
JFP 22 (4–5): 477–528, 2012. c© Cambridge University Press 2012

doi:10.1017/S095679681200024X

477

The impact of higher-order state and control
effects on local relational reasoning

DEREK DREYER and GEORG NEIS

Max Planck Institute for Software Systems (MPI-SWS)

(e-mail:){dreyer, neis}@mpi-sws.org)

LARS BIRKEDAL

IT University of Copenhagen

(e-mail:)birkedal@itu.dk)

Abstract

Reasoning about program equivalence is one of the oldest problems in semantics. In recent

years, useful techniques have been developed, based on bisimulations and logical relations,

for reasoning about equivalence in the setting of increasingly realistic languages—languages

nearly as complex as ML or Haskell. Much of the recent work in this direction has considered

the interesting representation independence principles enabled by the use of local state, but

it is also important to understand the principles that powerful features like higher-order

state and control effects disable. This latter topic has been broached extensively within the

framework of game semantics, resulting in what Abramsky dubbed the “semantic cube”:

fully abstract game-semantic characterizations of various axes in the design space of ML-like

languages. But when it comes to reasoning about many actual examples, game semantics does

not yet supply a useful technique for proving equivalences.

In this paper, we marry the aspirations of the semantic cube to the powerful proof method

of step-indexed Kripke logical relations. Building on recent work of Ahmed et al. (2009),

we define the first fully abstract logical relation for an ML-like language with recursive

types, abstract types, general references and call/cc. We then show how, under orthogonal

restrictions to the expressive power of our language—namely, the restriction to first-order

state and/or the removal of call/cc—we can enhance the proving power of our possible-

worlds model in correspondingly orthogonal ways, and we demonstrate this proving power

on a range of interesting examples. Central to our story is the use of state transition systems

to model the way in which properties of local state evolve over time.

1 Introduction

Reasoning about program equivalence is one of the oldest problems in semantics,

with applications to program verification (“Is an optimized program equivalent to

some reference implementation?”), compiler correctness (“Does a program trans-

formation preserve the semantics of the source program?”), representation indepen-

dence (“Can we modify the internal representation of an abstract data type without

affecting the behavior of clients?”), and more besides.

The canonical notion of program equivalence for many applications is observa-

tional (or contextual) equivalence (Morris, 1968). Two programs are observationally

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

478 D. Dreyer et al.

equivalent if no program context can distinguish them by getting them to exhibit

observably different input/output behavior. Reasoning about observational equiva-

lence directly is difficult, due to the universal quantification over program contexts.

Consequently, there has been a huge amount of work on developing useful models

and logics for observational equivalence, and in recent years this line of work has

scaled to handle increasingly realistic languages—languages nearly as complex as

ML or Haskell, with features like general recursive types, general (higher-order)

mutable references, and first-class continuations.

The focus of much of this recent work—e.g., environmental bisimulations

(Koutavas & Wand, 2006; Sumii & Pierce, 2007; Sumii, 2009; Sangiorgi et al., 2011),

normal form bisimulations (Støvring & Lassen, 2007; Koutavas & Lassen, 2008),

step-indexed Kripke logical relations (Appel & McAllester, 2001; Ahmed, 2004;

Ahmed et al., 2009)—has been on establishing some effective techniques for reasoning

about programs that actually use the interesting, semantically complex features (state,

continuations, etc.) of the languages being modeled. For instance, most of the work

on languages with state concerns the various kinds of representation independence

principles that arise due to the use of local state as an abstraction mechanism.

But of course this is only part of the story. When features are added to a language,

they also enrich the expressive power of program contexts. Hence, programs that do

not use those new features, and that are observationally equivalent in the absence of

those features, might not be observationally equivalent in their presence. One well-

known example of this is the loss of referential transparency in an impure language

like ML. Another shows up in the work of Johann & Voigtländer (2006), who

study the negative impact that Haskell’s strictness operator seq has on the validity

of short-cut fusion and other free-theorems-based program transformations. In our

case, we are interested in relational reasoning about stateful programs, so we will

be taking a language with some form of mutable state as our baseline. Nonetheless,

we feel it is important not only to study the kinds of local reasoning principles that

stateful programming can enable, but also to understand the principles that powerful

features like higher-order state and control effects disable.

This latter topic has been broached extensively within the framework of game

semantics. In the 1990s, Abramsky set forth a research program (subsequently

undertaken by a number of people) concerning what he called the semantic cube

(Laird, 1997; Abramsky et al., 1998; Murawski, 2005). The idea was to develop

fully abstract game-semantic characterizations of various axes in the design space

of ML-like languages. For instance, the absence of mutable state can be modeled

by restricting game strategies to be innocent, and the absence of control operators

can be modeled by restricting game strategies to be well-bracketed. These restrictions

are orthogonal to one another and can be composed to form fully abstract models

of languages with different combinations of effects. Unfortunately, when it comes

to reasoning about many actual examples, these game-semantics models do not yet

supply a useful technique for proving programs equivalent, except in fairly restricted

languages (see Section 10 for further discussion).

One possible reason for the comparative lack of attention paid to this issue in the

setting of relational reasoning is that some key techniques that have been developed

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 479

for reasoning about local state—notably, Pitts and Stark’s method of local invariants

(Pitts & Stark, 1998)—turn out to work just as well in a language with higher-order

state and call/cc as they do in the simpler setting (first-order state, no control oper-

ators) in which they were originally proposed. Before one can observe the negative

impact of certain language features on relational reasoning principles, one must first

develop a proof technique that actually exploits the absence of those features.

1.1 Overview

In this paper, we marry the aspirations of Abramsky’s semantic cube to the powerful

proof method of step-indexed Kripke logical relations. Specifically, we show how to

define a fully abstract logical relation for an ML-like language with recursive types,

abstract types, general references and call/cc. Then, we show how, under orthogonal

restrictions to the expressive power of our language—namely, the restriction to

first-order state and/or the removal of call/cc—we can enhance the proving power

of our model in correspondingly orthogonal ways, and we demonstrate this power

on a range of interesting examples.

Our work builds closely on that of Ahmed et al. (2009) (hereafter, ADR), who

gave the first logical relation for modeling a language with both abstract types

and higher-order state. We take ADR as a starting point because the concepts

underlying that model provide a rich framework in which to explore the impact of

various computational effects on relational reasoning. In particular, one of ADR’s

main contributions was an extension of Pitts and Stark’s aforementioned “local

invariants” method with the ability to establish properties about local state that

evolve over time in some controlled fashion. ADR exploited this ability in order to

reason about generative (or state-dependent) ADTs.

The central contribution of our present paper is to observe that the degree of

freedom with which local state properties may evolve depends directly on which

particular effects are present in the programming language under consideration. In

order to expound this observation, we first recast the ADR model in the more

familiar terms of state transition systems (Section 3). The basic idea is that the

“possible worlds” of the ADR model are really state transition systems, wherein

each state dictates a potentially different property about the heap, and the transitions

between states control how the heap properties are allowed to evolve. Aside from

being somewhat simpler than ADR’s formulation of possible worlds (which relied

on various non-standard anthropomorphic notions like “populations” and “laws”),

our formulation highlights the essential notion of a state transition, which plays a

crucial role in our story.

Next, in Section 4, we explain how to extend the ADR model with support

for first-class continuations via the well-studied technique of biorthogonality (aka

��-closure) (Krivine, 1994; Pitts & Stark, 1998). The technical details of this

extension are fairly straightforward, with the use of biorthogonality turning out to

be completely orthogonal (no pun intended) to the other advanced aspects of the

ADR model. That said, this is to our knowledge the first logical-relations model

for a language with call/cc and state. Moreover, a side benefit of biorthogonality

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

480 D. Dreyer et al.

is that it renders our model both sound and complete with respect to observational

equivalence (unlike ADR’s, which was only sound).1 Interestingly, nearly all of the

example program equivalences proved in the ADR paper continue to hold in the

presence of call/cc, and their proofs carry over easily to our present formulation.

(There is one odd exception, the “callback with lock” example, for which the ADR

proof was very fiddly and ad hoc. We investigate this example in great detail, as we

describe below.)

The ADR paper also included several interesting examples that their method was

unable to handle. The unifying theme of these examples is that they rely on the

well-bracketed nature of computation—i.e., the assumption that control flow follows

a stack-like discipline—an assumption that is only valid in the absence of call/cc. In

Section 5, we consider two simple but novel enhancements to our state-transition-

system model—private transitions and inconsistent states—which are only sound in

the absence of call/cc and which correspondingly enable us to prove all of ADR’s

“well-bracketed examples”.

Conversely, in Section 6, we consider the additional reasoning power gained by

restricting the language to first-order state. We observe that this restriction enables

backtracking within a state transition system, and we demonstrate the utility of this

feature on several examples.

The above extensions to our basic state-transition-system model are orthogonal

to each other, and can be used independently or in combination. One notable

example of this is ADR’s “callback with lock” equivalence (mentioned above), an

equivalence that holds in the presence of either higher-order state or call/cc but not

both. Using private transitions but no backtracking, we can prove this equivalence

in the presence of higher-order state but no call/cc; and using backtracking but no

private transitions, we can prove it in the presence of call/cc but only first-order

state. Yet another well-known example, due originally to O’Hearn & Reddy (1995),

is true only in the absence of both higher-order state and call/cc; hence, it should

come as no surprise that our novel proof of this example (presented in detail in

Section 9.2) involves all three of our model’s new features working in tandem.

Most of the paper is presented in an informal, pedagogical style. Indeed, one

advantage of our state transition systems is that they lend themselves to clean

“visual” proof sketches. In Section 7, we make our proof method formally precise

and present some of the key metatheoretic results. We sketch some interesting parts

of their proofs, but the full details can be found in the companion technical appendix

(Dreyer et al., 2012).

In Section 8, we consider how our Kripke logical relations are affected by the

addition of exceptions to the language. Unlike call/cc, exceptions do not impose

restrictions on our state transition systems, but they do require us to account for

exceptional behavior in our proofs.

1 It is important to note that the completeness result has nothing to do with the particular features
present in the language, and all to do with the use of biorthogonality. In particular, biorthogonality
gives us a uniform way of constructing fully abstract models for all of the different languages considered
in this paper, regardless of whether they contain call/cc, general references, etc. See Section 10 for
further discussion of this point.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 481

In Section 9, we work through the proofs of several challenging equivalences that

hold in the presence or absence of different features, thus demonstrating the power

of the various extensions to our state-transition-system model. Even more examples

can be found in Dreyer et al. (2012).

Finally, in Section 10, we compare our methods to related work and suggest some

directions for future work.

2 The language(s) under consideration

In its unrestricted form, the language that we consider is a standard polymorphic

lambda calculus with existential, pair, and iso-recursive types, general references

(higher-order state), and first-class continuations (call/cc). We call this language

HOSC. Its syntax and excerpts of its typing rules (Σ; ∆; Γ � e : τ) and call-

by-value semantics (〈h; e〉 ↪→ 〈h′; e′〉) are given in Figure 1. Dots (. . .) in the

syntax cover primitive operations on base types b, such as addition and if-then-else.

To ensure unique typing, various constructs have explicit type annotations, which

we will typically omit if they are implicit from context. Evaluation contexts K ,

injected into the term language via contτ K , represent first-class continuations. They

are a subset of general contexts C (“terms with a hole”), which are not shown

here, but are standard. Their typing judgment � C : (Σ; ∆; Γ; τ) � (Σ′; ∆′; Γ′; τ′)

basically says that for any e with Σ; ∆; Γ � e : τ we have Σ′; ∆′; Γ′ � C[e] : τ′. The

continuation typing judgment Σ; ∆; Γ � K ÷ τ says that K is an evaluation context

with a hole of type τ. Finally, contextual (or observational) approximation, written

Σ; ∆; Γ � e1 �ctx e2 : τ, means that in any well-typed program context C , if C[e1]

terminates, then so does C[e2]. Contextual (or observational) equivalence is then

defined as approximation in both directions.

By restricting HOSC in two orthogonal ways, we obtain three fragments of

interest:

HOSC

FOSC HOS

FOS

re
str

ict
sta

te
rem

ove
control

rem
ove

control re
str

ict
sta

te

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

482 D. Dreyer et al.

τ ::= α | b | τ1 ×τ2 | τ1 → τ2 | ∀α.τ | ∃α.τ | µα.τ | ref τ | contτ

e ::= x | l e1,e2 e.1 | e.2 | λx:τ .e | e1 e2 | Λα.e | e τ | pack τ1,e as τ2 |
unpack e1 as α,x in e2 | rollτ e | unroll e | ref e | e1 := e2 | !e | e1 == e2 | contτ K |
call/ccτ (x. e) | throwτ e1 to e2 | . . .

K ::= K,e2 v1,K K.1 | K.2 | K e2 | v1 K | K τ | pack τ1,K as τ2 |
unpack K as α,x in e2 | rollτ K | unroll K | ref K | K := e2 | v1 := K | !K | K == e2 |
v1 == K | throwτ K to e2 | throwτ v1 to K | . . .

v ::= x | l v1,v2 λx:τ .e | Λα.e | pack τ1,v as τ2 | rollτ v | contτ K | . . .

. . .
h;K[ref v] h l v};K[l] (l /∈ dom(h))
h;K[l := v] h[l v];K[] (l ∈ dom(h))
h;K[!l] h;K[v] (h(l) = v)
h;K[l1 == l2] h;K[tt] (l1 = l2)
h;K[l1 == l2] h;K[ff] (l1 = l2)
h;K[call/ccτ (x. e)] h;K[e[contτ K/x]]
h;K[throwτ v to contτ K] h;K [v]

Heap typings Σ ::= · | Σ, l:τ where fv(τ) = /0
Type environments ∆ ::= · | ∆,α
Term environments Γ ::= · | Γ,x:τ

l:τ ∈ Σ
Σ;∆;Γ l : ref τ

Σ;∆;Γ e : τ
Σ;∆;Γ ref e : ref τ

Σ;∆;Γ e1 : ref τ Σ;∆;Γ e2 : τ
Σ;∆;Γ e1 := e2 : unit

Σ;∆;Γ e : ref τ
Σ;∆;Γ !e : τ

Σ;∆;Γ e1 : ref τ Σ;∆;Γ e2 : ref τ
Σ;∆;Γ e1 == e2 : bool

∀l:τ ∈ Σ. Σ; ·; h(l) : τ
h : Σ

K : (Σ;∆;Γ;τ) (Σ;∆;Γ;τ)
Σ;∆;Γ K ÷τ

Σ;∆;Γ K ÷τ
Σ;∆;Γ contτ K : contτ

Σ;∆;Γ,x:contτ e : τ
Σ;∆;Γ call/ccτ (x. e) : τ

Σ;∆;Γ e : τ Σ;∆;Γ e : contτ
Σ;∆;Γ throwτ e to e : τ

Σ;∆;Γ e1 ctx e2 : τ def= Σ;∆;Γ e1 : τ ∧Σ;∆;Γ e2 : τ ∧∀C,Σ ,τ ,h.
C : (Σ;∆;Γ;τ) (Σ ; ·; ·;τ) h : Σ ∧

h;C[e1] h;C[e2]

Fig. 1. The language HOSC.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 483

FOSC The result of restricting to first-order state. Concretely, this means only

permitting reference types ref b, where b represents base types like int, bool,

etc.

HOS The result of removing call/cc, i.e., dropping the type cont τ and the corre-

sponding three term-level constructs.

FOS The result of making both of the above restrictions.

3 A model based on state transition systems

The Ahmed–Dreyer–Rossberg (ADR) model (Ahmed et al., 2009), on which our

model is based, is a step-indexed Kripke logical relation for the language HOS. In

this section, we will briefly review what a step-indexed Kripke logical relation is,

what is interesting about the ADR model, and how we can recast the essence of the

ADR model in terms of state transition systems.

Step-indexed Kripke logical relations. Logical relations are one of the best-known

methods for local reasoning about equivalence (or, more generally, approximation)

in higher-order, typed languages. The basic idea is to define the equivalence

or approximation relation in question inductively over the type structure of the

language, with each type constructor being interpreted by the logical connective to

which it corresponds. For instance, two functions are logically related if relatedness

of their arguments implies relatedness of their results; two existential packages

are logically related if there exists a relational interpretation of their hidden type

representations that is preserved by their operations; and so forth.

In order to reason about equivalence in the presence of state, it becomes necessary

to place constraints on the heaps under which programs are evaluated. This is where

Kripke logical relations come in. Kripke logical relations (Pitts & Stark, 1998) are

logical relations indexed by a possible world W , which codifies some set of heap

constraints. Roughly speaking, e1 is related to e2 under W only if they behave “the

same” when run under any heaps h1 and h2 that satisfy the constraints of W . When

reasoning about programs that maintain some local state, possible worlds allow us

to impose whatever invariants on the local state we want, so long as we ensure that

those invariants are preserved by the code that accesses the state.

