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THE LATTICE OF EQUATIONAL CLASSES OF 
SEMIGROUPS WITH ZERO 

BY 

EVELYN NELSONO 

In contrast to the very complicated structure of the lattice of equational classes of 
commutative semigroups (see [5]), the lattice of equational classes of commutative 
monoids (semigroups with unit) is isomorphic with N x N* with a unit adjoined, 
where N is the lattice of natural numbers with the usual order and N* is the lattice 
of natural numbers ordered by division. (See [4].) However, the lattice of equational 
classes of commutative semigroups-with-zero is not so simple to describe. The 
present paper shows that the lattice of equational classes of semigroups-with-zero 
is isomorphic to a particular sublattice of the lattice of equational classes of semi­
groups; as a corollary we obtain a characterization of the lattice of equational 
classes of commutative semigroups-with-zero in terms of the lattice of equational 
classes of commutative semigroups. Moreover, in the light of Gerhard's description 
[3] of the lattice of equational classes of idempotent semigroups, we get a descrip­
tion of the lattice of equational classes of idempotent semigroups-with-zero. 

1. The embedding. For a class § of semigroups, let / /(§), £(?>), P(§) be, respec­
tively, the classes of homomorphic images, subsemigroups, and products of mem­
bers of §. For a class ® of semigroups-with-zero, let H°(®), S°(®)9 and P°(8) be, 
respectively, the classes of O-homomorphic images, O-subsemigroups, and products 
of members of ®. For a semigroup-with-zero, A, \et\A\ be the semigroup obtained 
from A by forgetting about the extra operation; for a class ® of semigroups-with-
zero, define |®| accordingly. Note that \S°(®)\ c S(\&\), \H°(X)\ Ç H(\®\)9 and 
|p°(*)| = P ( | a | ) . 

Moreover, if a is a semigroup homomorphism from a semigroup A onto a semi­
group B, and if A has a zero element, 0^, then, for b e B, b = a(a), say, for aeA, 
ba(0A) = a(a)a(0A) = a(aOA) = a(0A) = a(0Aa) = a(0A)a(a) = a(0A)b. Thus B has a zero, 
namely a(0A), and a is a 0-homomorphism. It follows that for a class ® of semi­
groups-with-zero, \H°(0)\ = # ( |®| ). 

Let JSP be the lattice of equational classes of semigroups, 3?° the lattice of 
equational classes of semigroups-with-zero. For § G ^ , let §° be the class of all 
semigroups-with-zero, A, such that \A\ e §. Since a semigroup can have at most one 
zero, there is a one-to-one correspondence between the semigroups in £ that have a 
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zero, and the elements of §°. Since § is an equational class of semigroups, 
#°S0P°(?>0)Ç§0; thus §° G Jâf°. The map 3 ~~ §° is clearly order preserving. 

For ® G JS?°, let ®S = / /S ( | $ | ) . Since ® is closed under the formation of products, 
$ s is an equational class of semigroups, i.e., ®s G *£\ Also, the mapping $ — ®s is 
order preserving. 

If $ G J§?° and ,4 G ®, then | 4 | G $ S and \A\ has a zero, thus A e $s0. It follows 
that $Ç®s0. 

Moreover, if § G J5f, since |#°| c § } and § is closed under H and 5, it follows 
t h a t £ 0 s ç § . 

Thus the mappings ® — ®s for ® G &° and § — §° for § G J£? give a Galois 
correspondence of mixed type between 3? and J^°. It follows that the mapping of 
££° into J§? given by ® —- ®s is join-preserving. 

LEMMA 1. For all ® e J£?°, $ = &s0. 

Proof. If ^ G ®s0, then \A\ e HS(\®\) and \A\ has a zero, 0^. Thus there exists a 
semigroup homomorphism a from 5 onto \A\9 and C G §L such that 5 is a subsemi-
group of \C\. If 0C e £, then 5 G |S°(®)| and thus A G i7°S°(&)ç$. If 0C $ B, then 
Bu{0c} G |S°($)| and the mapping S from £ u {0C} to \A\ defined by â | £ = a , 
â(0c) = O4 is a homomorphism that preserves 0. Thus A e H0S°(^)^^. It follows 
that $ s 0 c $ . We already know that $ç® s 0 , so this completes the proof. 

LEMMA 2. If&l9 ®2e&° then HSQ^l) n Jï5( |H a | ) = ffS'(|^1 n 82 | ) . 

