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§1. Introduction

(Anti-)self-dual metrics are 4-dimensional Riemannian metrics whose Weyl
conformal tensor W half vanishes. The Weyl conformal tensor W of an arbitrary
metric on an oriented 4-manifold has in general the self-dual part W™ and the
anti-self-dual part W~ with respect to the Hodge star operator % and one says
that a metric is self-dual or anti-self-dual if W~ = 0 or W' = 0, respectively.

Because of the conformal invariance of the defining equations wW*=0
(anti-)self-dual metrics are, as a generalization of conformally flat metrics, an
object of great interest from conformal geometry.

The notion of (anti-)self-duality of metrics depends on a choice of orientation
so that a self-dual metric becomes anti-self-dual when we reverse the orientation.
However, we are mainly interested in anti-self-dual metrics, unless especially
mentioned.

Consider the unit sphere bundle Z, = U(£,) over an oriented Riemannian
4-manifold M. Then the vanishing of the self-dual part of the Weyl tensor gives
an integrable condition for the almost complex structure naturally defined on Z,.
So Z,, becomes a 3-dimensional complex manifold having a smooth fibration over
M with fibers CP' and a fixed-point free anti-holomorphic involution, called the
real structure.

The Penrose twistor theories assert that elliptic differential operators geomet-
rically arising over an anti-self-dual 4-manifold M relate to the 5—operators on
certain holomorphic vector bundles over the twistor space Z,,.

Particularly, the Kodaira-Spencer complex on Z = Z,,;
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(1.1) 0:C*(Z; 2 QI - C(Z; 2, R 4,
corresponds to the elliptic complex over M
(1.2) C™(M; T) = C™(M ; SAT™) > C™(M ; SH(2").

The Penrose twistor theories then show that the cohomology group H 2z ;
0,), 0, = 0,(#;%, of the complex (1.1) is isomorphic to the complexification of
the second cohomology group H’ of (1.2) (see §3.3 in [4)).

The Kodaira-Spencer-Kuranishi theory tells us that H*Z; ©,) gives the ob-
struction space for complex structure deformations on Z.

Similarly H’ represents the obstruction for local deformations of anti-self-
dual metrics on M. We have in fact the following ([12], [15]).

If H = 0, then the local moduli of conformal structures represented by
anti-self-dual metrics can be described as the quotient of an e-ball in H' by the
conformal transformation group C’(M) whose Lie algebra is H’, the space of con-
formal Killing fields.

Another important meaning of H’ is observed in the following connected sum
procedure ([4]).

If two anti-self-dual 4-manifolds M,, M, have H° = 0, then the connected
sum M, # M, admits an anti-self-dual metric of H* = 0.

Vanishing of H*(Z,; ©,) and hence of H’ is shown in terms of complex
geometry for several typical anti-self-dual 4-manifolds, for instances the standard
4-sphere S* and the reversely oriented complex projective plane CP? with the
Fubini-Study metric.

To determine H® for an arbitrary anti-self-dual metric we will make direct
use of the definition H* = Ker D D* (D* is the adjoint of the operator D and we
will call D* the Bach operator) to treat of the elliptic operator D D* in purely dif-
ferential geometric way.

In the complex (1.2) the operator D is defined as the minus sign of the
linearization of the anti-self-dual part of W (see §3 for the precise defininion
of D).

On the other hand we see that the linearization of the self-dual part W™ at
an anti-self-dual metric g turns out to be the self-dual part of the linearization of
W, namely 5g(W+) = (5gW)+, and that 6,W(h), h € C*(M ; Sj(T*)) has the

principal part represented in covariant derivatives
Vi Vk h” - Vi V, h]k - V] Vk h/,‘[ + V] V[ h’ik'

This principal part can be then written as d, ° dz(h) € C*(M ; 2°® 9,
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when we consider an infinitesimal metric deformation 2 as a smooth section of
.QI(X).Q1 and introduce the left-exterior derivative d; and the right exterior
derivative dy operating on the space C™ (M : 0" ® 2 which are thought to be a
natural generalization of the ordinary exterior derivatives.

So, dy °dy (h) + dj > d; (h) gives, up to constant factor, the principal part of
D). Here d} :C"(M ;' Q@) —>C"(M ;2 Q@ 2),p=0 and dy : C™(M ;
RN - CM; 2°RQT), p =0 are the self-dual part of d; and dj, re-
spectively.

The operator D™ has then, up to constant, the principal part

0, °05(2) + 650, (2)

where 0; and 0y are the formal adjoints of d; and dg, respectively.

By the aid of the Weitzenbock formulae for the elliptic operators d 4, and
d;°5; we can write for an arbitrary anti-self-dual metric the Weitzenbock formu-
la for DD™.

In this article we focus on Einstein anti-self-dual metrics and write the
formula of D D™ for the Einstein case in terms of the rough Laplacian vy =
- Z‘;l V.V, in the following simple form (see Proposition 5.1, §5)

(1.3) DD*Z=§1Z(3V*V+20)(2V*V+p)Z

(o is the scalar curvature of g).
From this formula we obtain

THEOREM 1. Let M be a compact connected oriented 4-manifold and g be an Ein-
stein anti-self-dual metvic on M.
() Ifp > 0, then H> = 0.
(ii) For g of p = O H” is the space of all covariantly constant sections of Sc(2%).
(iii) If p <O, then H> = E_,,,; DE_,, where E, denotes the eigenspace of V¥V of
eigenvalue A.

It is known that Einstein, anti-self-dual compact oriented 4-manifolds of
positive scalar curvature are only the standard 4-sphere S* and CP? with the
Fubini-Study metric ([11], [6]). From our theorem we have that these manifolds
have vanishing Hz, even though this fact was already shown by the Penrose
twistorial correspondence ([5], [4]).

The above Weitzenbock formula can also be applied to the case of orbifolds.
An (oriented) orbifold is locally a quotient U/I of a neighborhood U in R* by a
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finite group I (the isotropy group) which acts on U as (orientation preserving)
smooth transformations and a metric on an orbifold is considered locally as a I
invariant metric on U (for the precise definitions of these see [18], [1] and [7]) so
that one can consider an anti-self-dual metric on an orbifold.

THEOREM 2. Let (X, g be a compact connected oviented 4 dimensional orbifold
and an Einstein anti-self-dual metric of positive scalar curvature. Then the second
cohomology group H: = {0}.

There are infinitely many compact anti-self-dual, Einstein 4-orbifolds of
positive scalar curvature (8], [9]). So, these orbifolds have H? = {0}.

For Ricci flat anti-self-dual 4-manifolds dim H’ is computed in the following
theorem.

