
JFP 27, e5, 56 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796816000241

1

Flexible dynamic information flow control
in the presence of exceptions∗

DEIAN STEFAN1

UC San Diego, La Jolla, CA, USA

(e-mail: deian@cs.ucsd.edu)

DAVID MAZI ÈRES and JOHN C. MITCHELL

Stanford University, Stanford, CA, USA

(e-mail: mitchell@cs.stanford.edu)

ALEJANDRO RUSSO

Chalmers University of Technology, Gothenburg, Sweden

(e-mail: russo@chalmers.se)

Abstract

We describe a language-based, dynamic information flow control (IFC) system called LIO.

Our system presents a new design point for IFC, influenced by the challenge of implementing

IFC as a Haskell library, as opposed to the more typical approach of modifying the language

runtime system. In particular, we take a coarse-grained, floating-label approach, previously

used by IFC Operating Systems, and associate a single, mutable label—the current label—

with all the data in a computation’s context. This label is always raised to reflect the reading

of sensitive information and it is used to restrict the underlying computation’s effects. To

preserve the flexibility of fine-grained systems, LIO also provides programmers with a means

for associating an explicit label with a piece of data. Interestingly, these labeled values can

be used to encapsulate the results of sensitive computations which would otherwise lead to

the creeping of the current label. Unlike other language-based systems, LIO also bounds the

current label with a current clearance, providing a form of discretionary access control that

LIO programs can use to deal with covert channels. Moreover, LIO provides programmers

with mutable references and exceptions. The latter, exceptions, are used in LIO to encode

and recover from monitor failures, all while preserving data confidentiality and integrity—

this addresses a longstanding concern that dynamic IFC is inherently prone to information

leakage due to monitor failure.

1 Introduction

Information flow control (IFC) tracks the flow of data through a system and

prohibits code from operating on data in violation of a security policy. Significant

∗ This work was funded by DARPA CRASH under contract N66001-10-2-4088, by multiple gifts from
Google, by a gift from The Mozilla Corporation, and by the Swedish research agencies VR and the
Barbro Oshers Pro Suecia Foundation. Deian Stefan was supported by the DoD through the NDSEG
Fellowship Program.

1 This work was partially done while the author was at Stanford.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

2 D. Stefan et al.

research, development, and experimental effort has been devoted to static in-

formation flow mechanisms. Static analysis has a number of benefits, including

reduced runtime overhead, fewer runtime failures, and robustness against implicit

flows (Denning & Denning, 1977). However, static analysis is difficult to use in

certain scenarios, such as web apps, where for example, users can join (or leave)

the system arbitrarily, and where the security policy may depend on data provided

by users, at runtime. For such systems, dynamic enforcement techniques are a more

natural fit; dynamic IFC systems address many of the shortcomings of static IFC

systems while retaining permissiveness.

Dynamic IFC systems fall into roughly two categories: fine-grained and coarse-

grained enforcement. Fine-grained approaches, typically employed by language-

based systems, e.g., Austin & Flanagan (2009; 2010), Hedin & Sabelfeld (2012),

Hriţcu et al. (2013), explicitly associate security policies—or labels—with every

value. Such systems have the benefit of giving programmers the ability to associate a

particular security policy with a particular value. Unfortunately, this also places the

burden of understanding and specifying labels on values that are not relevant for cer-

tain tasks. Moreover, fine-grained IFC systems are typically implemented as new (or

changes to) languages or runtimes, imposing a large start-up cost on programmers.

Coarse-grained approaches, typically employed by IFC Operating Systems (OSes)

(Zeldovich et al., 2006; Krohn et al., 2007; VanDeBogart et al., 2007), associate a

single label with every value in the context of a computation, usually a process. The

advantage of such systems is simplicity: Programmers do not need to clutter code

with labels and can easily understand the security policy of any value—it is simply

the label of the context. However, this is also a downside; programmers cannot

associate a particular, and heterogeneous, security policy with a particular value.

Moreover, incorporating sensitive data into a context usually amounts to “tainting”

the whole context, which can lead to the label creep problem. Label creep occurs

when the context label is tainted to a point where the computation cannot perform

any useful side-effects.

In this work, we present LIO, a language-based dynamic IFC system, implemented

as a Haskell library, that borrows ideas from both fine- and coarse-grained IFC

systems. Like coarse-grained systems, LIO associates a label—the current label—

with the current context. In particular, we define a monad, LIO , that restricts

computations to a safe, IFC sublanguage of Haskell.1 This monad keeps track of

the current label, which is, in turn, used to permit restricted access to IO functionality

by executing actions in the underlying IO monad. Like many OSes, LIO is a floating-

label system; the current label is raised to allow reading of sensitive data, thereby

“floating above” the labels of all data observed by the current computation. Of

course, raising a computation’s label comes at the cost of restricting where the

computation may subsequently write.

Like fine-grained systems, LIO allows code to associate explicit labels with

particular values, thus allowing applications to handle differently labeled data in

1 Using SafeHaskell (Terei et al., 2012), we ensure that untrusted code executes in this sublanguage.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 3

the same context. Specifically, LIO provides a Labeled type and a value constructor

label that wraps explicit labels around values. Typically, labels are created at run

time and incorporate dynamic information such as usernames or email addresses.

LIO safely allows the label of a Labeled value to always be inspected. The wrapped

value, on the other hand, can be inspected only using unlabel , a monadic function

that appropriately raises the current label before returning the value.

Explicit unlabeling trivially addresses the problem of implicit flows endemic to

fine-grained IFC systems, where control flow constructs are (ab)used to leak sensitive

information. In LIO, code cannot branch on a labeled boolean value without first

calling unlabel on the value; this ensures that the code cannot leak information

via control flow. However, label creep could still occur if code keeps unlabeling

heterogeneously labeled data. To address this problem, we introduce a function

called toLabeled . This primitive executes a computation (that may raise the current

label) and restores the current label upon its termination—i.e., it provides a separate

context in which to execute the sensitive computation. Importantly, however, the

result of the computation is encapsulated as a Labeled value—only when the (outer)

computation wishes to inspect the result will the current label be raised.

Our dynamic IFC approach makes LIO more permissive than previous static ap-

proaches for functional languages (e.g., Pottier & Simonet (2002), Russo et al. (2008),

Li & Zdancewic (2010)), while still providing similar security guarantees (Sabelfeld &

Russo, 2009). Intuitively, dynamic IFC monitors, such as LIO, are more permissive

since they only reject the run of a program if the executed code is about to violate

policy. Static IFC analysis, on the other hand, would reject a program, even if

a single line of unreachable code is insecure. But, of course static IFC analysis

does not incur runtime overheard. More importantly, static approaches also do not

usually suffer from covert channel leaks, present in most dynamic language-based

IFC systems because of the typical stop-the-world semantics (see Myers & Liskov

(1997)). LIO addresses these limitations in several ways.

Unlike other language-based work, LIO limits the ability to leak information via

covert channels by bounding the current label of a computation with a current

clearance. The clearance of a region of code may be set to impose an upper bound

on the floating current label within the region. Hence, clearance can be understood

as a discretionary access control (DAC) mechanism that restricts the data that a

subcomputation can access. And, by limiting access to data on a “need to know”

basis, it reduces opportunities for code to leak data through covert channels—after

all, code that cannot access sensitive data cannot leak it.

LIO furthermore addresses two limitations common to most dynamic fine-grained

systems: the lack of exception handling facilities and inability to recover from IFC

monitor failures (and thus the reason for stop-the-world semantics). Laminar (Roy

et al., 2009), Breeze (Hriţcu et al., 2013), and an early, unpublished, version of

LIO (Stefan et al., 2012b) are the notable exceptions, further discussed in Section 7.

Our “mostly coarse-grained” dynamic IFC approach makes it easy to reason

about leaks due to exceptional control flow. In particular, we need only reason

about exception propagation across toLabeled blocks since the current label is

only restored, or “lowered”, at these points; by treating computations executed by

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

4 D. Stefan et al.

toLabeled as being of a separate context, the solution becomes clear: exceptions

should not propagate outside the toLabeled block.

Equipped with exception-handling facilities, LIO encodes all IFC violations as

catchable exceptions. This has the important consequence of allowing untrusted code

to recover from IFC violations; this is in contrast to most language-level systems,

which consider monitor failures fatal and leave the program in a stuck state (which

itself may leak a bit). And, in contrast to Laminar, which also supports recovery from

monitor failure (albeit in limited form, when compared to LIO), our uniform treat-

ment of exceptions has led to a more flexible and permissive system (see Section 7)—

as with other exceptions, LIO code can always recover from monitor failures.

This paper extends an earlier conference version (Stefan et al., 2011b) with dynamic

exception-handling facilities, an implementation of a real-world conference review

web application called λChair, and formal proofs mechanized in the Coq theorem

prover. Moreover, this paper corrects the formalism of the sequential LIO calculus

to match the Haskell implementation; the formal semantics given in the conference

version of this paper (and our tech report presenting an alternative semantics for

dynamic IFC exceptions (Stefan et al., 2012b)) did not faithfully capture Haskell’s

evaluation strategy. The contributions of this paper are the design, formalization,

and implementation of a flexible and practical language-level dynamic IFC system.

Our main contributions are as follows:

• We propose a new, mostly coarse-grained, design point for dynamic language-

level IFC in which most values in lexical scope are protected by a single,

mutable, current label. This design has the simplicity of OS-style IFC systems—

e.g., because it alleviates the need for developers to annotate the sensitivity of

all objects in scope. Instead, in LIO, programmers only associate labels with

values they care about by encapsulating them using the Label constructor.

Such Labeled values are similar to labeled values in fine-grained programming

languages IFC systems, but differ in a crucial way: Our encapsulation is

explicitly reflected by types in a way that prevents implicit flows. In a

similar way, our calculus and Haskell implementation provides labeled mutable

references. In contrast to the Laminar IFC system (Roy et al., 2009), which

proposed a similar mostly coarse-grained system, LIO’s mutable current

label leads to a simpler and more flexible design—since it requires fewer

annotations.

• Unlike other language-based work, our IFC model provides a notion of

clearance which is used to provide a form of DAC on code, i.e., it provides

a way for restricting code to only access data it “needs to know”. This is

particularly useful in eliminating the opportunity for code to leak sensitive

data by exploiting covert channels.

• We present a simple dynamic, yet safe, exception-handling mechanism and

encode IFC monitor failures using exceptions. Exceptions are crucial to

making LIO a practical IFC system; real-world applications cannot “stop the

world” on an IFC violation attempt. This has been longstanding problem with

dynamic IFC monitors, as highlighted by Myers and Liskov: “the difficulty

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 5

with runtime checks is exactly the fact that they can fail . . . failure (or its

absence) can serve as a covert channel (Myers & Liskov, 1997)”.

• We prove information flow, access control, and isolation security properties

of our design. A large part of our formalization is encoded in Coq. We

remark that while our formal description of LIO is Haskell-centric, this is

not a fundamental restriction—our formalism can be generalized to other

programming languages.

• We describe a Haskell implementation of the IFC calculus in Haskell. LIO

can be implemented entirely as a library, demonstrating both the applicability

and simplicity of the approach. This has the added benefit of not imposing

the burden of learning a new programming language on developers—they

simply need to understand a new API. Moreover, developers can use many

existing compilers, tools, and libraries (e.g., roughly 12,500 Haskell modules

on Hackage are safe to be used in LIO). Our library, applications built on top

of it (including λChair), and Coq proofs are available at http://labeled.io.

This paper is organized as follows. Section 2 describes the core IFC LIO calculus.

In Sections 3–5, we extend the core with clearance, mutable references, and exception-

handling facilities. The security guarantees of the full calculus are given in Section 6.

Related work is described in Section 7. We conclude in Section 8.

2 Core dynamic information flow control LIO calculus

IFC systems track and restrict the propagation of information according to a

security policy. The core policy enforced by LIO, and most other IFC systems, is

non-interference. Non-interference guarantees confidentiality (Goguen & Meseguer,

1982), by preventing sensitive information from being leaked to public entities, and

integrity (Biba, 1977), by preventing unreliable information from flowing into critical

operations.

In this section, we detail the core design of LIO and discuss the design trade-offs of

a library-driven, mostly coarse-grained approach using the λChair conference review

system as a driving example. In λChair, authenticated users can read any paper

and can normally read any review. This reflects the normal practice in conference

reviewing where, for example, every member of the program committee can see

submissions and their reviews, and can participate in related discussion. In λChair,

users can be added dynamically and assigned to review specific papers. Importantly,

we use IFC to ensure that only assigned reviewers can write reviews for any given

paper and that committee members in conflict with a paper cannot access the related

discussions.

