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Abstrac t . The operational work of the Interplanetary Solar Stereo­
scopic Observatory (ISSO) may continue for 11 years. The ISSO Project 
is designed to insert two spacecraft (SC) into Lagrangian triangular libra-
tion points of the "Sun + barycenter (the Earth + the Moon)" system. 
The Project scientific program consists of two sets of experiments related 
to solar physics and to dynamical astronomy, respectively. 

Various options of the astronomical observation program are possi­
ble. We discuss the option where the stereoscopic mode is applied to the 
direct triangulation observations of the solar system objects with respect 
to the ICRS coordinate frame. 

The stereoscopic mode with the baseline equal to y/Z appears to be 
suitable for receiving the three-dimensional (3-D) measurement series for 
planets during the ISSO's lifetime. Extended investigation of the plan­
etary aberration based on the observations of major and minor planets, 
the direct distance determinations for minor planets and Kuiper's belt 
objects, and the new set of star parallaxes may be used for construct­
ing a new fundamental ephemeris and establishing an alternative scale of 
stellar distances. The accuracy of the angular measurements is expected 
to attain the milliarcsecond level. 

1. Introduction 

Stereoscopic vision with the base-line of ~6-7 cm had been the first natural 
basis of human evolution in its geometric 3-D adaptation in the world. It is just 
that principle that is laid in origin of all scale systems in modern astronomy as 
well. The maximum usage of the principle is possible in the stable stereoscopic 
mode of astronomical observations. 

The Project of the Interplanetary Solar Stereoscopic Observatory (ISSO) 
has been proposed by Grigoryev (1993). Extended scientific objectives and pro­
grams were proposed by Chubey et ai, (1998). Besides the 3-D monitoring of 
solar activity processes, the essential advantages for observations of practically 
all solar system objects and of star parallaxes in the mode of direct triangulation 
are evident. 

The observations of the microvariable stars, macro- and microlensed objects 
can be also performed by the ISSO instruments. But neither this topic, nor the 
solar monitoring program will be described in this article as being out of the 
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main scope of this IAU Colloquium. We shall not be concerned also with detailed 
aspects of the Project except the observation instruments. 

Our main goal is to describe, strictly speaking, the trianguiation potential­
ities of the ISSO. 

Two identical on-board instrumental complexes are supposed to be used 
to solve the astronomical problems in the stereoscope mode and/or in the sep­
arate programs for the direct imaging of the celestial bodies with differential 
astrometric determinations of the object positions in the reference catalog sys­
tem and to determine the images' brightness using the broadband photometry 
system UBVR. The standard calibration of the instruments and the accurate 
chronometry of all measuring processes will be performed under the constant 
control of an on-board computer. 

2. The optimal launching scheme 

Inserting the spacecraft (SC) into the libration points i 4 and L5 (Fig. 1) can 
be made in the framework of the three-pulse orbit transfer scheme. Thus the 
start of the SC, aiming at insertion into the point £5, occurs from a near-Earth 
orbit first at time D\ when the Earth is at the point L$. For the transition 
orbit the given point coincides with the perihelion. After 1.17 years when this 
SC will return again to its starting point, it will brake and stop at this point 
of the Earth orbit, which will be the Lagrangian point L&. In the time span of 
the motion of this SC the Earth will have moved around the Sun by the angle 
of 420° and will be advancing the SC in the orbit by the angle of 60°. 

At the time moment D2 = D\ + 0.34 years, when the Earth will be at the 
point £4, the start from the near Earth orbit of the second SC in the framework 
of the same scheme should be made, but for this transition orbit the starting 
point will be now at the aphelion. This SC will return to the same point in 0.83 
years. At time D3 = D\ + 1.17 years, both spacecraft simultaneously arrive at 
the Lagrangian points and their decelerating (braking) or accelerating, and the 
maneuvers to form final orbits also will be made. The Earth at the moment D3 
occupies its pre-calculated position T3, and the stage of the SC navigation will be 
completed. This sequence of inserting the SC into their orbits is the optimal one 
for decreasing the time of radiation influence upon the yet undeployed scientific 
equipment (Chuchkov, 1989; Zabelina, 1997). 

