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1. Introduction. We shall consider methods of summation A, B, . . . 
defined by matrices of real elements (amn), (bmn), {m, n = 1, 2, . . .) which are 
regular, that is, have the three well-known properties of Toeplitz (4, p. 43). 
A method A is said to be core-consistent with the method B for bounded sequences 
if the ,4-core (3, p. 137; and 4, p. 55) of each real bounded sequence is con­
tained in its J3-core. B is totally included in A, B <&A, if each real sequence 
which is 23-summable to a definite limit (this limit may be finite or infinite of 
a definite sign) is also ^4-summable to the same limit. It will be shown in the 
present paper that if the matrix A is core-consistent with the positive matrix B, 
then A is * 'almost" divisible by B on the right. This statement is made precise 
in Theorem 1 below. The proof (§2) involves some elementary properties of 
convex sets in Banach spaces. In §3, the same method is used to prove a similar 
result for the relation B <<C A (Theorem 2). Some simple corollaries are given 
in §4. 

Let l\ be the Banach space of elements x = (xw), with norm 
oo 

llXll = H Mi 

so that the rows of the matrices A, B are elements aTO, bm of l\. Elements x, y Ç l\ 
are called disjoint if xnyn = 0 {n — 1, 2, . . .) ; an element x £ h is positive, x > 0, 
if xn > 0 (n = 1, 2, . . .). If x = (#i, x2j . . . , xni . . .) £ /i, we shall write 

x* = (xi, . . . , xqi 0, 0, . . .), xp = (0, . . . , 0, xP, xp+i, . . .), 

x / = (0, . . . , 0, xp, . . . , xqi 0, . . .), p < q. 

We also use the same notation for sets E C î» for instance EP
Q is the set of all 

x / with x Ç E. A cone K C h is a set such that 
n 

i 

whenever ck > 0, xk € K. For instance, the set of all positive elements is a 
cone in l\. 

We shall prove the following theorems : 

THEOREM 1. Let A, B be regular matrices and let A be core-consistent with 
B. If B is positive, that is if bm > 0 (m = 1, 2, . . .), there is a positive regular 
matrix C such that the norm of the mth row of CB — A tends to zero for m —» <». 
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The case where the elements of the sequences, or of the matrices, are complex 
is not essentially different as will be shown in §2. 

If A = (amn), we shall write Ap for the matrix obtained from A by replacing 
all amn with n < p by zeros. 

THEOREM 2. IfA,B are regular row-finite matrices, B positive and 

(i) B«A, 

there is an integer p and a regular positive row-finite matrix C such that 

(1) CB, = Ap; 

this remains true if (i) is replaced by the (formally weaker) hypothesis that 
(ii) Tn —» + °° always implies \an\ —•» + » , where an and rn are the A- and the 

B- transforms of a sequence sni respectively. 

If B is the unit matrix / , these results were known before; for the case of 
Theorem 1 see Agnew (1), also (3, p. 149); for Theorem 2, Hurwitz (5) or 
(4, p. 53). 

2. Core-consistency. If Theorem 1 is true for a given pair of matrices 
A, B, it is also true for any two matrices A', B' with rows a'm, b 'w satisfying 

l ia*- a;| |->0, | |bm-KH-frO. 
This and the regularity of A, B imply that we may assume A, B to be row-
finite, and such that there is a sequence n{m) increasing to + <» with amn = bmn 

— 0 for n < n (m). 

LEMMA. In the above conditions there exist two sequences p — p(m) < q(m) 
such that p (m) —•> °° for m —> °° and that 

(2) p(aw,i£) = p ( a m , i T / ) ; 

here p(am, K) is the distance from aw fo //ze owe K generated by the b\(X = 
1, 2, . . .). 

Proof. For a given ra, let mx < m2 be such that bM is disjoint with am if M 
does not satisfy Wi < ju < ra2; we may assume that Wi —» œ for m—» oo. 
Let i£' be the cone generated by the bM, W i < / i < w2l let />(m) = »(wii) 
and let q be so large that bm = 0, mi < M < ra2, amn = 0 for w > q. Then 
a w / = am, i^V = i£', and therefore 

(3) P(aw, i£) < P(aw, Kf) = P(am, X V ) . 