We incrementally describe the semantics of LIO using an extended simply typed

λ-calculus. First, we describe a pure base calculus. This calculus is then extended

with labels (Section 2.2), labeled computations (Section 2.3), and labeled values

(Section 2.4). Further leveraging labeled values we extend the calculus with toLabeled

blocks to address label creep (Section 2.5). Finally, we extend this core with other

features such as clearance, references, and exceptions (Sections 3–5).

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

6 D. Stefan et al.

Fig. 1. Formal syntax for values, terms, and types.

Fig. 2. Semantic rules for pure terms in the base calculus.

2.1 Base calculus for pure terms

Our semantics build on a pure, base calculus. The formal syntax of this base calculus

is given in Figure 1. Syntactic categories v , t , and τ represent values, terms, and

types, respectively. Values include primitives (Booleans True, False; and unit ()) and

functions (λx .t). Terms constitute values (v), variables (x), function applications

(t1 t2), the standard fixpoint operator fix t , and conditionals (if t1 then t2 else t3).

Types consist of Bool , unit (), and functions τ1 → τ2.

Figure 2 shows the reduction rules for these pure terms using structural operational

semantics (Winskel, 1993). The relation t1�t2 represents a single evaluation step of

pure term t1 to term t2; we say that t1 reduces to t2 in one step. We write �∗ for

the reflexive and transitive closure of �.

Substitution {t2 /x } t1 is defined in the usual way, homomorphic on all operators,

renaming bound names to avoid capture. The reduction rules for these terms are

self-explanatory and very much the same as those of standard λ-calculus—we do

not explain them further. We solely remark that our semantics does not model the

sharing in lazy evaluation, as implemented by Haskell; modeling full lazy evaluation

is beyond the scope of this paper and has no impact on our termination- and

timing-insensitive security guarantees.

LIO is implemented as a domain specific language embedded in Haskell. Hence,

the typing judgments for our calculus are a subset of Haskell’s and standard. We do

not give any of the type judgments in this paper. (The interested reader can see our

Coq formalization.) Rather, we remark that LIO relies on types only to distinguish

terms that can be used to compose safe computations and those that cannot, as

further discussed in Section 2.3. Indeed, LIO can be generalized to dynamically

typed languages, as shown in Heule et al. (2015).

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 7

Fig. 3. Simple lattice.

2.2 Security lattice

To enforce security policies, like most modern dynamic IFC systems, LIO associates

labels with objects. Labels encode confidentiality and integrity data policies which are

propagated alongside the information they protect. In turn, the system mandatorily

enforces these individual policies when objects are read or written.

Labels are elements of a set L that forms a security lattice (L,�,�,�), with partial

order � (pronounced “can flow to”), binary join �, and binary meet � (Denning,

1976). The � relation is used by IFC systems when governing the allowed flows

between differently labeled entities.2 For example, LIO only allows data labeled

ld ∈ L to be written to a channel labeled lc ∈ L if ld � lc holds true. The binary

join is used to label computation results that depend on two objects by encoding

the restrictions imposed by their labels, i.e., for labels lA, lB ∈ L, the join lA � lB is

the smallest element such that lA � lA � lB and lB � lA � lB . Dually, the binary

meet lA � lB encodes the intersection of the restrictions imposed by lA and lB; the

meet is primarily used when labeling objects that we expect to be read by entities

labeled lA or lB . Figure 3 shows how information flows in a simple lattice.

In LIO, labels are typed values. But, unlike most existing IFC systems (Myers &

Liskov, 2000; Zeldovich et al., 2006; Krohn et al., 2007; Hriţcu et al., 2013), LIO

is polymorphic in the label format. We solely require that the label type provide

definitions for lattice relations �, �, and �. In Haskell, this amounts to making the

label type an instance of the typeclass Label ; all LIO library functions are qualified

by Label :

class Eq L ⇒ Label L where

(�) :: L → L → Bool

(�) :: L → L → L
(�) :: L → L → L

As an example, consider the definition of the typical two-point lattice L2 =

{Public, Secret }, where Public � Secret and Secret 	� Public:

2 Decentralized IFC (DIFC) extends IFC with the decentralized label model of Myers & Liskov (1997),
in which computations execute with a set of privileges, that can be used to loosen the restrictions
imposed by the � relation. LIO supports privileges and the DIFC model in full. But, since our
formalisation is limited to the system without privileges, we omit this from the presentation and refer
the interested reader to the library documentation.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

8 D. Stefan et al.

Fig. 4. Formal syntax for labels and their operations.

Fig. 5. Semantics for pure label operations, with binary operator ⊗ ∈ {�,�,�}. The precise

definition of these operators depends on the underlying label mode L.

data L2 = Public | Secret deriving (Eq ,Ord)

instance Label L2 where

x � y = x � y

x � y = max x y

x � y = min x y

Here, we simply use the Ord functions (�, min , and max), as defined by the compiler,

to define the lattice operations. Of course, in real-world applications, developers can

define more complex label formats, such as the DLM (Myers & Liskov, 1997),

HiStar (Zeldovich et al., 2006), Flume (Krohn et al., 2007), or DCLabels (Stefan

et al., 2011a). Since such label definitions are typically provided by trusted code,

LIO simply assumes that labels form a lattice, i.e., we do not verify that labels form

a partially ordered set with a well-defined least upper bound and greatest lower

bound. However, in certain cases, static analysis (e.g., in the form of refinement

types (Rondon et al., 2008)) can be used to verify that provided definitions are

well-defined.

To model labels, we extend our calculus to make labels first-class. Instead of

modeling typeclasses, for simplicity, we assume that our calculus is polymorphic in

the label type L. With this in mind, we extend the syntactic categories of Figure 1 as

shown on the right (Figure 4). Here, values are extended with labels—metavariables

l and c span over such values; types are extended with the label type L; and, terms

are extended with label operations.

The reduction rules for these label operations are straightforward and given

in Figure 5. The rules for the label operations �, �, and � rely on the label-

specific implementation of these operators, as used in the premise of rule (lOp);

we use the partial function �·�L, which maps terms to values, to denote this.

For example, instantiating our calculus to L2, �Public � Secret�L2
= Secret ,

�Secret � Public�L2
= True, etc. We highlight that our evaluation rules reduce the

left operand first. Reducing the right operand first does not affect the semantics—

we chose left-to-right evaluation solely because it matches the implementation of

the labels used in λChair (see Stefan et al. (2011a)). In the rest of the paper, we

sometimes use a more lax notation to describe label operations, e.g., l1 � l2 in

place of l1 � l2�True.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 9

2.3 Restricting Haskell to safe IFC subset with the LIO monad

As previously mentioned, every object in an IFC system must be labeled. Impor-

tantly, this includes the current execution context whose label we call the current

label.3 The current label serves a role similar to the program counter (pc) in static IFC

systems (Denning & Denning, 1977). Namely, it prevents the current computation

from performing side-effects which might compromise confidentiality. For instance,

if the current label is lcur, LIO prevents the computation from writing to entities

labeled le unless lcur � le .

To accomplish this, LIO provides a monad called LIO . The LIO monad encapsu-

lates Haskell’s IO monad as to allow for LIO computations to perform (restricted)

I/O. The monad also encapsulates the current label lcur, which is retrieved with

the getLabel function. The relevant parts of the definition are given below. By

convention, we use L for type variables that are expected to be instantiated by a

label. The library is polymorphic over L for greater flexibility, but in any normal

program, every occurrence of L will be instantiated by the same label type. Hence,

it is more intuitive to think of L as representing a particular (though unspecified)

label type. Below we give the interface for this monad. We omit the definitions for

simplicity.

data LIO L τ

instance Monad (LIO L)

return :: τ → LIO L τ

>>= :: LIO L τ1 → (τ1 → LIO L τ2) → LIO L τ2

getLabel :: Label L ⇒ LIO L L

As usual, return lifts a value into the LIO L monad, while bind (>>=) is used to chain

two actions by executing the first and binding the result to be used in the executing

second. The definitions for the monadic return and bind (>>=) are straightforward—

a reference to the current label is simply threaded through the computation. This

label is exposed via getLabel ; getLabel is a monadic action (in the LIO L monad),

which, when executed, returns the current label (of type L).

We remark that since return and bind are essentially the standard State monad

combinators (Liang et al., 1995), no security checks are performed internally by these

combinators. Instead, LIO library functions (e.g., readFile) use the current label to

perform security checks (so as to enforce IFC) before executing any underlying IO

actions. Taking this approach, the LIO library provides a collection of LIO actions

that are similar to the IO actions available in standard Haskell libraries—and,

indeed, usually wrap them—but additionally enforce IFC. Henceforth, we assume

that all computations are in the LIO monad.

To formally describe the behavior of the LIO monad, we extend the syntactic

categories of our calculus as shown on the right (Figure 6). Our extension simply

adds monadic actions (LIOTCB t) to values, monadic operations to terms, and a

3 More generally, every thread in the system is labeled. But, since we are focusing on a single-threaded
system, we refer to the main thread context as the current execution context and its label as the current
label.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

10 D. Stefan et al.

Fig. 6. Formal syntax for core LIO .

Fig. 7. Semantics for the LIO monad.

type for LIO computations. We note that the LIOTCB constructor is not part of the

surface syntax, i.e., programs that use LIOTCB are not considered valid.4

We explicitly distinguish pure-term evaluation from top-level monadic-term evalu-

ation. Specifically, an LIO program is a configuration—spanned over by metavariable

k—of the form 〈lcur, ccur,m | t〉, where lcur is the current label, ccur is the current

clearance (explained in Section 3), m is the memory store (see Section 4), and t is the

monadic term under evaluation. The reduction 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉
represents a single evaluation step from term t , with current label lcur, current

clearance ccur, and memory m , to term t ′, with current label l′cur, current clearance

c′cur, and memory m ′. For the moment, we ignore the clearance and memory in

the configuration. Index n in the transition relation counts the number of executed

toLabeled actions; this is an artifact of the proof technique and not relevant to

the semantics. We write
n−→∗

for the reflexive and transitive closure of
n−→. The

reduction rules for the core LIO operations are given in Figure 7. The rules for

return and (>>=) are trivial and standard—all IFC checks are performed by the

non-proper morphism of LIO . Similarly, the (lioPure) rule specifies that if we have

a top level pure term, it should be evaluated to completion, i.e., until it reduces to a

monadic term. Rule (getLabel) defines the LIO library function for retrieving the

underlying current label, further discussed below.

4 For simplicity, we do not use additional syntactic categories to distinguish between values and terms
that are part of the surface syntax from those that are not. In Section 6, we define a safe predicate for
making such a distinction.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 11

Fig. 8. Implicit flows problem.

2.3.1 Coarse-grained labeling with the current label

To soundly reason about IFC, every value must be labeled. However, and in contrast

to other language-based systems (e.g., Jif (Myers & Liskov, 2000), FlowCaml (Si-

monet, 2003), Breeze (Hriţcu et al., 2013), etc.) in which every value is explicitly

labeled, the values in our calculus are not associated with explicit labels (see

Figures 1–6). This is a direct consequence of taking a library-based approach: We

cannot explicitly label every Haskell value without modifying the language runtime.

Instead, and like several IFC OSes (Efstathopoulos et al., 2005; Zeldovich et al.,

2006), we take a coarse-grained approach and use the current label to protect all

values in scope, i.e., in LIO, the current label lcur is the label on all “unlabeled”

values in the current execution context. Since we use the current label to restrict the

current computation from performing arbitrary side-effects, this also ensures that

the confidentiality (and integrity) of all values in scope is preserved.

In addition to ensuring that every value is labeled, this coarse-grained labeling

approach has two other interesting consequences. First, it does not force developers

to explicitly label every piece of data. This eliminates the need to clutter code with

labels, reason about the security implications of every value, or define a special

default label (e.g., that would be used to label literals). Instead, developers only

explicitly label data they care about, as detailed in Section 2.4.

Second, it eliminates the implicit flows problem by construction (Sabelfeld &

Myers, 2003). As previously mentioned, this problem arises when information can

be leaked through the program control flow. An example of an implicit flow is given

in Figure 8, written in a hypothetical alternative LIO language without explicit

labels. Here, secret bit b is leaked into public reference x according to the program

control flow, i.e., what code—which assignment (to public reference x)—is executed

depends on the secret b.

To prevent such leaks, language-based approaches rely on the pc label to

reflect the sensitivity of the branch condition within each branch and, in turn,

disallow such unsafe assignments. In Haskell, and thus LIO, branch conditions have

type Bool—they are not explicitly labeled values. Rather, the branch condition is

(conceptually) labeled by the current label, which is common across both branches.

As a consequence, control flow cannot be used to leak sensitive information:

Regardless of the branch taken, the current label prevents writes to public entities.