The spacecraft with instruments are placed in Earth orbit in the points Z4, 
L5 (Fig. 1) which are the vertices of the equilateral triangles SL4T and SL5T 
where T means the Earth's position in its orbit. 

To strictly meet the metrology requirements, in addition to the calibration 
measurements of distances by a radar system, it is necessary to determine the 
angles between the sides L4T3 and Z5T3 of the triangle (Fig. 1). A method of 
measurement of the angles as shown in Fig. 2 is based on synchronous measure­
ments of the positions of the Earth and the Moon images with respect to the 
stellar frame of reference represented by a reference catalog. 

The same observation mode for major planets or asteroids, with well-developed 
theories of motion is assumed to be used for the regular determination of the 
distances L4T3 and .L5T3. The DE403/LE403 ephemerides are to be used as the 
references for this navigation as well as other program requirements. 
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T]*T,*0i34y 
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Figure 1. Optimum scheme of SC starts and the formation of their 
orbits. P5, the aphelion of the transporting orbit for the spacecraft in 
X5, the Earth being at T5 at the moment of the aphelion P5 passage. 
P\ is the analogous aphelion for the spacecraft placed in X4. The small 
deviation in the SC start velocity may result in the essential change 
of the heliocentric transfer path and time, so that permanent orbital 
control is necessary. 
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Figure 2. The remote self-navigation instrument concept. The bright 
< Earth + Moon > will be imaged in the focal planes / 2 or / / 2 . 
The image of the undisturbed < star field > which is placed on the 
extension of the vector TL5 (or TL4) will be imaged in the planes / l 
or ffl. The on-board processor analysis gives the vector orientation. 
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The Earth's image as seen from the points L4 and L5 will look like a sphere 
(more precisely, like an ellipsoid of rotation) not completely illuminated by the 
Sun with the angular diameter de = 17"6, the constant phase angle a = 60°, and 
with the position angle of the dark terminator \ = 0°. The integral brightness of 
the Earth and the Moon in the V-filter will be -2 .95m and +1.84m, respectively. 
Their observations as well as the observations of bright stars and planets require 
absorption filters to be used, and a special processing technique as well. 

The possibility has not been excluded that the same observations of the 
Earth will possibly provide for highly important photometry information about 
the global processes in the terrestrial ionosphere and magnetosphere that may 
be detected only from remote long-term observations. 

3. Dynamical aspects of the experiment 

The numerical simulation of the inertial motion of the SC is performed by the 
simultaneous integration of the post-Newtonian orbital motion equations for the 
Sun, major planets, the Earth + Moon barycenter, the Moon, the two zero mass-
points (the SC) as well as of the Newtonian equations of the Moon's rotation. 
The initial conditions of the SC motion are defined in the first approximation 
by the position, velocity and acceleration of the Earth + Moon barycenter and 
the coordinates of the triangular libration points Z4 and L5. The integrated 
equations of motion of the major bodies of the solar system reproduce rather 
well the fundamental ephemeris DE200/LE200. Thus the predicted orbits of the 
SC can be regarded as authentic. 

If the initial conditions are formed with no deviations from the theoretical 
ones, then the motions of SC in the vicinity of the L4 and L5 points would be 
rather regular ones. 

The orbital motion of the zero-mass bodies in the vicinity of the Lagrangian 
libration centers L4 and Z5 is shown in Fig. 3 in terms of variations of the angles 
Z55T3, L4ST3 (Fig. 1). It is necessary to emphasize that the algorithm to 
construct the SC's orbits is completely identical to the one used to construct the 
major planets' orbits. It is necessary to complement the system of the differential 
equations of the problem under consideration by the differential equations of the 
Earth's rotation. It permits us to predict with required precision the positions 
of the SC with respect to an arbitrary point on the Earth's surface. It is quite 
necessary for practical computation of the initial conditions of passive motion, 
as well as for the guidance and the full-scale metrology control. 