On the other hand, let x Ç K, then x is a linear combination, with positive 
coefficients, of some of the b\. If we omit from it all those b \ which are not 
bM, we shall obtain another element x' £ Kf. The omitted bx are disjoint with 
am and all b\n satisfy b\n > 0. This implies 

| | a w - x / | | > | | a w -xVI | . 
Since K'P

Q C KP
Q, it follows that p(am, K/) = p(am, K'p

q) and using (3) we 
obtain p(am, K) < p(aw, Kp

q). The inverse inequality is obvious, and (2) follows. 
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Proof of Theorem 1. We shall show that 

(4) P(am,iq->0. 
If this is not true, there exists by the Lemma an e > 0, a sequence of disjoint 
2imi and a sequence of disjoint intervals [piy g»] with 

P(ami,KPi
Qi) > e. 

If 

y = Z) C&mi 

is a linear combination of the amt with d > 0, J^d = 1 and if x (E K, we can 
put 

Zi = Ci XP t Ç -^-p» 

and have 

lly - xll = llS^am* - Z ) c * z i l l =Z)^<l|a«< ~ z*ll > €-
This shows that the convex set E generated by the am< is at a distance > e 

from E, hence the «-neighbourhood E€ of £ is disjoint with K. If i£c is the 
cone generated by E€, K and Ke are disjoint except for the origin. By a well-
known theorem (7, Theorem 1.2), there is in h a bounded linear functional 
/(x) of norm one which is positive on K and negative on Ke. Hence /(y) < — e 
on E (7, Lemma 1.2). This means that there is a bounded sequence s, with 

Z) *»*^ > 0 (m = 1,2, . . .), 

22 Om«,* s* < — e (i = 1 ,2 , . . .), 

and contradicts the hypothesis of Theorem 1. 
From (4) it follows that for some row-finite positive matrix C — (cmn), 

n 

Finally, this C will be necessarily regular, provided we agree to take cmn = 0 
whenever b„ = 0. For 

oo 

Cmn bnp < 2 £mn ^n? = ^ » + # ( 1 ) = ^ ( l ) , m —> oo 
n=l 

implies that cmn —» 0 for w —•» oo and each w. On the other hand, 
oo  

E a « " = S 22 cmn bnv + o{\) 
p=»l v n 

= 21 ̂ mnS 6*r + 0(1) 
together with 

£ am, = 1 + o(l), 2 t = l + (̂1) 

imply that ^cmn —» 1 for m —> °°. This completes the proof. 
n 

The concept of the core is defined also for sequences of complex numbers 
(3, p. 137). Accordingly, we may introduce the concept of core-consistency 
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as well for matrices and sequences with complex elements. With this new 
definition, Theorem 1 holds literally as before. 

For the proof assume that A is a regular matrix with complex elements, 
B is positive and that A is core-consistent with B for bounded sequences. 
Hence, by Knopp's core theorem (6, p. 115) or (4, p. 55), the core of the B-
transform of any bounded sequence sn is included in the core of sn. But A is 
core-consistent with B, and so the core of the A -transform of sn also is included 
in the core of sn. This implies (3, p. 149) that A — A' + F where A is a positive 
regular matrix, and the norm of the mth row of the matrix V tends to zero as 
m —> oo. Clearly, A' also is core-consistent with B, for complex or more particu­
larly, for real sequences. I t then follows from the original Theorem 1 that there 
exists a positive regular matrix C such that the norm of the rath row of CB — Af 

tends to zero from m —> oo . Consequently, the norm of the mth row of 

CB - A = CB - A' - V 

also tends to zero for m —-> oo. This proves our assertion. 
The converse of this (as well as the converse of Theorem 1) is a direct con­

sequence of Knopp's core theorem. Thus, let A, B, C, be three regular matrices, 
C positive, such that the norm of the rath row of CB — A tends to zero for 
ra —» °°. Then the core of the transform of any bounded complex sequence sn 

by CB coincides with the core of the transform of sn by A. The transform of 
sn by CB is the transform by C of the transform of sn by B. Hence the core of 
the transform of sn by CB is included in the core of the transform of sn by B, 
by virtue of Knopp's core theorem. In other words, CB, and hence A, are core-
consistent with B for bounded sequences. 

3. Total inclusion. We shall now prove Theorem 2, deducing (1) from the 
hypothesis (ii). Let pmp = p(amp, Kp); we first show that 

(5) pmp = 0 for all p sufficiently large and ra = 1, 2, . . . . 