Consider implementing the attack in Figure 8 with LIO. Since the branch condition

bSecret is not explicitly labeled, it is protected by lcur. But since bSecret is secret,

we must have lcur = Secret , meaning any subsequent writes (within the branches or

after) to public references are disallowed since lcur 	� Public. In Section 4, we give

the precise semantics for mutable references in LIO.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

12 D. Stefan et al.

2.3.2 A floating current label

The current label protects all data in scope by serving as an upper bound label

on all values. To preserve this invariant, when reading sensitive data, we can either

disallow reads from entities more sensitive or raise the current label to protect the

newly read data. Like other coarse-grained systems, we take the latter approach and

raise the current label to “float” above the labels of all the entities from which data

has been read.

Raising the current label allows computations to flexibly read data, at the cost of

being more limited in where they can subsequently write. Concretely, a computation

with current label lcur can read data labeled ld by raising its current label to

l′cur = lcur � ld , but can thereafter only write to entities labeled le if l′cur � le . For

example, LIO allows a public computation to read secret data by raising lcur from

Public to Secret . Importantly, the new current label prevents the computation from

subsequently writing to public entities. Some static IFC systems, such as Jif (Myers

& Liskov, 2000), are even more permissive in allowing public writes after reading

secret data if no secret data is actually being leaked. In Section 2.5, we present a

method that can be used to safely restore the current label, making our dynamic

IFC system equally permissive.

2.3.3 Ensuring all code executes in the LIO monad

To ensure security, all side-effecting computations must be encoded in LIO . LIO

can only guarantee confidentiality and integrity for computations written using the

LIO library; if an attacker can bind an arbitrary IO action within a larger LIO

computation, IFC can trivially be violated. Hence, the visibility of the LIO value

constructor, i.e., the constructor used to create values of type LIO L, must be limited

to the LIO trusted computing base (TCB) so as to guarantee that “untrustworthy”

(and potentially malicious) code cannot perform arbitrary I/O. In our formal mode,

this amounts to not making LIOTCB part of of the surface syntax.

To accomplish this, we use Safe Haskell (Terei et al., 2012). Specifically, the

module in which the LIO data type is defined is marked Unsafe, while the modules

that expose IFC-enforcing LIO actions are marked—by us, the library providers—as

Trustworthy. In doing so, Safe Haskell ensures that we can safely execute arbitrary,

attacker-provided LIO actions by simply marking the top-level modules as Safe.

Safe Haskell prevents Safe code from depending on Unsafe modules thus ensuring

that the computation could only have been composed of Trustworthy LIO library

functions or the subset of Haskell that is “safe”, i.e., the part that does not contain

the LIO value constructor or other unsafe features such as unsafePerformIO (Terei

et al., 2012).

2.4 Explicitly labeling values

While LIO ensures that everything in a context is protected by the current label, for

many applications, it is useful to be able to handle differently labeled data in a single

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 13

Fig. 9. Database containing two papers.

scope. To motivate this, let’s consider an HTTP route (e.g., /papers/index.html)

in λChair which lists all the papers submitted by the logged-in user.

In λChair, each submitted paper is associated with a label to ensure that the

paper can only be read by users that have the appropriate role (e.g., is the author

or committee member). When reading a paper from the database system, the label

of the HTTP request handler (or controller) for the given route, which is an LIO

action, is raised to reflect the fact that sensitive data is being incorporated into

the context. In doing so, LIO can ensure that a response is only sent to the user’s

browser—which, itself, has a label corresponding to the authenticated user—when

the controller label can flow to the browser label.

Suppose that the λChair database contains two papers, as shown in Figure 9,

submitted by Alice and Bob (neither of whom is part of the committee). When Alice

wishes to see the index of all papers she submitted, the controller must read from

the database only data whose labels can flow to the browser label lAlice. Otherwise,

the controller will reach a state in which the current label is above the browser

label (e.g., lAlice � lBob) and it will no longer be allowed to respond to the user.

In language-based IFC systems (Myers et al., 2001; Simonet, 2003), this is typically

not a concern because values returned from the database can be individually and

explicitly labeled. As a result, the controller would be able to compare the label

of the value retrieved from the database and the browser label, only using the

retrieved value if its label flows to the browser label. In LIO, reading both values

into the context would taint the controller with both lAlice and lBob, preventing the

overtainted controller from replying to Alice.

To avoid being overly restrictive, LIO provides Labeled values. A labeled value

protects an arbitrary term with a strict, explicit label, irrespective of the current

label. We define such values as follows.

data Labeled L τ

As before, we restrict the value constructor to the TCB. However, to allow non-

TCB code to create and manipulate labeled values, we provide a safe, IFC-abiding,

interface. This is particularly important since labeled values are protected by their

explicit labels—untrusted code should not be allowed to bypass the label and

arbitrarily inspect (or modify) the protected value. This interface for creating and

inspecting labeled values is given below.

label :: Label L ⇒ L → τ → LIO L (Labeled L τ)

unlabel :: Label L ⇒ Labeled L τ → LIO L τ

labelOf :: Label L ⇒ Labeled L τ → L

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

14 D. Stefan et al.

Fig. 10. Semantics for labeled values.

Fig. 11. Formal syntax for labeled values.

To describe the semantics of these functions, we extend the values, terms,

and types of our calculus as shown in Figure 11. (As with LIOTCB, we do not

consider the LabeledTCB constructor part of the surface syntax.) The reduction rules

for the new terms are given in Figure 10; rule (labelCtx), (unlabelCtx), and

(labelOfCtx) reduce terms until they have appropriate structures to trigger rules

(label), (unlabel), and (labelOf), respectively. We ignore parts of these rules that

involve the current clearance ccur until Section 3.

The label function is used to explicitly label terms. The function takes two

arguments, a label and a term, and returns an LIO action, which, when executed,

produces an explicitly labeled value. Rule (label) gives the precise semantics: The

function associates the supplied label l with term t by wrapping the term with

the LabeledTCB constructor. It first asserts that the new label (l) used to protect

t is at least as restricting as the old label (the current label, lcur), i.e., lcur �
l�True.

We remark that if the premise does not hold the function throws an exception to

indicate an IFC violation—our semantics do not employ stop-the-world semantics

as a way to encode monitor failures. This is the case for all other rules in LIO

in which a premise is not satisfied. Section 5 describes this in more detail and

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 15

defines exception handling facilities that code can use to recover from such IFC

violations.

The dual of label , unlabel , takes an explicitly labeled value and returns an LIO

action which, when executed, returns the underlying wrapped value. As given by

rule (unlabel), the function takes a labeled value LabeledTCB l t and returns the

wrapped term t . However, since the returned term is no longer protected by l and

is, instead, protected by the current label, lcur must be at least as restricting as l .5

To ensure this, the current label is raised from lcur to lcur � l—this captures the

fact that the remaining computation might depend on t . The current label always

“floats” above the labels of the values observed by the current computation.

Finally, we provide the labelOf function as a way to inspect the label of a labeled

value. As detailed by the (labelOf) reduction rule, labelOf takes a labeled value

LabeledTCB l t and simply returns the label l protecting term t . Since the label of

a Labeled value is strict, labelOf does not require an additional context rule for

reducing the label. Unlike unlabel , labelOf also does not raise the current label—

labelOf is part of the pure calculus. Indeed, this allows code to check the label of a

labeled value before deciding to unlabel it (and thereby raise the current label). This

design decision has an important consequence: Regardless of the current label (and

clearance) of the configuration, labelOf always succeeds. While this may seem like

LIO labels are “public,” they are in fact protected by a label—the current label—and

thus cannot be used as a covert channel. Section 2.5 describes an alternative design

in which labels are not public and shows how labels can be used to leak information

when not properly protected.

Example 1 (Fetching papers for reviewers)

Turning to our λChair use case, we now consider some of the core functions that are

used by the top-level request handler. In particular, we show how to fetch papers for

a given reviewer using a simple underlying database system. The specific label type

used by λChair is DCLabel . As defined in Stefan et al. (2011a), a DCLabel is a pair

of formulae over principals (e.g., users) in conjunctive normal form, representing the

principals that can read and write data labeled as such. We define a type alias for

the LIO monad with the label instantiated to DCLabel :

type DC τ = LIO DCLabel τ

The λChair database system operates on DCLabeled papers, in the DC monad. As

defined below, a paper is simply a record with several fields, including the (unique)

paper id (paperId), the paper itself (pdf), labeled reviews , etc.6

data Paper = Paper {paperId :: Id , pdf :: PDF , reviews :: [LabeledReview], ...}
type LabeledPaper = Labeled DCLabel Paper

5 The effects of unlabel are similar to those of bind in DCC (Abadi et al., 1999): Subsequent computations
must be protected by the label of the recently observed value.

6 We elide the details of labeled reviews used in the actual λChair implementation and simplify some of
the application details (e.g., the generic database system API). The interested reader is referred to the
code documentation at http://labeled.io for more details.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

16 D. Stefan et al.

Among other operations, the database system provides a fetchPapers function which

is used to get the list of all such papers:

fetchPapers :: DC [LabeledPaper]

For simplicity, we omit the implementation details of fetchPapers and only remark

that it relies on TCB code to wrap an underlying IO-based database system API

and explicitly label the fetched papers.

While simple, the fetchPapers function is sufficient for fetching a given reviewer’s

papers. Note that if the controller simply unlabels the papers returned by fetchPapers ,

the current label may be raised to a point where the computation cannot respond

back to the user, i.e., the current label may not flow to the browser label. This

situation, for example, happens when the current user is not part of the committee

and another author’s paper is unlabeled—λChair prevents such data from being sent

(leaked) back to the user’s browser. Hence, we need to make sure that the controller

only reads data that the end-user can see.

To this end, we define fetchPapersFor:

fetchPapersFor :: User → DC [LabeledPaper]

fetchPapersFor user = do

-- Get all labeled papers:

lpapers ← fetchPapers

-- Filter the papers the user is allowed to read:

let browserLabel = userToLabel user

lpapers ′ = filter (λlpaper .labelOf lpaper � browserLabel) lpapers

-- Unlabel and return all the papers this user can read:

mapM unlabel lpapers ′

This function fetches the papers, filters the ones the user is allowed to read by

comparing the paper’s label with the user’s browser label—itself computed with

function userToLabel—and unlabels them. At this point, the controller can compose

the HTML page containing the paper information and safely respond to the user.

In addition to providing a simple illustration of how labeled values are used

in LIO, this simple example serves to illustrate the importance of labeled values.

Specifically, by providing labeled values in the language, we can implement core

functionality such as fetchPapersFor in the untrusted LIO application code; without

labeled values such functionality would otherwise have to be implemented in the

trusted database layer or database system itself. Indeed, building on this observation,

we can, for example, extend λChair to implement an in-memory database which solely

uses the aforementioned database system as a persistence layer, i.e., it solely relies

on the actual database system to keep the papers persistent.

2.5 Addressing label creep with toLabeled

In conference systems, it is often the case that some reviews are superseded by others,

papers change titles, submissions are withdrawn, etc. Hence, the λChair database

system provides functions for updating (or deleting) existing papers. For instance,

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 17

updatePaper is used to update the paper with the supplied paper id with the new

labeled paper. The type for this function is given below:

updatePaper :: Id → LabeledPaper → DC ()

Similar to fetchPapers , this function relies on TCB code to communicate with

the actual database system; from a security stance, it is only interesting to note

that the function always ensures that the current computation can overwrite the

existing paper (by performing a �-check with the current label, current clearance

(see Section 3), and label protecting the existing paper).

Suppose we wish to implement a function that performs a partial update, i.e., an

update wherein only part of the paper object is updated. This is useful, for example,

when a user only updates the abstract of the paper and leaves other parts such

as the underlying PDF intact. Indeed, sending a PDF file, which may be large, to

simply perform a “full” update is not practical. An implementation of such a partial

update function is given below:

partialUpdatePaper :: Id → PartialPaper → DC ()

partialUpdatePaper i new = do

-- Get the existing paper according to its id:

lold ← fetchPaperById i

old ← unlabel lold

-- Merge the new (partial) paper and existing paper:

lnew ← label (labelOf lold) (merge new old)

-- Perform actual update:

updatePaper i lnew

Here, we assume that the type PartialPaper encodes a partial paper (e.g., by using

a Maybe type for each of the fields in Paper) and function merge simply merges the

content of the new partial paper and existing paper. The underlying fetchPaperById

database function behaves as expected: It returns the labeled paper corresponding

to the id.7

Unfortunately, this implementation has the drawback of always raising the current

label to the label of the paper being updated. This can result in a scenario where

actions that follow a partial update fail (e.g., writes to less sensitive entities),

solely because the current label is overly restricting. Raising the current label

to a point where the computation can no longer perform certain useful side-

effects is known as label creep (Sabelfeld & Myers, 2003). Label creep does not

compromise security, since the current label still protects all data in lexical scope.

But, it hinders functionality. In the partialUpdatePaper example, label creep is

particularly unappealing since partialUpdatePaper does not return any information

about the existing paper—it simply writes back to the database. Ideally, we should

7 Note that this has the implication that id’s are effectively public. However, since the number of elements
in the database is public (as revealed by the length of the list returned by fetchPapers), this is not
surprising.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

18 D. Stefan et al.

Fig. 12. Semantics for toLabeled .

be able to implement the partialUpdatePaper computation that operates on sensitive

data, but avoid raising the current label and thus label creep.