TueoreM 3. Let (M, g) be a compact anti-self-dual Ricci flat 4-wmanifold.
Then,
(i) dim H’ =5 when (M, &) is a Ricci flat Kahler K3 complex surface or a flat
Kihler complex 2-torus,
(i1) dim H® = 3 when M , & is a Ricci flat Kihler Envigues surface or a flat Kihler
hyperelliptic surface satisfying O(K2) = 0,
(it) dimH® = 2 when (M, g) is a Z, X Z,-quotient of a Ricci flat Kahler K3 sur-
face and
(iv) dimH* =1 for a hyperelliptic surface with O(K.) = 0, k = 3,4,6 and
OK,) # O forall 0 < i < k.

Another application of the Weitzenboéck formula is to ALE (asymptotically
locally Euclidean) hyperkahler 4-manifolds.

For these manifolds the reader refers to [16]. They are all anti-self-dual and
Ricci flat, since they are Kiahler and of zero scalar curvature and further they
have a triple of covariantly constant complex structures so that the holomorphical-
ly trivial canonical line bundle K, is flat.

TuEOREM 4. Let (M, g be an ALE hyperkihler 4-manifold. Then H =
Ker D* vanishes. Here D™ is defined over the space WM ; S2(27)) of sections of

L’ fimite derivatives up to order k, k = 2.

These theorems will be shown in §5.
By using the conformal compactification at infinity we get from each ALE

https://doi.org/10.1017/50027763000005109 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005109

WEITZENBOCK FORMULA FOR THE BACH OPERATOR 153

hyperkahler 4-manifold (M, g a compact oriented anti-self-dual orbifold
(M, &) of one singular point x.. Notice that the conformal compactification of the
Euclidean space R'is just the inverse of the stereographic projection from S* and
the stereographic projection is orientation reversing so that the above derived
orbifold has the natural orientation induced via the orientation reversing confor-
mal compactification from the orientation of M and thus we should rather say the
metric is self-dual with respect to this orientation.

An ALE hyperkahler 4-manifold (M, g) has an associated finite subgroup I’
of SU(2) in such a way that (M, 2) is asymptotically isometric to C*/T"

The Eguchi-Hanson 4-space (Mg, g is just an ALE hyperkahler
4-manifold with I = Z,, the center of SU(2) so that the conformal compactifica-
tion M—EG has one singular point x,, with the isotropy group Z, which is in the cen-
ter of SO(4) = SU(2)-SU(2).

Finally we remark on self-dual metrics on a 4-manifold which is given by the
generalized connected sum of copies of orbifolds TW_E_G

The generalized connected sum M—EG ¥, MdEG at the singular points is a
4-manifold which is obtained by gluing the corresponding boundaries of M—EG\D
and its copy (D is an orbifold ball centered at x, so D is a Z,-quotient of an
ordinary ball in R* and then 8D is SS/ZZ = RPS).

It is known that —AIE—G # M—EG is diffeomorphic to the ordinary connected sum
CP’# CP? as an oriented manifold.

Since from Theorem 4 E; has H® = 0 and there exists an orientation re-
versing isometry of R’ commuting with the isotropy action of Zz, we can apply the
orbifold connected sum theorem given in [14] so that we get

THEOREM b. The generalized connected sum M; # E; admits a self-dual met-
ric of HZ = {0}.

Remark. A self-dual metric thus derived on My, # M_EG = CP*# CP" is just
one of the self-dual metrics obtained by Poon [17] (see also §1 in [4]).

§2. 4-dimensional Weyl conformal tensor

2.1. Throughout this article M will denote a compact connected oriented C*
4-manifold with a Riemannian metric g and {e,, ..., ¢, will denote an orthonor-
mal frame field with the dual frame field {6',. .., 6%).

We denote by R = R,;;,, Ric = R, and by p the Riemannian curvature ten-
sor, the Ricci tensor and the scalar curvature, respectively.
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In this section we indicate several geometric properties of the 4-dimensional
Weyl conformal tensor.
We denote the Weyl conformal tensor W in the following way

R=W+ K+ G,
namely
(2.1) R = Wi+ Ky + G,
where
1
(2.2) Koo = 9 (Bys 0;; — B;, 0;s + 0, By, — 0,, B;),
and
1
(2.3) Gijst = ﬁp(ais 51: — Oy 5js)

(B,S is the tracefree Ricci tensor, B;; = R, — 1 5“).

2.2. We denote by 2? the bundle of p-forms on M, p =0,1,...,4 and by
2" ® Q° the tensor product of the bundles 2" and 9°. Further we denote by
S*(2%) the symmetric product of 2° and by A*(2”) the skew symmetric product
of Q7.

By using the metric g we identify 2" ® Q° with the endomorphism bundle
End(£2”) and we have the trace operator tr: 2’ ® 9’ = End(Q") — Q°.

The bundle SZ(2%), the tracefree symmetric product of £°, is the subbundle
of S*(2") whose trace is zero.

Note that for ¢ = (¢,;,) € 2° R Q°

1
Z Pisis = 5 Z Bijis
i<y 1,7

gives the trace of ¢.
Because of the symmetry of indices the Riemannian curvature tensor R =
(Ry;s) is regarded as a self-adjoint endomorphism

QP— 06 A 0%%212 N A
1i,f

ijst

. e 2
and also as a symmetric bilinear form on £
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Qx> 0N, 0° N6~ R,
If we consider (R,) as an endomorphism of ©Q° then the Weyl conformal

1
tensor W is a tracefree self-adjoint endomorphism of 9% and G is 120 ld .,

where Idg is the identity transformation of 2°.
Since W satisfies 27—, Wy, = O and the first Bianchi identity (W,,,, + W,

ijst istj

+ W,;s = 0), we get the following formulae

Wisis = Wi,
(2.4)
I/Vtsu + I/‘Vjsjt = O

for all indices 1, 7, s, t distinct each other.

The Hodge star operator % on 2-forms is an involutive endomorphism of ol
The bundle £° splits then into the eigen-subbundles QP = 0" ® 9 of eigenva-
lues = 1. We say a 2-form of 27 self-dual or anti-self-dual, respectively.

Remark that o = 0" A0+ 0N 6, 0 =60'N O+ 0 A6 and o) =
"N B+ 6 N6 give a locally defined orthogonal frame field of 27. Note | 0,»+ lz
=2,1=1,2,3.

From (2.4) it is easily checked that W and * commute as endomorphisms of
Q° namely

%o W=W-x%.

On the other hand K satisfies

because (B;,) is trace zero.
Therefore W maps 27 into itself and K maps 27 into 27 and 27 into 2.
According to the splitting Q%= Q" @ Q the Riemannian curvature tensor R
thus has the block decomposition

(w0 0 K. L(Idm o>
o w=(" ) (0 S p ()

DeriNITION 2.1. A Riemannian metric g is self-dual, or anti-self-dual, when
W™, or W vanishes over M.