Let (5) be false. Since the pmp decrease for ra fixed and increasing p and finally 
become zero, we deduce that for each p, pmp > 0 for an infinity of m. Now 
Pmv > 0 implies the existence of ô > 0, e > 0 such that the sphere S in lx with 
center amp and radius ô does not have common points with the cone K' generated 
by the points h\p (X = 1, 2, . . .), and by the spheres with radii e around those 
of the bMP (p. = 1, 2, . . . , m) which are not zero. Hence, there is a functional 

/(X) = 2 XnSn, 11/11 = 1 in /l, 
generated by a bounded sequence sn with sn = 0 for n < p, such that the 
hyperplane/(x) = 0 separates S and K' and supports 5 (by Eidelheit's theorem, 
(7, Theorem 1.6)). If/(x) > 0 on K', we have 

r» = KKP) > e for %p * 0 (M = 1, 2 m) 

(7, Lemma 1.2) and 
0 > <im =/(amj,) > - H/Ho = - 5 . 
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By fixing e > 0, taking 8 > 0 sufficiently small, and then multiplying the sn 

with a sufficiently large positive number, we obtain the following s ta tement : 

(*) For each m, p with pmp > 0 and for any two positive numbers M, rj, 
there is a bounded sequence sn with sn = 0 for n < p such tha t 

°m = Z ^ 0mM Sn = — 7], T\ = 2^, b\n Sn ^ 0 (X = 1, 2, . . . ) , 

TM > i f if 1 < jji < w and bMP ^ 0. 

We now define inductively increasing sequences of integers pi, p2l . . . , mi, 
m2, . . . and bounded sequences s ( i ) satisfying sw

(i) = 0 for n < pt. If 

pi, . . . , pi-ù mx, . . . , mi-ù s , . . . , S l~ 

are already defined, take pt so large tha t am = 0 for n > pu y. = mi, . . . , Wj_i, 
then find an mt > w z_i with 

l Z a . , , ( j , ( 1 ) + . • • + sn
(i^)\ < h p{amiP„KPi) > 0. 

By (*), there is a bounded sequence S ( i ) with 5„(i) = 0 for n < pt such tha t 
CO 

(6) Efl» i , .fc" ) + . . . + s,(i)) = - l , 

(7) E * x » ^ ( O > 0 (X = l , 2 , . . . ) , 
ft 

(8) £ &„„ s„(i) > t if b„{ * 0 (M = 1, . . . , m). 
n 

Let s = (sn) be the sequence defined by sn = Yli sn(i)\ for each n this sum has 
only a finite number of terms. Since am. and sU) are disjoint for j > i, we have 
by (6), ami = — 1, and by (7) and (8), r\ —» °°, which contradicts the hypo­
thesis and proves (5). 

Fixing a p for which (5) holds, we consider an arbi trary m. For each e > 0 
there is an x in K such tha t 

(9) ||amp - x„|| < e, x = YJ £MbM, c» > 0. 

Let g be the last index n with amn j* 0. If we omit from the last sum all bM 

for which 

we shall obtain an element x' Ç X with 

I ) «Wp Xp J J <̂  j j <xmp \p 11. 

I t follows tha t JJ, in (9) may be assumed bounded for all e. Then we must have 
N 

(10) iàmv = ]T) > 0 . 

This proves the theorem, for the argument used in the proof of Theorem 1 
shows tha t C = (cmn) is regular, provided in (10) we take cmn = 0 whenever 
b M - 0. 
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We give some corollaries to Theorem 2, assuming that the matrices A, B 
are regular and row-finite and that B is positive. We compare the following 
relations (for the definition of the core of a possibly unbounded sequence 
see (4, p. 55)) : 

(i) B«A. 
(ii) For each sequence sn, rn —» -f oo implies that |<rn| —» + °° • 

(iii) AP = CBP for some p with C > 0. 
(iv) A is core-consistent with i? for all real sequences. 
(v) A is core-consistent with B for all complex sequences. 

Then we have: 

THEOREM 3. Conditions (i)-(v) are equivalent. 

Proof. Clearly, (i) —» (ii). Theorem 2 shows that (ii) implies (iii) and it is 
easy to see that (iii) —» (i). From the definitions of the properties concerned 
we have (v) —> (iv) -—> (ii). Finally, Knopp's core theorem states that (iii) 
—» (v). This completes the proof. 