To make things concrete, consider the following example:

τ = (unit → unit) → int

e1 = let x = ref 1 in λf. (f 〈〉; !x)

e2 = λf. (f 〈〉; 1)

We would like to show that e1 and e2 are observationally equivalent at type τ. The

reason, intuitively, is obvious: the reference x is kept private (i.e., it is never leaked

to the context), and since it is never modified by the function returned by e1, it will

always point to 1. To prove this using Kripke logical relations, we would set out to

prove that e1 and e2 are related under an arbitrary initial world W . So suppose we

evaluate the two terms under heaps h1 and h2 that satisfy W . Since the evaluation of

e1 results in the allocation of some fresh memory location for x (i.e., x �∈ dom(h1)),

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

484 D. Dreyer et al.

we know that the initial world W cannot already contain any constraints governing

the contents of x. (If it contained such a constraint, h1 would have had to satisfy

it, and hence x would have to be in dom(h1).) So we may extend W with a new

invariant stating that x ↪→ 1 (i.e., x points to 1). It then remains to show that the

two λ-abstractions are logically related under this extended world—i.e., under the

assumption that x ↪→ 1—which is straightforward.

Finally, step-indexed logical relations (Appel & McAllester, 2001; Ahmed, 2004)

were proposed (originally by Appel and McAllester) as a way to account for

semantically problematic features, such as general recursive types, whose relational

interpretations are seemingly “cyclic” and thus difficult to define inductively. The

idea is simply to stratify the construction of the logical relation by a natural number

(or “step index”), representing roughly the number of steps of computation for

which the programs in question behave in a related manner.

One of the key contributions of the ADR model was to combine the machinery of

step-indexed logical relations with that of Kripke logical relations in order to model

higher-order state. While the details of this construction are quite interesting, they

are orthogonal to the novel contributions of the model we present in this paper.

Indeed, our present model follows the ADR model very closely in its use of step-

indexing to resolve circularities in the construction, and so we refer the interested

reader to the ADR paper for details.

ADR and state transition systems. The other key contribution of the ADR model

was to provide an enhanced notion of possible world, which has the potential to

express properties of local state that evolve over time. To motivate this feature of

ADR, consider a simple variant of the example shown above, in which the first

program e1 is replaced by

e1 = let x = ref 0 in λf. (x := 1; f 〈〉; !x)

Here, x starts out pointing to 0, but if the function that e1 evaluates to is ever

called, x will be set to 1 and will never change back to 0. In this case, the only

interesting invariant one can prove about x is that it points to either 0 or 1, but

this invariant is insufficient to establish that after the call to the callback f, the

contents of x have not changed back to 0. Pitts & Stark (1998) called this example

the “awkward” example, and they could not prove it because their possible-worlds

model only supported heap invariants.

While the awkward example is clearly contrived, it is also a minimal representative

of a useful class of programs in which changes to local state occur in some

monotonic fashion. As ADR showed, this includes well-known generative (or state-

dependent) ADTs, in which the interpretation of an abstract type grows over time

in correspondence with changes to some local state.

ADR’s solution was to generalize possible worlds’ notion of “heap constraint” to

express heap properties that change in a controlled fashion. We can understand their

possible worlds as essentially state transition systems, where each state determines a

particular heap property, and where the transitions determine how the heap property

may evolve. For instance, in the case of the awkward example, ADR would represent

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 485

the heap constraint on x via the following state transition system (STS):

x ↪→ 0 x ↪→ 1

Initially, x points to 0, and then it is set to 1. Since the call to the callback f occurs

when we are in the x ↪→ 1 state, we know it must return in the same state since there

is no transition out of that state. Correspondingly, it is necessary to also show that

the x ↪→ 1 state is really final—i.e., if the function to which e1 evaluates is called in

that state, it will not change x’s contents again—but this is obvious.

In ADR, states are called “populations” and state transition systems are called

“laws,” but the power of their possible worlds is very similar to that of our STSs

(as we have described them thus far), and most of their proofs are straightforwardly

presentable in terms of STSs. That said, the two models are not identical. In

particular, there is one example we are aware of, the “callback with lock” example,

that is provable in the ADR model but not in our basic STS model. As we will see

shortly, there are good reasons why this example is not provable in our basic STS

model, and in Section 5.1, we will show how to extend our STSs in order to prove

this very example in a much simpler, cleaner way than the ADR model does.

4 Biorthogonality, call/cc, and full abstraction

One point on which different formulations of Kripke logical relations differ is the

precise formulation of the logical relation for terms. The ADR model employs a

“direct-style” term relation, which can be described informally as follows: two terms

e1 and e2 are logically related under world W iff whenever they are evaluated in

initial heaps h1 and h2 satisfying W , they either both diverge or they both converge

to machine configurations 〈h′
1; v1〉 and 〈h′

2; v2〉 such that h′
1 and h′

2 satisfy W ′ and

v1 and v2 are logically related values under W ′, where W ′ is some “future world”

of W . (By “future world,” we mean that W ′ extends W with new constraints about

freshly allocated pieces of the heap, and/or the heap constraints of W may have

evolved to different heap constraints in W ′ according to the STSs in W .) We call

this a direct-style term relation because it involves evaluating the terms directly to

values and then showing relatedness of those values in some future world.

An alternative approach, first employed in the logical relations setting by Pitts &

Stark (1998) but subsequently adopted by several others (e.g., Johann, 2003; Bohr,

2007; Benton & Hur, 2009), is what one might call a “CPS” term relation, although

it is more commonly known as a biorthogonal (or ��-closed) term relation. The

idea is to define two terms to be related under world W if they co-terminate (both

converge or both diverge) when evaluated under heaps that satisfy W and under

continuations K1 and K2 related under W . The latter (continuation relatedness) is

then defined to mean that, for any future world W ′ of W , the continuations K1

and K2 co-terminate when applied (under heaps that satisfy W ′) to values that are

related under W ′. In this way, the logical relation for values is lifted to a logical

relation for terms by a kind of CPS transform.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

486 D. Dreyer et al.

The main arguable advantage of the direct-style term relation is that its definition

is perhaps more intuitive, corresponding closely to the proof sketches of the sort

that we will present informally in the sections that follow. That said, in any

language for which a direct-style relation is sound, it is typically possible to start

instead with a biorthogonal relation and then prove a direct-style proof principle—

e.g., Pitts and Stark’s “principle of local invariants” (Pitts & Stark, 1998)—as a

corollary.

The advantages of the biorthogonal approach are clearer. First, it automagically

renders the logical relation complete with respect to observational equivalence, largely

irrespective of the particular features in the language under consideration. (Actually,

it is not so magical: ��-closure is essentially a kind of closure under observational

equivalence.) Second, and perhaps more importantly, the biorthogonal approach

scales to handle languages with first-class continuations, such as our HOSC and

FOSC, while the direct-style does not. The reason for this is simple: the direct-style

approach is only sound if the evaluation of terms is independent of the continuation

under which they are evaluated. If the terms’ behavior is context-dependent, then

it does not suffice to consider their co-termination under the empty continuation,

which is effectively what the direct-style term relation does. Rather, it becomes

necessary to consider co-termination of whole programs (terms together with their

continuations), as the biorthogonal relation does.

Thus, in this paper we adopt the biorthogonal approach. This enables us to easily

adapt all the proofs from the ADR paper (save for one) to also work for a language

with call/cc. (The one exception is the “callback with lock” equivalence, which simply

does not hold in the presence of call/cc.) Additionally, we can prove equivalences

involving programs that manipulate both call/cc and higher-order state. One well-

known challenging example of such an equivalence is the correctness of Friedman

and Haynes’ encoding of call/cc via “one-shot” continuations (continuations that

can only be invoked once) (Friedman & Haynes, 1985; Støvring & Lassen, 2007). The

basic idea of the encoding is to model an unrestricted continuation using a private

(local) ref cell that contains a one-shot continuation. Every time the continuation is

invoked, the ref cell is updated with a fresh one-shot continuation. With biorthogonal

logical relations, the proof of this example is completely straightforward, employing

just a simple invariant on the private ref cell. As far as we know, though, this proof

is novel. Full details are given in Section 9.

It is worth noting that, although the kinds of example programs we focus on in

this paper do not involve abstract or recursive types, a number of the ADR examples

do. Therefore, in the new models we present in this paper, we will include support

for these features, in order to demonstrate clearly that our various extensions to the

ADR model are perfectly “backward-compatible” with them.

5 Reasoning in the absence of call/cc

In this section, we examine some reasoning principles that are enabled by removing

call/cc from our language.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 487

Consider this variant of the “awkward” example (from ADR):

τ = (unit → unit) → int

e1 = let x = ref 0 in

λf. (x := 0; f 〈〉; x := 1; f 〈〉; !x)

e2 = λf. (f 〈〉; f 〈〉; 1)

What has changed is that now the callback is run twice, and in e1, the first call to f

is preceded by the assignment of x to 0, not 1.

It is easy to see that e1 and e2 are not equivalent in HOSC (or even FOSC). In

particular, here is a distinguishing context C:

let g = • in let b = ref ff in

let f = (λ . if !b then call/cc (k. g (λ . throw 〈〉 to k))

else b := tt) in

g f

Exploiting its ability to capture the continuation k of the second call to f, the

context C is able to set x back to 0 and then immediately throw control back to k.

It is easy to verify that C[e1] yields 0, while C[e2] yields 1.

In the absence of call/cc, however, computations are “well-bracketed.” Here,

this means that whenever x is set to 0, it will eventually be set to 1—no matter

what the callback function does. Consequently, it seems intuitively clear that these

programs are equivalent in HOS (and FOS), but how do we prove it? The STS

model we have developed so far will clearly not do the job, precisely because that

model is compatible with call/cc and this example is not. So the question remains:

how can we augment the power of our STSs so that they take advantage of well-

bracketing?

To see how to answer this question, let us see what goes wrong if we try to give

an STS for our well-bracketed equivalence. First, recall the STS (from Section 3)

that we used in order to prove the original awkward example. To see why this STS

is insufficient for our present purposes, suppose the function value resulting from

evaluating e1—call it v1—is applied in the x ↪→ 1 state.2 The first thing that happens

is that x is set to 0. However, as there is no transition from the x ↪→ 1 state to the

x ↪→ 0 state, there is no way we can continue the proof. So how about adding that

transition?

x ↪→ 0 x ↪→ 1

While adding the transition from x ↪→ 1 to x ↪→ 0 clears the first hurdle, it also erects

a new one: according to the STS, it is now possible that, after the second call to f, we

end up in the left state—even though this situation (x pointing to 0 after that call)

cannot actually arise in reality. And indeed, if x could point to 0 at that point, our

2 When proving functions logically related, we must consider the possibility that they are invoked in an
arbitrary “future” world—i.e., a world where our STS may be in any state that is reachable from its
initial state. This ensures monotonicity of the logical relation (Theorem 1, Section 7.1).

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

488 D. Dreyer et al.

proof would be doomed. In summary, while we would like to add this transition, we

also want to keep the context from using it. This is where private transitions come in.

5.1 Private transitions

Private transitions are a new class of transitions in our state transition systems,

separate from the ordinary transitions that we have seen so far (and which we

henceforth call public transitions). The basic idea is very simple: when reason-

ing about the relatedness of terms, we must show that—when viewed extension-

ally—they appear only to be making public transitions, and correspondingly we

may assume that the context only makes public transitions as well. Internally,

however, within a computation, we may make use of both public and private

transitions.

Concretely, we can use the following STS to prove our running example3 (where

the dashed arrow denotes a private transition):

x ↪→ 0 x ↪→ 1

First, if v1 is called in the starting state x ↪→ 1, the presence of the private transition

allows us to “lawfully” transition from x ↪→ 1 to x ↪→ 0. Second, we know that,

because we are in the x ↪→ 1 state before the second call to f and there is no

public transition from there to any other state, we must still be in that same state

when f returns. Hence, we know that x points to 1 at that point, as desired. Lastly,

although the body of v1 makes a private transition internally (when called in starting

state x ↪→ 1), it appears extensionally to make a public transition, since its final

state (x ↪→ 1) is obviously publicly accessible from whichever state was the initial

one.

Private transitions let us prove not only this example, but also several others

from the literature that hold exclusively in the absence of call/cc [including Pitts

and Stark’s “higher-order profiling” example (Pitts & Stark, 1998)—see Section 9

for details]. The intuitive reason why private transitions “don’t work” with call/cc

is that, in the presence of call/cc, every time we pass control to the context may be

the last. Therefore, the requirement that the extensional behavior of a term must

appear like a public transition would essentially imply that every internal transition

must be public as well.

The “callback with lock” example. Here is another equivalence (from ADR) that

holds in HOS but not in HOSC. Interestingly, this example was provable in the

original ADR model, but only through some complex step-index hackery. The proof

we are about to sketch is much cleaner and easier to understand.

Consider the following two encodings of a counter object with two methods: an

increment function that also takes a callback argument, which it invokes, and a poll

3 A detailed formal proof of this equivalence is given in Section 9.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 489

b → tt
x → 0

b → tt
x → 1

b → tt
x → 2 foo . . .

b → ff
x → 0

b → ff
x → 1

b → ff
x → 2

foo . . .

Fig. 2. STS for the “callback with lock” example in HOS.

function that returns the current counter value.

τ = ((unit → unit) → unit) × (unit → int)

e1 =C[f 〈〉; x := !x+ 1]

e2 =C[let n = !x in f 〈〉; x := n+ 1]

C = let b = ref tt in let x = ref 0 in

〈λf. if !b then b := ff; •; b := tt else 〈〉,
λ . !x〉

Note that in the second program the counter x is dereferenced before the callback

is executed, and in the first program it is dereferenced after. In both programs, a

Boolean lock b guards the increment of the counter, thereby enforcing that running

the callback will not result in any change to the counter.

It is not hard to construct a context that exploits the combination of call/cc and

higher-order state in order to distinguish e1 and e2. The basic idea is to pass the

increment method a callback that captures its current continuation and stores that

in a ref cell so it can be invoked later. The definition of this distinguishing context

appears in Section 9.1.

In the absence of call/cc, however, the two programs are equivalent. To prove

this, we employ the infinite STS shown in Figure 2.

For each number n there are two states: one (the “unlocked” state) saying that b

points to tt and x points to n in both programs, and another (the “locked” state)

saying that b points to ff and x points to n in both programs. It is thus easy to see

that the two poll methods are related (they return the same number). To show the

increment methods related, suppose they are executed in a state where x points to

some m and b points to tt (the other case where b ↪→ ff is trivial). Before invoking

the callback, b is set to ff and, in the second program, n is bound to m. Accordingly,

we move “downwards” in our STS to the locked state and can then call f. Because

that state does not have any other public successors, we will still be there if and

when f returns—indeed, this is the essence of what it means to be a “locked” state.

In the first program, x is then incremented, i.e., set to m+ 1. In the second program,

x is set to n+1 = m+1. Finally, b is set back to tt and we thus move to the matching

private successor (b ↪→ tt, x ↪→ m+ 1) in the STS. Since this is a public successor of

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

490 D. Dreyer et al.

the initial state (b ↪→ tt, x ↪→ m), our extensional transition appears public and we

are done.

It is worth noting that the STS in Figure 2 is actually more “precise” than

necessary for proving the desired program equivalence. In particular, for the purpose

of proving e1 and e2 equivalent, it would suffice to collapse all states in which b ↪→ tt

holds down to a single state, in which case there would exist private transitions from

every state to every other state but (as before) no public transitions going from any

b ↪→ ff states to the lone b ↪→ tt state. However, the added precision of the STS in

Figure 2 would prove critically useful if one were to extend the objects defined by e1
and e2 with a third method, testmono, testing the monotonicity of state change in e1
and e2—i.e., the way that the integer pointed to by x only increases over time. For

example, e1 might define testmono, of type unit → unit → bool, as

λ . let y = !x in λ . !x � y

and e2 might define testmono as

λ . λ . tt

Starting in a state where x ↪→ n holds, these two implementations of testmono are

only logically related if we know that, in all (privately or publicly accessible) future

states, x will point to an integer no less than n. The STS in Figure 2 guarantees

this property by omitting any transitions (public or private) from x ↪→ n to x ↪→ m

states, where m < n.

5.2 Inconsistent states

While private transitions are clearly a useful extension to our STS model, there

is one kind of “well-bracketed example” we are aware of that private transitions

alone are insufficient to account for. We are referring to the “deferred divergence”

example, presented by ADR as an example they could not handle. The original

version of this equivalence, due to O’Hearn & Reddy (1995), was presented in the

setting of Idealized Algol, and it does not hold in the presence of higher-order state.

(We will consider a variant of O’Hearn’s example later on, in Section 6.) Here, we

consider a version of the equivalence that does hold in HOS, based on the one in

Bohr’s thesis (Bohr, 2007):

τ = ((unit → unit) → unit) → unit

e1 = let x = ref ff in let y = ref ff in

λf. f (λ . if !x then ⊥ else y := tt);

if !y then ⊥ else x := tt

e2 = λf. f (λ .⊥)

Intuitively, the explanation why e1 and e2 are equivalent goes as follows. The

functions returned by both programs take a higher-order callback f as an argument

and apply it to a thunk. In the case of e2, if that thunk argument (λ .⊥, where ⊥ is

a divergent term) is ever applied, either during the call to f or at some point in the

future (e.g., if the thunk were stored by f in a ref cell and then called later), then

the program will clearly diverge. Now, e1 implements the same divergence behavior,

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 491

but in a rather sneaky way. It maintains two private flags x and y, initially set to

ff . If the thunk that it passes to f is applied during the call to f, then the thunk’s

body will not immediately diverge (as in the case of e2), but rather merely set y to

tt. Then, if and when f returns, e1 will check if y points to tt and, if so, diverge. If

the thunk was not applied during the call to f, then e1 will set x to tt, thus ensuring

that any future attempt to apply the thunk will diverge as well.