In general, being able to perform computations on sensitive data without raising

the current label is crucial to building practical applications. To this end, LIO

provides the toLabeled function which can be used to execute an LIO action and

subsequently restores the current context label. The type signature for this function

is

toLabeled :: Label L ⇒ L → LIO L τ → LIO L (Labeled L τ)

The function takes a label l (the upper bound, describe below) and the LIO term t

that computes on sensitive data. Intuitively, if the current label at the point where

toLabeled l t gets executed is lcur, toLabeled executes t and restores the current

label to lcur, i.e., toLabeled provides a separate context in which t is evaluated. Of

course, returning the result of t directly would allow for trivial leaks of sensitive

data. Hence, toLabeled labels the result of t with l . This design decision effectively

states that the result of t is protected by label l , as opposed to the current label

at the point t completed. Of course, toLabeled requires that the result of t not be

more sensitive than l .

To formally describe the semantics of toLabeled , we extend terms with the

toLabeled primitive: t ::= · · · | toLabeled t1 t2 and give two new reduction rules

in Figure 12. In both rules, the current label and clearance are preserved. Rule

(toLabeledCtx) simply reduces the label argument. Rule (toLabeled) specifies the

non-trivial case. As noted above, the label l is used to label the result of t . Hence, the

rule first ensures that we are not trying to create a labeled value below the current

label (or above the current clearance, see Section 3), i.e., lcur � l�True. The rule

then completely reduces t to an LIO value.8 If the current label l′cur at the time of

completion is below the provided upper bound l , then “transferring protection” of

the result t ′ from l′cur to l is safe and we thus simply return the result, labeled with

l . Observe that if l′cur � l�False, then labeling the result t ′ with l might result in a

leak, e.g., if t ′ actually contains information above l . In Section 5, we consider the

cases where these conditions do not hold. We finally remark that the (toLabeled)

8 By using big-step semantics, we do not need to rely on the use of trusted functions that (save and)
restore the current label and clearance.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 19

increments the index n to indicate that toLabeled was executed. This decoration is

used to simplify the proof burden and is further explained in Section 6.

Example 2 (Partially updating papers)

Returning to our partial update λChair example, we can now use toLabeled in a

straightforward way to implement partialUpdatePaper . This new implementation is

given below:

partialUpdatePaper :: Id → PartialPaper → DC ()

partialUpdatePaper i new = do

-- Get the existing paper according to its id:

lold ← fetchPaperById i

lnew ← toLabeled (labelof lold) (do

old ← unlabel lold

-- Merge the new (partial) paper and existing paper:

return (merge new old))

-- Perform actual update:

updatePaper i lnew

This implementation is almost identical to the original one. It only differs in wrapping

the part of the code that is computing on sensitive data with toLabeled . Specifically,

it wraps the part of the code that unlabels the existing paper and performs the merge.

(Since toLabeled returns a labeled value, we no longer need to explicitly label the

merged paper—we simply return it.) The current label within the toLabeled blocks is

raised to the join of the current label and the label of the existing paper (labelOf lold)

by function unlabel . Importantly, however, the current label before and after calling

partialUpdatePaper remains the same.

2.5.1 An alternative semantics for toLabeled

Naturally, one may ask why toLabeled demands that we provide the label of the

result as an argument, as opposed to simply using the final current label of the

executed computation. Indeed, an early version of LIO had such an implementation.

The reduction rule for this alternative function

toLabeled ′ :: Label L ⇒ LIO L τ → LIO L (Labeled L τ)

is given below:

toLabeled’

〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | LIOTCB t ′〉
〈lcur, ccur,m | toLabeled ′ t〉 n+1−→ 〈lcur, ccur,m

′ | return (LabeledTCB l′cur t ′)〉

But, different from the version of LIO as presented in this paper, inspecting the

label of labeled values with labelOf must raise the current label to the join of the

current label and label of the value. The semantics for this alternative function

labelOf ′ :: Label L ⇒ Labeled L τ → LIO L L

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

20 D. Stefan et al.

is given below:

labelOf’

lcur � l�l′cur l′cur � ccur

〈lcur, ccur,m | labelOf ′ (LabeledTCB l t)〉 0−→ 〈l′cur, ccur,m | return l〉

This difference is particularly important since information can otherwise be leaked

by encoding it into the labels themselves (Russo & Sabelfeld, 2010; Buiras et al.,

2014). To illustrate this point, consider the three-point lattice L3 = {Public, Secret ,

TopSecret } and the following code that uses toLabeled ′ and labelOf to leak the

value of a secret Boolean.

leakBool :: Labeled L3 Bool → LIO L3 Bool

leakBool secretBool = do

-- Current label is Public

secretBool ′ ← toLabeled ′ (do

s ← unlabel secretBool -- Raise current label to Secret

-- Raise label to TopSecret if s is True

when s (raiseLabel TopSecret))

-- Current label is Public

return (labelOf secretBool ′ ≡ TopSecret)

where raiseLabel l = label l () >>= unlabel

The key distinction between the two designs is what label is used to protect the

label of a labeled value (Buiras et al., 2014). (Recall that in an IFC system every

piece of data must be labeled—this include labels themselves.) In the early version

of LIO (that with toLabeled ′ and labelOf ′), the label on the label of a value was

the label itself. Hence, inspecting the label of a value required raising the current

label. Importantly, however, toLabeled ′ did not require programmers to supply an

upper bound label for the labeled result. In contrast, the current version of LIO

considers the current label lcur as the label protecting the labels of labeled values.

In this system, inspecting the label of a value does not require raising the current

label, and labelOf is, in turn, pure. Of course, the trade-off is that the label on the

result produced by toLabeled must be provided a-priori.

Our experience with building λChair and other larger scale applications has

shown that the ability to inspect labels outweighs the “burden” of specifying an

upper bound for toLabeled . The interested reader is referred to Griffin et al. (2012)

for a description of an example system built on top of LIO. In fairness, most of

the systems and applications we built on top of LIO are web-centric and while we

believe this experience to extend to other domains, evaluating this trade-off for other

kinds of applications is an interesting direction for future work.

3 Addressing covert channels with clearance

IFC systems do not typically restrict what data code can read, rather—and as we

have done thus far—they only restrict where the code can write to once it has read

the data. Similarly, code can always write to channels or create objects with arbitrary

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 21

labels, as long as doing so does not leak information, i.e., code can always write to

and allocate entities more sensitive than the current label. But, in many cases, it is

useful to execute code with least privilege by limiting its access to the data/entities

it needs to perform its task (Saltzer & Schroeder, 1975). This principle not only

simplifies security auditing, but, as shown in this section, it also eliminates the

opportunity for code to leak sensitive data by exploiting covert channels (Lampson,

1973). LIO introduces the notion of clearance to language-based IFC systems (Stefan

et al., 2011b), later adopted by Breeze (Hriţcu et al., 2013), as a means for restricting

access to certain labeled entities. Clearance in LIO can be seen as a particular DAC

mechanism integrated into a IFC system, where DAC security checks are performed

before their IFC counterparts (Stoughton, 1981).

3.1 Restricting data-access with clearance

The current clearance ccur is a label tracked by the LIO monad alongside the current

label lcur; in our formalization, the clearance appears as the second component of

a program configuration 〈lcur, ccur,m | t〉. LIO restricts access to certain labeled

entities using the clearance in two different ways.

First, the clearance is used to restrict the reading of overly sensitive data by

enforcing that the current clearance always be an upper bound on the current

label, i.e., for all valid program configurations 〈lcur, ccur,m | t〉, it is the case that

lcur � ccur�True. This restriction is enforced by the LIO interface. For example,

unlabel as given in rule (unlabel) of Figure 10 only unlabels the labeled value if

raising the current label lcur will not result in a current label l′cur that is above the

current clearance, i.e., l′cur � ccur�True. In a similar way, before reading from a file

or reference (see Section 4), we ensure that raising the current label will not violate

this guarantee.

The use of clearance to restrict code from reading certain entities is a form of

DAC; we can prevent malicious code from exploiting covert channels to leak overly

sensitive information by ensuring that it cannot read such data. As an example,

suppose that the partial update function in λChair is implemented by a third-party

developer (e.g., to implement a better merging function). If the developer is malicious,

they can use the partial update function to leak the contents of a competing author’s

paper through covert channels. Indeed, this is simple since the developer can create

an account on the λChair platform and take on the role of an author to ensure that

their malicious code is executed. A malicious version of partialUpdatePaper is given

below:

leakyPartialUpdatePaper :: Id → PartialPaper → DC ()

leakyPartialUpdatePaper i new = do

-- Get all existing papers:

papers ← fetchPaperById i

-- Leak information about some of the papers

mapM maybeLeak papers

-- Execute the normal partial update:

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

22 D. Stefan et al.

partialUpdatePaper i new

where maybeLeak lpaper = toLabeled (labelOf lpaper) (do

paper ← unlabel lpaper

-- If the paper has a specific author, leak it:

when (paperAuthors paper ≡ ...) (leakToCovertChannel paper))

Here, we use function leakToCovertChannel to leak information about papers written

by certain authors; otherwise, the function behaves in the same way as the normal

partialUpdatePaper code. The function leakToCovertChannel leaks (part of) the

sensitive paper content through a covert channel. For instance, the code can leak

information by diverging (or not) according to the paper content, i.e., one bit at a

time through the termination covert channel (Askarov et al., 2008); alternatively, it

can leverage the external timing covert channel (Agat, 2000) to leak the information

by delaying the response according to the content, etc. Using clearance, we can

prevent such leaks by setting the clearance to the label of the browser—in this case,

the leakyPartialUpdate will fail to unlabel papers which the requesting user, i.e., the

attacker, is not allowed to read. Since the code running on behalf of one user does

not have access to another user’s data, it cannot leak it—the code can only leak

data it can already read.

The second role of clearance is to restrict code from writing to and allocating

entities labeled above the clearance. For example, label as given in rule (label) of

Figure 10 only creates a Labeled value if the label of the value is bounded by the

clearance. Similarly, toLabeled as given in rule (toLabeled) of Figure 12 requires

the upper bound of the result to be below the clearance. In a similar way, before

creating or writing to a file or reference (see Section 4), we ensure that their label is

below the current clearance. As in Zeldovich et al. (2006), this addresses attacks in

which malicious code duplicates sensitive data, e.g., by copying a file, only to read

it later, when the system policy changes (e.g., in λChair, promoting a member to

a co-chair and granting them the corresponding privileges). While, within a single

run, LIO programs can use robust declassification as in Zdancewic & Myers (2001),

Waye et al. (2015) to reason about policy changes, without clearance, reasoning

about the consequence of a system policy change across multiple program runs is

more difficult. We refer the interested reader to Zeldovich et al. (2006) for a more

detailed consideration of this use case.

3.2 Making clearance first-class

To leverage clearance for isolation, as described above, we execute a term in

a configuration that has initially set the desired clearance. Of course, in many

applications, it is useful to be able to “drop” privileges and continue executing

with least privilege (Saltzer & Schroeder, 1975). For example, in λChair when

authenticating user requests, the clearance must be high enough to read credentials,

but once the authentication is complete, having access to such information is

unnecessary and dangerous: A simple bug in the code that generates an HTML

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 23

Fig. 13. Semantics for clearance related terms.

list of the user’s papers could potentially leak the credentials. Hence, we provide a

means for inspecting and manipulating the clearance. Specifically, we provide

getClearance :: Label L ⇒ LIO L L
lowerClearance :: Label L ⇒ L → LIO L ()

The getClearance and lowerClearance functions are used to get and set the current

clearance, respectively.

We add the primitives getClearence and lowerClearance to the syntactic category

of terms t ::= · · · | getClearance | lowerClearance t and formally describe its

semantics in Figure 13. The rules are mostly self-explanatory. We solely highlight

that the premise in rule (lowerClearance) requires the new current clearance c′cur

to be below the current clearance ccur and above the current label. By lowering the

clearance, code can effectively run with least privilege. Of course, allowing code to

arbitrarily raise the clearance would trivially prevent us from confining untrusted

code—hence, code can only decide to access fewer entities.

However, recall from rule (toLabeled) that toLabeled restores the current label

and clearance. Hence, combined with toLabeled , we can use lowerClearance to

execute a term t , at a lower clearance, without lowering the current clearance:

withClearance :: Label L ⇒ L → LIO L τ → LIO L (Labeled L τ)

withClearance c′cur t = toLabeled c′cur (lowerClearnce c′cur >> t)

This use of toLabeled addresses the dual to the label creep described in Section 2.5:

By lowering the current clearance, a program can reach a state where lcur = ccur,

at which point it cannot read or write to entities more sensitive than lcur. More

interestingly, this enables powerful security patterns. For instance, it allows arbitrary

untrusted code to treat code it depends on as untrustworthy. Indeed, this primitive

can be used to address the poison pill attacks described in Hriţcu et al. (2013),

wherein untrusted libraries carry out denial of service attacks via label creep.

