CORE-CONSISTENCY AND TOTAL INCLUSION FOR
METHODS OF SUMMABILITY

G. G. LORENTZ axp A. ROBINSON

1. Introduction. We shall consider methods of summation A, B, . .
defined by matrices of real elements (a¢ny), (bmn), (m, n = 1, 2, . ..) which are
regular, that is, have the three well-known properties of Toeplitz (4, p. 43).
A method A is said to be core-consistent with the method B for bounded sequences
if the A-core (3, p. 137; and 4, p. 55) of each real bounded sequence is con-
tained in its B-core. B is totally included in A, B < A, if each real sequence
which is B-summable to a definite limit (this limit may be finite or infinite of
a definite sign) is also A-summable to the same limit. It will be shown in the
present paper that if the matrix A4 is core-consistent with the positive matrix B,
then A4 is “‘almost’ divisible by B on the right. This statement is made precise
in Theorem 1 below. The proof (§2) involves some elementary properties of
convex sets in Banach spaces. In §3, the same method is used to prove a similar
result for the relation B < A (Theorem 2). Some simple corollaries are given
in §4.

IL.et /; be the Banach space of elements X = (x,), with norm

[/l = > bl

so that the rows of the matrices 4, B are elements a,,, b,, of /;. Elements X,y € [,
are called disjoint if x,y, =0(n =1, 2, ...); an element X € /; is positive, X > 0,

ife,>0(n=1,2,...).1fx = (x1,%9,...,%,...) € [}, we shall write
X' = (%1,...,%5,0,0,...), X,=(0,...,0, % %pt1,...),
'=0(@0,...,0,%,...,%,0,...), p<q.

We also use the same notation for sets E C /;, for instance E,? is the set of all
x,? with x € E. A cone K C I, is a set such that

Zl Cr X E K

whenever ¢, > 0, x; € K. For instance, the set of all positive elements is a
cone in /;.
We shall prove the following theorems:

TureorREM 1. Let A, B be regular matrices and let A be core-consistent with
B. If B is positive, that is if b, > 0 (m = 1, 2, . . .), there is a positive regular
matrix C such that the norm of the mth row of CB — A tends to zero for m — .
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The case where the elements of the sequences, or of the matrices, are complex
is not essentially different as will be shown in §2.

If A = (am,), we shall write 4, for the matrix obtained from A by replacing
all a,, with n < p by zeros.

THEOREM 2. If A, B are regular row-finite matrices, B positive and

() BKA,
there is an integer p and a regular positive row-finite matrix C such that
(1) CB, = 4,;

this remains true if (i) is replaced by the (formally weaker) hypothesis that
(i1) 7, = + o« always implies I‘Tni — + o, where o, and 7, are the A- and the
B- transforms of a sequence s,, respectively.

If B is the unit matrix I, these results were known before; for the case of
Theorem 1 see Agnew (1), also (3, p. 149); for Theorem 2, Hurwitz (5) or
(4, p. 53).

2. Core-consistency. If Theorem 1 is true for a given pair of matrices
A, B, it is also true for any two matrices 4’, B’ with rows a’,, b’,, satisfying
llan — an||— 0, [[bn — bn|[ — 0.
This and the regularity of 4, B imply that we may assume A4, B to be row-

finite, and such that there is a sequence #(m) increasing to + ® with @ny = bua
= 0 for n < n(m).

LEMMA. In the above conditions there exist two sequences p = p(m) < g(m)
such that p(m) — o for m — « and that

(2) p(an, K) = p(am K,');
here p(an, K) is the distance from a, to the cone K generated by the by(\ =
1,2,...).

