such that S is a k-set contraction and all eigenvalues of S are different from 1. There 
exists e > 0 such that d(x, 5(x)) > e||jc||/or ||x|| ^ 0. 

PROOF. Since S is homogeneous, it is sufficient to show that there exists e > 0 such 
that dix, S(x)^j > e for ||JC|| = 1. We proceed by contradiction and we assume that there 
exists a sequence {xn} C C, \\xn\\ = 1, such that d(xn, S(xn)^j goes to 0 for n large enough. 
Let zn e S(xn) such that d(xn,zn) tends to 0, then l({xn}) = 7({z„}) < l(S(xn)) < 
ky({*n}) where k < 1 since S is a k-set contraction. But this is true only if 7({xn}) = 0. 
In this case {xn} has a subsequence which converges to y G {xn} and so \\y\\ = 1 and 
y G S(y), a contradiction since 1 is not an eigenvalue of S. 
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LEMMA 1.6. Let C be a cone in E and let F: C —> C be a multivalued map which is 
a k-set contraction and differentiable at 0 such that F(0) — 0. If So is a differential of F 
at 0 and all eigenvalues ofSo,o are different from 7, then 0 is an isolated fixed point ofF. 

PROOF. We proceed by contradiction. If 0 is not an isolated fixed point of F, then 
there exists a sequence {xn} C C which converges to 0 such that xn G F(xn). Since 
F is differentiable at 0, then xn G F(xn) C ^tn\\xn\\ (So,o(xn)) where en goes to zero if n 

is big enough. This implies that ^ G W*« (%>(]&))• L e t ?« = p~ll> H^H = 1 a n d 

d(yn, So,o(yn)) goes to 0 for n large enough, which is impossibe by the Lemma 1.5. 

LEMMA 1.7. Let C be a cone in E and let F: C —• C a multivalued map which is a 
k-set contraction and differentiable at infinity. If S is a differential of F at infinity and all 
eigenvalues of S are different from I, then F has no fixed point if\\x\\ is big enough. 

PROOF. Since S is a differential of F at infinity, for any e > 0, there exists 6 > 0 
such that ||*|| > 6 implies that F(x) C NC||JC|| (•$(*))• By Lemma 1.5, x $ Ne^x^S(x)^j if 
||JC|| is big enough and so x $ F(x). 

Now we will give and prove the principal theorems of this paper. 

THEOREM 1.8 (EXPANSION AT THE ORIGIN). LetC c Ebea cone. Let F: C —• C be 
a u. s. c. multivalued map with convex values such thatF(0) = 0, F is a k-set contraction 
and differentiable atO^C. Let So be a differential of F at 0 such that 
(1.8.1) So,o(h) is convex for every h, 

(1.8.2) d(0, So,o{dNr(0))^j > 7(50fo) when r > 0, 
(1.8.3) the eigenvalues ofSo,o are strictly greater than 1 (=> 0 is an isolated fixed point 

ofSo,o)> 
Then ind(7Vr(0), F, C) —Oifr is small enough. 

PROOF. There are three important steps to do to show this result. 
i) We will show that F is homotopic to So,o o n M-(O) if r is small enough. 

Let G be the homotopy given by G(h9t) = \^Hh(F(h),t),t\ where Hh(y,t) = 
H(y,h,t) = (1 — t)y + tph(y), y G F(h), h e C, t G [0,1] and ph is the projection on 
the convex compact F(0) + So,o(h) — So,o(h) (Le. ph(y) is the set of elements of So,o(h) 
which are nearest to v). ph is a multivalued map with convex values and it is u. s. c at the 
point (y, h) G F(h) x C (see [5]). The sequence (H x l[0,i], g x l[o,i]) where g is defined 
by g(h) — F(h) x {/*}, is an acyclic decomposition for G. 

By the Lemma 1.6, G has no fixed point on dNr(0) if r is small enough and by 
Lemma 1.10, G is compacting. By the homotopy property of the fixed point index, 

ind(^r(0),f1^(0),C) = ind(Nr(0),(p,g\Nr(0)),C) 

where p is defined by p(v, h') — Ph'iy) for all (jy, h') G F(h) x C. 
Now the homotopy G' represented by 

G'(K t) = (1 - t)ph{F(h)) + tS0,o(h) C So,oW 
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has only one fixed point which is 0. By (1.1), SQ,O is a /c-set contraction so So,o is com
pacting and its only fixed point is 0. G' has for acyclic decomposition (L, g x l ^ i j ) where 
Uy, Kt) = (\- t)ph(y) + tS0fi(h). 

By excision, homotopy and (0.13), 

md(Nr(0),(p,g\NM),C) = ind(^r(0),(S0fo^kr(0)),C) 

= ind(A^r(0),50,o,C) 

ii) We show now that So,o is homotopic to XSo,o if 115 ON(0))1| < ^ < ïït~) • 
By the choice of À, the map ASo.o is a fc-set contraction since 7(ASo,o) = A7(So,o) < 1 • 
Let H' be the homotopy defined by Hf(h, s) — sSo,o(h) for 1 < s < À. H' has no fixed 

point on dNr(0). For, if there exists s G [1, A] and h G dNr(0) such that h G sSo<o(h), it 
follows that \h G SQ$(K) and ^ > 1 by (1.8.3) which is a contradiction since 7 < 1. 
Then the homotopy H' is admissible and by homotopy property, 

ind(Wr(0),S0,o,C) = ind(^r(0),AS0fo,C). 