Synchronous observations permit us to exclude both the motion of an object 
and that of an observer. The series of star observations is subject to errors of 
different origin and properties in comparison with classical ones. 

4. Construction of the spacecraft orbits. Determination of the Stere­
oscope base-line 

The idea of the method is based on application of the on-board, two-directions 
star sensor (Fig. 2) allowing measurements in a coordinate system of a high-
precision. It is assumed that for a known moment of observation the available 
on-board equipment includes: 
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Figure 3. The post-Newtonian approximation of the motion of zero 
mass-points in the vicinity of the triangular libration points over the 
time span from 1969 to 2075 as represented by variations of the helio­
centric angles between the Earth + Moon barycenter direction and the 
zero mass-points directions. 

• The software package for computing the position ephemerides for the Earth 
(T, Fig. 1), the Moon (Moon), observed planets (PI) and their satellites 
(Sat), and minor planets (Mpl); 

• Catalog and software for an evaluation of astrographic positions and bright­
ness of stellar objects in required areas on the sky; 

• The numerical theory of motion of zero mass-points (used for the SC, each 
SC is treated as a third body in the three-body problem) in the vicinity 
of the libration centers; 

• The on-board processor with an appropriate operating system and a clock 
(the time standard). 

By using the star sensor the following problems of spatial position determi­
nation of a spacecraft have been solved for two cases: 

1. The spacecraft position determination from the on-board angular mea­
surements only, 

2. The spacecraft position determination when the direct radio measure­
ments of distances from a ground-based command-measuring complex to 
the spacecraft are available. 

Let's consider each case separately. 
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Figure 4. Determination of the proper position of a spacecraft by 
observing the Earth and a planet or the Earth and the Sun. 

4.1. The spacecraft position determination from the on-board angu­
lar measurements only 

Such a determination may be executed at all phases of the ISSO lifetime, i.e. 
from the moment of transition onto a heliocentric transfer orbit to the complete 
conclusion of the experiment. Directions of two vectors .Ri and R3 (Fig. 4) are 
independently being measured by the star sensor on-board the SC. The times 
of events are recorded by the on-board clock and compared with the scale of 
Barycentric Dynamic Time, TDB. The vector R2, from the Earth's center to 
the planet's center is calculated on-board using a standard ephemeris giving the 
Earth's and a planet's heliocentric radii vectors pi and ^3, respectively, at the 
required moment. Hence, in the triangle KTP the linear element, the modulus 
of the vector R2 is calculated, and the directions of vectors Ri, R3 and R2 are 
measured. The determination of the modulus of vector R\ now becomes possible 
because the linear element and all three angles in the triangle KTP are known. 
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Actually, through three points only one plane can pass, and, therefore, the 
vectors are coplanar. The vector R2 = TP = {r2,A2,/32} direction is measured 
from a point K in the spherical geocentric coordinate system. The vector is 
calculated using the Earth T and a "navigational" planet P radius vectors p2 and 
P3, respectively. The direction of vector R3 — TP = {r3, A3, #3} is also observed 
from the point K. Taking into account, if necessary, the parallactic displacement 
of reference stars in the frame as recorded by a navigational observation of the 
planet P and caused by the shift along the vector D directed perpendicularly 
from the Earth's center onto the vector R3 direction (Fig. 4) we can reduce the 
vector Rz to the Earth's center. Now in the flat triangle KTP the angles at its 
vertices are those formed by the known directions, i.e. they also are known. So, 
the triangle may be solved, and the vectors R\, R3 determined. 

All three bodies are moving, but it is easy to consider their motions during 
the observation time span as circular (probably, a linear approximation will be 
sufficient). To measure all directions and line segments entering the navigation 
and actually belonging to the effective unified triangle in Euclidean space, it is 
necessary to take into account changes of spatial positions of three bodies, the 
centers of which form the navigational triangle during the appropriate light-time 
intervals. To determine the values of these light-time intervals and to correctly 
calculate the ephemeris positions of the Earth and the planet for an observation, 
let us consider again Fig. 4. 