As in the previous examples, note that this equivalence does not hold in the

presence of call/cc. Here is a distinguishing context:

call/cc (k. • (λg. throw g 〈〉 to k))

To prove the equivalence in HOS, we can split the proof into two directions of

approximation. Proving that e2 approximates e1 is actually very easy because (1) it

is trivial to show that λ .⊥ approximates the thunk that e1 passes to f, and (2) if a

program C[e2] terminates (which is the assumption of observational approximation),

then C[e1] must in fact maintain the invariant that y ↪→ ff , and using that invariant

the proof is totally straightforward.

In contrast, the other direction of approximation seems at first glance impossible to

prove using logical relations. The issue is that we have to show that the thunks passed

to the callback f are related, i.e., that λ . if !x then ⊥ else y := tt approximates

λ .⊥, which obviously is false since, when applied (as they may be) in a state where

x points to ff , the first converges while the second diverges.

To solve this conundrum, we do the blindingly obvious thing, which is to introduce

falsehood into our model. Specifically, we extend our STSs with inconsistent states,

in which we can prove false things, such as that a terminating computation

approximates a divergent one. How, one may ask, can this possibly work? The

idea is as follows: when we enter an inconsistent state, we effectively shift the proof

burden from the logical relation for terms to the logical relation for continuations.

That is, while it becomes very easy to prove that two terms are related in an

inconsistent state, it becomes very hard to prove that two continuations K1 and

K2 are related in such a state—in most cases, we will be forced to prove that

K1 diverges. Thus, while inconsistent states do allow a limited kind of falsehood

inside an approximation proof, we can only enter into them if we know that the

continuation of the term on the left-hand side of the approximation will diverge

anyway.

Concretely, to show that e1 approximates e2, we construct the STS given in

Figure 3, where the diamond indicates an inconsistent state: For the moment, ignore

the top-left state (we explain it below). In the proof, we wish to show that the thunks

passed to the callback f are logically related in the top-right state, which requires

showing that they are related in any state accessible from it. Fortunately, this is easy.

If the thunks are called in the bottom-left state, then they both diverge. If they are

called in the top-right or bottom-right state, then the else-branch is executed (in the

first program) and we move to (or stay in) the bottom-right state—since this state

is inconsistent, the proof is trivially done.

Dually, we must show that the continuations of the callback applications are also

related in any state (publicly) accessible from the top-right one. If the continuations

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

492 D. Dreyer et al.

x → ff
y → ff

x → ff
y → ff

x → tt
y → ff

x → ff
y → tt

Fig. 3. STS for a variant of the “deferred divergence” example.

are invoked in the top-right or the bottom-left state, they will set x to tt, thereby

transitioning to the bottom left. If, on the other hand, they are invoked in the

inconsistent bottom-right state, then we are required to show that the first one

diverges, which fortunately it will since y points to tt.

Now about the top-left state, whose heap constraint is identical to the one in

the top-right state: the reason for including this state has to do with soundness of

the logical relation. In order to ensure soundness, we require that when an STS is

installed in the possible world, it may not contain any inconsistent states that are

publicly accessible from its starting state. We say in this case that the starting state

is safe. (Without this safety restriction, it would be easy to show, for instance, that

tt approximates ff in any world W by simply adding an STS to W with a single

inconsistent state.)

To circumvent this restriction, we use the top-left state as our starting state and

connect it to the top-right state by a private transition. (In the proof, the first step

before invoking the callbacks is to transition into the top-right state.) This is fine

so long as the extensional behavior of the functions we are relating makes a public

transition, and here it does—if they are invoked in the top-left state, then either they

diverge or they return control in the bottom-left state, which is publicly accessible

from the top left.

6 Reasoning with first-order state

In this section, we consider an orthogonal restriction to the one examined in the

previous section. Instead of removing call/cc from the language, what happens if we

restrict state to be first order? What new reasoning principles are enabled by this

restriction?

6.1 Backtracking

Recall the “callback with lock” example from Section 5.1, which we proved

equivalent in HOS. As it turns out, that equivalence also holds in FOSC. Of course,

we would not be able to prove that using the HOSC model since the equivalence

does not hold in HOSC. But let us see what exactly goes wrong if we try. First of all,

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 493

b → tt
x → 0

b → tt
x → 1

b → tt
x → 2 foo· · ·

b → ff
x → 0

b → ff
x → 1

b → ff
x → 2

· · ·

Fig. 4. STS for the “callback with lock” example in FOSC.

recall the use of private transitions in our earlier proof. Due to call/cc, we cannot

use any private transitions this time. Clearly, making them public is not an option,

so what if we just drop them entirely? In the resulting STS, shown in Figure 4, we

still know that running the callback in a locked state (b ↪→ ff , x ↪→ m) will leave

us in the very same state if and when it returns. However, without any outgoing

(private) transition from that state, it seems that we are subsequently stuck.

Fortunately, we are not. The insight now is that the absence of higher-order state

allows us to do backtracking within our STS. Concretely, we can backtrack from

the locked state to the unlocked state we were in before (b ↪→ tt, x ↪→ m), and

then transition (publicly) to its successor (b ↪→ tt, x ↪→ m+ 1). Intuitively, this kind

of backtracking would not be sound in the presence of higher-order state because,

in that setting, the callback might have stored some higher-order data during its

execution (such as functions or continuations) that are only logically related in the

locked state and its successors.4 Since (b ↪→ tt, x ↪→ m+ 1) is not a successor of the

previous locked state, the final heaps would then fail to satisfy the final world in

which the increment functions return. Here in the first-order setting, though, there is

no way for the callback to store such higher-order data, so backtracking is perfectly

sound.

We use the term “backtracking” purposefully (if informally) to suggest that, while

this technique allows more flexibility in proofs, it does not permit transitioning to

arbitrary states in the STS. Rather, when we prove that two functions are logically

related, we must show they behave the same when applied in any starting state s,

which could be any state of the STS. Backtracking means that, inside the proof

that the functions are related, we can transition from any state accessible from s

to any other state accessible from s (by first backtracking to s and then making a

normal transition), but not to any states inaccessible from s. For instance, in the

backtracking proof sketch for callback-with-lock above, it was fine to transition

from (b ↪→ ff , x ↪→ m) to (b ↪→ tt, x ↪→ m+ 1) because both of them were accessible

from the state (b ↪→ tt, x ↪→ m) in which the proof began, but it would not have

been okay to transition to (b ↪→ tt, x ↪→ m− 1) for instance.

4 Indeed, the context that distinguishes between the two programs in HOSC employs precisely such a
callback, namely one that stores its current continuation in a ref cell. It is given in Section 9.1.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

494 D. Dreyer et al.

To see why we only permit transitions to states that are reachable from the starting

state s, consider how transitions are used within a proof. When we transition to a

state s′, it means either that we are about to pass control to related callbacks in

that state—e.g., the transition to (b ↪→ ff , x ↪→ m) above—or that we have finished

executing the computation of the function bodies and are ready to return related

values in that state—e.g., the transition to (b ↪→ tt, x ↪→ m+1) above. In the first case,

it is necessary for s′ to be accessible from s because the callbacks are parameters of

the functions being related and, as such, are only known to be logically related in

states accessible from the state s in which the functions were invoked. In the second

case, s′ must be publicly accessible from s because the end-to-end behavior of the

functions is required to follow a public transition.

A precise technical explanation of how the model is changed to allow backtracking,

and why this is sound, will be given in Section 7.3.

6.2 Putting it together

The example we just looked at might suggest that backtracking is mainly useful as

a replacement for private transitions in the presence of call/cc. But in fact, they are

complementary techniques. In particular, for equivalences that hold only in FOS but

not in HOS or FOSC, we can profitably employ backtracking, private transitions,

and inconsistent states, all working together.

Consider this simpler version of the “deferred divergence” example, based closely

on an example of O’Hearn & Reddy (1995):

τ = ((unit → unit) → unit) → unit

e1 = let y = ref ff in

λf. f (λ . y := tt);

if !y then ⊥ else 〈〉
e2 = λf. f (λ .⊥)

These programs are not only distinguishable in the setting of FOSC (by the same

distinguishing context as given in Section 5.2), but also in HOS, as the following

context C demonstrates:

let r = ref (λ . 〈〉) in • (λg. r := g); !r 〈〉

It is easy to verify that C[e1] terminates, while C[e2] diverges.

The two programs are, however, equivalent in FOS, which we can prove using the

following STS:

y ↪→ ff y ↪→ ff y ↪→ tt

The proof is largely similar to (if a bit simpler than) the one sketched for the

higher-order version of this example in Section 5.2. We start in the left state and

transition immediately along the private transition to the middle state. With the help

of the inconsistent right state, it is easy to show that the thunk arguments passed to

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 495

the callback are related in the middle state. Hence, when the callback returns, we are

either in the right state or the middle state. In the former case, we must show that

the continuation in the left-hand-side program diverges; in the latter, we backtrack

to the initial, left state, which is of course publicly accessible from itself. (We will

present this proof in more detail below, in Section 9.2.)

Why, one might ask, is it not possible to avoid the use of backtracking here by

adding a private transition back from the middle state to the left state? (Of course,

it must not be possible, or else the equivalence would hold true in HOS, which as

we have seen it does not.) The answer is that, if we were to add such a transition,

then we would not be able to prove that the thunk arguments to the callback f were

logically related in the middle state. Specifically, in order to show the latter, we must

show that the thunks are related in any state accessible (by any kind of transition)

from the middle state. So if there were any transition from the middle to the left

state, we would have to show that the thunks were related starting in the left state

as well—but they are not, because there is no public transition from the initial left

state to the inconsistent right state, and adding one would be unsound.

7 Technical development

We now present the models for our various languages formally. It is easiest to start

with the model for HOS, and then show how small changes to that yield the models

for HOSC, FOS, and FOSC.

As described in Section 3, we employ a step-indexed Kripke logical relation, which

is a kind of possible-worlds model.

Worlds. Figure 5 displays the construction of worlds, along with various related

operations and relations.5 Worlds W consist of a step index k, heap typings Σ1

and Σ2 (for the first and second programs, respectively), and an array of islands

ω = ι1, . . . , ιm. (We sometimes write W (i) to refer to ιi.) Islands in turn are (possibly

infinite) state transition systems governing disjoint pieces of the heap. Each consists

of a current state s, a transition relation δ, a public transition relation ϕ, a set

of inconsistent states �, and last but not least, a mapping H from states to heap

constraints (in the form of world-indexed heap relations—more on that below). The

public transition relation ϕ must be a subset of the “full” transition relation δ (note:

the private transitions are obtained by subtracting ϕ from δ), and we require both

δ and ϕ to be reflexive and transitive.

What exactly “states” s are—i.e., how we define the state space State—does not

really matter. That is, State is essentially a parameter of the model, except that it

needs to be at least large enough to encode bijections on memory locations (see our

relational interpretation of ref types below). For our purposes, we find it convenient

to assume that State contains all terms and all sets of terms. Also, note that while

an island’s H map is defined on all states in State, we typically only care about how

5 Here and in the following development, we use the dot-notation to project components out of a
structure. As an example, we write W.Σ1 to extract the first heap typing out of a world W .

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

496 D. Dreyer et al.

HeapAtomn
def= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm
k }

ContAtomn[τ1,τ2]
def= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def= n HeapAtomn[τ1,τ2]

World
def= n Worldn

ContAtom[τ1,τ2]
def= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def= (ι1 k, . . . , ιm k) H k

def= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def= (s,δ ,ϕ, , H k) ψ k

def= {(W,h1,h2) ∈ r | W.k < k}

(k +1,Σ1,Σ2,ω) def= (k,Σ1,Σ2, ω k)
r

def= {(W,e1,e2) | W.k > 0 ⇒ (W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω) (k,Σ1,Σ2,ω) def= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm) (ι1, . . . , ιm) def= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H) (s,δ ,ϕ, ,H) def= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ δ

(k ,Σ1,Σ2,ω) pub (k,Σ1,Σ2,ω) def= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm) pub (ι1, . . . , ιm) def= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j
pub ι j ∧

∀ j ∈ {m+1, . . . ,m }. safe(ι j)
(s ,δ ,ϕ , ,H) pub (s,δ ,ϕ, ,H) def= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ ϕ

safe(W) def= ∀ι ∈W.ω. safe(ι) safe(ι) def= ∀s . (ι .s,s) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W) def= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ (W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 497

island that is permitted to change in future worlds—is accessible from the old state

s in W , according to the island’s full transition relation δ. Public extension, written

W ′ �pub W , is defined analogously, except using the public transition relation ϕ

instead of δ, and with the additional requirement that the new islands (those in W ′

but not in W) must be safe. An island is safe iff there is no public transition from

its current state to any inconsistent state.

The reason why our (and ADR’s) heap relations are world-indexed is that, when

expressing heap constraints, we want to be able to say, for instance, that a value in

the first heap must be logically related to a value in the second heap. In that case,

we need to have some way of talking about the “current” world under which that

logical relation should be considered, and by world-indexing the heap relations we

enable the current world to be passed in as a parameter. These world-indexed heap

relations are quite restricted, however. Specifically, they must be monotone with

respect to world extension, meaning that heaps related in one world will continue to

be related in any future world. This ensures that adding a new island to the world,

or making (any kind of) transition within an existing island, does not violate the

heap constraints of other islands.

The last two definitions also concern heap relations. Two heaps h1 and h2 satisfy

a world W , written (h1, h2) : W , iff they can be split into disjoint subheaps such that

for each island in W there is a subheap of h1 and a corresponding subheap of h2 that

are related by that island’s current heap relation (the relation associated with the

island’s current state). A heap relation ψ is the tensor of ψ′ and ψ′′, written ψ′ ⊗ψ′′,

if it contains all (W, h1, h2) that can be split into disjoint parts (W, h′
1, h

′
2) ∈ ψ′ and

(W, h′′
1 , h

′′
2) ∈ ψ′′.

7.1 HOS

Logical relation. Our logical relation for HOS is defined in Figure 6. The value

relation V�τ�ρ is fairly standard. The environment ρ gives meaning to the free type

variables of τ: for each such variable, ρ stores a semantic (i.e., relational) interpreta-

tion and, for the sake of enforcing well-typedness, two syntactic interpretations (one

for the first program and one for the second). We write ρ1 and ρ2 for the first and

second syntactic substitutions obtained from ρ.

The only real difference between our value relation and the one from the ADR

model is in V�ref τ�ρ, the interpretation of reference types. Basically, we say that

two references l1 and l2 are logically related at type ref τ in world W if there exists

an island ι in W (we write W (i) to mean the ith island in W), such that (1) ι’s heap

constraint (in any reachable state) requires of l1 and l2 precisely that their contents

are related at type τ, and (2) the reachable states in ι encode a bijection between

locations that includes the pair (l1, l2). The latter condition is needed in order to

model the presence of reference equality testing l1 == l2 in the language. It employs

an auxiliary “bij” function that can for instance be defined as follows (assuming

State contains sets of language values):

bij(s)
def
=

{(l1, l2) | 〈l1, l2〉 ∈ s} if that is a partial bijection

∅ otherwise

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

498 D. Dreyer et al.

V α ρ def= ρ(α).r
V b ρ def= {(W,v,v) ∈ TermAtom[b,b]}

V τ ×τ ρ def= {(W, v1,v1 , v2,v2) ∈ TermAtom[ρ1(τ ×τ),ρ2(τ ×τ)] |
(W,v1,v2) ∈ V τ ρ ∧ (W,v1,v2) ∈ V τ ρ}

V τ → τ ρ def= {(W,λx:τ1.e1,λx:τ2.e2) ∈ TermAtom[ρ1(τ → τ),ρ2(τ → τ)] |
∀W ,v1,v2. W W ∧ (W ,v1,v2) ∈ V τ ρ ⇒
(W ,e1[v1/x],e2[v2/x]) ∈ E τ ρ}

V ∀α.τ ρ def= {(W,Λα.e1,Λα.e2) ∈ TermAtom[ρ1(∀α.τ),ρ2(∀α.τ)] |
∀W W. ∀(τ1,τ2,r) ∈ SomeValRel.
(W ,e1[τ1/α],e2[τ2/α]) ∈ E τ ρ,α (τ1,τ2,r)}

V ∃α.τ ρ def= {(W,pack τ1,v1 as τ1,pack τ2,v2 as τ2) ∈ TermAtom[ρ1(∃α.τ),ρ2(∃α.τ)] |
∃r. (τ1,τ2,r) ∈ SomeValRel∧ (W,v1,v2) ∈ V τ ρ,α (τ1,τ2,r)}

V µα.τ ρ def= {(W, rollτ1 v1, rollτ2 v2) ∈ TermAtom[ρ1(µα.τ),ρ2(µα.τ)] |
(W,v1,v2) ∈ V τ [µα.τ/α] ρ}

V ref τ ρ def= {(W, l1, l2) ∈ TermAtom[ρ1(ref τ),ρ2(ref τ)] | ∃i. ∀W W.
(l1, l2) ∈ bij(W (i).s)∧∃ψ. W (i).H(W (i).s) =
ψ ⊗{(W ,{l1 v1},{l2 v2}) ∈ HeapAtom | (W ,v1,v2) ∈ V τ ρ}}

O
def= {(W,e1,e2) | ∀h1,h2. (h1,h2) : W h1;e1

<W.k⇒ consistent(W) h2;e2

K τ ρ def= {(W,K1,K2) ∈ ContAtom[ρ1(τ),ρ2(τ)] |
∀W ,v1,v2. W pub W ∧ (W ,v1,v2) ∈ V τ ρ ⇒ (W ,K1[v1],K2[v2]) ∈ O}

E τ ρ def= {(W,e1,e2) ∈ TermAtom[ρ1(τ),ρ2(τ)] |
∀K1,K2. (W,K1,K2) ∈ K τ ρ ⇒ (W,K1[e1],K2[e2]) ∈ O}

G · ρ def= {(W, /0) | W ∈ World}
G Γ,x:τ ρ def= {(W,(γ ,x (v1,v2))) | (W,γ) ∈ G Γ ρ ∧ (W,v1,v2) ∈ V τ ρ}

D · def= { /0}
D ∆,α def= {ρ,α R | ρ ∈ D ∆ ∧R ∈ SomeValRel}

S · def= World

Σ;∆;Γ e1 log e2 : τ def= Σ;∆;Γ e1 : τ ∧Σ;∆;Γ e2 : τ ∧
∀W,ρ,γ . W ∈ S Σ ∧ρ ∈ D ∆ ∧ (W,γ) ∈ G Γ ρ ⇒
(W,ρ1γ1e1,ρ2γ2e2) ∈ E τ ρ

S Σ, l:τ def= S Σ ∩{W ∈ World | (W, l, l) ∈ V ref τ /0}}

Fig. 6. A step-indexed biorthogonal Kripke logical relation for HOS.