Notice that K = 0 if and only if B = 0, in other words, g is Einstein.
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§3. Left- and right-exterior derivatives

3.1. We define the left-exterior derivative and the right-exteriov devivative, re-

spectively;
(3.1) d:CT(R*R Q) - CT R ® Y,
(3.2) dg : CT(R*R Q) — C7 (" ® ™)

which are natural generalization of the ordinary exterior derivatives
(3.3) d:C™(Q") — Cc™(@™.

More generally, if we are given a vector bundle E with a connection V, then
we can define the operators d;, dp for E-valued p-forms by using V and the
Levi-Civita connection of g as

d,:CT(2*QE —~C"(2"™" ®E)
and
dp: CT(EQ Q") - CT(EQ Q™.

The operators (3.1), (3.2) are those for the case of E = 27 with the connec-
tion given by the Levi-Civita connection.

Although the ordinary exterior derivative does not depend on the metric g,
our exterior derivatives depend on the metric.

For example, for ¢ = 22 ¢,»,~$(0i AR eC(@R0Y

(3.4) dy ¢ = 2 Vs + Vs Vi) (0" A 6" A 6 ® 67,
and
(3.5) ded =2 Ve, — Vi) (6" A 0) @ (6° A 6,

respectively. Here V¢, is the covariant derivative of ¢;,, to the direction of e;.
The second Bianchi identity

(3.6) ViRjjy t ViR, T ViR, = 0

ijst

can read as d; R = 0 when we consider R as a section of 2° ® 2°.

1
3.2. Denote by p* the projection 2°— 2%, 6~ Pl (6 + *6). We have then

the operator
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d*=p,d:C*(2)—> C” (2",

and moreover the following operators

(3.7) df =p,d,:CT(R' R > CQ"R 2
and
(3.8) dr =p,odp: CT(R*R LN = C™ ("R QF).

In subsequent sections we shall frequently encounter the operator
di-dy :C™(SIQ) — C” QT QY

and its left-right symmetric dual operator d;°dz which are both crucial in ex-
pressing the linearization of the self-dual part of the Weyl conformal tensor, as
explained at §4.

Lemma 3.1, Let (p,, p,) PR 2> QTR QT denote the natural projection.
Then the operators (py, p.)e(d, ° dg) and (b,, p,)°(dg * dy) : CT(SiRY) —
C*(R" ® Q") coincide with the operators dy °dy = (p,>d)) (P, dg) and dp-d; =
(p,°dg)>(D.°d,), respectively.

For proving this lemma we make use of the following

OBSERVATION. For w € C™(27) (respectively, @ € C™(27)) the left-covariant
derivative V @ sits in C*(2' Q@ 2% (respectively in C*(Q2' Q 027)).

This observation stems from the fact that the group SO(4) factors through
the two groups SO(3)", SO(3)™ acting on the self-dual (anti-self-dual) subbun-
dles 27 and Q7.

For w € C™(2%) we put w; = wle;, ¢;). Then, Wy, = Wy, W13 = Wy, and @y,
= Wy The (ijk)-component V,w;, of Va, that is, (V,w)(e;, e, is given by the
covariant derivative rules as

— . a L. a
Viw, = ew,) — Ty w1 0,4,

j

where I';; is the connection coefficient of the metric g relative to the orthonormal

frame field {¢;}. Then V,w,, is
Viw, = e(w,) — Ftsl Wiy — 11:41 Wy — 11-32 Wy — Filiz Wiy

On the other hand
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_ 1 2 1 2
Viwg, = e(wy) — Iy wyy — Ty wyy — Iy w03 — Ty g

Thus, from [, = — I’ we have V,w,, = V,w,, Similarly we have V,w,, = V,w,,
V.wy, =V, so that Vw is a section of 2' @ 2.

Here we adopted the Einstein convention that repeated latin indices are sum-
med even the summation symbol is omitted. In what follows we also follow this
convention.

This observation even holds for bundles tensored with 2% In fact, if ¢ €
C”U(R 2H® 2F) (respectively, ¢ € C(2° Q@ %)), then Vo € C* Q" Q"
® 2%) (respectively, d,¢p € C™(2"" ® 2F)).

The lemma is now clearly seen, since for b € C”(SZ 2%, d,(dg h) is

d,(dph + dgh) = d;dgh + djdsh + dfdgh + d]dzh
and from the above observation the last two terms are in C”(Q2°® £7), and

d dgh € CT(Q™® 2. So (p,, p,)(d,°dp) = df °dp.

3.3. The bundle 2° ® 9 carries the inner product inherited from the met-
ric g Then with respect to this inner product the operators dy, dg, d; and dp
have their formal adjoints 8;, 0, 0; and 0y, respectively.

For ¢ = ¢, € C”(Q2° ® Q") for example, we have

6L¢ = (5L¢) is» (5L¢)i$ == Va¢a1s

and

0rp = (0x9) i (5R¢)ij = —V,0ijs-

Remark. The Ricci tensor Ric = (R,,) satisfies from the second Bianchi

identity
. 1
(3.9) dgRic = 0 dgo
and
(3.10) d.Ric = — 0§, R.

Moreover, when the scalar curvature o is constant, by applying (2.1) and that
V B = V Ric one has

(3.11) 0.B=0 and d.B= —26,W.

The left(right)-exterior derivatives are implicitly treated in [2] where Bour-
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guignon actually gives the Weitzenbock formulae of the operator d; d, + 8, d; for
sections of 2' ® 2" and of 2° ® 2%

3.4. It is a standard fact that for an arbitrary metric the self-dual part of
the de Rham complex is elliptic:

(3.12) 0— C(@% > C (@) 5 C™(@H — 0

Tensoring this complex with the bundle 27, we obtain the sequence composed
of certain -operators, for instance, left-exterior derivatives:
(3.13) cr@RHBcReeH STt ®eh

ProposITION 3.2.  Suppose that a metric g is anti-self-dual. Then the components
ofd; d ¢, ¢ = by € CT(27) are

(3.14) (d; dyPuy =0 (G=7y)
=1/12 peju . G #J)

where {1, 7, k} is a permutation of 12,3,4}. Thevefore, if g is further has zero scalar
curvature, the sequence (3.13) forms an elliptic complex.

Proof. Apply the Ricci identity to d; d; ¢. We have then

Vi Vj¢st - Vj Vz¢st = - (Rasij¢at + Ratij¢sa)'

Substitute the formula (2.1) R,;,, = W, + K,;i;, T G, into the curvature terms

st
and use the fact that W' = 0 and B = B, is tracefree. Then the components be-
come (d;d;$) 1y, =0, (dd) 1215 = 1/120¢,, and (d]d,$) 5y = 1/12 0y,
Other components are similarly calculated so that the proposition is obtained.