Proof. It is clear that HSil®! r\ R^^HSil®^) n HS(\®2\). Moreover, 

(HSd^l) n /TSd^al))0 = HSd^l)0 n -HSCI^al)0 = ®5° n ®l° = ^i n ®2 

(by Lemma l) = ( # S d ^ i n 8a |))°. Thus, if 4 e fiS^il) n HS(\&2\) and ^ has 

a zero, then AeHSi]^ n 82 | ) . If 4 e # S d $ 1 | ) n # S , d ® 2 i ) a n d ^ h a s n o z e r o ? 

then for / = 1,2, there exists Qe^, a subsemigroup Bt of |C t| and a homo­
morphism (pi of Bt onto A. Since 4̂ does not have a zero, it follows that neither B± 

nor i?2 have zeroes. |Ci| and \C2\ have zeroes, thus B{ U {0} is a subsemigroup of 
|C4| for i = 1, 2. Define ^ from Bt u {0} to ^ u {0} by : ft \ Bt = ^ , ^(0) = 0. Then 
^ is a homomorphism. It follows that A KJ {0} e \(HS(l^l) r\ HS(\^2\))°\ 
çHSQ*! n Ha|) and thus ^ G # £ ( 1 ^ n a a | ) . This yields # 5 ( 1 ^ 1 ) n J^5(|^2 | ) 
ç ^ 5 ( | ^ ! n ®2|), completing the proof. 

A direct consequence of the above lemmas is that the mapping from J£?° into J£? 
given by ® —*• ®s is a lattice monomorphism. § G J2f is in the image of this mono-
morphism iff § = §0s. We will now determine which equational classes § of semi­
groups have the property that § = §0s. 

2. The image. A semigroup equation e is called regular if every variable that 
appears on one side of e also appears on the other side. If e is regular, and a semi­
group A satisfies e, then so does A u {0}. 
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An equational class of semigroups is called regular if it satisfies only regular 
equations. The set of all regular equational classes of semigroups is exactly the 
principal filter & of all equational classes containing the class of idempotent 
commutative semigroups. 

If § e Se is regular then for all A e D, A u {0} e $, thus A e £0s. It follows that 
§ £ § 0 s ; and thus § = §0s. Thus every regular equational class of semigroups is in 
the image of the above monomorphism. 

Now assume that § G J£P is not regular. Then § satisfies an equation e with a 
variable x, say, appearing only on the right-hand side of e. If § = §0s, then F, the 
§-free semigroup on countably many generators, is a homomorphic image of a 
subsemigroup of \A\ for some A e §°. For ae A, substituting 0^ for x and a for all 
the other variables in e yields an = 0, where « is the length of the left-hand side of e. 
Thus for all a, be A, anb=ban=an. Thus \A\ satisfies xny=yxn=xn. Since F is a 
homomorphic image of a subsemigroup of \A\, it follows that F satisfies xny 
=yxn=xn. Thus £ satisfies x n j= jx n =x n . On the other hand, if § satisfies xny 
=yxn=xn for some n, then every nonempty semigroup A in § has a zero, and 
0n = O for all aeA. Thus § = |§°| u {0} and hence §Ç3°S , thus § = 30 s . Thus if 
£ G JSP is not regular, then § = §0 s iff § satisfies xnj=>yxn = A:n for some n. 

Let , / = {§ G JSP | § satisfies x n . y=^ n = xn for some n e N}. Then J is an ideal in 
the lattice JSP. 

It follows from the above results that J* u y is a sublattice of JSP, and the mapping 
® — •- ®s of JSP0 into JSP is a lattice monomorphism mapping onto l u / , 

The restriction of this monomorphism to the sublattice of equational classes of 
commutative semigroups-with-zero gives an embedding of the lattice of equational 
classes of commutative semigroups-with-zero into JS£, the lattice of equational 
classes of commutative semigroups. It follows from the above, and from the results 
in [5] that the image of this embedding is {8 G JSPC | V(&) > 1} u {® G JSPC \ V(X) = 1, 
/)($)=0}. (For definitions of V, D see [5].) 

In the same vein, we have an embedding of the lattice of equational classes of 
idempotent semigroups-with-zero into the lattice J^ of equational classes of 
idempotent semigroups. It follows from the above results that the image under this 
embedding is the sublattice of J£? consisting of all equational classes of idempotent 
semigroups containing the class of idempotent commutative semigroups, plus the 
class of semigroups satisfying x=y. In [3], Gerhard gives a complete description of 
«=£?; it now follows from his results that the lattice of equational classes of idempo­
tent semigroups-with-zero is isomorphic to ^ — {R, L, Rv L}9 where R is the class of 
idempotent semigroups satisfying yx = x, L is the class of idempotent semigroups 
satisfying xy—x and RvL is the join of these two classes, i.e., the class of idempo­
tent semigroups satisfying xyz—xz. In Gerhard's notation these three classes are 
characterized by E, B, H*; E, H, M*; and E, H, H* respectively, in the diagram 
of [3, p. 222]. 

Finally, since the embedding of the dual of n ^ into JSP given in [2] uses only 
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regular equations, it follows that the dual of Uœ can be embedded in J5?°. Also it 
follows from the results in [1] and [5] that for each natural number n, the dual of 
nn can be embedded in the lattice of equational classes of commutative semigroups-
with-zero, and thus (by [6]), this lattice satisfies no special lattice laws. 

Added in proof. W. H. Carlisle (Doctoral Dissertation, Emory University) has 
also shown that J£?° can be embedded in J§?; his embedding is described in terms of 
equations but can be seen to be the same embedding as the one described here. 
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