Proof. For a given m, let m; < m. be such that b, is disjoint with a,, if u
does not satisfy m; < u < m.; we may assume that m; — o for m — «.
Let K’ be the cone generated by the by, m; < u < ms, let p(m) = n(m,)
and let ¢ be so large that b, = 0, m1 < u < M3, @uy, = 0 for n > g. Then
a,,! = a,, K')? = K’, and therefore

(3) P(amy K) < P(amy KI) = P(afm K’pq)‘

On the other hand, let x € K, then X is a linear combination, with positive
coefficients, of some of the by. If we omit from it all those by which are not
b,, we shall obtain another element X’ € K’. The omitted b, are disjoint with
a,, and all by, satisfy by, > 0. This implies

[lan — 50| > [lan — x77].

Since K’,* C K,¢, it follows that p(a,, K,%) = p(a,, K',%) and using (3) we
obtain p(a,, K) < p(an, K,9. The inverse inequality is obvious, and (2) follows.
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Proof of Theorem 1. We shall show that
4) p(@n, K) — 0.
If this is not true, there exists by the Lemma an ¢ > 0, a sequence of disjoint
a,,, and a sequence of disjoint intervals [p;, ¢;] with
p(An,, Kp, ") > e
It
Y =2 clm,
is a linear combination of the a,, with ¢; > 0, > ¢; = 1 and if x € K, we can
put
Z; = Ci—lxmai € Kpiq.'
and have
Iy — x| = [| 2 can — 2 cail| = 22 cil[anm — 24| > e
This shows that the convex set E generated by the a,; is at a distance > e
from E, hence the e-neighbourhood E. of E is disjoint with K. If K, is the
cone generated by E,, K and K. are disjoint except for the origin. By a well-
known theorem (7, Theorem 1.2), there is in /; a bounded linear functional

f(x) of norm one which is positive on K and negative on K.. Hence f(y) < — e
on E (7, Lemma 1.2). This means that there is a bounded sequence s, with

D> by >0 (m=1,2...),
D Omir Sy < — € (=1,2..),

and contradicts the hypothesis of Theorem 1.
From (4) it follows that for some row-finite positive matrix C = (cpa),

[lan — Ecmnbn“’_)ov m— o,

Finally, this C will be necessarily regular, provided we agree to take c,, =
whenever b, = 0. For

Cmn bny < Z Cmn Ony = Qmy + 0(1) = 0(1), m —

n=1

implies that ¢, — 0 for m — «© and each #. On the other hand,

zm:lamv = Z Z Cmn bnt + 0(1)
Z Cmnz bu» + 0(1)

together with
> tm=140(1), 2 by =140(1)

imply that > ¢, — 1 for m — . This completes the proof.

The concept of the core is defined also for sequences of complex numbers
(3, p. 137). Accordingly, we may introduce the concept of core-consistency
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as well for matrices and sequences with complex elements. With this new
definition, Theorem 1 holds literally as before.

For the proof assume that 4 is a regular matrix with complex elements,
B is positive and that A is core-consistent with B for bounded sequences.
Hence, by Knopp's core theorem (6, p. 115) or (4, p. 55), the core of the B-
transform of any bounded sequence s, is included in the core of s,. But 4 is
core-consistent with B, and so the core of the A-transform of s, also is included
in the core of s,. This implies (3, p. 149) that 4 = A’ + V where 4 is a positive
regular matrix, and the norm of the mth row of the matrix V tends to zero as
m — . Clearly, A’ also is core-consistent with B, for complex or more particu-
larly, for real sequences. It then follows from the original Theorem 1 that there
exists a positive regular matrix C such that the norm of the mth row of CB — A4’
tends to zero from m — «. Consequently, the norm of the mth row of

CB—A=CB—-A4"-7V

also tends to zero for m — <. This proves our assertion.

The converse of this (as well as the converse of Theorem 1) is a direct con-
sequence of Knopp’s core theorem. Thus, let A, B, C, be three regular matrices,
C positive, such that the norm of the mth row of CB — A tends to zero for
m — . Then the core of the transform of any bounded complex sequence s,
by CB coincides with the core of the transform of s, by A. The transform of
s, by CB is the transform by C of the transform of s, by B. Hence the core of
the transform of s, by CB is included in the core of the transform of s, by B,
by virtue of Knopp's core theorem. In other words, CB, and hence 4, are core-
consistent with B for bounded sequences.