3.5. Weitzenbock formulae for d; d;. Denote by 8" the formal adjoint of
d”. Then

PROPOSITION 3.3. The Weitzenbick formula for d* 67 ; C(Q7) — C”(Q7) is
gwen in the form

(3.15) d+5+¢=%V*V¢—2W+(¢) +%p¢,¢ec"°(9+).

Note W : 2" — Q7 has the components W' (¢),, = Wir1,015 @ = 2,3,4.
This formula says that the positive scalar curvature implies that the space
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H*(M) = Ker 6" of self-dual harmonic 2-forms on M vanishes provided g is
anti-self-dual.

Although the formula is well known, we shall verify it, since verifying it is
useful to showing other Weitzenbéck formulae.

Proof. Since (d5+¢)ij = - Vi Va¢ai + Vi Va¢ai’
(d+5+¢)12 = - %Va Vb1
+ % {([VU Va] + [Vu Vz])(bu = ( Vi V4] + [Vz’ Vs])¢13}~

From the Ricci identity the last term, which we denote for brevity by R(@),, is
represented in terms of curvature terms as

1
%@’)12 == 2 {(Ra113 + Ra142) ¢a4 + (Ra413 + Ra442) P1a
- (RalM + Ra123) Paz — (Ra314 + Raszs) ¢1a}-

(3.16)

Substitute (2.1) and make use of the fact that W,,,; = 0. Then this reduces to

iaf

- 2(W1;12¢12 + Wl;13¢13 + Wl;14¢14) + 1 /6 p¢12’

from which the formula follows.

1

. + . +
NotaTioN. Here we use the notation W, for instance, W,,, = 5 (Wi +

W34ab) .

Consider now the following operator d; 8; : C* (2" ® Q1) — C* (2" ® 2Y).
Then,

PrOPOSITION 3.4. For ¢ € CT(27 ® 21

1 5 1 1 v
A6 =5V V+W" (@ +5 1500+ 1500 A2

(3.17) 1 1 )
+590OB+5 (@ AB +5 (OB Ag"

Here W (@) = — 2W7* (@) + W, (p) is given by
W+<¢)125 = % I/Vl;la ¢las’
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W1(¢) s leas Praa + Wl:as P13a

and ¢ € C™(RY) is the contraction of ¢, namely, ¢, = @yio. Further (¢° A B)™ is
the QT Q@ Q' -part of 9" NBE CT(Q*QQY, (¢" A B),;, = ¢, B, — ¢, B,,,
and OB € C*(Q" @ Q) is given by (¢ O B) ;s = ¢,,4Bs.

Proof. One has from a calculation (d,0; @) iis = — VVPais T VIV, Puis so that
d; 0; ¢ has the component

1
(d: 5: ¢) 12s 2 {— VIVa¢aZS + VZVa¢als - V3Va¢a4s + V4Va¢a33}'

Since ¢ = @, is self-dual with respect to 7, j, one gets
+ot 1
(d,0,P) s = — 9 VVa®ias
1 1
+ 9 ( Vi Vs] + [Vu Vz])¢14s 9 ( Vi, V4] + [Vz» Vs])¢133
and further from the Ricci identity
1

(318) (dzang) 12s == § VaVa¢12s + %(gﬁ) 12s + %l(qs) 12s
where

1
%(‘/J’) 12s — 2 {(Raus + Ra142) Paas + (Ra413 + Ra442) Bras
- (RaIM + Ra123) Pazs — (Ra314 + Ra323) ¢1as}

and
1
%1 (¢) 12s = 2 {(RaSIB + Ras42) Praa — (Ras14 + Rasz3)¢13a}'

1
Here R($) reduces to — 2 (¢) + & 09, similarly as before.

To get (3.17) one decomposes %' (¢) into terms involving W1 Kijy and
Gyyu, respectively: &' (§) = W' () + H'(P) + 9 (9).

1 1
From a straight computation, 4 (¢) = 24 o¢ + 12 0" A"

The term involving Bj; is similarly computed as
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1 1 1
K@ =560B+56" AB +5 (OB Ag".
Putting these terms together one obtains Proposition 3.4.

COROLLARY 3.5. If the metric g is anti-self-dual, then for ¢ € CT(27 ®Q
1 . v o
27 having ' =0

+ o+ 1 5
d40[¢ =3V Vo + 510
(3.19) 1 1
+t500OB+5 (OB A"

If g is further Einstein, i.e., B = 0, (3.19) reduces to
1 5
A o9 =5V V¢ + 55 09.

Next we consider the Weitzenbock formula for d; 8, operating on C™(2" ®
Q7).
To state the formula we prepare the Nomizu-Kulkarni product
®: (') x (') —2°® 0%
(D @ijse = hisye — hin@ss — hiqis — hisqir, by ¢ € 'R Q.
Notice that 2 ® ¢ € S*(2%) when & and ¢ are in S*(2").

(3.20)

PROPOSITION 3.6. Fr Z€ C”(RT Q@ N7

d;o;Z = %V*VZ+ W(2Z) +%pZ
(321 1 v e 1y N (VI
— 15020 —5 B DB —5Z BB
Here W(2) = — 2W " (2) +W; (D), W' (D) s = e Wisa Zrae, and
W3 (D) 1050 = = Wiaas Zrsar = Witas Zizan
+ Wiat Zisse — Worar Zissa) -

Moreover we denote by Z*, B*(Z) € C*(Q' ® Q") as Z,y = Zyy0s and B*(2),
= BabZaibS'
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Proof. We calculate d; 0; Z for (i, ) = (1,2).

1
(dL+5Z Z) o5t = 9 (= VWV, Zse — AV, V] + [V, VDD Z 5,

+ (V,V,] + [V,V.DZ,)

From the Ricci identity we can write this as

1
(322) (dz—é‘l‘.F Z)IZSt = E (_ VaVa ZlZSt) + %(Z)IZN + %+(Z)12$t
where
R(D) o = — (R1+3u Zoyst T R1+3a4 Zigse
- R;al Za3st - R;;a3 Zlast)
and

3?+ (2 12st (R1+3as Zl4at - R1+4as Zl3at
+ R1+3at Z14sa - R1+4at sta)-

For the term R(Z) we get similarly as before the following
+ 1
RZ) = —2W (2) +€pZ.