Our formulation of V�ref τ�ρ is slightly different from ADR’s and a bit more

flexible—e.g., ours can be used to prove Bohr’s “local state release” example (Bohr,

2007) (see the technical appendix, Dreyer et al., 2012), whereas ADR’s cannot—

but this added flexibility does not affect any of our “headlining” examples from

Sections 3–6.

As explained in Section 4, the value relation is lifted to a term relation via

biorthogonality. Concretely, we define the continuation relation K�τ�ρ based on

V�τ�ρ, and then the term relation E�τ�ρ based on K�τ�ρ:

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 499

• Two continuations are related iff they yield related observations when applied

to related values.

• Two terms are related iff they yield related observations when evaluated under

related continuations.

Yielding related observations here means (see the definition of O) that, whenever

two heaps satisfy the world W in question and the first program terminates in the

first heap (within W.k steps), then the second program terminates in the second

heap and the world is consistent (i.e., no island is in an inconsistent state). This

corresponds to the intuition given in Section 5.2 that an inconsistent world is one

in which the first program diverges.

Notice that the continuation relation quantifies only over public future worlds.

This captures the essential idea (explained in Section 5.1) that the context can

only make public transitions. In order to see this, it is important to understand

how a typical proof in a biorthogonal logical relation goes. Roughly, showing the

relatedness of two programs that involve a call to an unknown function (e.g., a

callback) eventually reduces to showing that the continuations of the function call

are related; thanks to the definition of K�τ�ρ, we will only need to consider the

possibility that those continuations are invoked in a public future world of the world

we were in prior to the function call—in other words, we can assume that the function

call made a public transition. We will see how this works in detail in the example

proofs in Section 9.

Finally, the logical relation is lifted to open terms in the usual way, quantifying

over related closing substitutions ρ and γ matching ∆ and Γ, respectively, as well as

an initial world in which every location bound in Σ is related to itself. We write γ1
and γ2 here as shorthand for the first and second value substitutions contained in γ.

Step indexing Our use of step indexing to stratify the construction of worlds and to

define the logical relation follows the development in ADR quite closely. In order

to avoid a circularity, the various universes of discourse are defined by induction on

natural numbers (top of Figure 5). Note that Worldn is defined in terms of Islandk
for k < n. We write World to mean the limit

⋃
n Worldn, and similarly for some

other semantic classes.

When comparing two generations of an island in the definition of our world

extensions, the �·�k operator is used to cut down the heap relations of the old one to

the level of the new one. Using the “later” operator �, world satisfaction (bottom of

Figure 5) requires each pair of subheaps to be related not right away but one step

later. Intuitively, this is safe because it takes a step of computation to dereference a

pointer.

The logical relation itself is also defined by induction on natural numbers (in

addition to the usual induction on types). In particular, the value relation at a

recursive type, V�µα. τ�ρ, refers to the value relation at a potentially larger type but

uses � to decrease its step index. For further details about step indexing we refer the

interested reader to the literature (Ahmed et al., 2009; Dreyer et al., 2010).

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

500 D. Dreyer et al.

Basic properties We highlight some of the many basic properties that are used all

the time in logical relations proofs.

Frequently, we assume that we are given some related values (e.g., as inputs to

functions), and we want them to be still related after we have added an island

to the world or made a transition. It is therefore crucial that, like heap relations,

value relations are monotone with respect to world extension. Since we enforce this

property for relational interpretations of abstract types (see the definition of ValRel

in Figure 5), it is easy to show that the value relation indeed has this property:

Lemma 1 (Monotonicity of the value relation)

If W ′ � W and (W, v1, v2) ∈ V�τ�ρ, then (W ′, v1, v2) ∈ V�τ�ρ.

Another important property of the value relation is that it is included in the term

relation. Consequently, when showing two values related by the term relation, it

suffices to show them related by the value relation.

Lemma 2 (Term relation includes value relation)

V�τ�ρ ⊆ E�τ�ρ

Equally useful in proofs is the following lemma, which recognizes the monadic

binding that occurs implicitly in ML-like languages (Dreyer et al., 2010, 2011). It

applies when reasoning about two programs that contain related terms e1 and e2 in

evaluation position. In that case, it is okay to forget about e1 and e2, and replace

them with unknown related values in an unknown public future world.

Lemma 3 (Monadic bind)

If (W, e1, e2) ∈ E�τ�ρ

and ∀W ′ �pub W. ∀v1, v2. (W ′, v1, v2) ∈ V�τ�ρ ⇒ (W ′, K1[v1], K2[v2]) ∈ E�τ′�ρ,

then (W,K1[e1], K2[e2]) ∈ E�τ′�ρ.

Proof

• Suppose (W,K ′
1, K

′
2) ∈ K�τ′�ρ.

• We must show (W,K ′
1[K1[e1]], K

′
2[K2[e2]]) ∈ O.

• By the first premise this reduces to showing (W,K ′
1[K1], K

′
2[K2]) ∈ K�τ�ρ.

• So suppose W ′ �pub W and (W ′, v1, v2) ∈ V�τ�ρ.
• To show: (W ′, K ′

1[K1[v1]], K
′
2[K2[v2]]) ∈ O

• From the second premise we know (W ′, K1[v1], K2[v2]) ∈ E�τ′�ρ.
• The claim follows then from (W,K ′

1, K
′
2) ∈ K�τ′�ρ and monotonicity.

�

The following lemma essentially states that the observation relation is closed

under pure expansion (not involving heap mutation) on either side.

Lemma 4 (Closure under pure expansion)

If 〈h; e1〉 ↓<W.k implies 〈h; e′
1〉 ↓<W.k and 〈h; e′

2〉 ↓ implies 〈h; e2〉 ↓ for any h, then

(W, e′
1, e

′
2) ∈ O implies (W, e1, e2) ∈ O.

Finally, the following lemma collects some facts about syntactic well-typedness of

logical relation components. The judgments it mentions governing well-formedness

of value and type substitutions are defined in the standard way (see Dreyer et al.,

2012).

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 501

Lemma 5 (Syntactic typing properties)

1. If W ∈ S�Σ�, then Σ ⊆ W.Σ1 and Σ ⊆ W.Σ2.

2. If ρ ∈ D�∆�, then · � ρ1 : ∆ and · � ρ2 : ∆.

3. If (W, γ) ∈ G�Γ�ρ, then W.Σ1; ·; · � γ1 : ρ1Γ and W.Σ2; ·; · � γ2 : ρ2Γ.

Soundness and completeness The proof that our logical relation is sound with respect

to HOS’s contextual approximation follows closely that of ADR (Ahmed et al., 2009).

The basic building blocks are the compatibility lemmas (Pitts, 2005), which state that

the logical relation is closed under each of the language’s constructs; we omit them

here as they are fairly standard (they can be found in Dreyer et al., 2012, though).

Together, they yield the fundamental property of the logical relation (Theorem 1)

and the fact that the logical relation is a precongruence with respect to language

contexts C (Lemma 7).

Theorem 1 (Fundamental property)

If Σ; ∆; Γ � e : τ, then Σ; ∆; Γ � e �log e : τ.

Proof

By induction on the typing derivation, in each case using the appropriate compati-

bility lemma. �

Lemma 6 (Weakening)

If Σ; ∆; Γ � e1 �log e2 : τ and Σ ⊆ Σ′, ∆ ⊆ ∆′, Γ ⊆ Γ′, ∆′ � Γ′, then Σ′; ∆′; Γ′ �
e1 �log e2 : τ.

Lemma 7 (Precongruence)

If Σ; ∆; Γ � e1 �log e2 : τ and � C : (Σ; ∆; Γ; τ) � (Σ′; ∆′; Γ′; τ′), then

Σ′; ∆′; Γ′ � C[e1] �log C[e2] : τ′.

Proof

By induction on the derivation of the context typing, in each case using the

corresponding compatibility lemma. For a context containing subterms we also

need Theorem 1. The rule for an empty context is

Σ ⊆ Σ′ ∆ ⊆ ∆′ Γ ⊆ Γ′

� • : (Σ; ∆; Γ; τ) � (Σ′; ∆′; Γ′; τ)

and hence that case requires Lemma 6. �

It remains to prove adequacy of the logical relation (Pitts, 2005), i.e., the fact

that if two closed terms are logically related and the first one terminates under a

(well-formed) heap, then so does the second (under the same heap). This involves

the construction of a canonical safe world for a given heap typing. Details of the

construction can be found in Dreyer et al. (2012).

Lemma 8 (Canonical world)

If � h : Σ, then for any k there is W ∈ S�Σ� such that W.k = k and (h, h) : W and

safe(W).

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

502 D. Dreyer et al.

Lemma 9 (Adequacy)

If Σ; ·; · � e1 �log e2 : τ and � h : Σ and 〈h; e1〉↓, then 〈h; e2〉↓.

Proof

• Say 〈h; e1〉↓j .
• By Lemma 8 there is W ∈ S�Σ� with W.k = j + 1, (h, h) : W , and safe(W).

• Instantiating Σ; ·; · � e1 �log e2 : τ yields (W, e1, e2) ∈ E�τ�.

• It thus suffices to show (W, •, •) ∈ K�τ�.

• So suppose W ′ �pub W , (W ′, v1, v2) ∈ V�τ�, (h1, h2) : W ′ and 〈h1; v1〉↓<W ′ .k .

• We need to show consistent(W ′) and 〈h2; v2〉↓.

• The former follows from safe(W) because public world extension preserves

safety, and the latter is immediate.

�

Theorem 2 (Soundness)

�log ⊆ �ctx

Proof

• Suppose Σ; ∆; Γ � e1 �log e2 : τ as well as � C : (Σ; ∆; Γ; τ) � (Σ′; ·; ·; τ′),

� h : Σ′, and 〈h;C[e1]〉↓.

• By precongruence (Lemma 7), Σ′; ·; · � C[e1] �log C[e2] : τ′.

• By adequacy (Lemma 9), 〈h;C[e2]〉↓.

�

Following Pitts & Stark (1998), we show completeness of our logical relation

with respect to contextual approximation with the help of Mason and Talcott’s

ciu-approximation (Mason & Talcott, 1991) as an intermediate relation.

Definition 1 (CIU approximation)

Σ; ∆; Γ � e1 �ciu e2 : τ
def
= Σ; ∆; Γ � e1 : τ ∧ Σ; ∆; Γ � e2 : τ ∧ ∀δ, γ, K,Σ′, h.

· � δ : ∆ ∧ Σ′; ·; · � γ : δΓ ∧ Σ′; ·; · � K ÷ δτ ∧ Σ ⊆ Σ′∧
� h : Σ′ ∧ 〈h;K[δγe1]〉↓ ⇒ 〈h;K[δγe2]〉↓

Theorem 3 (Completeness)

�ctx ⊆ �ciu ⊆ �log

Proof

Proving the inclusion of �ctx in �ciu is fairly easy (details can be found in Dreyer

et al., 2012). The inclusion of �ciu in �log follows as an almost immediate consequence

of the Fundamental Property, together with the logical relation’s biorthogonal

definition:

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, and (W, γ) ∈ G�Γ�ρ.

• To show: (W,ρ1γ1e1, ρ2γ2e2) ∈ E�τ�ρ

• So suppose (W,K1, K2) ∈ K�τ�ρ, (h1, h2) : W , and 〈h1;K1[ρ1γ1e1]〉↓<W.k .

• To show: consistent(W) and 〈h2;K2[ρ2γ2e2]〉↓
• By Theorem 1 we know Σ; ∆; Γ � e1 �log e1 : τ.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 503

• Instantiating this yields consistent(W) and 〈h2;K2[ρ2γ2e1]〉↓.

• Using the assumption that Σ; ∆; Γ � e1 �ciu e2 : τ, it suffices to show:

1. · � ρ2 : ∆ and W.Σ2; ·; · � γ2 : ρ2Γ, which follow by Lemma 5;

2. W.Σ2; ·; · � K2 ÷ ρ2τ, which holds by definition of ContAtom;

3. Σ ⊆ W.Σ2, which follows by Lemma 5; and

4. � h2 : W.Σ2, which holds by definition of HeapAtom.

�

7.2 HOSC

The model for HOSC can be obtained from the one for HOS by making two

changes. First of all, in HOSC, we have to account for the presence of first-class

continuation values contτ K , i.e., we have to define what it means for two values to

be related at type cont τ. We do that by essentially just copying the definition of our

continuation relation K�τ�ρ:6

V�cont τ�ρ
def
={(W, contK1, contK2) ∈ TermAtom[ρ1(cont τ), ρ2(cont τ)] | ∀W ′, v1, v2.

W ′ � W ∧ (W ′, v1, v2) ∈ V�τ�ρ ⇒ (W ′, K1[v1], K2[v2]) ∈ O}

Notice, however, that the definition given here quantifies over arbitrary future

worlds rather than just public future worlds. The reason is that the logical relation

on values needs to be monotone with respect to � (Lemma 1), not just �pub. This

(forced) change has serious consequences. Since in HOSC any continuation can be

injected into the value language, we will therefore need to prove that continuations

related by K�τ�ρ become values related by V�cont τ�ρ (see Lemma 10). Hence,

the strengthening of V�cont τ�ρ to quantify over arbitrary future worlds forces the

corresponding strengthening of K�τ�ρ as well.

Of course, what this means is that in the presence of call/cc, the private and public

transition relations must be collapsed into one, and consequently we must disallow

inconsistent states, too. This corresponds to the intuition we gave in Section 5.1,

namely that private transitions and inconsistent states are only sound to use in the

absence of call/cc. Formally, we can easily implement these restrictions by redefining

Islandn as follows:

Island′
n

def
= {ι ∈ Islandn | ι.ϕ = ι.δ ∧ ι.� = ∅}

Under this definition, the two notions of world extension coincide and all worlds are

consistent. The rest of the model stays the same. In particular, proofs done in the

HOS model that do not make use of private transitions or inconsistent states can

be transferred without any change. The soundness and completeness proofs carry

over as well. The former merely needs to be extended in a straightforward way to

deal with cont, call/cc, and throw, as we show below.

It is worth noting that, even in the model for HOS, where private transitions and

inconsistent states are supported, one may not require the use of both these features

6 The reason why we do not simply define V�cont τ�ρ directly in terms of K�τ�ρ will become apparent
in Section 8.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

504 D. Dreyer et al.

in every equivalence proof. For instance, in Sections 9.1 and 9.4, our proofs employ

private transitions but not inconsistent states. In such cases, it is fine to assume

the model is restricted to one where all states are consistent, thereby avoiding any

need to reason explicitly about consistency of worlds within logical-relations proofs.

This is perfectly sound for the same reason that the above restriction of the HOSC

model (i.e., Island′
n) is—namely, because the proof of soundness and completeness of

the logical relation with respect to contextual equivalence does not itself make use

of either private transitions and inconsistent states. (The proof of compatibility for

reference allocation does rely on the ability to extend the world with a new island,

but this only requires public world extension.)

In order to state compatibility for cont we first need to lift K�τ�ρ to open

continuations the same way we lifted E�τ�ρ to open expressions:

Definition 2

Σ; ∆; Γ � K1 �log K2 ÷ τ
def
= Σ; ∆; Γ � K1 ÷ τ ∧ Σ; ∆; Γ � K2 ÷ τ ∧ ∀W,ρ, γ.