Additionally, withClearance can be used to structure programs in such a way that

different components execute with least privilege and are isolated from one another.

For example, in λChair, we can wrap request handlers with withClearance to isolate

requests based on the user (browser) label. This is similarly done in the Hails

web framework, when serving HTTP requests and accessing database tables, which

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

24 D. Stefan et al.

Fig. 14. Formal syntax for references.

themselves have a notion of clearance for the labels on stored data (Giffin et al.,

2012).

4 Mutable labeled references

Many practical applications rely on imperative data-structures, often implemented

using mutable reference. In the context of λChair mutable references can, for example,

be used to implement an efficient in-memory database. Indeed, by modeling each

paper as a labeled reference, instead of a labeled immutable value, updating a paper

becomes very cheap; it simply amounts to writing to a reference, as opposed to

creating a large immutable data structure (that contains the rest of the papers).

Unsurprisingly, LIO provides labeled alternatives to Haskell’s IORef s (Pey-

ton Jones, 2001). The LIO reference API is given below:

data LIORef L τ

newLIORef :: Label L ⇒ L → τ → LIO L (LIORef L τ)

readLIORef :: Label L ⇒ LIORef L τ → LIO L τ

writeLIORef :: Label L ⇒ LIORef L τ → τ → LIO L ()

While the implementation of secure references can vary, we simply wrap Haskell’s

IORef s. Intentionally, this API resembles the standard Haskell API for mutable

references. The key difference is that the function for creating references takes an

additional argument: the label of the reference.

To formally describe this API, we extend our calculus with references as shown

in Figure 14. Like LabeledTCB, the LIORef TCB constructor is restricted to the TCB

and is strict in its first argument. References are created with newLIORef , read with

function readLIORef , and modified with writeLIORef . We overload the labelOf

function to allow code to inspect the label of a reference.9

The reference store—spanned over by metavariable m—is a map from addresses—

spanned over by metavariable a—to labeled values.10 Since we do not provide

any mechanisms for explicit deallocation or address inspection/comparison in the

LIO API we can model the store as an infinitely large map, while allowing the

implementation to safely garbage collect unused references as necessary.11 In our

9 In our implementation, we use a typeclass LabelOf to define the labelOf function. Both LIORef and
Labeled are instances of this class.

10 Since the label of a reference accompanies the address (both wrapped by the LIORef TCB constructor),
an alternative memory store that simply maps addresses to terms is sufficient—we chose the labeled-
store approach to simplify the proof burden (see Section 6).

11 Non-opaque pointers could potentially be used to leak information (e.g., by freeing a reference in a
secret context only to allocate a reference and inspect its address in a public context). Adapting LIO
to deal with non-opaque pointers can be done as in Hedin & Sands (2006).

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 25

Fig. 15. Semantics for monadic LIO terms related to references.

formalization, this memory store appears as the third component of a program

configuration 〈lcur, ccur,m | t〉.
The reduction rules for references are given in Figure 15. When creating a

reference, as given by rule (newLIORef), newLIORef l t creates a labeled value

that guards t with label l and stores it in the memory store at a new, fresh, address a .

Subsequently, the function returns an LIORef value that contains the reference label

and the address where the term is stored. (Like LabeledTCB, the constructor LIORef TCB

is not part of the surface syntax and thus cannot be abused by untrusted code.)

Rule (readLIORef) specifies the semantics for reading a labeled reference; reading

the term stored at address a simply amounts to unlabeling the value m(a) stored

at the underlying address. Function writeLIORef , specified by rule (writeLIORef),

updates the memory store with a new labeled term t for the reference at location a ,

leaving the label intact. Note that in the latter three rules, we impose the restriction

that the label of the reference l must be bound by the current label and clearance,

i.e., lcur � l�True and l � ccur�True. This ensures that we both preserve

the confidentiality of data in scope and avoid reading/modifying entities above the

clearance. It is worth remarking that when one considers the current label lcur as the

dynamic version of the pc, our restriction that the label of the reference be above

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

26 D. Stefan et al.

Fig. 16. Formal syntax for exceptions.

the current label (lcur � l�True) when writing to the reference is similar to the one

imposed by other IFC λ-calculi (Zdancewic, 2002; Austin & Flanagan, 2009). The

rule labelOf , given by (labelOfLIORef), is self-explanatory and we do not discuss

it further.

5 Exception handling

Like references, exceptional control flow is common in real-world applications. As

already noted, LIO provides support for throwing and catching exceptions. Code

can throw an exception using the throwLIO function and catch exceptions using

catchLIO:

throwLIO :: (Exception e,Label L) ⇒ e → LIO L τ

catchLIO :: (Exception e,Label L) ⇒ LIO L τ → (e → LIO L τ) → LIO L τ

This API is identical to that of standard Haskell, except that it operates in the LIO

monad. Moreover, the semantics for these functions are standard.12 Nevertheless, we

must consider the implication on security when they are used in concert with other

LIO library functions—in particular, toLabeled .

In Figure 16, we formally extend values with exceptions ξ and a new LIO

constructor (LIOTCB

X), terms with the exception handling functions (throwLIO and

catchLIO), and types with Exceptions. For simplicity, we only consider a single

exception type.

Figure 17 gives the exception-related reduction rules. Function throwLIO , as given

by rule (throwLIO), raises an exception by simply lifting the exception term t into

the LIO monad with constructor LIOTCB

X . Indeed, the role of the LIOTCB

X constructor

is to distinguish between exceptional and non-exceptional monadic control flow.

Building on this, we add a new reduction rule for bind (>>=) that propagates

exceptions; as shown by the (bindEx) rule, bind re-throws the exception if the

term under evaluation reduced to an exceptional monadic term (LIOTCB

X t). (We

explicitly define the (bindEx) in terms of throwLIO to more closely match our

Haskell implementation.) Otherwise, it behaves as before, according to rule (bind).

The semantics for catchLIO is also straightforward. Since throwing an exception

depends on the information present in the lexical scope, catchLIO must retain the

current label to reflect this fact; observe that all the catchLIO reduction rules in

Figure 17 leave the context intact. Rule (catch) specifies the case where the term

12 This is in contrast with the original semantics of exceptions as presented in Stefan et al. (2012b),
where an explicit label was associated with every thrown exception. In comparison to the treatment of
exceptions in Stefan et al. (2012b) and Hriţcu et al. (2013), the approach of this paper is considerably
simpler.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 27

Fig. 17. Semantics for exceptions without toLabeled . The remaining changes are given in

Figure 18.

does not raise an exception and reduces to a “normal” LIO value. Here, the value

is simply returned. Rule (catchEx) specifies the case where the term raises an

exception. In this case, the exception handler t2 is applied to the exception t1. We

note that our semantics are lazy in the exception value, much in the same way as

Haskell; neither throwLIO nor catchLIO force the evaluation of the exception.

The reduction rules of Figure 17 take the standard approach of propagating

exceptions up the call stack until the nearest enclosing catchLIO . Though necessary,

this is not sufficient; without modifying the semantics of toLabeled , exceptions can

be used to leak information. Consider the following function:

condThrow :: Labeled L2 Bool → LIO L2 ()

condThrow secretBool = do

s ← unlabel secretBool

when s (throwLIO ξ)

Suppose that condThrow is invoked with the current label Public and secretBool has

label Secret . Then, throwLIO raises exception ξ if the secret is True; if the secret is

False condThrow simply returns (). This function alone cannot be used to leak the

secret, since the current label at the end of condThrow is Secret . But, by wrapping

condThrow with toLabeled , we can avoid raising the current label when the secret is

False and thus leak the value into a public reference:

leakSecret :: Labeled L2 Bool → LIO L2 Bool

leakSecret secretBool = do

-- Create public reference:

publicRef ← newLIORef Public True

toLabeled Secret (catchLIO (do

toLabeled Secret (condThrow secretBool)

writeLIORef publicRef False -- Write only if no exception is thrown

)(λ → return ()))

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

28 D. Stefan et al.

Fig. 18. Semantics for terms affected by exceptions.

-- Read direct leak of secret:

readLIORef publicRef

Assume that this function is invoked with a Public current label. First, the function

creates a public reference publicRef initialized to True. Then, if the secret is True,

the exception thrown by condThrow escapes the innermost toLabeled block up to

the catchLIO , which invokes the handler. At this point, the current label is Secret ,

since condThrow raised the label to read the secret. However, the outer toLabeled

restores the current label to Public. This allows us to read the publicRef , which

is still True. By contrast, if the secret is False, condThrow simply returns (); the

enclosing toLabeled ensures that the current label remains Public. At this point, we

write False into the public reference. Finally, we again read and return the reference

contents. In both cases, the returned value corresponds to the secret boolean.

This code illustrates that the standard propagation of exceptions up the call

stack until reaching the nearest enclosing catchLIO is not sufficient. LIO must

only propagate exceptions up to the nearest catchLIO or toLabeled . Intuitively,

the correct semantics for toLabeled are as before with the added requirement that

all exceptions be caught by it: Regardless of how the computation enclosed by

toLabeled terminates—with an exception or value—a Labeled value must always be

returned. In other words, we adapt the semantics of some LIO actions (including

toLabeled) to secure the exception handling mechanism provided by throwLIO and

catchLIO .

Formally, we extend values with another Labeled constructor v ::= · · · |
LabeledTCB

X v t , that encodes the fact that t is an exception. The additional rule for

toLabeled is given by (toLabeledEx) in Figure 18: If term t raises an exception (that

is not caught) LIOTCB

X t ′, we wrap the exception by the new Labeled constructor.

When unlabeling such a labeled value, as given by (unlabelEx), LIO simply

propagates the exception. Of course, unlabel raises the current label, ensuring that

information from the point of the throw cannot be leaked. Finally, (labelOf2)

gives the additional rule for labelOf , which allows programs to inspect the label of

Labeled values wrapping exceptions. Note that we do not allow code to distinguish

between LabeledTCB and LabeledTCB

X ; doing so would allow for trivial leaks.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 29

With these modifications in place, we highlight that the actions in leakSecret

following the toLabeled block will always be executed, even if an exception is raised

inside condThrow . Intuitively, we close the leak due to exception propagation by

simply assuring that the execution of (possibly public) actions following a toLabeled

block does not depend on the abnormal termination of a computation wrapped by

toLabeled . In a similar manner, but using concurrent threads, we can address leaks

due to the timing and non-termination behavior of the enclosed computation (Stefan

et al., 2012a).

We remark that closing leaks due to exception propagation, as such, is not

without cost. In particular, “delaying” exceptions raised within toLabeled blocks

raises two challenges. First, developers need to handle exceptions at the point of

unlabel ing data, even though the exception was potentially raised in a different part

of the program. This imposes a somewhat non-standard, asynchronous programming

model which closely resembles promises (Friedman & Wise, 1976; Miller, 2006). We

have found that, in general, debugging IFC programs is non-trivial for average

developers (Giffin et al., 2012).

To address this, our LIO implementation associates a stack-trace like data-

structure with exceptions. Internally, LIO defines an annotation function which is

used in the rest of the library:

withContext :: String → LIO L τ → LIO L τ

This function takes a string message (typically the name of the function) and the

action to execute, and returns an action that wraps the original action with catchLIO .

The catch is used to interpose any thrown monitor failure exceptions as to add the

annotation message before rethrowing it. Consider the following program:

withClearance lAliceOrBob (label lAlice 42)

Here, the program starts with an initial current label and clearance set to lPublic,

where lPublic � lAliceOfBob � lAlice, but neither relations flow hold in the

reverse direction. This program throws an exception because it attempts to create

a labeled value above the current clearance (within the withClearance block). In

particular, it produces the following error message:

LabelError {
lerrContext = ["withClearance", "label"],

lerrFailure = "guardAllocP",

lerrCurLabel = lPublic,

lerrCurClearance = lAliceOrBob,

lerrPrivs = [],

lerrLabels = [lAlice]

}

Note that the error message contains a lot of useful information:

• A stack-trace like context of the functions called before the program termi-

nated.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

30 D. Stefan et al.

• The actual point of failure; in this case, an internal function within label

called guardAllocP , which performs the actual �-check before creating a

labeled value.

• The current label and clearance when the exception was thrown.

• The privileges supplied to the action that threw the exception.

• The labels supplied to the action that thew the exception.

While an actual stack trace would be more useful, this information has proved very

useful in practice when building our Hails web framework and applications on top

of it13; particularly because developers can use withContext to annotate their own

constructs. We remark that in an imperative language, debugging could be simplified

even further.