4. Applications. For further illustration of Theorems 1 and 2 we shall 
give some applications to totally equivalent and core equivalent methods. 
Two methods A, B are totally equivalent, if A « B and B « A ; they are core-
equivalent for bounded sequences if the A -core of each bounded sequence coin­
cides with its B-core. In what follows, F is a matrix such that the norm of the 
rath row tend to zero for m —» oo, and I is the unit matrix. 

THEOREM 4. (i) A method A is core-equivalent with I for bounded sequences 
if and only if A has a representation 

(11) A = A9 + V 

with positive A', where A' contains a sequence of rows of the form 

(12) a'mn = (0, . . . , 0, amn,ni 0, . . . ) , n = 1, 2 

(then necessarily mn —> œ , am„>re —» 1 for w —> oo.) 
(ii) A regular row-finite method A is totally equivalent with I if and only if 

for some p, Avis positive and contains a sequence of rows of the form (12). 

Proof, (i) The conditions are clearly sufficient. It follows from Theorem 1 
that (11) with a positive A' is necessary. Again by Theorem 1, there is a positive 
regular matrix C and a V with CA' = I + V. For each n we have 

oo 

(13) 2s cnm&> m =s ®n 
ra=l 

with enl > 0, en = (en0> enw —> 1 and 

for n —> oo . Let 
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Then tn —> 0 for n —-> co. Since the cnm are all positive, it follows from (13) that 
there is at least one m = mn such that 

E fl mi ^ 

Ijén M mn 

For otherwise, multiplying the relations 

] C a'ml > tndmn ( m = 1 , 2 , . . . ) 

with cwm and adding we would obtain by means of (13) that 

which contradicts the definition of en. 
We now replace by zero the elements ami of the rows of A' with m = mn, 

I 5* n(n = 1, 2, . . .)• Denoting the matrix thus obtained again by A', we see 
that (11) and (12) are satisfied. This proves (i); the proof of (ii) is similar. 

Theorem 4(i) may serve to show, for instance, that if a regular Hausdorff 
method Hg is core-equivalent with / for bounded sequences, then Hg is identical 
with J. 

A method A is normal if amn = 0 for n > m and ann ?± 0 (n = 1, 2, . . .)• In 
this case A has an inverse A~l. If A, B are normal, there is a triangular matrix 
C with A = CB. 

THEOREM 5. Let the regular normal methods A, B be totally equivalent. Then 
there exists a sequence cm —> 1 such that for some p, 

(14) amn = cm bmn, m = 1, 2, . . . ; n = p, p + 1, 

Proof. Let A — CB, B = DA, then the matrices C, Z> are triangular, 
regular and totally equivalent with / . We have 

&mm = Cmm ^mmi Dmm ~ O'mm^mmi 

hence 

and we obtain cmm —-> 1. From Theorem 4 (ii) it follows that for all sufficiently 
large w, cmn = 0 if n ^ w. Putting cm = £mm, we obtain (14). 

It should be added that sometimes it is even possible to prove that Ay B are 
identical if they are totally equivalent. Let A = H0, B = HQx be two regular 
and normal Hausdorff methods. Then 

m 

2 kmn| 
n = 0 

converges for m —» <» to the "essential" total variation of g (re). From (14) it 
follows that 

m 

X) \amn — bmn\ —>0, 
n=0 
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hence g and gi are essentially identical. Thus we obtain a remark of Bosanquet 
(2, p. 452) that HÇi HQl are identical if they are totally equivalent. 

REFERENCES 

1. R. P. Agnew, Cores of complex sequences and of their transforms, Amer. J. Math. 61 (1939), 
178-186. 

2. S. K. Basu, On the total relative strength of the Holder and Cesàro methods, Proc. London 
Math. Soc. (2), 50 (1949), 447-462. 

3. R. G. Cooke, Infinite matrices and sequence spaces (London, 1950). 
4. G. H. Hardy, Divergent series (Oxford, 1949). 
5. W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences, Proc. London 

Math. Soc. (2), 26 (1926), 231-248. 
6. K. Knopp, Zur Théorie der Limitierungsverfahren. Math. Zeitschrift, 31 (1929-30), pp. 

97-127, 276-305. 
7. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, 

Uspehi Mat. Nauk (N.S.), 3, no 23 (1948), 3-95; Amer. Math. Soc. Translations no. 
26 (1950). 

Wayne University 
and 
University of Toronto 

https://doi.org/10.4153/CJM-1954-004-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-004-8