iii) By (1.4), let yo be a point belonging to C such that d(0,Ryo + ASo,oW) > 

Ad(0,S0,o(A)) for all R > 0. Choose fl > ^MogMO^. t h e n d^Ryo + AS0,o(fc)) > 

/% 0 | | - A|5o,o(a^(0))|| > ( r+A| |5g (Q) ) l l )lboll - A | M 5 A ^ ° ) ) I = r' 
Let # " be the homotopy defined by H"(K 0 = tRy0 + ASb.oCO f°r all r G [0,1]. By 

the choice of jo and R, H" has no fixed point on Nr(0). Then indÙVr(0)> ASo,o> C) = 

ind(iVr(0),/fyo + A%),C) = °-
This completes the proof. 

THEOREM 1.9 (COMPRESSION AT THE ORIGIN). LetC C Ebea cone. Let F:C-^Cbe 
a u. s. c. multivalued map with convex values such thatF(0) = 0, F is a k-set contraction 
and differentiable at 0 G C. Let So be a differential of F at 0 such that 
(1.9.1) So$(h) is convex for every h, 
(1.9.2) the eigenvalues ofSo,o belong to the interval [0,1). 

Then ind(Nr(0), F, C) = 1 if r is small enough. 

PROOF. AS in the part (i) of (1.8), we can show that ind(Nr(0), F, C) = 

ind(Nr(0), So,o, C) if r is small enough. 
The homotopy H' defined by H'(h,t) = tSo,o(h), t G [0,1], has no fixed point on 

dNr(0). For, if there exists t G (0,1) and h G dNr(0) such that h G tSo,o(h\ it follows that 
-h G So,oW and thus j G (0,1) by (1.9.2) which is a contradiction since - > 1. By the 
homotopy property, ind(Nr(0), 5o,o» C) = indUVr(0), 0, C) = l. 

LEMMA 1.10. Under the same hypothesis of Theorem (1.8), the map G defined in 
1.8(i) is a k-set contraction. 

PROOF. By definition of the map G, G(/z, 0 c co(F(/i), SO,OW) for every /z G C and 

for all f G [0,1] and so G(A x [0,1]) C co(F(A),S0,o(A)) for every bounded subset A 

of F. It follows that 7(G(Ax [0,1])) < max(7(F(A)),7(S0,o(A))) and thus G is a it-set 

contraction since F and So,o nrt. 
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THEOREM 1.11 (EXPANSION AT INFINITY). LetCcEbea cone. Let F:C—*C be a 
u. s. c. multivalued map with convex values such that F(0) = 0, F is a k-set contraction 
and differentiable at the infinity. Let S be a differential of F at infinity such that 

(1.11.1) S(h) is convex for all h, 

(1.11.2) d(o,5(3^0))) > 7(S), r > 0, 

(1.11.3) the eigenvalues of S are strictly greater than 1. 

Then ind(Nr(0), F, C) = 0 (/> is big enough. 

PROOF. The proof is the same as in (1.8) but we must substitute So,o by S and use 
Lemma 1.7 and Proposition 1.3. 

THEOREM 1.12 (COMPRESSION AT INFINITY). LetC cEbea cone. LetF.C^Cbe 
a u. s. c. multivalued map with convex values such thatF(0) — 0, F is a k-set contraction 
and differentiable at the infinity. Let S be a differential of F at infinity such that 

(1.12.1) S(h) is convex for all h, 

(1.12.2) the eigenvalues of S belong to the interval [0,1). 

Then ind(7Vr(0), F, C) = 1 if r is big enough. 

PROOF. Similar to the proof of ( 1.9). 

If we combined the results of the previous theorems, we obtain the following theo

rems. 

THEOREM 1.13 (EXPANSION AT THE ORIGIN AND COMPRESSION AT INFINITY). Let 

C C E be a cone and let F:C —• C be a u. s. c. multivalued map with convex values 
such that F(0) = 0, F is a k-set contraction and differentiable at the origin 0 and infinity. 
Assume furthermore that conditions (1.8.1) to (1.8.3) are satisfied for R\ > 0 and con
ditions (1.12.1)—(1.12.2) are satisfied for R2 > 0. Let U = {x G C | R{ < \\x\\ < R2}. 
Then ind(£/, F, C) = 1 and thus F has a non-trivial fixed point in U. 

PROOF. By the additivity property, ind(Afo2(0),F,C) = ind(NRl (0), F, C) + 
ind(t/, F, C). It follows that ind(t/, F, C) = 1 - 0 = 1 by (1.8) and (1.12). 

THEOREM 1.14 (COMPRESSION AT THE ORIGIN AND EXPANSION AT INFINITY). Let 

C C F be a cone and let F: C —> C be a u. s. c multivalued map with convex values 
such that F(0) = 0, F is a k-set contraction and differentiable at the origin 0 and infinity. 
Assume furthermore that conditions (1.9.1)—(1.9.2) are satisfied for R\ > 0 and condi
tions (1.11.1) to (1.11.3) are satisfied for R2 > 0. Let U = {x G C | R{ < \\x\\ < R2}. 
Then ind(£/, F,C) — — 1; and thus F has a non-trivial fixed point in U. 

PROOF. Similar to the proof of ( 1.13). 
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