Let's assume that the observations of directions of vectors R\, R3 are made 
at a point K at the common time t0bs. It is possible to optimize the sequence of 
observations. The measured angle LTKP = 4>\ is the angular distance between 
two points in the satellite-centric coordinate system K(r,\,/3), the axes of which 
are parallel to those of the heliocentric ecliptic coordinate system. The first 
point T{ri,Ai,/?i} coincides with the heliocentric position p2 of the Earth T at 
the moment preceding the moment t0bs by the time-span required for the light 
wave to travel over the distance r\. The second point {Y3, A3, (I3} represents the 
analogous position p$ of a planet P at the moment preceding the moment 10bs by 
the value of the corresponding light-time interval. Let's designate LTPK = <f>3 
and LKTP = <f>2. 

The light-time r(.R,-) for the vector i2,- is calculated (but not measured!) by 
the formula: 

T(Ri) = ^ (1) 

if both the modulus of the vector and the velocity of light in vacuo are known. 
To determine the vector R3 now we have the vector equation: 

Mtobs) = Pz (tob8 - 1^1) - p2 (tobs - i ^ i ) . (2) 

The sine formula gives the following values of the vectors R\, R3, their 
directions in space having immediately been observed: 

1*1" 1*1 'ST' 
sin 0i 
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\R3\ = \R2\ . ^ h . (3) 
sin 92 

All variables entering the formulae (2), (3) are functions of the light-time. 
For the evaluation of the light-time the equations (1), (2), (3) should be solved 
by iteration in accordance with the scheme: 

T0 = 0, -»• Rk - Rk(Tk-l), 

r, = J^U=l,2 . . . (4) 

\Tk+i -T-Jtl < e, 

where e is the required accuracy of an evaluation of the time argument. 

4.2. Determination of the spacecraft position using the direct ra­
dio measurements of distances from a ground-based command-
measuring complex (GCMC) to a spacecraft. Evaluation of the 
stereoscope base-line. 

Let's assume that the deep space communication radar combined with the re-
translator located onboard a spacecraft are used to measure distances from 
GCMC to both spacecraft. In this case the measurement scheme provides the 
absolute (not the pre-computed) range tracings. 

The radar measurements give the UTC proper time intervals of the radio 
waves propagation by use of the atomic clock at an observing site. Let's consider 
the true path of a radio beam. 

It is impossible to observe directly the position of the "Earth + Moon" 
system barycenter. The Earth is observed, and its position with respect to 
the "E + M" barycenter is known. The time record t is made on the scale of 
ephemeris time TDB (the Barycentric Dynamical Time), being kept, e.g., by 
the atomic time standard of an observing site. 

In an ideal case the vector of the base-line KP (Fig. 5) connects the centers 
of spacecraft K and P in their theoretical position relative to the barycenter of 
the system < "the barycenter of the Earth + the Moon" system + the Sun>. 

Due to the influence of the planetary aberration and of the pure libration 
motion the observables are the vectors R\, R?, and the angle K'TP'. At a 
moment to, let a signal be emitted from the Earth as the spherical wave v 
propagating with the velocity of light. Because of orbital motions of the centers 
T, K and P the instrument on the SC moving in the vicinity of the libration 
center L5 will meet the wave v at the point K at the time tjc = to + T(RI), 

while that aboard the SC moving in the vicinity of the X4 center meets the wave 
at the point P' at the time tp> = to + ^( i^)- At the moments of their arrival at 
the SCs, let the signals be reflected in the direction to the pre-computed Earth 
position at the moments of arrival of the reflected signals from both spacecraft. 
Obviously, it is the position of the Earth at T" where the reflected signals from 
both SCs will meet since the path of the ray in the direction of the orbital motion 
of the Earth and in the opposite direction will be identical, so that |i?2| = \RA\-
Similarly, one gets |i?i| = |i?s|. It should be noted that the rotational shift of 
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Figure 5. The concept of triangulation measurements of the Stereo­
scope baseline vector. S'S" is the line of apses of the Earth orbit. 
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Figure 6. The elementary scheme of measurements of a radius vector 
for a body of the solar system. 