Now decompose R7(Z) into terms R (2) =W, (2) + #; (D) + 9, (2)
involving W, K, and G, respectively.
From a simple computation the third term 9, (Z) becomes

1 1 v
% (2) =q50Z— 5 0Z D"

Here (h® )" = (p,, p) (WD @) for h, ¢ € C(Q" @ 2.
To compute K; (Z) we make use of the fact that B, is tracefree and Z is
self-dual in s, fto get

KD = -2 DB+ ED D"

Note that the term #(Z) in Proposition 3.6 contains only the self-dual Weyl
conformal tensor.
The tensor product 27 @ Q7 has the natural decomposition

QTR NT=SHRH D AR DRO
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where @ is the global section of S*(2%) defined locally by X, 0, & o, associated
to the canonical orthogonal frame {0, , 0, , 65} of 2°

COROLLARY 3.7. For Z € C”(SH(2™))
(3.23) d;oy Z=1/2V*VZ+ W2 +%pZ.

If the metric g is anti-self-dual and the scalar curvatuve O is positive, then
Ker{0; : C*(S}(Q") — C*(2' ® 2} = {0}.

The proof is obviously seen, since 8(2) is tracefree and symmetric for Z €
SZ(2") and from the following lemma.

LeEmMA 3.8.  The metric tensor g satisfies
h®g*" =0
for each h € SHQY.

Proof. The component (A ® g1y, is
% {(h® D T 20 ® &1z T h® g)3434}
= BB D+ 5D D,

and hence (2 @ g)15, = 0, since & is tracefree.
Moreover,

(h ®g):213 = % {(h® @ys T WD Qs+ (D @ gys + (B D g) gyt
1
T4

(hyg = hgy + by — hy) = 0.
These computations complete the proof of the lemma.
COROLLARY 3.9. For Z € C*(A*(Q7))
- 1« 1
(3.24) d; 0, Z=§|7 VZ+W(2) +ng.

Therefore,
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Ker{d} : C*(A2(Q%) — C7(Q'® %)) = (0,

when the metric is anti-self-dual and of positive scalar curvature.

Proof. Tt suffices from (3.21) and the above lemma to show
Z'®Der=2Z, BB =0and OB =0.

The first two of these are obtained as follows.
We have for ¢ € A*(2")

1
(3.25) @O Q1= 4 2o =0
and
+ 1
(3.26) (@D gips = D) (g + 5.

Put ¢ = Z". Then from (3.26) (Z" ® g)1ps = 2Z,;,; which implies the first
formula. The second one follows from that B is tracefree.

The last formula is similarly seen, since Z¥ € A*(Q") satisfies Z,3 = Z1, Z,1
= Zyand Z,, = Zy,.

The operator d; 8, operating on f® € C(S*(Q")), f € C*(M) has the fol-
lowing Weitzenbock formula.

CorOLLARY 3.10. Let g be an arbitrary metvic on M. Then
1
(3.27) d; o, (fD) = EV* Vio—fw".
So, f@ in Ker 6, must be ¢®, where ¢ is a constant.

Proof. Since @' =3g, (g® 2" =@ and B*(®) = — B, the last three
1
terms of (3.21) reduce to —Zp(qu). Moreover W (®) = W* and W, (®) =

W*. So the term W (®) = — WT. Because @ is parallel, we derive (3.27).
Suppose f® satisfies 0; (f® = 0. Then by taking the inner product
(d)6; (f®), f®) we have

0 :%_/I;{(V*Vf,f) QP — (W*, f0)dy,.
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Since W and hence W is tracefree, (W™, @ = 0 and then f |Vf|2dvg = 0.
M

This means that f is constant.

§4. The linearization of the self-dual Weyl conformal tensor

4.1. The aim of this section is to calculate the linearization of the self-dual
part of the Weyl conformal tensor W.

The tensor W= W(g) is considered, same as before, as W &€ C“(Sﬁ(Qz))
having the splitting form W= W'+ W™ € C*(S2(Q") & S2(27)).

For each & € C”(S2(2")) the Freéchet differential of W at a metric g to the
direction A is given by

d
(4.1) SWS () =z W' (g) |imo,
. . o d
where g,, | t| <e, is a one parameter family of metrics with & =8 ;& =h
t=0

PROPOSITION 4.1. If g is anti-self-dual, i.e, W' =0 for g, then
(4.2) oW, (h) = 6W,(W)".

This means that the linearization of W™ is exactly the self-dual part of the
linearization of W, provided g is anti-self-dual.

Since W¥(g) = (b, p)W(2), (GW,") (h) is given by (6(p,, p.)) (WW(g) +
(p4, p+)OW,(h) and the first term vanishes because g is anti-self-dual so that the
proposition is obtained (see also [12]).

PROPOSITION 4.2. The linearization of the self-dual part of the Weyl conformal
tensor is written i tevms of the left- and vight extevior devivatives as

(4.3) W, = — i— ((dpd; h+ djdy i)y + (BO h)y)
for h € CT(S;(2Y).

Proof. We have in Appendix [12]
(4.4) @W, ()" = (UMh)); + (V();, h € C*(SHRY),

where U, V : C(S2(2Y)) — C*(2*® 2% are the operators defined by U(h) =
(Uyjsp), V() = (Vi) respectively
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1
(4.5) Ujs = D) (v, Vihi =V, Vihis =V Vih;, +V, Vs,

1
(4.6) Vi = 4 (R hyy — Ryjhis— Ry hyy + Ry by

By using the left- and right exterior derivatives we can write U(h) as

1
U(h) = - dedL h,

since
doh= Vh,—Vh)f AN QFf
and
de(d, B) = AV (Vih, —V,h,) = ViV — VDY AR (FF ALY,
The symmetrization of U(k) then becomes

(- b Fn) = o+ )

Thus the S*(2%)-component of U(h) is — % (dyd; h+ d;dy h), whose tracefree
part — % (did] h+ dfdy h), gives Uh);.

The term V(h) has the form V(h) = — 7}; (Ric @ h) by the Nomizu-Kulkarni
product (3.20). Since (g ® h); =0 for a tracefree & from Lemma 3.8, we have
Vi, = — % (B® h)g, from which (4.3) is obtained.

4.2. The Bach operator. We define an operator
(4.7) D : C™(S;(2h) = C7(S;(2")
by

D(h) = — W, (h)".
Moreover we define operators @ and B : C™(S2(2")) — C”(S3(27)) as

D(h) = % (dpd] h+ djdy b),,

B = % (B® h)y
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so that
D) =2 + B0).

Notice that in his paper ((19]) C. Taubes uses L, for the linearization 5Wg+.