W ∈ S�Σ� ∧ ρ ∈ D�∆� ∧ (W, γ) ∈ G�Γ�ρ ⇒
(W,ρ1γ1K1, ρ2γ2K2) ∈ K�τ�ρ

Lemma 10 (Compatibility: Cont)

Σ; ∆; Γ � K1 �log K2 ÷ τ

Σ; ∆; Γ � contτ K1 �log contτ K2 : cont τ

Proof

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, and (W, γ) ∈ G�Γ�ρ.

• To show: (W, cont ρ1γ1K1, cont ρ2γ2K2) ∈ E�cont τ�ρ

• By Lemma 2 it suffices to show (W, cont ρ1γ1K1, cont ρ2γ2K2) ∈ V�cont τ�ρ.

• This is implied by (W,ρ1γ1K1, ρ2γ2K2) ∈ K�τ�ρ, which we get from the premise.

�

Lemma 11 (Compatibility: Call/cc)

Σ; ∆; Γ, x:cont τ � e1 �log e2 : τ

Σ; ∆; Γ � call/ccτ (x. e1) �log call/ccτ (x. e2) : τ

Proof

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, (W, γ) ∈ G�Γ�ρ, and (W,K1, K2) ∈ K�τ�ρ.

• To show: (W,K1[call/cc (x. ρ1γ1e1)], K2[call/cc (x. ρ2γ2e2)]) ∈ O

• By Lemma 4 it suffices to show (W,K1[(ρ1γ1e1)[cont K1/x]], K2[(ρ2γ2e2)

[cont K2/x]]) ∈ O.

• Since (W,K1, K2) ∈ K�τ�ρ implies (W, cont K1, cont K2) ∈ V�cont τ�ρ, we get

(W, γ′) ∈ G�Γ, x:cont τ�ρ for γ′ = γ, x�→(cont K1, cont K2).

• Instantiating the premise now yields (W,ρ1γ
′
1e1, ρ2γ

′
2e2) ∈ E�τ�ρ.

• Hence (W,K1[ρ1γ
′
1e1], K2[ρ2γ

′
2e2]) ∈ O.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 505

• By definition of ContAtom, K1 and K2 contain no free type variables.

Consequently, ρ1γ
′
1e1 = (ρ1γ1e1)[K1/x] and ρ2γ

′
2e2 = (ρ2γ2e2)[K2/x].

�

Lemma 12 (Compatibility: Throw)

Σ; ∆; Γ � e1 �log e2 : τ′ Σ; ∆; Γ � e3 �log e4 : cont τ′

Σ; ∆; Γ � throwτ e1 to e3 �log throwτ e2 to e4 : τ

Proof

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, (W, γ) ∈ G�Γ�ρ.

• To show: (W, throw ρ1γ1e1 to ρ1γ1e3, throw ρ2γ2e2 to ρ2γ2e4) ∈ E�τ�ρ

• By instantiating the premises and applying Lemma 3 twice, it suffices to show

(W ′, throw v1 to (cont K3), throw v2 to (cont K4)) ∈ E�τ�ρ, where

1. W ′ �pub W

2. (W ′, v1, v2) ∈ V�τ′�ρ

3. (W ′, cont K3, cont K4) ∈ V�cont τ′�ρ

• So suppose (W ′, K1, K2) ∈ K�τ�ρ.

• To show: (W ′, K1[throw v1 to (cont K3)], K2[throw v2 to (cont K4)]) ∈ O

• Note that by Lemma 4 it suffices to show (W ′, K3[v1], K4[v2]) ∈ O.

• Hence instantiating (3) with (2) yields the claim.

�

7.3 FOS

In the first-order state setting, observe that, for the types of values that can be stored

in the heap—namely, those of base type—our logical relation for values coincides

with syntactic equality. Consequently, when expressing that two heap values are

logically related, we no longer need to refer to a world. Obtaining the model for

FOS from the one for HOS is therefore very simple—all that is needed is to remove

the ability of heap relations to be world-dependent:

HeapRel′n
def
= P(Heap × Heap)

Our heap relations are now more or less the same as in Pitts & Stark (1998)—that is,

they are simply heap relations. Correspondingly, we must also update the definitions

of (h1, h2) : W , ψ′ ⊗ ψ′′, and V�ref τ�ρ, all in the obvious manner, to reflect the lack

of world indices in heap relations. (For details, see Dreyer et al., 2012.) Note that

while step-indices are no longer needed to stratify our worlds, they are still useful

in modeling general recursive types.

This simplification of HeapRel enables backtracking (see Section 6.1) by isolating

islands from one another completely. Specifically, in the model of HOS, changing

the state of an island ι in a way not prescribed by ι’s transition system could have the

effect of breaking the heap constraints in other islands, since those heap constraints

were allowed to depend on the state of the world as a whole and were only required

to be monotone under advancement to future worlds. In contrast, with the simplified

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

506 D. Dreyer et al.

FOS model, there is now no way for any change to ι’s state to affect the satisfaction

of other islands’ heap constraints, since those heap constraints are not permitted to

depend in any way on the state of the world as a whole. This gives us the freedom

to backtrack within ι’s transition system as we like.

7.4 FOSC

The changes to the HOS model discussed in Sections 7.2 and 7.3 are completely

orthogonal and may be easily combined in order to obtain a fully abstract model

for FOSC.

8 Reasoning in the presence of exceptions

In this paper, we have focused attention on first-class continuations as our control

effect of interest, and demonstrated that their absence enables the extension of our

STS-based Kripke model with the mechanisms of private transitions and inconsistent

states. It is natural, then, to ask about the impact that other control effects have

on our model. At least in the case of simple, global exceptions, the answer is quite

straightforward, as we now briefly explain. We conjecture that this basic story also

applies to more sophisticated (generative) exception mechanisms like standard MLs,

but we leave the consideration of those—as well as of other control effects such as

delimited continuations—to future work.

First of all, unlike throwing to a continuation, raising an exception causes a

“well-bracketed” kind of control effect, in the sense that it passes control to the

exception handler that was most recently pushed onto the control stack. Thus, the

presence of exceptions does not per se restrict our STS model: we are free to use

STSs with private transitions and inconsistent states.

However, the possibility of exceptional behavior means that, when proving two

continuations to be logically related (by K�τ�ρ), we must show that they behave

in a related manner not only when they are plugged with related values, but also

when they are passed related raised exceptions. Concretely, consider the language

extension presented in Figure 7. It adds a new base type exn that is inhabited

by a fixed set of exception constants cexn, and provides constructs for comparing,

raising, and catching them. (We write “K does not try” to mean that K ’s hole is

not surrounded by any exception handler.) In that setting, the definition of K�τ�ρ

becomes the following:

{(W,K1, K2) ∈ ContAtom[ρ1(τ), ρ2(τ)] | ∀W ′, v1, v2. W
′ �pub W ⇒

((W ′, v1, v2) ∈ V�τ�ρ ⇒ (W ′, K1[v1], K2[v2]) ∈ O) ∧
((W ′, v1, v2) ∈ V�exn� ⇒ (W ′, K1[raise v1], K2[raise v2]) ∈ O)}

where the value relation at exception type is simply the identity:

V�exn�ρ
def
= {(W, v, v) ∈ TermAtom[exn, exn]}

In essence, this new definition is equivalent to K�M(τ)�ρ, where M is the exception

monad—i.e., M(τ) ≈ τ+ exn.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 507

τ ::= . . . | exn
e ::= . . . | cexn | e1 = e2 | raiseτ e | try e1 with x.e2
v ::= . . . | cexn

K ::= . . . | raiseτ K | try K with x.e2

. . .
h;K[v = v] h;K[tt]
h;K[v1 = v2] h;K[ff] (v1 = v2)
h;K[raiseτ v] h; raiseτ v (K = • and K does not try)
h;K1[try K2[raiseτ v] with x.e2] h;K1[e2[v/x]] (K2 does not try)
h;K1[try v with x.e2] h;K1[v]

· · ·
Σ;∆;Γ cexn : exn

Σ;∆;Γ e1 : exn Σ;∆;Γ e2 : exn

Σ;∆;Γ e1 = e2 : bool

Σ;∆;Γ e : exn

Σ;∆;Γ raiseτ e : τ
Σ;∆;Γ e1 : τ Σ;∆;Γ,x:exn e2 : τ

Σ;∆;Γ try e1 with x.e2 : τ

Fig. 7. Adding simple exceptions.

Both this language extension and the changes to the logical relation can be

applied to any of the previously discussed languages and their models. Thus, they

really form another axis and result in four additional languages and corresponding

models: FOSE, HOSE, FOSEC, and HOSEC. For the latter two, note that we do

not change the definition V�cont τ�ρ, i.e., the meaning of continuations as values.

Doing so would be sound but unnecessary: the only way to use a continuation value

cont K is by feeding it a value of the expected type, not an exception, so we need

not place any additional conditions on when two continuation values are logically

related. Moreover, doing so would keep us from proving some equivalences: for

instance, • and (try • with x.tt) are certainly not related continuations but, injected

into the value language, they are contextually equivalent continuation values.

In each of the previous compatibility proofs and in the proof of the adequacy

theorem, we need to make the following extension: whenever we show that some

continuations are related by K�τ�ρ, we now—as dictated by its new definition—also

have to deal with the case that the continuations are passed exceptions. In each case,

this is easy since the code in question does not install any exception handlers.

The interesting additional compatibility lemmas are Lemmas 13 and 14:

Lemma 13 (Compatibility: Raise)

Σ; ∆; Γ � e1 �log e2 : exn

Σ; ∆; Γ � raiseτ e1 �log raiseτ e2 : τ

Proof

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, and (W, γ) ∈ G�Γ�ρ.

• To show: (W, raise ρ1γ1e1, raise ρ2γ2e2) ∈ E�τ�ρ

• So suppose (W,K1, K2) ∈ K�τ�ρ.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

508 D. Dreyer et al.

• To show: (W, K1[raise ρ1γ1e1], K2[raise ρ2γ2e2]) ∈ O

• Using the premise, it suffices to show (W,K1[raise •], K2[raise •]) ∈ K�exn�ρ,

which decomposes into two parts.

1. We suppose (W ′, v1, v2) ∈ V�exn�ρ for W ′ �pub W and must show

(W ′, K1[raise v1], K2[raise v2]) ∈ O.

This follows immediately from instantiating (W,K1, K2) ∈ K�τ�ρ.

2. We suppose (W ′, v1, v2) ∈ V�exn�ρ for W ′ �pub W and must show

(W ′, K1[raise (raise v1)], K2[raise (raise v2)]) ∈ O.

By Lemma 4 this reduces to showing (W ′, K1[raise v1], K2[raise v2]) ∈ O,

which we just did in part (1). �

Lemma 14 (Compatibility: Try)

Σ; ∆; Γ � e1 �log e2 : τ Σ; ∆; Γ, x:exn � e3 �log e4 : τ

Σ; ∆; Γ � try e1 with x.e3 �log try e2 with x.e4 : τ

Proof

• Suppose W ∈ S�Σ�, ρ ∈ D�∆�, and (W, γ) ∈ G�Γ�ρ.

• To show: (W, try ρ1γ1e1 with x.ρ1γ1e3, try ρ2γ2e2 with x.ρ2γ2e4) ∈ E�τ�ρ

• So suppose (W,K1, K2) ∈ K�τ�ρ.

• To show: (W,K1[try ρ1γ1e1 with x.ρ1γ1e3], K2[try ρ2γ2e2 with x.ρ2γ2e4]) ∈ O

• Using the first premise, it suffices to show

(W,K1[try • with x.ρ1γ1e3], K2[try • with x.ρ2γ2e4]) ∈ K�τ�ρ

which decomposes into two parts.

1. We suppose (W ′, v1, v2) ∈ V�τ�ρ for W ′ �pub W and must show

(W ′, K1[try v1 with x.ρ1γ1e3], K2[try v2 with x.ρ2γ2e4]) ∈ O.

By Lemma 4 it suffices to show (W ′, K1[v1], K2[v2]) ∈ O, which follows

from (W,K1, K2) ∈ K�τ�ρ.

2. We suppose (W ′, v1, v2) ∈ V�exn�ρ for W ′ �pub W and must show

(W ′, K1[try raise v1 with x.ρ1γ1e3], K2[try raise v2 with x.ρ2γ2e4]) ∈ O.

By Lemma 4 it suffices to show

(W ′, K1[(ρ1γ1e3)[v1/x]], K2[(ρ2γ2e4)[v2/x]]) ∈ O.

Using monotonicity it is easy to see that (W ′, γ′) ∈ G�Γ, x:exn�ρ. The sec-

ond premise then yields (W ′, ρ1γ
′
1e3, ρ2γ

′
2e4) ∈ E�τ�ρ. Using (W,K1, K2) ∈

K�τ�ρ and monotonicity we therefore get

(W ′, K1[ρ1γ
′
1e3], K2[ρ2γ

′
2e4]) ∈ O

for γ′ = γ, x�→(v1, v2). Since v1 and v2 contain no free type variables by

definition of TermAtom, this is what we needed to prove. �

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 509

Each of the various examples we have considered in this paper involves proving

equivalence of two higher-order functions that, when called, will manipulate some

local state and invoke their (unknown) callback arguments. Thus, for each of the

examples, the new, more restrictive definition of K�τ�ρ requires us to consider the

possibility that the callback invocation may raise an exception. Since the higher-

order function in each example does not install any exception handler around its

callback invocation, any exception raised by that callback invocation will remain

uncaught, causing the function to return immediately (raising the same exception).

We therefore need to show that any state in which the callback may raise an

exception—i.e., any state that is publicly accessible from the one in which the

callback was invoked—is also publicly accessible from the initial state in which the

higher-order function was called. For the callback-with-lock example, this is indeed

the case, since the only state publicly accessible from the “locked” state (in which

the callback is invoked) is itself, which is publicly accessible from the “unlocked”

starting state. For the other examples, on the other hand, this criterion is not met;

and indeed, in the presence of exceptions, it is not hard to find program contexts

that distinguish the higher-order functions in those examples.

9 Detailed proofs of selected examples

9.1 Callback with lock

τ = ((unit → unit) → unit) × (unit → int)

e1 =C[f 〈〉; x := !x+ 1]

e2 =C[let n = !x in f 〈〉; x := n+ 1]

C = let b = ref tt in

let x = ref 0 in

〈λf. if !b then (b := ff; •; b := tt) else 〈〉,
λ . !x〉

Here is a context C ′ that is able to distinguish e1 and e2 in HOSC:

let 〈inc, poll〉 = • in

call/cc (k0. let r = ref k0 in

let b = ref tt in

let g = (λ . call/cc (k. r := k)) in

let h = (λ . b := ff; throw 〈〉 to !r) in

inc g; (if !b then inc h else 〈〉); if poll 〈〉 = 2 then 〈〉 else ⊥)

When the second call to the increment method inc executes the callback h, the latter

jumps back to the continuation that was stored by g in r during the first call to inc.

In that continuation, n in e2 is still bound to 0, while x in e1 points to 1 now. It is

easy to verify that C ′[e1] terminates, but C ′[e2] does not.

In the absence of call/cc but presence of exceptions, i.e., in HOSE, the programs

are equivalent. We show ·; ·; · � e1 �log e2 : τ (the other direction is very similar),

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

510 D. Dreyer et al.

which immediately reduces to showing (W, e1, e2) ∈ E�τ� for W ∈ World. So we

suppose

1. (W,K1, K2) ∈ K�τ�

2. (h1, h2) : W

3. 〈h1;K1[e1]〉↓<W.k

and must now show 〈h2;K2[e2]〉↓. From (3) we know 〈ĥ1;K1[v1]〉↓<W.k , where

• ĥ1 = h1 � {lb1 �→tt} � {lx1 �→0}
• lb1 , l

x
1 are fresh and distinct

• v1 = 〈vinc

1 , v
poll

1 〉
• vinc

1 = λf. if !lb1 then (lb1 := ff; f 〈〉; lx1 := !lx1 + 1; lb1 := tt) else 〈〉
• vpoll

1 = λ . !lx1

Similarly, 〈h2;K2[e2]〉↓ if 〈ĥ2;K2[v2]〉↓, where

• ĥ2 = h2 � {lb2 �→tt} � {lx2 �→0}
• v2 = 〈vinc

2 , v
poll

2 〉
• vinc

2 = λf. if !lb2 then (lb2 := ff; let n = !lx2 in f 〈〉; lx2 := n+ 1; lb2 := tt) else 〈〉
• vpoll

2 = λ . !lx2

We now proceed as follows. We first extend W to Ŵ with an island governing lb1
and lb2 as well as lx1 and lx2 , and then show (Ŵ , v1, v2) ∈ V�((unit → unit) → unit)×
(unit → int)�, which, combined with (1), concludes the proof.