3. Total inclusion. We shall now prove Theorem 2, deducing (1) from the
hypothesis (ii). Let p,, = p(QAn,, K,); we first show that

3) omp = 0 for all p sufhciently large and m = 1,2, . ...

Let (5) be false. Since the p,,, decrease for m fixed and increasing p and finally
become zero, we deduce that for each p, p,, > 0 for an infinity of m. Now
omp > 0 implies the existence of § > 0, e > 0 such that the sphere .S in /, with
center a,,, and radius & does not have common points with the cone K’ generated
by the points by, A\ =1, 2, . . .), and by the spheres with radii e around those
of theb,, (u = 1,2, ..., m) which are not zero. Hence, there is a functional

f(X) =Z XnSny Hfll = lin/y,

generated by a bounded sequence s, with s, = 0 for #n < p, such that the
hyperplane f(x) = 0 separates.S and K’ and supports.S (by Eidelheit’s theorem,
(7, Theorem 1.6)). If f(x) > 0 on K’, we have

7 = f(by,) > € forb, %0 (k=1,2,...,m)

(7, Lemma 1.2) and
0> T =f(am,,) > — :if“& = — §.
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By fixing ¢ > 0, taking & > 0 sufficiently small, and then multiplying the s,
with a sufficiently large positive number, we obtain the following statement:

(*) For each m, p with p,, > 0 and for any two positive numbers M, 7,
there is a bounded sequence s, with s, = 0 for # < p such that

0m=zamn5n=_ﬂy T)‘=Zb>\n5n>0 (>\=1,2,),
n n

7> M if 1 <u<m and by, # 0.

We now define inductively increasing sequences of integers p1, ps, . . . , my,
Mms, . . . and bounded sequences s'? satisfying s,(? = 0 for n < p;. If
) (i-1)
Ply-"ypi—i;”lly--'ami—i;s 7'-'181
are already defined, take p; so large that a,, =0 for n > py, u = my, ..., m, 4,

then find an m; > m,;_; with
’Z am;,n(sn(l) + ...+ sn(i_l))l < %» P(ammnKpi) > 0.

By (*), there is a bounded sequence s with 5,9 = 0 for n < p, such that

(6) Z a’m.'.n(sn(l) + ...+ Sn(i)) = - ]v

n=1
(7) D bws? >0 A=1,2,...),
(8) > bun 5a'” > 0 if by, # 0 w=1,...,m).

Let 8 = (s,) be the sequence defined by s, = > ; s,{?; for each n this sum has
only a finite number of terms. Since a,, and s are disjoint for j > 7, we have
by (6), e, = — 1, and by (7) and (8), 7» — «, which contradicts the hypo-
thesis and proves (5).

Fixing a p for which (5) holds, we consider an arbitrary m. For each ¢ > 0
there is an X in K such that

(9) Hamp - Xp” < €, X = Z cub/n Cu > 0.
Let g be the last index # with a,, % 0. If we omit from the last sum all b,

for which
Z bun > Z bunv

n>q n<q
we shall obtain an element X’ € K with
[am, — X5|| < [|am — Xpl|.

It follows that p in (9) may be assumed bounded for all . Then we must have

N
(10) a,, = Z CmnDrp, Cnn > 0.
n=1

This proves the theorem, for the argument used in the proof of Theorem 1
shows that C = (¢,,) is regular, provided in (10) we take c,, = 0 whenever
b,, = 0.
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We give some corollaries to Theorem 2, assuming that the matrices 4, B
are regular and row-finite and that B is positive. We compare the following
relations (for the definition of the core of a possibly unbounded sequence
see (4, p. 55)):

(i) BKA.
(i1) For each sequence s,, 7, — + « implies that lan[ — 4+ .,

(iii) A, = CB, for some p with C > 0.