The second issue with delaying exceptions is that it may lead to scenarios in which

exceptions go unnoticed. Consider, for example, executing a sensitive computation

with the sole interest of performing a side-effect (e.g., a write to the database). Since,

the result of the computation is of no interest, we are likely to never unlabel the

result and, as a result, overlook a failure—toLabeled catches all exceptions.

Concretely, suppose we attempt to update a paper stored in the database with

a value of type LabeledPaper , which was produced as a result of a toLabeled

computation. (Our partialUpdatePaper is an example of one such computation.)

Further suppose that the toLabeled computation read data more sensitive than

its bound, which should be the paper label. In such a case, we would write an

exceptional value to the database, which will only be observed by the user on a

follow-up read. While this is not an issue from a security stance, it is likely not the

desired or expected behavior; the computation should not delay the exception and

instead reply to the user with an error.

While, in practice, users can also use label to create labeled values that contain

pure exceptions (e.g., using Haskell’s throw), an alternative strict label type (e.g.,

StrictLabeled) can ensure that such labeled values never contain exceptions. Given

this, an alternative toLabeled definition could simply return a labeled variant (see

Section 5.1), i.e., a value of type StrictLabeled L (Either Exception τ). While

this alternative API would not prevent code from ignoring the result (and thus,

the errors), it would prevent developers from overlooking exceptions raised in a

toLabeled blocks when they try to reuse the resultant values (e.g., to insert them

into the database).

In practice, we found that using clearance to restrict what a computation can read

and write within a toLabeled block and having to provide an upper bound label

to toLabeled (and the fact that one can freely inspect labels) help with reasoning

about and preventing IFC monitor failures a-priori. But, of course, other failures

(e.g., network connection failures) are less predictable and in such cases, we cannot

avoid inspecting the return values to catch any delayed exceptions. In such cases,

LIO’s support for declassification, though not discussed in this paper, was used to

13 In debugging mode, it is possible to get more accurate information by rewriting the Haskell source to
wrap at every bind, and also add file and line number annotations. We do not do this in production
because of performance.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 31

“safely leak” the success/failure of a sensitive computation. In general, we did not

find delayed exceptions to be a hindrance. However, our experience comes from

building Hails (Giffin et al., 2012) and applications on top of Hails, which build

on the concurrent version of LIO that uses threads in place of toLabeled ; in these

applications, we mostly relied on toLabeled -like construct to execute code in which

failure was easy to predict (e.g., transformers from strings to abstract data types).

Lastly, we refer the reader to the work of Hriţcu et al. (2013) for a more exhaustive

discussion on the various design points of delayed exceptions.

5.1 Recovering from monitor failures

Our reduction rules given thus far in Figures 2–18 do not consider cases where label

checks fail. Like for other dynamic IFC systems (e.g., Austin & Flanagan (2009;

2010), Sabelfeld & Russo (2009), Askarov & Sabelfeld (2009b), Devriese * Piessens

(2011)), this would imply aborting the program execution when a monitor failure

occurs. For practical systems, this approach is not appropriate: We cannot halt the

system when a λChair request handler is about to violate IFC. Moreover, it is not

safe—this introduces a covert channel (Myers & Liskov, 1997).

As we previously mentioned, LIO and Breeze (Hriţcu et al., 2013) differ from

most other dynamic IFC systems in using exceptions to encode monitor failures.

For example, when the security conditions in rule (unlabel) are not met, we throw

an exception:

unlabelFail

lcur � l�l′cur l′cur � ccur�False

〈lcur, ccur,m | unlabel (LabeledTCB l t)〉 0−→ 〈lcur, ccur,m | throwLIO ξIFC〉

Here, ξIFC is simply an exception containing information about the failure. In the

same way, we provide reduction rules dual to those of Figures 10–18 that simply

throw exceptions when a security condition is not met. We do not discuss these

rules further since they are straightforward. The only interesting case is a particular

failure of toLabeled , given below:

toLabeledFail

lcur � l�True l � ccur�True

〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | v〉 l′cur � l�False

〈lcur, ccur,m | toLabeled l t〉 n+1−→ 〈lcur, ccur,m
′ | return (LabeledTCB

X l ξIFC)〉

Here, the enclosed term t raises the current label l′cur above the upper bound l . By

simply throwing an exception, we would potentially be leaking information about

data more sensitive than lcur. (Malicious code can “throw” an exception by raising

the current label above the upper bound imposed by toLabeled , reintroducing the

attack from the previous section.) As mentioned before, toLabeled must return a

labeled value. Therefore, we return a labeled value that contains an exception that

encodes the monitor failure; at the point of unlabel , this “delayed” exception is

raised.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

32 D. Stefan et al.

By encoding monitor failures with exceptions, as opposed to stopping the program,

LIO allows untrusted code to catch exceptions and safely recover from attempted

IFC violations. Consider, for instance, the following function that unlabels a Labeled

value and returns an Either value to indicate the success or failure of the operation:

safeUnlabel :: Label L ⇒ Labeled L τ → LIO L (Either Exception τ)

safeUnlabel lv = catchLIO (do v ← unlabel lv

return (Right v)

) (λe → return (Left e))

If the label of lv is above the current clearance or if the value is a labeled exception,

the LIO unlabel throws an exception (raising the label in the latter case), which is

handled by simply returning the exception wrapped with the Left constructor. If no

exception is raised, the current label is raised and the unlabeled result is returned,

wrapped by Right . As discussed in Hriţcu et al. (2013), this is generally a very useful

feature since it treats code in an egalitarian fashion, and allows one to integrate

untrusted code in an application without having to worry that the code will halt the

system by causing a monitor failure.

We remark that, unlike our original treatment of exceptions (Stefan et al., 2012b),

the (toLabeledFail) rule treats normal and exceptional results of a failed toLabeled

block the same. This means that if a computation within a toLabeled block raised its

current label above the bound and terminated with an exception, the exception will

be hidden. (Though, a non-exceptional value would be hidden too.) As for Breeze’s

λ
〈〉
throw+D calculus, this means that delayed exceptions are isomorphic to labeled

tagged variants, i.e., values of type Labeled L (Either Exception τ). The trade-off

between these semantics and our original ones are explored in detail in Hriţcu et al.

(2013). The downside of our current approach is clear: Error message are hidden,

thus making it more difficult to debug LIO programs.14 However, this trade-off

comes with a benefit: all exceptions, including delayed exceptions, can be caught.

(After all, when unlabeled, delayed exceptions, are isomorphic to tagged variants.)

This is not necessarily true of our original calculus. To understand the difference,

suppose an exception is raised in a toLabeled block with an upper bound set to l ;

further suppose that the current label when exception is raised is l ′, where l ′ 	� l .

Since exceptions are not hidden (in our original calculus), when unlabel ing such

delayed exceptions, the unlabel primitive re-threw the exception, raising the current

label lcur to lcur � l � l ′. Unfortunately, wrapping unlabel with a catchLIO does not

guaranteed that the exception will be caught—in particular, if the l ′ is not below

clearance, catchLIO would simply propagate the exception. At a high level, this

effectively means that code cannot unlabel values from an untrusted computation

without risking a poison pill attack (Hriţcu et al., 2013), i.e., attacks wherein untrusted

code running in a toLabeled block render outer computations useless by raising the

14 We remark that this can be improved by keeping track of the precise point within the toLabeled
block that the current label was raised above the bound and adding this to the exception stack-trace
discussed above.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 33

current label above the expected label of the labeled value. Of course, code can

always use withClearance to avoid such attacks, but this approach is less usable.

6 Security guarantees

In this section, we show that programs written in LIO satisfy non-interference and

a form of DAC. Informally, non-interference states that secret values cannot be

leaked by LIO programs, while DAC ensures that computations cannot bypass the

restrictions imposed by clearance to access or create arbitrary data. Before delving

into the details of these security guarantees, we first highlight some notational

difference with the previous sections and describe the extent of our mechanization

in Coq.

Notation. To allow for incremental introduction of concepts, in the previous section,

we used LIOTCB and LIOTCB

X constructors to respectively denote non-exceptional and

exceptional monadic LIO terms that have been executed to the point of containing

no more side effects. In this section, we use a single constructor that additionally

takes a boolean argument to indicate whether the value is an exception or not: Term

LIOTCB

b t corresponds to LIOTCB t if b = true and LIOTCB

X t if b = false. Similarly,

we use LabeledTCB

b , with b ∈ {true, false}, instead of the LabeledTCB and LabeledTCB

X

constructors.

Mechanized proofs. We formalized a large subset of the calculus, described in

Section 2, using the Coq theorem prover. The mechanized subset omits references

and the reduction rules corresponding to monitor failures described in Section 5.1.

Moreover, the Coq implementation uses a concrete four-point lattice similar to

that shown in Figure 3. For this subset, we mechanized the propositions, lemmas,

theorems, and proofs given below; we distinguish the non-mechanized parts of the

proofs with the symbol ✎. We leave the extension to the full calculus with an

abstract lattice to future work.

6.1 Non-interference

In this section, we prove that LIO satisfies non-interference using the term erasure

technique from Li & Zdancewic (2010), Russo et al. (2008). Intuitively, the term

erasure technique allows us to show that a program satisfies non-interference by

showing that the behavior of the program with all the sensitive data (classified above

l) “erased” cannot be distinguished by an attacker (at observation level l) from the

behavior of the original program.

To model such programs, we extend our calculus and reduction rules with erased

terms, denoted by a new terminal •, as follows:

t ::= · · · | • � • : τ

hole

•�•
holeLIO

〈•, •, • | •〉 n−→ 〈•, •, • | •〉

Intuitively, an erased term can have any type. Moreover, an erased term or

configuration, the latter represented by 〈•, •, • | •〉, always reduces to itself. We

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

34 D. Stefan et al.

Fig. 19. Erasure function for values, terms, configurations, and memory store. For all other

terms, the erasure function is simply applied homomorphically.

use a meta-level erasure function εl (·) to replace all terms more sensitive than the

attacker’s observation level l with •. To an attacker, terms and configurations

above their observation level appear as •; the new reduction rules also ensure that

no information can be learned from the reduction of such terms (by effectively

diverging).

Figure 19 gives the definition of the erasure function for values, terms, memories,

and configurations. For most values, the erasure function is simply the identity

function, since most values are not heterogeneously labeled. Similarly, for most terms,

the function is simply applied homomorphically (e.g., εl (if True then t2 else t3) =

if True then εl (t2) else εl (t3)). There are only four interesting cases. First, when

erasing a LabeledTCB

b l1 t2 value, we erase the term t2 protected by label l1 to

• when the label does not flow to l ; otherwise, we simply apply the function

homomorphically. Second, we aggressively erase values that are about to be labeled

with label . While the erasure function only erases values when the first argument to

label is a value (and not a term), we define a new reduction relation that applies

the erasure function at every step and thus ensure that values are erased as soon as

possible. We note that such aggressive erasure would not be correct for toLabeled ,

which also returns a labeled value, since toLabeled takes a monadic LIO action

that may produce side-effects observable to the attacker. Third, we erase a whole

configuration to 〈•, •, • | •〉 when the current label is not below l ; this ensures

that the attacker cannot observe anything about sensitive configurations. Fourth,

we erase all reference more sensitive than the attacker observation label, even those

created in public contexts. This ensures the attacker cannot observe anything about

the sensitive parts of the memory store.

The addition of • and corresponding reduction rules completes our calculus and

semantics definition. We now prove several general properties for this calculus,

followed by two key properties needed for the noninterference theorem: Simulation

and determinacy of our monadic reduction relation and a new relation that erases

sensitive terms.

Our first lemma states that values are in normal form, i.e., values do not reduce.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 35

Lemma 1 (Values do not reduce)

• For any value v , there is no term t such that v�t .

• For any lcur, ccur,m, v , n , there is no program configuration k such that

〈lcur, ccur,m | v〉 n−→ k .

Proof

The first case follows by induction on the pure term reduction relation. The second

case follows by induction on the structure of v . �

Though straightforward, this lemma is helpful when distinguishing terms that

terminate since, as in most sequential IFC calculi, our non-interference guarantee is

termination insensitive, i.e., it only holds for terminating terms. And, recall that our

calculus allows non-terminating terms with fix.

The next proposition show that the erasure function is homomorphic over

substitution and idempotent over terms, memories, and configurations.

Proposition 1 (Idempotence and distribution properties of the erasure function)

1. Idempotent over terms: εl (t) = εl (εl (t)).

2. Idempotent over memory✎: εl (m) = εl (εl (m)).

3. Idempotent over configurations: εl (k) = εl (εl (k)).

4. Homomorphic over substitution: εl ({t1 / x } t2) = {εl (t1) / x } εl (t2).

Intuitively, the first three properties respectively state that multiple application of

the erasure function does not affect the term, memory, or configuration once it has

been erased. In other words, the erasure function should completely erase sensitive

data encoded in a term.