The island we add is represented by the STS shown in Figure 2 (starting in the

top left state). Concretely, we define:

• Ŵ = (W.k, (W.Σ1, l
b
1:bool, lx1 :int), (W.Σ2, l

b
2:bool, lx2 :int), (W.ω, ι))

• ι = (〈tt, 0〉, δ, ϕ, ∅, H)

• δ = (ϕ � {(〈ff , i〉, 〈tt, i+ 1〉) | i ∈ �})∗

• ϕ = ({(〈tt, i〉, 〈tt, i+ 1〉) | i ∈ �} � {(〈tt, i〉, 〈ff , i〉) | i ∈ �})∗

• H(〈o, i〉) = {(W̃ , h̃1, h̃2) ∈ HeapAtom | h̃1(l
b
1) = h̃2(l

b
2) = o ∧ h̃1(l

x
1) = h̃2(l

x
2) = i}

Here the superscript “*” in the definitions of δ and ϕ denotes the reflexive, transitive

closure over State. Note that Ŵ �pub W and, using monotonicity, that (ĥ1, ĥ2) : Ŵ .

It thus remains to show (Ŵ , v1, v2) ∈ V�((unit → unit) → unit) × (unit → int)�, which

decomposes into two parts.

(A) We must show (Ŵ , vinc

1 , v
inc

2) ∈ V�(unit → unit) → unit�. So we suppose

4. W ′ � Ŵ

5. (W ′, λy. e3, λy. e4) ∈ V�unit → unit�

6. (W ′, K ′
1, K

′
2) ∈ K�unit�

7. (h′
1, h

′
2) : W ′

8. 〈h′
1;K

′
1[if !lb1 then (lb1 := ff; (λy. e3) 〈〉; lx1 := !lx1 + 1; lb1 := tt) else 〈〉]〉↓<W ′ .k

and need to show

〈h′
2;K

′
2[if !lb2 then (lb2 := ff; let n = !lx2 in (λy. e4) 〈〉; lx2 := n+ 1;

lb2 := tt) else 〈〉]〉↓ .

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 511

To do so, we inspect our island’s state in W ′ and distinguish two cases:

(a) It is 〈ff , i〉 for some i. Then we know from (7) that h′
1(l

b
1) = h′

2(l
b
2) = ff and

h′
1(l

x
1) = h′

2(l
x
2) = i. Consequently, we get 〈h′

1;K
′
1[〈〉]〉 ↓<W ′ .k from (8). And

similarly, if 〈h′
2;K

′
2[〈〉]〉↓ then

〈h′
2;K

′
2[if !lb2 then (lb2 := ff; let n = !lx2 in (λy. e4) 〈〉; lx2 := n+ 1;

lb2 := tt) else 〈〉]〉↓ .

Finally, since (W ′, 〈〉, 〈〉) ∈ V�unit�, the claim then follows from (6).

(b) It is 〈tt, i〉 for some i. Then we know from (7) that h′
1(l

b
1) = h′

2(l
b
2) = tt and

h′
1(l

x
1) = h′

2(l
x
2) = i. Consequently, we get

〈h′
1[l

b
1 �→ff];K ′

1[e3[〈〉/y]; lx1 := !lx1 + 1; lb1 := tt]〉↓<W ′ .k

from (8). And similarly, if 〈h′
2[l

b
2 �→ff];K ′

2[e4[〈〉/y]; lx2 := i + 1; lb2 := tt]〉 ↓
then

〈h′
2;K

′
2[if !lb2 then (lb2 := ff; let n = !lx2 in (λy. e4) 〈〉; lx2 := n+ 1;

lb2 := tt) else 〈〉]〉↓ .

Let W ′
〈ff ,i〉 be the world obtained from W ′ by setting our island’s state from

〈tt, i〉 to 〈ff , i〉, so W ′
〈ff ,i〉 �pub W ′. Using monotonicity, it is easy to see that

(h′
1[l

b
1 �→ff], h′

2[l
b
2 �→ff]) : W ′

〈ff ,i〉.

Since (W ′
〈ff ,i〉, 〈〉, 〈〉) ∈ V�unit�, we get (W ′

〈ff ,i〉, e3[〈〉/y], e4[〈〉/y]) ∈ E�unit�

from (5). Therefore, it now suffices to show

(W ′
〈ff ,i〉, K

′
1[•; lx1 := !lx1 + 1; lb1 := tt], K ′

2[•; lx2 := i+ 1; lb2 := tt]) ∈ K�unit� .

To this end, we need to consider the continuations to be filled with either

related values or related exceptions. For the former, we suppose

9. W ′′ �pub W ′
〈ff ,i〉

10. (h′′
1 , h

′′
2) : W ′′

11. 〈h′′
1;K

′
1[〈〉; lx1 := !lx1 + 1; lb1 := tt]〉↓<W ′′ .k

and need to show 〈h′′
2;K

′
2[〈〉; lx2 := i + 1; lb2 := tt]〉 ↓. Notice that in our

island the only public successor of state 〈ff , i〉 is 〈ff , i〉 itself. Therefore, we

know from (9) and (10) that h′′
1(l

x
1) = i and thus from (11) that

〈h′′
1[l

x
1 �→(i+ 1)][lb1 �→tt];K ′

1[〈〉]〉↓<W ′′ .k .

Similarly, if 〈h′′
2[l

x
2 �→(i + 1)][lb2 �→tt];K ′

2[〈〉]〉 ↓ then 〈h′′
2;K

′
2[〈〉; lx2 := i +

1; lb2 := tt]〉 ↓. Now, let W ′′
〈tt,i+1〉 be the world obtained from W ′′ by

setting our island’s state from 〈ff , i〉 to 〈tt, i + 1〉, so W ′′
〈tt,i+1〉 � W ′′. Using

monotonicity it is then easy to see that (h′′
1[l

x
1 �→(i + 1)][lb1 �→tt], h′′

2[l
x
2 �→(i +

1)][lb2 �→tt]) : W ′′
〈tt,i+1〉. Moreover, and crucially, observe that from (9) we

know W ′′
〈tt,i+1〉 �pub W ′ because 〈tt, i + 1〉 is a public successor of 〈tt, i〉.

Finally, since (W ′′
〈tt,i+1〉, 〈〉, 〈〉) ∈ V�unit�, the claim then follows from (6).

It remains to deal with related exceptions. We suppose (9)–(10) as above

but then

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

512 D. Dreyer et al.

11. (W ′′, v′
1, v

′
2) ∈ V�exn�

and have to show

(W ′′, K ′
1[raise v′

1; l
x
1 := !lx1 +1; lb1 := tt], K ′

2[raise v′
2; l

x
2 := i+1; lb2 := tt]) ∈ O.

By Lemma 4 it suffices to show (W ′′, K ′
1[raise v′

1], K
′
2[raise v′

2]) ∈ O, which

follows from (6).

(B) We must show (Ŵ , vpoll

1 , vpoll

2) ∈ V�unit → int�. So we suppose

4. W ′ � Ŵ

5. (W ′, K ′
1, K

′
2) ∈ K�int�

6. (h′
1, h

′
2) : W ′

7. 〈h′
1;K

′
1[!l

x
1]〉↓<W ′ .k

and need to show 〈h′
2;K

′
2[!l

x
2]〉↓. From (6) we know h′

1(l
x
1) = h′

2(l
x
2) = i for some

i. Consequently, we get 〈h′
1;K

′
1[i]〉↓<W ′ .k from (7). And similarly, if 〈h′

2;K
′
2[i]〉↓

then 〈h′
2;K

′
2[!l

x
2]〉↓. Since (W ′, i, i) ∈ V�int�, the claim then follows from (5).

It turns out that the two programs are also equivalent in FOSEC. The proof is

almost the same as the one for HOSE, except that a slightly different STS is used,

and the part in (Ab) where we show

(W ′
〈ff ,i〉, K

′
1[•; lx1 := !lx1 + 1; lb1 := tt], K ′

2[•; lx2 := i+ 1; lb2 := tt]) ∈ K�unit�

needs to be adapted.

The necessary change to the STS is, as shown in Figure 4, to remove the private

transitions from states 〈ff , i〉 to 〈tt, i+ 1〉 (recall that the distinction between private

and public transitions is not sound in the presence of call/cc). Assuming this is our

island’s STS, we now show

(W ′
〈ff ,i〉, K

′
1[•; lx1 := !lx1 + 1; lb1 := tt], K ′

2[•; lx2 := i+ 1; lb2 := tt]) ∈ K�unit�

in the same environment as above. The part dealing with related exceptions stays

unchanged.

In the other part, we only need to modify the argument establishing

(h′′
1[l

x
1 �→(i+ 1)][lb1 �→tt], h′′

2[l
x
2 �→(i+ 1)][lb2 �→tt]) : W ′′

〈tt,i+1〉.

Observe that this time W ′′
〈tt,i+1〉 is not a future world of W ′′ because our modified

island has no transition from 〈ff , i〉 to 〈tt, i + 1〉. However, because heap relations in

the FOSEC model are world-independent, it is nevertheless easy to see from (10) that

(h′′
1[l

x
1 �→(i+ 1)][lb1 �→tt], h′′

2[l
x
2 �→(i+ 1)][lb2 �→tt]) : W ′′

〈tt,i+1〉

holds. The rest goes as before, in particular we still have W ′′
〈tt,i+1〉 �pub W ′ because

〈tt, i+ 1〉 is a successor of 〈tt, i〉.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 513

9.2 Deferred divergence (FOS version)

Recall the FOS version of the “deferred divergence” example from Section 6.2:

τ = ((unit → unit) → unit) → unit

e1 = let y = ref ff in

λf. f (λ . y := tt);

if !y then ⊥ else 〈〉
e2 = λf. f (λ .⊥)

We have already seen before that the two programs are neither equivalent in

FOSC nor in HOS. They can also be distinguished in FOSE, for instance by the

following context, which uses a callback that runs its argument and then raises an

exception.

• (λg. (g 〈〉; raise c))

As sketched in Section 6.2, e1 and e2 are equivalent in FOS, and, unsurprisingly,

the proof combines all three of our model’s special features (private transitions,

inconsistent states, and backtracking). Here, we show the details of the difficult

direction of approximation.

Formally, our goal is to prove ·; ·; · � e1 �log e2 : τ. Unfolding the definition, this

reduces to showing (W, e1, e2) ∈ E�τ� for W ∈ World. So we assume

1. (W,K1, K2) ∈ K�τ�

2. (h1, h2) : W

3. 〈h1;K1[e1]〉↓<W.k

and must show consistent(W) and 〈h2;K2[e2]〉↓. From (3) we get

〈h1 � {ly �→ff};K1[ê1[ly/y]]〉↓<W.k

where ê1 is the body of the let-expression in e1 and ly some fresh location. We

now extend the world with an island governing ly and representing the STS from

Section 6.2, with s = 1, 2, and 3 being the left, middle, and right states of the STS,

respectively:

y ↪→ ff y ↪→ ff y ↪→ tt

W1 = (W.k, (W.Σ1, ly:bool),W .Σ2, (W.ω, ι))

ι= (1, δ, ϕ,�, H)

δ = {(1, 2), (2, 3)}∗

ϕ= {(2, 3)}∗

�= {3}
H(1) = {(h̃1, h̃2) | h̃1(ly) = ff}
H(2) = {(h̃1, h̃2) | h̃1(ly) = ff}
H(3) = {(h̃1, h̃2) | h̃1(ly) = tt}

Note that safe(ι) and therefore W1 �pub W . Using (2), it is also easy to see that

(h1 � {ly �→ff}, h2) : W1. Assuming we are able to show (W1, ê1[ly/y], e2) ∈ V�τ�, we

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

514 D. Dreyer et al.

can apply (1) to get consistent(W1) and 〈h2;K2[e2]〉 ↓. The latter is one of the two

things we needed to show. The other one is consistent(W). Since the only difference

between W and W1 is our island, this follows from consistent(W1).

It remains to show (W1, ê1[ly/y], e2) ∈ V�τ�. So we suppose

4. W ′ � W1

5. (W ′, f1, f2) ∈ V�(unit → unit) → unit�

6. (W ′, K ′
1, K

′
2) ∈ K�unit�

7. (h′
1, h

′
2) : W ′

8. e′
1 = f1 (λ . ly := tt); if !ly then ⊥ else 〈〉

9. 〈h′
1;K

′
1[e

′
1]〉↓<W ′ .k

and need to show consistent(W ′) and 〈h′
2;K

′
2[f2 (λ .⊥)]〉 ↓. We now consider the

case where our island’s state in W ′ is 1—the other two are similar (and simpler).

In that case, let W ′
2 � W ′ denote the world obtained from W ′ by transitioning our

island’s state from 1 to 2. Since the heap constraints of state 1 and 2 are the same,

(h′
1, h

′
2) : W ′

2 follows immediately from (7). Now, we want to prove

(W ′
2, f1 (λ . ly := tt), f2 (λ .⊥)) ∈ E�unit�

and

(W ′
2, K

′
1[•; if !ly then ⊥ else 〈〉], K ′

2) ∈ K�unit� ,

as combining the two yields consistent(W ′
2) and 〈h′

2;K
′
2[f2 (λ .⊥)]〉 ↓. The latter is

one of the two things we needed to show. The other one is consistent(W ′), which

obviously follows from consistent(W ′
2).

To show

(W ′
2, f1 (λ . ly := tt), f2 (λ .⊥)) ∈ E�unit�

note that since (W ′
2, f1, f2) ∈ V�(unit → unit) → unit� by monotonicity, it suffices to

show

(W ′
2, (λ . ly := tt), (λ .⊥)) ∈ V�unit → unit� .

Because the first function always terminates while the second never does, this is the

part of the proof where inconsistency comes into play. We suppose

10. W ′′ � W ′
2

11. (W ′′, K ′′
1 , K

′′
2) ∈ K�unit�

12. (h′′
1 , h

′′
2) : W ′′

13. 〈h′′
1;K

′′
1 [ly := tt]〉↓<W ′′ .k

and, with the help of the inconsistent state 3, will derive a contradiction. From (13)

we get 〈h′′
1[ly �→tt];K ′′

1 [〈〉]〉 ↓<W ′′ .k . Let W ′′
3 denote the world obtained from W ′′ by

transitioning our island’s state to 3. Due to (10) we know that inW ′′ it is either 2 or 3,

and thus we have W ′′
3 �pub W ′′. Moreover, it is easy to see that (h′′

1[ly �→tt], h′′
2) : W ′′

3 .

Since (W ′′
3 , 〈〉, 〈〉) ∈ V�unit�, instantiating (11) then yields consistent(W ′′

3), which is

clearly in contradiction to 3 being an inconsistent state.

To show

(W ′
2, K

′
1[•; if !ly then ⊥ else 〈〉], K ′

2) ∈ K�unit� ,

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 515

we suppose

10. W ′′ �pub W ′
2

11. (h′′
1 , h

′′
2) : W ′′

12. 〈h′′
1;K

′
1[if !ly then ⊥ else 〈〉]〉↓<W ′′ .k

and must show consistent(W ′′) and 〈h′′
2;K

′
2[〈〉]〉 ↓. From (12) it is clear that h′′

1(ly)

must be ff . This implies that 〈h′′
1;K

′
1[〈〉]〉↓W ′′ .k and that our island’s state in W ′′ must

be 2. We now want to instantiate (6), but W ′′ does not publicly extend W ′ because

there is no public transition from state 1 to state 2 (recall that we are considering

the case where our island in W ′ is in state 1).

However, we can now backtrack to state 1: let W ′′
1 denote the world obtained

from W ′′ by setting our island’s state from 2 to 1. Because both states express the

same heap constraint and because heap relations for FOS are world-independent,

(h′′
1 , h

′′
2) : W ′′

1 follows from just (11). Note that W ′′ �pub W ′
2 implies W ′′

1 �pub W ′.

Finally, we can use (6) with (W ′′
1 , 〈〉, 〈〉) ∈ V�unit�, and thus obtain consistent(W ′′

1)

and 〈h′′
2;K

′
2[〈〉]〉↓. Since state 2 is consistent, the former implies consistent(W ′′

2) and

we are done.

9.3 One-shot continuations

This example, due to Friedman & Haynes (1985), demonstrates how call/cc can be

encoded in HOSC using local state and one-shot continuations, where the latter are

themselves encoded using call/cc and a local ref cell.

Let τα = cont α → α. We start by turning call/cc into a value of type ∀α.τα → α:

callcc
def
= Λα.λf:τα. call/ccα (x. f x)

Let us now define callcc1, its one-shot version:

callcc1
def
= Λα.λf:τα. let b = ref ff in

call/ccα (x.

f (contα (let y = • in if !b then ⊥unit

else (b := tt; throwunit y to x)))))

Compare this to callcc. callcc1 first creates a reference holding a boolean flag that

expresses whether the continuation has been used (the shot has been fired) already.

Correspondingly, the continuation it passes to f is not just x but rather a wrapper

around x that diverges if it has been used before (otherwise it behaves like x but

flips the flag).

The encoding of call/cc using one-shot continuations, callcc′, is as follows:

callcc′ def
= Λα.λf:τα. let r = ref (contα •) in Gαr f

which makes use of the following abbreviation7:

Gαr
def
= fix g(f). let x = callcc1 α (λz:cont α. (r := z; f (contα (throwunit • to !r)))) in

callcc1 α (λz:cont α. g (λ :cont α. throwunit x to z))

7 Here, fix f(x).e encodes a recursive function in the usual way using recursive types [details can be
found in the technical appendix (Dreyer et al., 2012)].

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

516 D. Dreyer et al.

The code is quite tricky and hard to explain. The correctness proof, however, is

conceptually simple as it requires only a single (permanent) invariant. In fact, we

will show that callcc is equivalent to callcc′ in HOSEC, i.e., even in the presence of

exceptions.