ProposiTioN 4.3.  The formal adjoint D* of D has the form

(4.9) D¥(2) = 9*(2) + B*(2), Z=(Z,,) € C"(S}(Q")),
where D* is given by D*(Z2) = (6,65 + 050;) Z, in other words
(4.10) D*2D) s = VViZpss + V.V, Zpi0s

and the operator B : SL(21) — S2(0Y) was defined in Proposition 3.6, §3.5.
Proof. From (4.4)
[t p*2a0 = [ On, 200 =~ [ W, Do~ [ g, .
The inner product (U(h)y, 2) = (Uh), 2) is

W,, 2) = %—( V,Vihi —V.Vh =V, Vb, +V,Vh,

)Z,

jst

and this reduces to (V,V;h,, =V, V.h,,

)Z ;s so that one has the integral
[ s, nav= [ 4,7,7.2,0 = 1,7.9.2,.)
(4.11)
=2 [ h,V,V,Z,
For the sake of symmetry one may write this as

(4.12) f (Uh)y, 2)dv = ~fh,-s(V,~Vt+VtV)Zm dv

from which one gets (4.10).
Similarly one has

(4.13) - L VW, 2ydv = [ hy,B,Z,s dv,

which is just the inner product of # and B¥(2).
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The tracefree symmetric tensor D*W is called the Bach tensor for a Rieman-
nian 4-manifold (M, g).
Consider the functional

(4.14) g— LI wig) |° dv,.
This functional is conformally invariant.

ProposITION 4.4 (Lemma 1 in [3]). Let g be a metric on a 4-manifold M. Then
g is a critical point of the functional (4.14) if and only if the Bach tensor vanishes
(ie. D¥W = 0).

Proof. For W= W, we set W, = W, f° A f' so that W= (W) is re-
garded as an End(7,,)-valued 2-form.

From the Chern-Weil theorem and the property of the Weyl tensor the first
Pontrjagin number of M is given, up to a universal constant, by the integral

Lzow,nw,
Decompose W;; = W,f + W,,. Then the integrand gives rise to

— S Wy AW+ W AW == (W =W ) du,.
ij

Since fl ledvg = f WP+ Iw P dv, and from the argument just
above, a metric g is critical to the functional (4.14) if and only if it is critical to
the functional ./;,I w* lzdvg.

Let g, be a one parameter family of metrics with g, = g and gzg, lioo=h
which is in C”(SZ(2Y).

Consider the first variation %j}; W*(g), W' (g)),, dv, |, Because the

integral is conformally invariant the volume form dvg’ of g, is assumed for all f to
coincide with duv,.
So,

d
EL|W+(8}) |2, dv, |t=0
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=2 [ (GW,m)", W* @), dv, + 2 [0, 5,00 (W* (@), W @), dv,
+ [HW* (@, W) v,

where HW ™ (), W' () = % W (9, W+(g))gl |,=o is the t-derivative at t=

0 of the g,-inner product of the g-self-dual part of the Weyl conformal tensor W
of the metric g.
We show first that the second term vanishes. Let (p,), be the projection

1.

5 (d+ *,): Q- £, Since the star operators are involutive, *,°(3%,) (h) +
d

(0%,)(h)> %, = 0, where (0 %,) (h) denotes the derivation i ¥e |;_o of the star

operators %, in the direction k. This implies that (d%,)(h) and hence

8t

8(p,),(h) maps 2, into Q. We have then
(6(p,, p) ) (W (W™ (@) = ((6p,), (W), p.) W™ (@) + (p,, (5p.), (W) (W™ (g)).
Thus, the inner product (G, p.), (W (W (), W' (g)) vanishes, because
W e 0"

We compute the third integrand H(W ™, W).

For every point ¢ in M we choose a local coordinate {x;} around ¢ such that
gi;(@) = d;; and h,;(¢g) is diagonal, that is, k,; = h; d,, at the point. Then

d ik _jl _ru_sv
H(W+, W+) = Ezgtkg:ﬂg: & u/i;rkuTuv|t=0

reduces to — 4 2, (b, + b, + h, + h) (W (2),,)".
It follows from (2.4) that H(W ™, W™) is zero. Therefore we get the formula

d
EJI;IW“L 1 dv, |,z = zf((awg(h))i W (g), dv,
which turns out from simple computations to be
[ @a, whas, = [ &, D*W)ay,

so that g is critical to the functional (4.14) if and only if g satisfies the equation
D*Ww* =o.

On the other hand, we consider the functional g—*f | W™ (9 |2dvg. Then it
M
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follows that a critical point of this functional is just critical to (4.14) by a way
similar to the self-dual Weyl conformal tensor case. So, the equation D*W*=0
is equivalent to the equation D*W ™ = 0 and then to D*W=D*(W*+ W) = 0.

§5. The Weitzenbick formula for Einstein metrics

5.1. We assume throughout this section that a metric g of M is anti-
self-dual and moreover Einstein.

From' the formulae (4.8), (4.9) in §4 the linearization operator D and its for-
mal adjoint D™ then become as D = 9 and D* = 9%, respectively.

Since @™ is of second order, we associate the forth order operator DD to the
two-fold of the rough Laplacian v*v.

We state the following formula whose proof is one of the main subject of this
section and will be given later.

ProrosiTioN 5.1. (Weitzenbock formula). Let g be an anti-self-dual, Einstein
metric. Then the Weitzenbick formula reads as

1
(5.1) DD*Z=ﬂ(3V*V+2p)(2V*V+p)Z
for Z € C™(S(R7)) (o is the scalar curvature).
As an immediate consequence of this formula we have

THEOREM 5.2 (Theorem 1, 81). Let (M, g) be a compact oviented 4-manifold
with an Einstein anti- self-dual metric.
(1) If the scalar curvature o > 0, then Ker D* = {0}.
(ii) If p = 0, D*Z=0 if and only if VZ = 0, i.e, Z is covariantly constant.
(iii) For p < 0 Ker D* is the linear span of the eigenspaces E_, .., and E_ .,
where E, = {Z ; V*VZ =22}

5.2. The orbifold case. For 4 dimensional orbifolds we can apply the Weit-
zenbock formula, same as in the smooth case.

TueorREM 5.3 (Theorem 2, §1). Let (X, g) be a compact comnected oriented 4

dimensional orbifold with an anti-self-dual positive Ricci Einstein metric. Then the
second cohomology group H® = {0}.
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Remark that weighted complex projective planes CPj,, with the orientation
reversed, for suitable integers p, q, ¥, admit an Einstein, self-dual orbifold metric
of positive scalar curvature ([8]).

5.3. The Ricci flat case. Anti-self-dual Ricci flat 4-manifolds (M, g) are
completely classified in [10] as that those manifolds are covered either by a Ricci
flat Kahler K3 surface or by a flat Kihler complex 2-torus. More precisely, such
a 4-manifold which is covered by a K3 surface is one of the following; i-1) a Ricci
flat Kahler K3 surface, i-2) a Ricci flat Kahler Enriques surface (the quotient of a
Ricci flat Kahler K3 surface by a free Z,-actionn), i-3) a Z, X Z,-quotient of a
Ricci flat Kahler K3 surface. A flat Kdhler complex 2-torus, and a flat Kahler
hyperelliptic surface, i.e., a finite holomorphic quotient of a flat Kahler complex
2-torus are other examples of anti-self-dual flat 4-manifold.