The erasure function additionally distributes over the pure reduction relation.

Proposition 2 (Erasure function distributes over the pure-term reduction relation)

For any label l , if t�t ′, then εl (t)�εl (t
′).

Proof

Straightforward induction on t , using Lemma 1, and Proposition 1. �

In other words, taking a step in the pure reduction and erasing the end term is

the same as first erasing the term and taking a step. Intuitively, this is stating that

sensitive data does not affect the reduction of a pure term.

We now extend this intuition to simulation with a new reduction relation

under which sensitive terms and configurations are erased. This new monadic-term

reduction relation with erasure is defined as follows:

Definition 1 (Reduction of pure and monadic terms with erasure)

k
n−→ k ′

k
n−→l εl (k

′)

Configurations under this relation are evaluated in the same way as before, with

the exception that, after one evaluation step, the erasure function is applied to the

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

36 D. Stefan et al.

Fig. 20. Simulation between
n−→ and

n−→l.

resulting configuration. In this manner, the relation guarantees that confidential

data, i.e., data above level l , is erased as soon as it is created.

To illustrate the need for this relation, consider two labels l1 and l2, such that

l1 � l2, and the following program p = 〈l1, l2, ∅ | (λl .label l 42) l2〉. Assuming an

attacker at observation level l1, program p contains the secret 42, which is placed

inside a label expression when β-reducing. Observe that εl1 (p) is not enough to

capture what an attacker should see, since εl1 (p) = 〈l1, l2, ∅ | (λl .label l 42) l2〉, i.e., it

still contains the secret! However, observe that p
n−→l1 〈l1, l2, ∅ | label l2 •〉 erases the

secret (42) as soon as it is β-reduced—capturing the attacker observational power

at every reduction step of the program.

Figure 20 highlights the intuition behind our simulation result: Erasing all sensitive

data, i.e., data whose label is not below l , and then taking a step in
n−→l is the

same as taking a step in
n−→ and then erasing all the secret values in the resulting

configuration. Observe that if configuration k leaks data labeled above l (such that

it is observable at l), then erasing all sensitive data and taking a step in
n−→l might

not be the same as taking steps in
n−→ and then erasing all the secret values in the

resulting configuration—the data might have already been leaked. We remark that,

while this simulation result and several statements below involve configurations that

are initially erased, we rely on the more general reduction relation for determinacy

and prove the more general statement where appropriate.

First, we show that the current label after taking a step is always at least as

restricting as the current label before taking the step.

Proposition 3 (Monotonicity of the current label)

If 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then lcur � l′cur.

Proof

Straightforward induction on t , using the lattice-properties of labels (namely,

reflexivity of � and definition of �). �
This proposition not only reduces the number of cases we need to consider, but

also reinforces our intuition that none of the LIO terms can lower the current label

once sensitive data is incorporated in the context (and thereby allow for such data

to be leaked). We note that since toLabeled is defined using big-step semantics, it

does not actually restore the current label of the context; rather it executes a term

in a separate context in a single step.

We now prove simulation of the monadic-term reduction relation. The proof

follows by induction on the number of executed toLabeled blocks, i.e., index n on

the
n−→ relation. These cases are further broken down into several simpler cases,

according to the observational level of the attacker and current labels (before and

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 37

after taking a step). To simplify presentation, these supporting statements are given

in Appendix A.

Lemma 2 (Single-step simulation without toLabeled)

If 〈lcur, ccur,m | t〉 0−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then εl (〈lcur, ccur,m | t〉) 0−→l

εl (〈l′cur, c
′
cur,m

′ | t ′〉).
Proof

Straightforward case analysis on lcur � l and l′cur � l . All cases follow directly

from supporting Propositions 10, 11, and 12 given in Appendix A. �
This base-case simulation corresponds to the scenario where no toLabeled blocks are

executed. The single-step simulation lemma for arbitrary terms follows by induction,

using this lemma for the base case.

Lemma 3 (Single-step simulation)

If 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then εl (〈lcur, ccur,m | t〉) n−→l

εl (〈l′cur, c
′
cur,m

′ | t ′〉).
Proof

Straightforward case analysis on lcur � l and l′cur � l using Lemma 2 for the base

case. The cases follow directly from the supporting propositions—Propositions 11,

12, and 14—given in Appendix A. �
This lemma shows a simulation between a term taking a step in the normal

reduction relation and that same term, with all sensitive information erased, taking

a step in the reduction relation with erasure. This is highlighted by Figure 20. Un-

fortunately, the statement is overly restricting—it imposes the number of toLabeled

blocks to be the n . (Indeed, we are only able to prove this lemma because the

reduction rule (holeLIO) is defined for any index.)

A more general statement would allow for the number of toLabeled blocks to

differ. In particular, when considering erasure the number of toLabeled blocks

executed is at most n , since the erasure collapses all sensitive paths (an erased

configuration reduces to itself) and thus the number toLabeled blocks executed in a

sensitive context need not be counted. This statement is given below:

Corollary 1 (Single-step collapsed simulation)

If 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then εl (〈lcur, ccur,m | t〉) n′
−→l

εl (〈l′cur, c
′
cur,m

′ | t ′〉) for some n ′ � n .

Proof

Directly from Lemma 3 using n as a witness. �
We remark that while we directly use Lemma 3, this is not necessary. Indeed, one

can prove a more precise bound by showing that n ′ corresponds to the number of

toLabeled blocks executed in attacker-observable contexts, i.e., contexts that have a

current label below the attacker observation level.

Having established the simulation between the standard reduction relation and

the relation with erasure, we now solely need to show that the latter relation is

deterministic to prove non-interference.

First, we show that the pure-term reduction relation is deterministic.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

38 D. Stefan et al.

Proposition 4 (Determinacy of pure-term reduction)

If t�t ′ and t�t ′′, then t ′ = t ′′.

Proof

By induction on the pure-term reduction relation, using Lemma 1. �

Since several reduction rules for the monadic-term reduction relation are given

in using big-step semantics, we show that the big-step relation, i.e., relation wherein

the end-terms are values, is deterministic:

Proposition 5 (Determinacy of big-step monadic-term reduction)

If 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | LIOTCB

b′ t ′〉 and 〈lcur, ccur,m | t〉 n′ ∗−→
〈l′′cur, c

′′
cur,m

′′ | LIOTCB

b′′ t ′′〉, then l′cur = l′′cur, c
′
cur = c′′cur, m ′ = m ′′, n = n ′, t ′ = t ′′, and

b′ = b′′.

Proof

By induction on t . Most cases follow by inversion of the first multi-step monadic-

term reduction hypothesis. The LIO , return , and throwLIO cases further require the

inversion of the second hypothesis. �

This proposition is crucial to the non-interference theorem. Indeed, it can serve

as a first sanity-check when extending the library with new primitives: Adding

LIO actions that are non-deterministic, such as getTimeOfDay would trivially

break this statement. And, extending the system to consider a non-deterministic

reduction relation is non-trivial. Indeed, it may require changing even the security

condition (Zdancewic & Myers, 2003; Sabelfeld & Myers, 2003).

We now use these two propositions to show that the single-step monadic-term

reduction relation is deterministic.

Proposition 6 (Determinacy of monadic-term reduction)

If k
n−→ k ′ and k

n′
−→ k ′′, then k ′ = k ′′ and n = n ′.

Proof

By induction on the monadic-term reduction relation, using Proposition 4 and

Lemma 1. We use Proposition 5 for the (bind), (bindEx), (toLabeled),

(toLabeledEx), (catch-LIO), and (catchLIOEx) cases. �

From this, the determinacy of the relation with erasure follows in a straightforward

way:

Lemma 4 (Determinacy of monadic-term reduction with erasure)

For any label l , configurations k , k ′, and k ′′, and index numbers n and n ′, if

k
n−→l k ′ and k

n′
−→l k ′′, then k ′ = k ′′ and n = n ′.

Proof

By inversion of the hypotheses, using Proposition 6. �

Before stating the non-interference theorem, we first define a safe function ς to

distinguish terms that are only composed of surface syntax. Figure 21 gives the

definition of this function for values, memories, and configurations. For terms, we

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 39

Fig. 21. Safe function for values, memories, and configurations. The safe function for terms

is defined homomorphically over the structure of the term.

define ς as the conjunction of its application to all the term components. Since the

definition of ς is straightforward, we only remark that our definition for memories

is permissive in treating a non-empty memory m as safe when m only contains safe

terms.

As in previous works on non-interference, we state non-interference as the

preservation of l -equivalence, defined according to a syntactic equivalence relation

≈l .
15 We define this l -equivalence relation as the equivalence kernel of the erasure

function εl (·) for configurations. That is, k ≈l k ′ iff εl (k) = εl (k
′). Note that this

equivalence relation precisely captures the power of an attacker: To an attacker at

observation level l , two terms that are l -equivalent cannot be distinguished.

Theorem 1 (Non-interference)

For any label l , index n1, and two configuration k1 and k2, such that ς (k1) and

ς (k2), there exists an index n2, such that if k1 ≈l k2, k1
n1−→ k ′

1 and k2
n2−→ k ′

2, then

k ′
1 ≈l k ′

2.

Proof

Applying Corollary 1 to the two hypotheses, we have εl (k1)
n′

1−→l εl (k
′
1), for n ′

1 � n1

and εl (k2)
n′

2−→l εl (k
′
2), for n ′

2 � n2. From k1 ≈l k2 and the definition of ≈l , we have

εl (k1) = εl (k2). Then, by Lemma 4, we have εl (k
′
1) = εl (k

′
2) and n ′

1 = n ′
2. From the

definition of l -equivalence, this is the same as k ′
1 ≈l k ′

2. Our Coq proof uses types

to eliminate degenerate cases, but this is not fundamental to the proof and we thus

elide this detail. �

The theorem states that if two configurations with possibly secret information,

but indistinguishable to an attacker at level l , take a step, then the resulting

configurations are also indistinguishable to the attacker. In other words, the attacker

does not learn any sensitive information by observing configurations at lower

sensitivity levels. Note, however, that the number of toLabeled actions executed

in each step may differ according to data the attacker cannot observe—we assume

that the attacker cannot observe the index counts.

This non-interference statement is stronger than that considered in the conference

version of this paper (Stefan et al., 2011b), which is stated in terms of a big-step.

15 While considering syntactic l -equivalence is standard, a treatment of semantic l -equivalence would be
an interesting research direction.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

40 D. Stefan et al.

Specifically, this statement says that no information is leaked at any intermediate

step, as opposed to solely stating that the result of two l -equivalent programs do

not leak information. However, as in the conference version, this is a termination-

insensitive result, i.e., we only make claims about the case where the configurations

can each take a step and thus leaks due to non-termination are not captured.

In Stefan et al. (2012a), we modify LIO to ensure that no information about the

termination of sensitive subcomputation is visible to public contexts. For that,

we force the execution of each toLabeled block to occur in a separate thread.

The concurrent version of LIO satisfies a much stronger property—termination-

sensitive non-interference—and is the library we use to implement both Hails and

λChair.

6.2 Discretionary access control and isolation

In this section, we show that LIO programs cannot write or allocate entities

below the current label or read, write or allocate entities above their current

clearance.16 Building on this, we then show how LIO can be used to isolate untrusted

computations to ensure they can only access a particular part of memory and any

faults are contained, i.e., faults in the untrusted code do not percolate into the outer

context.

6.2.1 Discretionary access control

In the previous section, we showed that the current label after taking a step is always

at least as restricting as the current label before taking the step. The dual holds for

clearance; the current clearance after taking a step is always at most as restricting

as the current clearance before taking the step.

Proposition 7 (Monotonicity of the current clearance)

If 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then c′cur � ccur.

Proof

By induction on t , using the lattice-properties of labels (namely, reflexivity of �)

and the fact that only (lowerClearance) modifies the clearance (for which the

statement holds trivially). �

This proposition states that the current clearance monotonically decreases within

a context. In other words, the context can give up access to certain entities as

it progresses, but not conversely. This statement is the clearance equivalent of

Proposition 3, which states that once a computation reads confidential data, it

cannot lower its current label to write to entities less sensitive.

16 When considering privileges, in the style of the decentralized label model of Myers & Liskov (1997),
these access restrictions give the code containing the privilege the discretion to access certain entities
below the current label and above the current clearance.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 41

Before delving into our access control guarantees, we first define two store

modifiers:

l � m = {(a, LabeledTCB

b l ′ t) : (a, LabeledTCB

b l ′ t) ∈ m and l � l ′}

m � l = {(a, LabeledTCB

b l ′ t) : (a, LabeledTCB

b l ′ t) ∈ m and l ′ � l}

l1 � m � l2 = l1 � m ∩ m � l2

Symbol l � m denotes the subset of m containing all the references whose labels are

above or equal to l . Similarly, m � l contains the references whose label is below

or equal to l . Operator l1 � m � l2 encompasses the subset of m containing all the

reference whose labels are between the labels l1 and l2. Finally, we introduce the

complement of the described subsets as l � m , m � l and l1 � m � l2, respectively.