the observing site, the delay in the Earth's ionosphere, and the correction terms 
of the second order in evaluating the light-time intervals have been neglected 
here (Standish, 1990). We note only that in our case the radio signals are not 
reflected from the surface of a planet which has its own atmosphere and radiation 
belts but from points of the antennas aboard the spacecraft. 

Thus, the navigational triangles are formed by the point T from which the 
signal is emitted at the time moment to, and by the points K', P' and T" in which 
the signal is reflected and received as the echo. To measure the angle IT in this 
triangle, it is necessary to execute the exposures for determination of the Earth's 
direction at different time moments: tx' = to + T(RI) and tp> = to + ^(-^2) 

Let's measure now the position of the planet P synchronously. In the trian­
gle KTP (Fig. 4) its three angles and the side L4L5 are known. The reduction 
to the heliocentric coordinate system and the solution of a redundant set of 
equations do not cause any difficulties. 

5. Assessment of the 3-D measurement accuracy 

Let's evaluate the accuracy of the determination of the heliocentric position of 
a planet from the measurement session. 

Let's note that the solution of the problem dealing with the estimation of 
three-dimensional coordinates of a point object from space stereoscopic obser­
vations is already presented in the general review (Bakut and Schulz, 1998) of 
measurements in near-Earth space. In their measuring system of a stereoscopic 
pair the absolute observations in the instrumental system were used. Our ap­
proach differs in that it is based on differential measurements with respect to 
the reference frame represented by a high-precision catalog. 
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Let the sides L4T and L5T (Fig. 6) be measured in the single session with 
the error oT = ±20 km. Let's present the vectors L4T and L5T in the spherical 
heliocentric coordinate system as L4T = -R4{/94, A4,/34}, L5T = Rs{ps, As,/?s}. 
The angle 7 between the vectors R4 and R5 we shall find from the formula 

cos 7 = sin /34 sin /3s + cos /34 cos /?5 cos(A4 - A5). (5) 

All arguments in the right-hand side of (5) are measurable quantities and 
subject to the errors mentioned above. The points L4, T, L5 should be located in 
the plane of ecliptic. After some simplifications we have a differential relationship 
to determine the error of the computed angle 7 with respect to the second order 
terms: 

sin 7 • d-y = ((/?4 + /?5)cos(A4 - A5) + \/2sin(A4 - A5)) • d/3. (6) 

We can assume that the standard error of a single measurement of the an­
gular component of the direction vector when using the CCD-array observations 
is Co = <*\ — ap — ±0''05. Omitting the elementary calculations and taking 
into account the size of the quantities /34,/?5 and the properties of the triangle 
L4TL5, we get the final evaluation of the accuracy of the determination of the 
angle 7 as: 

<r7 = \/2a0 = ±0:'07 = 3.5 • 10" W . (7) 

Let's find the estimation of the accuracy of the determination of the length 
of vector L4L5 designated as the stereoscope baseline vector B{pz, ^3,/3s}. 

We have the expression for the square of the side in the triangle AL4TL5: 

p\ = PA + Ps ~ 2p4/>5 cos 7. (8) 

We have the complete differentials in the right-hand and left-hand sides of 
(8): 

P3dpz = 0»4 + />5)(1 - cos f)dp + p4p5 sin f • dj. (9) 

We shall derive the equation for the dispersion of the measured quantities 
by squaring both sides of (9) and taking into account that the equalities 

p3 = y/Sa, dp = dp4 = dps = |oy|> cos7 = -0 .5 , sin7 = -s/3/2 : 