Tueorem 5.4 (Theohem 3, §1). Let (M, &) be a compact anti-self-dual Ricci
flat 4-manifold. Then the dimension dim H’ is given in the following way.
(i) dim H’ =5 when (M, &) is a Ricci flat Kdhler K3 complex surface or a flat
Kdahler complex 2-torus,
(ii) dim H* = 3 when (M, g) is a Ricci flat Kdahler Enriques surface or a flat Kahler
hyperelliptic surface satisfying O(KL) = 0,
(iii) dim H®* = 2 when (M, 2) is a Ly, X Z,-quotient of a Ricci flat Kihler K3 sur-
face and
(iv) dim H® = 1 for a hyperelliptic surface with 0 (Ky) = 0 and O(Ky) #+ 0, i < k,
k= 3,4,6.

Proof. 1t is sufficient from ii) of Theorem 5.2 to compute the dimension of the
space of covariantly constant sections Z of SZ(27).

4-manifolds (M, g) we are now considering are all Kihler except a Z, X
Z,-quotient of a K3 surface. So, first we may assume

(5.2) SHQ*) = RODK, B K2,

where @ denotes the covariantly constant section of Sg (27) derived from the
Kahler structure ([13]). This real bundle isomorphism is invariant with respect to
the covariant differentiation.

On the other hand, it is observed in [13] that on a compact Kahler complex
surface with zero scalar curvature a section ¢ of K;/, m > 0 is holomorphic if
and only if ¢ is covariantly constant.

By making use of these facts we see that for a 4-manifold (M, g) having
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0(K,) = 0, namely for a 4-manifold of i-1) or of ii-1) listed above, S¢(2") has
five linearly independent, covariant constant sections. So H =R’

Similarly for (M, g) of G(K2) = € but O(K,) # 0, ie., of i-2) or of ii-2),
the space of covariantly constant sections of Sj(Q+) has exactly dimension three.

For hyperelliptic surface for which K, is a torsion bundle of order 3, 4 or 6
it is seen from (5.2) that covariantly constant sections of S:(.QJr) are of form
¢®, ¢ € R. This shows (iv).

Finally consider a Z, X Z,-quotient (M, g) of a Ricci flat Kahler K3 surface.

We can also regard this manifold as a quotient of a Ricci flat Kahler Enriques
surface (M, 2 by a free Z,-isometric action.

Let s : M— M be a deck transformation yielding the Z,-action. So s is an in-
volutive, orientation preserving isometry which freely acts. It is shown in [10] that
s is not holomorphic.

It suffices to show that the space of s-invariant, covariantly constant sections
of S2(Q7) on (M, @ has dimension two.

Since b" (M) = 1 and the pull back 2-form s™6 of the Kahler form 8 is cova-
riantly constant, s*@= — 6 and hence s must be an anti-holomorphic dif-
feomorphism of M.

Consider the section ¢ of K given by ¢ = dz' A dz’ for a Z-unitary frame
of (1,0)-forms {dz', dz’}. Then we can write the pull back as s"¢ = ¢c@.

Since s is involutive, | ¢| = 1.

1 1 -
Operate s* now on the section @ = 102 - §¢ - ¢. Then from the above

arguments s (@) = @, in other words, @ is s-invariant.

Since G(K? = @ for an Enriques surface, K° admits a globally defined holo-
morphic (and hence covariantly constant) section. We may identify this section
with ¢2. So, the real part ¥, and the imaginary part ¥, of ¢2 give exactly cova-
riantly constant sections other than @.

The pull back sections S*WI, S*WZ are also covariantly constant so that they
are written by linear combinations of ¥}, 1 = 1,2.

Since s*gb = ¢¢, the 2 X 2 matrix consisting of coefficients of s*llfi with re-
spect to ¥; has trace zero and determinant — 1. This matrix then must have
eigenvalues +1, — 1. Therefore dim H® = 2 which completes the proof.

5.4. Now we will show Proposition 5.1. From (4.8) and Proposition 4.3 we
have for the operator DD*Z = 9 9*Z, Z € C*(S2(Q™1)
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5.3 99*Z = § ((d]d} + did]) (553 + 67602,

= % ((d]d30;0,2), + (d;dy050,2),
+ (dyd;0;6:2), + (dnd; 06,0, 2),),

where X, denotes the trace free component of X € S*(27).

From the left-right symmetry it suffices for proving the proposition to write
down the last two terms with respect to the rough Laplacian.

For this we introduce the operator # by

(5.4) F() =d; 6r¢) — 6ady ), 9 € CT(R' R Q).

As we shall see in Proposition 5.5. # turns out to be a bundle homomorphism
from ' ® 2" to 2T R Q"

So, the last two terms become
(drd; 0;032), + (dpd, 050, 2),
(5.5) = ((dg(d;8,) 052, + ((drdi)(d; 67 2),
+ (dz (F (6. 2D)),.

We apply the Weitzenbock formula (3.23) to Z and make use of the fact that
Z is tracefree. Then

(5.6) d;'&:Z=%V*VZ+%pZ.

Noticing d;ﬁ:Z is tracefree and (5.6) holds also for the right-
exterior-derivative, we get

1 1 \?
5.7) @ asenz= (577 +5o) Z
which gives the second term of the right hand side of (5.5), because (5.7) is
tracefree.
That 6;Z € C™(Q" ® 2") is tracefree, namely (552),,, = 0, together with
(3.19) yields
+ ot/ st _ l * + i +

(here we applied that B = 0) in such a way that the first term is calculated as
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(5.9) did; 6705 2= %d;( V¥V6:2)

5

+‘22p

<~;—V*VZ+ %pZ).

What to do next is to derive an explicit formula for the commutator operator %.
Set p =07 Z. ¢ = (¢,,) isin C* ('R 27).

By the definition F(¢) is the left self-dual part of d,0p¢ — Opd, .

One has then

O )is = = Vobias
and
doad) s = = ViVelins + V;Viias.
On the other hand,
Ordr) s = = Vo Vidbjas = Vihuad)-
So,
(5.10) (dy0r® — 020 s = [V, V1ies + [V, V100

which reduces to

0

n ¢)sij + Btt¢jss - Btj¢its

+ Rtaij¢tas - Rtsai‘/)jat - Rtsja¢iat'

Here we used the identity, ¢;;; — ¢yis = @gj, coming from the first Bianchi identi-
ty of Z.

Since B = 0, the left self-dual part F(¢) of d;05¢ — Oxd ¢ has the follow-
ing form, for simplicity for (7, §) = (1,2);

(5.11)

1

= {0
(5.12) g(gb)lzs T2 {4 ((/)312 + ¢S34) + (Rtalz + Rra34)¢ms

- (Rtsa1¢mt + Rtsza(/)lat + Rtsa3¢4at + Rts4a¢3at)] .