We show ·; ·; · � callcc �log callcc′ : ∀α. τα → α (the other direction is similar),

which immediately reduces to showing

(W0, callcc, callcc′) ∈ V�∀α. τα → α�

for W0 ∈ World. So suppose W1 � W0 and (τ1, τ2, r) ∈ SomeValRel. We must show

that

(W1, λf. call/cc (x. f x), λf. let r = ref (cont •) in Gτ2r f) ∈ V�τα → α�ρ

where ρ = α�→(τ1, τ2, r).

To do so, we suppose

1. W � W1

2. (W, v1, v2) ∈ V�τα�ρ

3. (W,K1, K2) ∈ K�α�ρ

4. (h1, h2) : W

5. 〈h1;K1[call/cc (x. v1 x)]〉↓<W.k

and have to show 〈h2;K2[let r = ref (cont •) in Gτ2r v2]〉↓. From (5) we know that

〈h1;K1[v1 (cont K1)]〉↓<W.k .

Similarly, unfolding Gτ2r makes it easy to verify that 〈h2;K2[let r = ref (cont •) in

Gτ2r v2]〉↓ if 〈ĥ2;K2[v2 (cont (throw • to !lr))]〉↓, where

• ĥ2 = h2 � {lr �→elb} � {lb �→ff} (for distinct and fresh lr , lb)

• el = cont (let y = • in if !l then ⊥ else (l := tt; throw y to cont K))

• K = K2[let x = • in callcc1 τ2 (λz. Gτ2lr (λ . throw x to z))]

We now extend the world with an island concerning lr and lb. Let

• Ŵ = (W.k,W .Σ1, (W.Σ2, lr:cont τ2, lb:bool), (W.ω, ι))

• ι = (〈〉, ∅∗, ∅∗, ∅, H)

• H(〈〉) = {(W̃ , h̃1, h̃2) ∈ HeapAtom | ∃l ∈ dom(h2). h̃2(lr) = el ∧ h̃2(l) = ff}

It is easy to see that Ŵ � W and then that (h1, ĥ2) : Ŵ . By (3) and monotonicity it

thus suffices to show

(Ŵ , v1 (cont K1), v2 (cont (throw • to !lr))) ∈ E�α�ρ.

For this, it in turn suffices, due to (2) and Lemma 4, to show

(Ŵ , cont K1, cont (throw • to !lr)) ∈ V�cont α�ρ.

To this end, we suppose

6. W ′ � Ŵ

7. (W ′, v′
1, v

′
2) ∈ V�α�ρ

8. (h′
1, h

′
2) : W ′

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 517

9. 〈h′
1;K1[v

′
1]〉↓<W ′ .k

and need to show 〈h′
2; throw v′

2 to !lr〉↓. From (h′
1, h

′
2) : W ′ we know that h′

2(lr) = el
and h′

2(l) = tt, for some l. Hence

〈h′
2; throw v′

2 to !lr〉↓ if

〈h′
2[l �→ff];K2[callcc1 τ2 (λz. Gτ2lr (λ . throw v′

2 to z))]〉↓ if

〈h′
2[l �→ff][lr �→el′] � {l′ �→tt};K2[v

′
2]〉↓

where l′ is fresh. Notice that l′ now has taken over the role of l. So let

W ′′ = (W ′.k,W ′.Σ1, (W
′.Σ2, l

′:bool),W ′.ω).

Since W ′′ � W ′ we get, using monotonicity, that

(h′
1, h

′
2[l �→ff][lr �→el′] � {l′ �→tt}) : W ′′.

Finally, we use (3) and (6) to instantiate (7), which yields the claim.

9.4 Well-bracketed state change

Recall the motivating example from Section 5.

τ = (unit → unit) → int

e1 = let x = ref 0 in

λf. (x := 0; f 〈〉; x := 1; f 〈〉; !x)

e2 = λf. (f 〈〉; f 〈〉; 1)

We have already shown in Section 5 that e1 and e2 are not equivalent in HOSC

(and FOSC). It is also easy to see that they are not equivalent in HOSE (or even

FOSE). The following is a distinguishing context C:

let g = • in

let f2 = (λ . raise c) in

let x = ref tt in

let f1 = (λ . if !x then x := ff else try g f2 with .〈〉) in

g f

Again, it is easy to verify that C[e1] yields 0, while C[e2] yields 1.

The programs are, however, equivalent in HOS, which we can prove by showing

that each logically approximates the other. Here we only present one direction, the

other is similar.

We show ·; ·; · � e1 �log e2 : (unit → unit) → int, which immediately reduces to

showing (W, e1, e2) ∈ E�(unit → unit) → int� for W ∈ World. To do so, we suppose

1. (W,K1, K2) ∈ K�(unit → unit) → int�

2. (h1, h2) : W

3. 〈h1;K1[e1]〉↓<W.k

and must now show 〈h2;K2[e2]〉↓. From (3) we know that

〈h1 � {lx �→0};K1[λf. (lx := 0; f 〈〉; lx := 1; f 〈〉; !lx)]〉↓<W.k

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

518 D. Dreyer et al.

for some fresh lx. We will now extend the world with an island for lx and then show

that the above function value is related to e2 in that world. Let

• W0 = (W.k, (W.Σ1, lx:int),W .Σ2, (W.ω, ι))

• ι = (0, δ, ϕ, ∅, H)

• δ = (ϕ � {(1, 0)})∗

• ϕ = {(0, 1)}∗

• H(i) = {(W̃ , h̃1, h̃2) ∈ HeapAtom | h̃1(lx) = i}

W0 publicly extends W by the following STS (with its left state being the current

one):

x ↪→ 0 x ↪→ 1

Using monotonicity it is then easy to see that (h1 � {lx �→0}, h2) : W0. If we can show

(W0, λf. (lx := 0; f 〈〉; lx := 1; f 〈〉; !lx), e2) ∈ V�(unit → unit) → int�

then instantiating (1) yields the claim.

So we suppose

4. W ′ � W0

5. (W ′, λz. e′
1, λz. e

′
2) ∈ V�unit → unit�

6. (W ′, K ′
1, K

′
2) ∈ K�int�

7. (h′
1, h

′
2) : W ′

8. 〈h′
1;K

′
1[(lx := 0; (λz. e′

1) 〈〉; lx := 1; (λz. e′
1) 〈〉; !lx)〉]↓<W ′ .k

and have to show 〈h′
2;K

′
2[((λz. e

′
2) 〈〉; (λz. e′

2) 〈〉; 1)]〉↓. From (8) we know

〈h′
1[lx �→0];K ′

1[(e
′
1[〈〉/z]; lx := 1; (λz. e′

1) 〈〉; !lx)]〉↓<W ′ .k .

Let W ′
0 denote the world obtained from W ′ by setting our island’s current state

(which may be either 0 or 1) to 0. It is easy to see that W ′
0 � W ′ and thus

(h′
1[lx �→0], h′

2) : W ′
0. Since (W ′

0, 〈〉, 〈〉) ∈ V�unit�, instantiating (5) yields

(W ′
0, e

′
1[〈〉/z], e′

2[〈〉/z]) ∈ E�unit� .

Hence, if we can now show

(W ′
0, K

′
1[(•; lx := 1; (λz. e′

1) 〈〉; !lx)], K
′
2[(•; (λz. e′

2) 〈〉; 1)]) ∈ K�unit�

then we get

〈h′
2;K

′
2[(e

′
2[〈〉/z]; (λz. e′

2) 〈〉; 1)]〉↓,
which implies 〈h′

2;K
′
2[((λz. e

′
2) 〈〉; (λz. e′

2) 〈〉; 1)]〉↓
To this end, we suppose

9. W ′′ �pub W ′
0

10. (h′′
1 , h

′′
2) : W ′′

11. 〈h′′
1;K

′
1[(〈〉; lx := 1; (λz. e′

1) 〈〉; !lx)]〉↓<W ′′ .k

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 519

and have to show 〈h′′
2;K

′
2[(〈〉; (λz. e′

2) 〈〉; 1)]〉↓. From (11) we know

〈h′′
1[lx �→1];K ′

1[(e
′
1[〈〉/z]; !lx)]〉↓<W ′′ .k .

Let W ′′
1 denote the world obtained from W ′′ by setting our island’s current state

(which may again be either 0 or 1) to 1. It is easy to see that W ′′
1 publicly extends

W ′′ and thus (h′′
1[lx �→1], h′′

2) : W ′′
1 . Since (W ′′

1 , 〈〉, 〈〉) ∈ V�unit�, instantiating (5) yields

(W ′′
1 , e

′
1[〈〉/z], e′

2[〈〉/z]) ∈ E�unit� .

Hence, if we can now show

(W ′′
1 , K

′
1[(•; !lx)], K

′
2[(•; 1)]) ∈ K�unit�

then we get 〈h′
2;K

′
2[(e

′
2[〈〉/z]; 1)]〉↓, which implies 〈h′

2;K
′
2[((λz. e

′
2) 〈〉; 1)]〉↓

To this end, we suppose

12. W ′′′ �pub W ′′
1

13. (h′′′
1 , h

′′′
2) : W ′′′

14. 〈h′′′
1 ;K ′

1[(〈〉; !lx)]〉↓<W ′′′ .k

and must show 〈h′′′
2 ;K ′

2[(〈〉; 1)]〉↓. Observe that (12) and (13) imply h′′′
1 (lx) = 1 (there

is no public transition leading out of the x ↪→ 1 state). Therefore, we know from

(14) that 〈h′′′
1 ;K ′

1[1]〉 ↓<W ′′′ .k . Independently, it is not hard to see that (9) and (12)

imply W ′′′ �pub W ′ (the x ↪→ 1 state is publicly reachable from whatever state our

island was in in W ′). As (W ′′′, 1, 1) ∈ V�int�, instantiating (6) yields 〈h′′′
2 ;K ′

2[1]〉 ↓,

which in turn implies the claim.

9.5 Single return

This example is due to Thielecke (2000) (see Section 4 of his paper). His proof

method is relatively brute-force, however, and we can easily prove his example using

an STS with a single private transition.

τ = (unit → unit) → int

e1 = λf. let x = ref 0 in let y = ref 0 in

f 〈〉; x := !y; y := 1; !x

e2 = λf. let x = ref 0 in let y = ref 0 in

f 〈〉; x := !y; y := 2; !x

The programs are not equivalent in HOSC as the following context C demon-

strates:

let g = • in

call/cc (k0. let r = ref k0 in

let b = ref tt in

let f = (λ . call/cc (k. r := k)) in

let x = g f in

if !b then b := ff; throw 〈〉 to !r else x)

It is easy to verify that C[e1] yields 1, while C[e2] yields 2.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

520 D. Dreyer et al.

They are, however, equivalent in HOSE, for which we now sketch the proof.

Assuming e1 and e2 are applied in some world W , we symbolically execute the

allocations and add the following STS to W , making the left state its current state:

y ↪→ 0 x ↪→ 0

When the two programs now invoke their callback argument, we know that, assuming

they return, they do so still in the left state, as there is no public transition leading

out of it. Hence x will be set to 0 in both programs, after which we transition to the

right state and observe that both return 0. Note that despite this private transition,

the resulting world publicly extends the initial world W—because W did not contain

the island in question at all, and any extension of W with a new island is considered

a public extension—so we are done.

9.6 Higher-order profiling

The following example is due to Pitts & Stark (1998). Although it seems quite

different in nature from the previous one, it turns out that it can be proved using

an STS structurally equivalent to the one above.

τ= τf → τg → τf → int

e1 = λf. λg. λf′. let 〈g′, g′′〉 = p g in (f g′; g′ 〈〉; f′ g′; g′′ 〈〉)
e2 = λf. λg. λf′. let 〈g′, g′′〉 = p g in (f g′; g 〈〉; f′ g′; g′′ 〈〉 + 1)

where

τf = τg → unit

τg = unit → unit

p= λg. let c = ref 0 in 〈λx. (c := !c+ 1; g x), λ . !c〉
The higher-order function p takes a function g and returns a profiling version

of it, i.e., a function that behaves like g except that each time it is called it also

increments a local counter by 1. Additionally, p returns a function for reading the

current value of that counter. We sketch the proof that e1 and e2 are equivalent,

which can be seen as a partial correctness proof of the profiling operation.

We assume the two functions are called in an initial world W . When the profiling

operation p is applied, we add the following STS to W :

c ↪→ n

c ↪→ n

c ↪→ n+ 1

c ↪→ n

The left state, which we make the current state, asserts that the counter c has the

same value in both programs (this is fine because at that time it points to 0 in both).

The right one asserts that the value stored at c in the first program is 1 greater than

in the second program.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 521

Consequently, if and when f returns, we know that we are still in the left state

as there is no public transition leading anywhere else. (Of course c might have

increased by now, but if so, then by the same amount on both sides: the only way f

can touch the counter is by running its argument.) Now we call the tracked version

of g in the first program and the original g in the second, thus incrementing the

counter only in the first. Accordingly, we move along the private transition to the

right state. Then f′ is called and, since there is no other state reachable from here, c

in the first program will still point to a number 1 greater than in the second program

if and when f′ returns. Consequently, g′′ 〈〉 in the first program will yield the same

value as g′′ 〈〉 + 1 in the second. Moreover, the world at that point is a public future

world of W .

10 Related and future work

Many techniques have been proposed for reasoning about contextual equivalence

of stateful programs. Using a variety of these techniques, most of the examples we

discuss in this paper have been proved already (with minor variations) in different

language settings, but there has not heretofore been any clear account of how they

all fit together. Indeed, our main contribution lies in our unifying framework of

STSs, along with the realization that the absence of call/cc and/or higher-order

state enables the extension of our STS model in orthogonal ways. That said, some

of our examples are also new, such as “callback with lock” in FOSEC, and the

other ADR examples in HOSEC.

Game semantics. As explained in the Introduction, game semantics has served as

an inspiration to us, especially Abramsky’s idea of the “semantic cube.” There are

many papers on this topic; perhaps the two most relevant to our present work are

Laird’s model of call-by-name PCF extended with a control operator (Laird, 1997)

and Abramsky, Honda, and McCusker’s model of call-by-value PCF extended with

general references (Abramsky et al., 1998). In the latter, references are modeled

essentially as arbitrary pairs of “reading” and “writing” functions. Unfortunately,

this means that there are bogus references (“bad variables”), which do not behave

like regular references and thus break some basic equivalences. It also means that

this model—unlike ours—cannot support pointer equality.8 In very recent follow-up

work, Murawski & Tzevelekos (2011) managed to overcome these issues.

The primary focus of the research on games models has been full abstraction.

One of the key motivations for having a fully abstract model is, of course, that

it allows one to prove two programs observationally equivalent by proving that

their denotations (in games models, “strategies”) are the same. However, the games

models do not in general directly facilitate such proofs since the strategies are

non-trivial to analyze for equality (and since game categories also involve a non-

trivial quotienting). Hence, proof methods for proving actual program equivalences

8 We have not emphasized the fact that we model pointer equality in this paper, but some of ADR’s
examples do make use of it, and it is a feature one generally expects to find in real ML-like languages.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

522 D. Dreyer et al.

based on specific games models have primarily been developed only for simple

languages with state, namely call-by-name Idealized Algol. For a finitary version

of that language (i.e., a version with only finite ground types and no recursion)

there is a full classification of when contextual equivalence is decidable (e.g., see

Ghica & McCusker, 2000; Murawski & Walukiewicz, 2008). A finitary version of

a call-by-value variant has also been studied by Murawski (2005), and with that

model he could show some finitary versions of the examples of Pitts and Stark, e.g.,

the profiling example (see p. 29 of Murawski, 2005).

Another focus of game semantics is on understanding how the presence of different

features in a language affects the kinds of interactions a program can have with its

context. Laird (1997) models the presence of control operators by relaxing the “well-

bracketing” restriction on strategies. Abramsky et al. (1998) model the presence of

higher-order state by relaxing the “visibility” restriction. There seems intuitively

to be some correspondence between the former and our private transitions, and

between the latter and our backtracking, but determining the precise nature of this

correspondence is left to future work.

Operational game semantics. Another line of related work concerns what some have

called “operational game semantics.” This work considers labeled transition systems,

and either traces or bisimulation relations over those, directly inspired by games

models. Such so-called “normal form bisimulation” relations have been developed

for an untyped language with state and control (Støvring & Lassen, 2007), for a

typed language with recursive types (but no state) (Lassen & Levy, 2007), and for

a language with impredicative polymorphism (but no state) (Lassen & Levy, 2008).

Laird (2007) gave a fully abstract trace semantics for the language of Abramsky et al.

(1998) extended with pointer equality. His trace-sets may be viewed as deterministic

strategies in the sense of game semantics. Normal form bisimulations have been

used to prove contextual equivalence of actual examples, e.g., Støvring and Lassen’s

proof of correctness (Støvring & Lassen, 2007) for the encoding of call/cc via one-

shot continuations that we described at the end of Section 4. Koutavas and Lassen

have shown, in unpublished work (Koutavas & Lassen, 2008), how Laird’s trace

semantics can be used to prove the HOS version of the deferred divergence example

(Section 5.2), by showing that the two programs have the same set of traces.