(iv) A is core-consistent with B for all real sequences.

(v) A is core-consistent with B for all complex sequences.
Then we have:

TueoreM 3.  Conditions (i)-(v) are equivalent.

Proof. Clearly, (i) — (ii). Theorem 2 shows that (ii) implies (iii) and it is
easy to see that (iii) — (i). From the definitions of the properties concerned
we have (v) — (iv) — (ii). Finally, Knopp's core theorem states that (iii)
— (v). This completes the proof.

4. Applications. For further illustration of Theorems 1 and 2 we shall
give some applications to totally equivalent and core equivalent methods.
Two methods 4, B are totally equivalent, if A < B and B < 4; they are core-
equivalent for bounded sequences if the A-core of each bounded sequence coin-
cides with its B-core. In what follows, V is a matrix such that the norm of the
mth row tend to zero for m — o, and I is the unit matrix.

TueoreM 4. (i) A method A 1is core-equivalent with I for bounded sequences
if and only if A has a representation

(11) A=4"+7V
with positive A’, where A’ contains a sequence of rows of the form
(12) a’m,. = (Ov LEEEE ] 01 Amp,ny Ov o ‘)1 n = 11 2v ..

(then necessarily m, — ®, ¢p,,, — 1 for n — ».)
(ii) A regular row-finite method A 1s totally equivalent with I if and only if
for some p, A, is positive and contains a sequence of rows of the form (12).

Proof. (i) The conditions are clearly sufficient. It follows from Theorem 1
that (11) with a positive 4’ is necessary. Again by Theorem 1, there is a positive
regular matrix C and a V' with CA” = I 4 V’. For each » we have

o)

(13) 4 Cnma’m = €,

m=
With €ni > Ov en = (enl)v €nn i 1 and

Zem——)O

I#n
for n — . Let
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Then ¢, — 0 for  — . Since the ¢, are all positive, it follows from (13) that
there is at least one m = m, such that
a'ml
— < €,
l#n a,mn =
For otherwise, multiplying the relations

Z a"MI > ena'mn (m
i<n

1,2,...)

with ¢,» and adding we would obtain by means of (13) that
Z €ni > €nlnn ,
l#n
which contradicts the definition of e,.
We now replace by zero the elements a,; of the rows of 4’ with m = m,,
l# n(n=1,2,...). Denoting the matrix thus obtained again by 4’, we see
that (11) and (12) are satisfied. This proves (i); the proof of (ii) is similar.

Theorem 4(i) may serve to show, for instance, that if a regular Hausdorff
method H, is core-equivalent with I for bounded sequences, then H, is identical

with I.
A method A is normal if @, = 0forn >manda,, 0 (nr=1,2,...).In
this case A has an inverse A~1. If 4, B are normal, there is a triangular matrix

C with A = CB.

THEOREM 5. Let the regular normal methods A, B be totally equivalent. Then
there exists a sequence ¢, — 1 such that for some p,

(14) Amn = Cm by, m=12,...;n=p,p+1,....

Proof. Let A = CB, B = DA, then the matrices C, D are triangular,
regular and totally equivalent with I. We have

Amm = Cmm bmm, bmm = mm@mm,

hence
Cmmdmm =1,

and we obtain ¢, — 1. From Theorem 4 (ii) it follows that for all sufficiently
large 7, ¢wn = 0 if n # m. Putting ¢, = cpm, We obtain (14).

It should be added that sometimes it is even possible to prove that 4, B are
identical if they are totally equivalent. Let A = H,, B = H,, be two regular
and normal Hausdorff methods. Then

m

Z |Gl

n=0
converges for m — » to the ‘‘essential”’ total variation of g(x). From (14) it
follows that

Z |arrm - bmn[ - Ov
n=0
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hence g and g, are essentially identical. Thus we obtain a remark of Bosanquet
(2, p. 452) that H,, H,, are identical if they are totally equivalent.
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