We apply (2.1) into the curvature terms and make use of (2.4). Then Z(¢) 1,

1
=17 01, which gives without loss of generality

PROPOSITION 5.5, For ¢ € C™(Q' Q@ %) satisfying ¢,y + di; + Gy = 0
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(5.13) F(Pys = f—zmbs,f-
Since (8, 2);, = (0x2) 5, We have then
FGi2) = {5 0Z.
So,
(5.14) 4y (FE2D) =15 dyoiZ.
Together with formulas (5.7) and (5.8) this implies
PROPOSITION 5.6. For Z € C™(S:(R2™))

2
(dd} 5168 Z +did o567 2) = (%V*V +10) 2z
(5.15)
| 7 (1 _x 1
+ 5 A5 (T VED + 50377+ o)z,

5.5. Only dj(V*V852) is the term which yet remains to be calculated in
the formula (5.15).

We will associate this term to the two-fold rough Laplacian term (V*V)?Z.

Set p =05 Z€ C”(Q" ® 2. Then, from the Ricci identity,

=V V. (Vo0 = =V, Vi(V,y;) + Sy T Ros(V,bij0)
where
Sist = Roisa Valost T Rijsa Vains T Rirsa Valijo-
We apply again the Ricci identity on V V,¢,;,. So
Vi VaVadij = = VoV Vs

+ Va(Rbisa¢bjt + ijsad’ibt + Rbtsad)ijb)
+ Siisl + Ras Va¢x’jn

namely,
(5~16) - Vs Va Va(/)ijt == Va Va Vs(/)iit + Ras Va¢iit + zsiist + Tiist

where
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(517) Tust = {( VaRbisa) ¢bjt + (Vaijsa)(l)tbt + (VaRbtsa)(»bijb}'

Therefore, from the first Bianchi identity

(dR 4 * 4 ¢) ijst == ( Vs Va Vad)ut - Vt Va Va¢iis)

is given as

AV 7 )y = (VT ) o + & (@)
+ Bas Va¢i/’t - Bat Va¢’us + Z(Sijst - Sijts) + (Tt

(5.18)
jst thts) .

For this we set further

(5.19) Siist — Sijts = le:?)t + Pt(jls)tr

ijst
where

o _
Nijst - Rabst Vad)iib

and
Pi(jl.:t = Rbt‘sa Vad)bjt + ijsa Va¢1bt

- Rbim Va‘r/)bjs - ijta Va¢ibs
and
(5.20) Tys = Tijee = Nigur + Pigy
where

Ni;i)t = - (VaRabst) ¢iib
and

Px(st)t = VaRbisa'd)bjt + Vaijsa'(tbibt
- VaRbita : ¢bjs - Vaijta ' (pibs'

Since B,; = 0, we have

(d;V*V(/)),'jlz = (V*Vd;(b)ulz-'_% (dl-;gb)ijlz
(5’21) 1) (1 [§Y) n
+ (Nmz + Nu’34) + (sz + Pif34)
1 1
+5 (N + N2 + 5 (P + Pia).

Now we calculate the last four terms.
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As same as before, we substitute (2.1) into these terms and make use of the
fact that W™ = 0 and B = 0. Then

1
AsserTION 1. (i) N,~(,~11)2 + Ni(,-l;4 = — gp(d;{gb)mz and (ii) N,jzl)z + N,%L =0

On the other hand, we can write (P,(;l)2 + P:;;Q as the parts W() .,
K() ;;1, and G(¢),;,, each of which contains W, K, and G, respectively;
Pt’(;l)z + Pi(jls)4 = W) o + K(D)j1, + G(@) i,
where we see K(¢) = 0 from B = 0.

ASSERTION 2.

() W) e = 0 and i) Gy, = § @),y

That W(¢) = 0 follows from W' = 0 by a simple computation.
For G(¢) we have

G(Ql’) i1z = G311a Va‘/’azz + G411a Va‘/’4zz - Gszza Va(/)131 - G422a Va‘l’m
+ G313a Va(/)su T Gy Vaiss = Gu1aa Valizs — Gz Vahras.

It suffices to show (ii) for (i) = (12) and (13). From the first Bianchi
identity of Z it follows that

G((p)lZlZ = % (d;(p)lZlZ'
Similarly, G(¢) 3, is computed
G(P) 131, = % {Z(d;Qb) iz T 2(0xP) 140,
and then
1 +
G(P) 1y, = 6 0(dg ) 1310,
since 0gx) = 0x05Z = 0 and this is because from Proposition 3.2 dpdgp, ¢ €

C™(M ; 2%) has no S’(2%)-component. This shows Assertion 2.
Next we calculate the last term (P:jz1>2 + P,% .
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ASSERTION 3.
@ @
Pijzlz + Pij234 =0
When (i) = (12), this term becomes
)
P:iiz + P1(§34 =VaiRpi1a" Pozz T VaRyn1a" D1
— VaRyi2a” Gozr = VaRisoa™ 101
+ VaRblsa' Dpau T Vaszsa' Do
—VaRyiia" G2 = VaRiz2aa™ Prvas

which turns out to be zero, because W* = 0 and 0 is constant.
Similarly, P;:iz + Pf§;4 = 0 is easily shown so that Assertion 3 is proven.
Therefore the last four terms in (5.21) reduce completely to zero so that we

have
PROPOSITION 5.6.

(5.22) (dyV*Vs2), = (V'Vdpom2) + %p(d,:ﬁ;Z)

The following proposition gives then the final form of the Weitzenbock formu-
la for the Bach operator in (5.1).

ProposSITION 5.7.
5.23) (did;0;05Z + dyd; 650,2), =
% @BV7+20QV*V+ 0 Z.

5.6. The ALE hyperkihler case. Let (M, g) be an ALE hyperkahler
4-manifold. We assert KerD D* = {0} for (M, g).

Let C(M ; S2(2%)) be the space of smooth sections of S:(2") having a
compact support. We denote by sz the completion of C, (M ; Sg(.Q+)) in terms of
the sz—norm with respect to the metric g. Here k is a certain integer = 2.

Let Z € WZ From the completion we may assume Z € Co (M ; S2(27)).
Since g is Ricci flat, we have from Proposition 5.1 that

DD*Z=%(V*V)ZZ
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so that if Z € KerD D¥, then by integration
(5.24) f (v*v)’z, Zydv, = 0.
M
Since Z has a compact support, the partial integral gives us
[1v*vzan, =0
M
which implies V*V Z = 0 and hence
(5.25) [ v*vz, Dav, = [ |72, =0
M ’ g M 4

from which Z must be covariantly constant, whereas the support of Z is compact.
Hence we get Theorem 4 in §1.
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