(dP3)> = \{dpf + ^(<*7)2 + ^dp • dl. (10) 

are valid as a first approximation for moduli of the vectors. 
By substituting dispersions dp, dj, we shall obtain the required evaluation 

of accuracy of the baseline B determination in terms of astronomical units as: 

oB = dp3 = ±2.87 x 10-7a.e. (11) 

Let's evaluate now with what accuracy the distances to planets will be 
determined by using the stereoscopic baseline B. We come back to the scheme 
of Fig. 6. Let's assume that the planet P is stereoscopically observed in such a 
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way that the perpendicular from its center to the baseline vector falls precisely 
on the extremity of the baseline, i.e. on the point L5. We have the rectangular 
triangle PL5L4 in which the side B is known and the angle IP is measured, 
additionally the angle IL5 is a right angle. 

We have the elementary formula connecting the sides and an angle in this 
triangle: 

B , . 
sina = —, (12) 

where D is the perpendicular length or the distance of the planet from the point 
Is -

From (12) we get 

sin a sin a 

The dispersion of distance OD as that of a function of two variables B and 
a will be found from the expression 

B2 

°l (14) sin2 a tg2a sin2 a 

Let's write the complete differentials of the right-hand and left-hand mem­
bers of the equation (12) 

D-dB-B-dD / i r N 

cos a- da = —5 . (15) 

Thus we shall get the equation 

D D2 

dD = — • dB — cos a • da, (16) 
B B 

which can be written as the equivalent dispersion variations of the measured 
quantities: 

{6D)2= ( f ) 2 - ( ^ ) 2 + ( ^ c o s « ) 2 - ( M 2 - (17) 
The contribution to the error of distance determination, made by the base­

line determination error, is proportional to the first power of distance D. The 
contribution to this error made by the uncertainty of the angular measurements 
is proportional to the second power of the distance determined. It follows that 
the increase of accuracy of the angular measurements is significant to improve 
the accuracy of triangulation measurements of positions of the solar system bod­
ies. 

Another, obvious consequence is that the error of the distance determination 
decreases with increase of the baseline. In technological and theoretical respects 
the construction of the baseline using the triangular Lagrange libration points 
in the system "the barycenter of the Earth + Moon - the Sun" is scientifically 
justified to the highest degree. 
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Results of long-term monitoring of both SC's positions will be the improve­
ment of the Earth's orbit parameters, the determination of the velocity of light 
in vacuo and the determination of the parameters of the orbital motion of zero 
mass-points in the vicinity of the libration centers. 

With respect to the solar system bodies the most interesting are the trian­
gulation observations of faint objects located at distances p > 30 a.u., i.e. the 
objects of the Kuiper Belt. Even a single synchronous observation of such an 
object from the spacecraft allows us to determine all three components of the 
state vector of an object which would be impossible to find by other methods. 
Another observation one year later enables us to determine the velocity vector 
of that far object of the solar system. Derivation of its preliminary elliptical 
orbit is possible as the solution of the classical Cauchy problem with the initial 
conditions determined for the moment of the first observation. 

It is possible also to make synchronous observations of some already dis­
covered objects of the Kuiper Belt to obtain more accurate orbits. Observations 
of the asteroids approaching the Earth (AAE) are of no less interest. These ob­
servations are made in the directions which are close to directions to the Earth 
and the Moon and are easier technically because the brightness of the AAE is 
inconsiderable. 

Independent of the celestial mechanics program the determination of orbits 
of moving minor objects of the solar system, i.e. asteroids, comets, planetary 
satellites, etc., is possible by using various methods, including the apparent mo­
tion parameters method (so-called the PVD-method), which has been developed 
at the Pulkovo Observatory and tested on conventional ground-based observa­
tions (Kiselyov & Bykov, 1976). 

6. The observations of the microlensing events 

The idea of simultaneous observations of microlensing events from the Earth's 
surface and from aboard a distant spacecraft, very remote from the Earth, was 
proposed for the first time by Gould in 1992 (Gould, 1992, 1994a, 1994b). This 
experiment with the system of three instruments placed into the points £4, £5, 
T (Fig. 7, b)) could also provide unique information on a lens. 