It is difficult to directly compare the proofs of these examples using operational

game semantics methods versus the proofs using our present model; although the

essential proof ideas are the similar, their formalizations are very different, and

neither approach is clearly superior. However, to the best of our knowledge, no

fully abstract games model (either operational or denotational) has yet been given

for the rich language that we consider in this paper (call-by-value, impredicative

polymorphism, general references with pointer equality, call/cc, and recursive types).

Logical relations. Our work is heavily indebted to the pioneering work of Pitts &

Stark (1998), who gave a fully abstract logical relation for a simply-typed functional

language with recursion and first-order state. In particular, we rely on the basic setup

of their biorthogonal Kripke model, although (like ADR’s) ours is also step-indexed.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 523

In the absence of step indices, biorthogonality renders the logical relation admissible

(an important property when modeling recursion). In the presence of step indices,

admissibility is not as important, since the model essentially only consists of finite

approximations, and there is no need to ever talk about their limit. Nevertheless, as

we have seen, biorthogonality plays a crucial role in modeling control and ensuring

full abstraction.

With respect to the latter, it is not clear how useful the full abstraction property

is for us per se, since it is achieved in a largely “feature-independent” manner. That

is, the proof that biorthogonality makes the logical relation complete is essentially

the same for each of the four languages we consider, so full abstraction here is

perhaps not the most informative criterion. One could for instance take Pitts and

Stark’s original model, add step-indexing to it, and get out a different fully abstract

model for HOSC. Clearly, that model would not be as practically powerful as our

STS-based model, but it would nevertheless be fully abstract.

Aside from ADR, the closest logical relations to ours are the ones developed

by Bohr in her thesis (Bohr, 2007). Hers also employ biorthogonality, albeit in a

denotational setting. Her possible worlds bear some similarity to ADR’s in that

they, too, allow one to model heap properties that evolve over time. In addition,

they allow one to impose constraints on continuations. Like us, she is also able to

handle the HOS version of the deferred divergence example, but the language she

considers is not as rich as ours (it does not support full polymorphism), and she does

not consider handling call/cc or the restriction to first-order state. We can prove

all of the examples from her thesis, and we believe that our proofs are significantly

simpler to understand.

Regarding the deferred divergence example: it is originally due to O’Hearn, who

formulated it in the context of Idealized Algol (O’Hearn & Reddy, 1995). Pitts

showed how to prove this example using operational Kripke logical relations, by

allowing the parameters of the logical relation to relate proper states to undefined

states (i.e., by phrasing heap relations over “lifted” heaps) (Pitts, 1996). It is not

clear whether this technique generalizes to higher-order state, however.

More recently, Johann et al. (2010) have proposed a generic framework for

operational reasoning about algebraic effects. Their work is complementary to ours:

they develop effect-independent proof principles, whereas we develop effect-specific

proof principles. They do not consider local state, higher-order state, or control.

Our decision to employ both step-indexing and biorthogonality was influenced

directly by the work of Benton, together with Tabareau (Benton & Tabareau, 2009)

and Hur (Benton & Hur, 2009), on compiler correctness. They argue persuasively

for the benefits of combining the two techniques.

Birkedal et al. (2011) recently proposed a new type theory and logic for guarded

recursion, which allows for the formation of both guarded recursive types and

guarded recursive predicates. The former means that the type theory is sufficiently

expressive to allow for the construction of recursive worlds used in step-indexed

models. Guarded recursive predicates are used to define the operational semantics of

the programming language. Thence it is possible to give a more abstract “synthetic”

logical relations model where the step-indexing is hidden and replaced by a few

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

524 D. Dreyer et al.

uses of guarded-recursion operators. In Birkedal et al. (2011) this approach was

demonstrated for a simple unary model of HOS; we believe the approach scales well

and that it should be possible to apply it to construct the models considered in the

present paper.

Lastly, since the original conference version of this paper was published, Reddy

& Dunphy (2011) have proposed a relational model that accounts for a number of

our examples in a denotational setting (albeit focused on the setting of Idealized

Algol). Their approach to local reasoning is essentially to allow an object to impose

restrictions on (1) the set of possible states its private fields can be in, and (2) the set

of possible transformations between those states. At first glance, this seems roughly

similar to our method of state transition systems, but limited to a single notion

of transition. However, by exploiting relational parametricity in their denotational

model, Reddy and Dunphy are also able to account for examples—such as our

well-bracketed state change example—that in our model demand a combination of

public and private transitions. More concrete examples remain to be worked out

in order to gain a clearer understanding of the practical expressive power of their

model as well as its relationship to ours.

Environmental bisimulations and relation transition systems. For reasoning about

contextual equivalences (involving either type abstraction or local state), one of

the most successful alternatives to logical relations is the coinductive technique

of environmental (aka “relation-sets”) bisimulations. The current state of the art is

Sumii’s work on type abstraction and general references (Sumii, 2009), which builds

on work by Sumii & Pierce (2007), Koutavas & Wand (2006), and Sangiorgi et al.

(2011). Sumii is able to handle all the examples we have presented here in the setting

of HOS; he does not consider call/cc or first-order state (but does, in Sangiorgi

et al., 2011, consider concurrency). Being coinductive, his proofs avoid the tedium of

reasoning about step-indexing, but in some cases (e.g., for the well-bracketed version

of the “awkward” example—see Section 5.1), they are somewhat “brute-force” in the

sense that they require explicit reasoning about the intensional structure of program

contexts.

Essentially, it seems that there is a close correspondence between environmental

bisimulation proofs and proofs using our method that only rely on the use of

public transitions. Specifically, environmental bisimulations are defined as sets X of

relations, and one can roughly think of them as baking in a fixed state transition

system, in which the states are the relations R in X, and a state (i.e., relation)

R′ is (both publicly and privately) accessible from R iff R′ ⊇ R. Environmental

bisimulations’ apparent conflation of public and private transitions would explain

why they do not offer a clean method for proving the well-bracketed “awkward”

example, which requires a distinction between the two forms of transition. In

contrast, our state transition systems capture the intuitions about well-bracketing

more directly. That said, it seems quite plausible that the environmental bisimulation

method could be generalized to support a richer private/public distinction along the

lines of our present model.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 525

Indeed, Hur et al. (2012) have recently presented a new type of model—dubbed re-

lation transition systems (RTSs)—which achieves something in this general direction.

RTSs marry together the coinductive style of bisimulations with a treatment of local,

higher-order state (via public and private transitions) closely based on the framework

we have presented in this paper. Proofs using RTSs are very similar in their core

content to proofs using our method; the main differences between the methods are

structural. In particular, RTS proofs have a very rigid structure—inspired in part

by that of normal form bisimulation proofs (discussed above)—which makes them

easier to compose transitively than logical-relations proofs, but at the expense of

a more complicated definition of the model itself. Thus far, RTSs have only been

used to model the HOS language, and (unlike logical-relations methods) they fail

to validate η-equivalence for function values.

Anti-frame rule. Pottier (2008) has proposed an alternative way of reasoning about

local state using a rich type system with capabilities, regions, and linearity. His

anti-frame rule allows one to establish a hidden property about a piece of local

state, much in the same way that our islands do. In its original form, however, the

anti-frame rule was restricted to reasoning about invariants, which we argued in

Section 3 are insufficient for many examples.

To address this limitation, Pottier has suggested two extensions of his framework.

First, in joint work with Pilkiewicz (Pilkiewicz & Pottier, 2011), he proposes the use

of fates, which enable reasoning about monotonic state in a manner rather similar

to the state transition systems in our Kripke model. Second, in a brief unpublished

note (Pottier, 2009), he sets forth a generalized version of the anti-frame rule that

permits reasoning about well-bracketed state change.

While there are clear analogies between these extensions and our public/private

state transitions, determining a precise formal correspondence is likely to be difficult

because the methods are tailored to different purposes. On the one hand, Pottier’s

type systems are richer than that of ML, and thus his techniques can be used to

verify correctness of some interesting programs that exploit the advanced features

of his type systems. On the other hand, some equivalences—like our “deferred

divergence” example from Section 5.2—do not seem to be easily expressible as

“unary” typechecking problems and thus cannot seemingly be handled by Pottier’s

method. Moreover, like Sumii (2009), Pottier restricts attention to languages that

support higher-order state but no control effects.

Pottier’s anti-frame rule has only recently been proved sound, first in a relatively

idealized setting (Schwinghammer et al., 2010), and then, in Schwinghammer et al.,

(2012), for the type-and-capability system (without regions) in which it was originally

proposed (Pottier, 2008). The model in Schwinghammer et al., (2012) also covers

the generalized anti-frame rule, but not the extension with fates to reason about

monotonic state mentioned above (Pilkiewicz & Pottier, 2011).

Other related work. Seminal work on operational reasoning about state and control

was conducted by Felleisen & Hieb (1992) and Mason & Talcott (1991), but the

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

526 D. Dreyer et al.

proof principles they developed are relatively weak in comparison to the ones

afforded by our model.

More recently, Yoshida et al. (2008) proposed a Hoare-style logic for reasoning

about higher-order programs with local state, but it does not handle abstract types,

nor does it permit the kind of reasoning achieved by our STSs. Dreyer et al. (2010)

have devised a relational modal logic that accounts for the essential aspects of

the ADR model. In the future, we hope to generalize that logic to account for

the additional features we have proposed here. Lastly, Hur & Dreyer (2011) have

developed logical relations for relating ML and assembly-language programs, based

on the model we have presented here. They show how private and public transitions

may be used to conveniently model low-level calling conventions concerning the

stack and callee-save registers, as well as irreversible state changes in self-modifying

code.

Acknowledgments

We would like to thank Chung-Kil Hur for suggesting that a restriction we had

imposed on inconsistent states in an earlier draft of this paper was unnecessary. He

was right, as usual.

References

Abramsky, S., Honda, K. & McCusker, G. (1998) A fully abstract game semantics for general

references. Proceedings of IEEE Symposium on Logic in Computer Science (LICS).

Ahmed, A. (2004) Semantics of Types for Mutable State. PhD. thesis. Princeton University.

Ahmed, A., Dreyer, D. & Rossberg, A. (2009) State-dependent representation independence.

Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL).

Appel, A. & McAllester, D. (2001) An indexed model of recursive types for foundational

proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683.

Benton, N. & Hur, C.-K. (2009) Biorthogonality, step-indexing and compiler correctness.

Proceedings of ACM SIGPLAN International Conference on Functional Programming

(ICFP).

Benton, N. & Tabareau, N. (2009) Compiling functional types to relational specifications for

low level imperative code. Proceedings of ACM SIGPLAN Workshop on Types in Language

Design and Implementation (TLDI).

Birkedal, L., Møgelberg, R., Schwinghammer, J. & Støvring, K. (January 2011) First steps in

synthetic guarded domain theory: Step-indexing in the topos of trees. Proceedings of IEEE

Symposium on Logic in Computer Science (LICS).

Bohr, N. (2007) Advances in Reasoning Principles for Contextual Equivalence and Termination.

PhD. thesis. IT University of Copenhagen.

Dreyer, D., Ahmed, A. & Birkedal, L. (2011) Logical step-indexed logical relations. Logical

Methods Comput. Sci. 7(2:16), 1–37.

Dreyer, D., Neis, G. & Birkedal, L. (2012) The Impact of Higher-Order State and Control

Effects on Local Relational Reasoning (Technical Appendix). Tech. Rep. MPI-SWS-2012-

001. Max Planck Institute for Software Systems (MPI-SWS), Germany. Available at:

http://www.mpi-sws.org/tr/2012-001.pdf.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

The impact of higher-order state and control effects on local reasoning 527

Dreyer, D., Neis, G., Rossberg, A. & Birkedal, L. (2010) A relational modal logic for higher-

order stateful ADTs. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL).

Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential

control and state. Theor. Comput. Sci. 103(2), 235–271.

Friedman, D. & Haynes, C. (1985) Constraining control. Proceedings of ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL).

Ghica, Dan R. & McCusker, G. (2000) Reasoning about Idealized Algol using

regular languages. Proceedings of International Colloquium on Automata, Languages and

Programming (ICALP).

Hur, C.-K. & Dreyer, D. (2011) A Kripke logical relation between ML and assembly.

Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL).

Hur, C.-K., Dreyer, D., Neis, G. & Vafeiadis, V. (2012) The marriage of bisimulations and

Kripke logical relations. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL).

Johann, P. (2003) Short cut fusion is correct. J. Funct. Program. 13(4), 797–814.

Johann, P., Simpson, A. & Voigtländer, J. (2010) A generic operational metatheory for

algebraic effects. Proceedings of IEEE Symposium on Logic in Computer Science (LICS).

Johann, P. & Voigtländer, J. (2006) The impact of seq on free theorems-based program

transformations. Fundam. Inform. 69(1–2), 63–102.

Koutavas, V. & Lassen, S. (February 2008) Fun with Fully Abstract Operational Game Semantics

for General References. Unpublished.

Koutavas, V. & Wand, M. (2006) Small bisimulations for reasoning about higher-order

imperative programs. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL).

Krivine, J.-L. (1994) Classical logic, storage operators and second-order lambda-calculus. Ann.

Pure Appl. Logic 68, 53–78.

Laird, J. (1997) Full abstraction for functional languages with control. Proceedings of IEEE

Symposium on Logic in Computer Science (LICS).

Laird, J. (2007) A fully abstract trace semantics for general references. Proceedings of

International Colloquium on Automata, Languages and Programming (ICALP).

Lassen, S. B. & Levy, P. B. (2007) Typed normal form bisimulation. Proceedings of Conference

on Computer Science Logic (CSL).

Lassen, S. B. & Levy, P. B. (2008) Typed normal form bisimulation for parametric

polymorphism. Proceedings of IEEE Symposium on Logic in Computer Science (LICS).

Mason, I. & Talcott, C. (1991) Equivalence in functional languages with effects. J. Funct.

Program. 1(3), 287–327.

Morris, J. H., Jr. (1968) Lambda-Calculus Models of Programming Languages. PhD. thesis.

Massachusetts Institute of Technology.

Murawski, A. S. (2005) Functions with local state: Regularity and undecidability. Theor.

Comput. Sci. 338(1–3), 315–349.

Murawski, A. S. & Tzevelekos, N. (2011) Game semantics for good general references. 26th

Annual IEEE Symposium on Logic in Computer Science. Washington, DC, USA: IEEE

Computer Society, pp. 75–84.

Murawski, A. S. & Walukiewicz, I. (2008) Third-order Idealized Algol with iteration is

decidable. Theor. Comput. Sci. 390(2–3), 214–229.

O’Hearn, P. & Reddy, U. (1995) Objects, interference, and the Yoneda embedding. Proceedings

of Conference on the Mathematical Foundations of Programming Semantics (MFPS).

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

528 D. Dreyer et al.

Pilkiewicz, A. & Pottier, F. (2011) The essence of monotonic state. Proceedings of ACM

SIGPLAN Workshop on Types in Language Design and Implementation (TLDI).

Pitts, A. M. (1996) Reasoning about local variables with operationally-based logical relations.

Proceedings of IEEE Symposium on Logic in Computer Science (LICS).

Pitts, A. (2005) Typed operational reasoning. In Advanced Topics in Types and Programming

Languages, Pierce, B. C. (ed), Chap. 7. MIT Press.

Pitts, A. & Stark, I. (1998) Operational reasoning for functions with local state. Proceedings

of International Workshop on Higher Order Operational Techniques in Semantics (HOOTS).

Pottier, F. (2008) Hiding local state in direct style: A higher-order anti-frame rule. Proceedings

of IEEE Symposium on Logic in Computer Science (LICS).

Pottier, F. (2009) Generalizing the Higher-Order Frame and Anti-Frame Rules. Unpublished.

Reddy, U. S. & Dunphy, B. P. (2011) An automata-theoretic model of objects. Proceedings of

International Workshop on Foundations of Object-Oriented Languages (FOOL).

Sangiorgi, D., Kobayashi, N. & Sumii, E. (2011) Environmental bisimulations for higher-order

languages. ACM Trans. Program. Lang. Syst. 33(1:5), 1–69.

Schwinghammer, J., Birkedal, L., Pottier, F., Reus, B., Støvring, K. & Yang, H. (2012) A step-

indexed Kripke model of hidden state. In Mathematical Structures in Computer Science. To

appear.

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F. & Reus, B. (2010) A semantic foundation

for hidden state. Proceedings of Foundations of Software Science and Computation Structures

(FOSSACS).

Støvring, K. & Lassen, S. B. (2007) A complete, co-inductive syntactic theory of sequential

control and state. Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL).

Sumii, E. (2009) A complete characterization of observational equivalence in polymorphic

λ-calculus with general references. Proceedings of Conference on Computer Science Logic

(CSL).

Sumii, E. & Pierce, B. (2007) A bisimulation for type abstraction and recursion. J. ACM 54(5),

1–43.

Thielecke, H. (2000) On exceptions versus continuations in the presence of state. Proceedings

of European Symposium on Programming (ESOP).

Yoshida, N., Honda, K. & Berger, M. (2008) Logical reasoning for higher-order functions

with local state. Logical Methods Comput. Sci. 4(4:2), 1–68.

https://doi.org/10.1017/S095679681200024X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200024X