Observations of microlensing events, (Fig. 7, a)), using the on-board equip­
ment are possible, however, only after the detection of these events by the 
ground-based observer teams (Gurevich et al. 1997; Narayan & Bartelman 1996; 
Zylberajch 1995). After ground-based detection of the events the coordinates 
of suspected objects are introduced into the on-board observation program of 
each spacecraft. If it would be possible to observe the moments of transit of a 
brightness maximum of the lensed object (Fig. 7, b)) at the three vertices of 
the triangle L4TL5 it would allow us to estimate by the direct geometrical way 
the tangential component of the relative spatial path of a gravitational lens (L) 
or of the lensed object (5) image (the arrow A), the conventional linear tan­
gential velocity VT being determined directly. The relative proper motion and 
its positional angle could be estimated for L (Chubey 1998) if the conventional 
parallax or the direct distance DOL is known. As an alternative to the gravita­
tional refraction which is of the order of two microarcseconds (Hosokawa et al., 
1995), the photometric observations of the microlensing effect on the changes of 
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a) eel i 

MACHO 

b) 

c) 

Figure 7. Observations of the microlensing events, a) The principal 
scheme, b) A, the path of a zone of the focused image brightness center 
C through instruments in the points L4, T, L$. The brightness maxima 
will be observed at different moments, c) The brightness increment of 
Am should be observed through several filters (e.g., B and R) with 
each instrument. 
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Figure 8. Left: the concept of the Schmidt space camera. Right: the 
instrument version of the Korsch three-mirror-system (Korsch, 1977) 
as designed by Tsukanova and Starichenkova (1997). 

the observed light curves (Fig. 7, c)), being corrected for orbital movement, are 
more practicable. 

7. The instruments 

It is proposed to use an astrograph with limiting magnitudes of 21 m - 22m and 
with diffraction quality of images in the field of view with angular diameter 
2W = 1° as a basic instrument. Two optical schemes are being studied: the 
Schmidt space camera and the three-mirror system telescope of Korsch (1977). 
Both instruments should be equipped with the pointing mirror (Fig. 8) with 
an aperture of 500 mm and a focal length exceeding 5000 mm, with a folded 
mounting, the CCD-mosaic as a light detector (4 lines by 5 modules » 800 x 800 
of 16/J, pixels, scale < 40"/mm or » 0.66"/ pixel, field of view « 35' X 45'), the 
signal to noise ratio being > 5. 

The astrometric star position determination accuracy is planned to be bet­
ter than 10 mas, the photometric one being not worse than 0.02TO or 0.03m for an 
individual measurement of objects of 17TO to 19m. The following characteristics 
and processes are permanently calibrated by the flexible check program aboard: 
the dark current, the non-uniformity of the sensitivity of the detector or "the 
flat field," and the record of damaged pixels. For the photometry systems the 
broadband UBVR and integral ones are to be used. 

The information acquisition is planned to be performed in the optimal frame 
addition mode, 96 frames per day. It would be possible to compress each frame 
up to density p « 2 bits per pixel (White & Percival, 1994) or up to 4 MB 
per frame (after on-board processing). The working brightness range is AV € 
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(12m - 22m) at the mission beginning. The daily astronomical information 
volume rate is 3 Gbytes. Addition of the solar physics information amounting 
to 6.5 Gbytes will result in 9.5 GB total information to be transferred each day 
requiring the capacity of the communication channel to be as 110 KB per sec. To 
meet these requirements the design concept includes the folding phased antenna 
with the planned surface area of « 25m2. 

We may conclude that there are evident scientific objectives in the creation 
of the ISSO. The idea to create a space radio interferometer on the same basis 
as that of the ISSO has been suggested in Kardashev et al. (1973). The grav­
itational features of these remarkable projects will probably be used in future 
space experiments. 
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