Lemma 5 (No write-access below current label✎)

Given a term t and memory m , such that ς (t) and ς (m � ccur), if the term

reduces to a value according to 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then

lcur � m = lcur � m ′.

Intuitively, this lemma states that the partitions, of the initial and final memory

stores, that (may) contain references with labels below lcur are identical, i.e., the

computation could not have modified or created references below lcur. Note, however,

that the lemma does not state that term t cannot read from a reference below the

current label. A corollary of this lemma states that any labeled values created by t

are labeled above lcur.

A similar, though slightly stronger, access control statement holds for clearance.

Lemma 6 (No access above current clearance✎)

Given term t and memory m , such that ς (t) and ς (m � ccur), if the term reduces to a

value according to 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then m � ccur = m ′ � ccur.

In other words, the partition of memory above the initial current clearance remains

inaccessible throughout the program execution, i.e., the computation could not have

modified or created references above ccur. A corollary of this lemma states that

any labeled values created by t are labeled below ccur. As shown in Appendix A,

computations also cannot read data above the clearance; this allows us to execute a

term t with an alternative memory—one where references above the clearance are

arbitrarily modified—without affecting its behavior.

From these two lemmas, we can further state that the current computation is

restricted to modifying references whose labels are between the current label and

clearance:

Proposition 8 (Memory writes bounded by current label and clearance✎)

Given term t and memory m , such that ς (t) and ς (m � ccur), if the term reduces to

a value according to 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then lcur � m � ccur =

lcur � m ′ � ccur.

Proof

Directly from Lemma 5 and Lemma 6. �

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

42 D. Stefan et al.

6.2.2 Isolation

Using the above access control properties of LIO, we now show how terms can be

executed in isolation. To this end, we first define an isolate function, similar to the

withClearance of Section 3:

isolate :: Label L ⇒ L → L → LIO L () → LIO L ()

isolate l c t = toLabeled c (lowerClearance c >> raiseLabel l >> t) >> return ()

where raiseLabel l = label l () >>= unlabel

This function executes a term t in a context where the initial current label and

clearance are l and c, respectively. While simple, this isolation function can be used

to ensure that the untrusted term t can only modify a specific portion of memory

and indeed, behave, as if it executes in a separate context:

Lemma 7 (Single term isolation✎)

If 〈lcur, ccur,m | isolate l c t〉 n+1 ∗−→ 〈lcur, ccur,m
′ | LIOTCB

true ()〉, then l � m � c =

l � m ′ � c, m ′ = (l � m ′ � c) ∪ (l � m � c), and 〈l , c,m | t〉 n ∗−→
〈l ′, c′,m ′ | LIOTCB

true ()〉.

Here, the memory equations simply state that term t could only have modified

the part of the memory store m that is between l and c. Regardless of whether

t terminates by raising the current label, lowering the current clearance, and/or

throwing an exception, the isolate function ensures that this “fault” is not propagated

to the outer computation. Indeed, this can directly be used to address the poison

pill attacks described in Hriţcu et al. (2013). Unfortunately, like the non-interference

theorem, this lemma assumes that term t terminates.

By wrapping different terms with isolate and using disjoint labels for their

corresponding current labels and clearances, we can guarantee that the terms will

execute in isolation, on disjoint parts of the memory. Such a term isolation theorem,

for two terms, is given below.

Theorem 2 (Term isolation✎)

Assume fresh(·) deterministically creates objects that are globally unique. Given safe

terms t1 and t2, memory m , and labels l1, c1, l2, and c2, bounded by lcur and ccur,

such that l1 � c1, l2 � c2, l1 	� l2, l2 	� l1, c1 	� c2, and c2 	� c1, if

〈lcur, ccur,m | isolate l1 c1 t1 >> isolate l2 c2 t2〉 n ∗−→ 〈lcur, ccur,m
′ | LIOTCB ()〉,s then

〈l1, c1,m | t1〉 n1 ∗−→ 〈l ′1, c′1,m1 | LIOTCB ()〉, 〈l2, c2,m | t2〉 n2 ∗−→ 〈l ′2, c′2,m2 | LIOTCB ()〉,
n = (n1 + 1) + (n2 + 1), and l1 � m � c1 = l1 � m1 � c1, l2 � m � c2 = l2 � m2 � c2,

l1 � m ′ � c1 = l1 � m1 � c1, and l2 � m ′ � c2 = l2 � m2 � c2.

Intuitively, the theorem states that the behavior of terms t1 and t2 (under the

supplied context labels) is not affected by isolate function. Importantly, it also states

that the two terms operate on disjoint parts of the memory—indeed the behavior

of t2 is the same as executing it with initial memory m , as opposed to m1, the

memory after term t1 was executed. In the context of λChair, this isolation property

is especially important since it allows us to ensure that requests running on behalf

of different users run in isolation.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 43

7 Related Work

Heintze and Riecke (1998) consider security for lambda-calculus where lambda-

terms are explicitly annotated with security labels, for a type-system that guar-

antees non-interference. One of the key ideas behind their work is to provide

an operator that raises the security label of a term. Similarly, Zdancewic’s PhD

thesis (Zdancewic, 2002) introduces a security λ-calculus which raises the pc

associated to a term when sensitive information gets obtained by reading references.

Austin and Flanagan (2009) design a λ-calculus which might temporary raise the

pc when reducing function application. These features are similar to raising the

current label when manipulating labeled values whose labels are above the current

label. The notion of a floating current label dates back to the High-Water-Mark

security model (Landwehr, 1981) of the ADEPT-50 in the late 1960s, which was

later adopted by Asbestos (Efstathopoulos et al., 2005), HiStar (Zeldovich et al.,

2006), and Flume (Krohn et al., 2007) IFC OSes.

Abadi et al. (1999) develop the dependency core calculus (DCC) based on a

hierarchy of monads to guarantee non-interference. In their calculus, they define a

monadic type that protects the confidentiality of pure values at different security

levels. Our LIO and Labeled types serve a similar role. However, since LIO has

the guarantee that code cannot create labeled values below the current label and

or above the current clearance, the Labeled type is not a monad—we must inspect

the current label and clearance before a new labeled value can be created (e.g.,

by applying a function to the protected value). Nevertheless, we can use unlabel

and toLabeled in the LIO monad to achieve the dynamic equivalent functionality

of DCC’s (non-standard) typing rules for the bind operator. Tse and Zdancewic

(2004) translate DCC to System F and show that non-interference can be stated

using parametricity. Unfortunately, like DCC, they rely on a non-standard typing

rule for bind—they provide several definitions for this operator and rely on GHC’s

UndecidableInstance extension (which lifts type conditions of Sulzmann et al.

(2007)) to resolve the correct bind. Crary et al. (2005) present a monadic calculus for

non-interference for programs with mutable state. While inspired by these works,

we do not take a domain-specific approach to extend the Haskell type system or

modify the Haskell runtime; rather, we take a dynamic, label-polymorphic, and

library approach to IFC. Importantly, our implementation does not rely on any

non-standard constructs—this reduces the task of understanding IFC enforcement

to understanding the LIO API.

Harrison and Hook show how to monadically encode abstract OSes called

separation kernels (Harrison, 2005). The idea behind this work is to first partition

a program into multiple processes, each associated with a separate domain (label),

running in isolation. Inter-process communication is allowed through a kernel that

mediates the message exchange according to a security policy (e.g., non-interference).

To formally reason about separation kernels, the authors use a monad-layering

approach, modeling state with the State monad, concurrency with the Resumption

monad, etc. This approach is orthogonal to our approach; we use monads in a

trivial fashion and primarily as a way to implement the calculus semantics as a

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

44 D. Stefan et al.

library. In Stefan et al. (2012a), we describe the concurrent version of LIO, which

unlike (Harrison, 2005), considers termination-sensitive non-interference.

The seminal work by Li and Zdancewic (2006) presents an implementation of

information-flow security for Haskell. Instead of modifying the language runtime,

they take a library-based approach by encoding IFC-constrained computations using

arrows (Hughes, 2000) (a generalization of monads). This work was extended by

Tsai et al. (2007) to consider concurrency and side-effecting computations. Russo

et al. (2008) show an alternative library-based approach that eliminates the need

for arrows; they, instead, describe a monadic library that encodes static IFC. This

library relies on monadic types to track information-flow in pure and side-effecting

computations. Morgenstern and Licata (2010) extend this idea to implement an

authorization- and IFC-aware programming language in Agda. However, and as is

the case with many static systems (Sabelfeld & Russo, 2009), their library is less

permissive. Nevertheless, this library is a closely related work. In particular, we

note that the SecIO library (Russo et al., 2008) has functions that serve the static

counterpart of some of the core LIO functions (e.g., like unlabel , they provide a

function that maps pure labeled values into monadic computations; like toLabeled ,

they provide a function that allows safely writing to public entities after reading

secret data).

Another closely related work is that of Devriese & Piessens (2011); this work

uses monad transformers and parameterized monads (Atkey, 2009) to enforce

noninterference, both dynamically and statically. Different from our work, they

focus on modularity (separating IFC enforcement from underlying user API), using

typeclass-level tricks. Unfortunately, like the work on separation kernels, this requires

programmers to first partition their code to fit the new programming model, whereas

the usage of LIO strives to be very close to Haskell’s existing IO libraries.

Laminar (Roy et al., 2009) is a closely related system that combines OS- and PL-

techniques to jointly provide application and OS end-to-end guarantees. Although

our work does not extend to the OS, Laminar’s OS-confinement could be unified

with LIO, much as they unify the mechanism with their Java language-level system.

More interestingly, at the language level, Laminar enforces IFC within certain code

regions named security regions, where labeled data can be accessed. Security regions

have a (secrecy and integrity) label associated with them and are superficially similar

to our toLabeled blocks.17 Unlike in LIO, however, security regions cannot change

their current label; if code wishes to read data more sensitive than the region’s

label, it must create another region with the supplied label. Moreover, if code within

a region violates a security check (e.g., attempts to write to less sensitive file), the

Laminar runtime raises an exception. Each security region has a required catch

block, which is executed when such an exception is raised. (Though, code within

a region can terminate the process by exiting.) Catch blocks run with the same

label as the security region and provides developers with a way for recovering from

17 Laminar also associates a set of capabilities as a means for declassification and endorsement, much
like LIO’s privileges. However, we do not discuss them further since we do not address such topics in
this work.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 45

monitor failures. Importantly, the runtime suppresses exceptions raised within the

security region’s catch block and any exceptions not explicitly caught. Similar to

our approach, this decision is done to avoid an exception raised in a sensitive

context to suppress less sensitive subsequent actions. Despite this similarity, there

are several differences between LIO and Laminar. First, LIO provides a single,

flexible mechanism for handling exceptions; we do not treat monitor exceptions

differently from other exceptions—thus reducing the abstractions developers must

understand. Second, LIO does not suppress exceptions. Our toLabeled block delays

exceptions which may be suppressed, but do not have to be—we can inspect the

result of a toLabeled result, whether it is a failure or not. A result of these two

points is that Laminar’s secure regions can be implemented in LIO using toLabeled

and withClearance. More importantly, we remark that LIO code does not have to

be wrapped in toLabeled blocks—this is unlike Laminar, where code that handles

labeled data must always be wrapped by a secure region.

The secure treatment of exception-handling has been studied by the mainstream

IFC compilers Jif (Myers & Liskov, 2000) and FlowCaml (Simonet, 2003). These

compilers’ type-systems enforce the following rule for exceptions: If an exception

might be raised in a sensitive context, no public side effects must follow either in

the subsequent code in a try block or in the catch handler. On the other hand, LIO

enforces that once exceptions are thrown in a sensitive context, no subsequent public

side effects can be executed either inside the toLabeled block where the exception is

raised (if any) or in the catch handler. In Askarov & Sabelfeld (2009a), the authors

provide a more permissive static exception-handling mechanism by introducing

exceptions that cannot be caught. This idea could be easily incorporated in LIO and

we state it as an interesting direction for future work.

Hedin and Sabelfeld present a dynamic information-flow monitor for a core

JavaScript with exceptions (Hedin & Sabelfeld, 2012). In their calculus, they associate

a security level with every exception. This is similar to our initial approach, described

below, in associating the current label with exceptions thrown by throwLIO . Their

semantics diverge from standard JavaScript in disallowing public exceptions from

being thrown in secret contexts and, to address this permissiveness issue, they provide

a non-standard construct that can be used to upgrade the label of an exception.

Unfortunately, IFC violations (which may arise when an upgrade is not performed)

are fatal.

Our initial treatment of exceptions was presented in the unpublished manuscript

(Stefan et al., 2012b). While the semantics are mostly the same as those presented

in this paper, there are some subtle differences. In particular, in the original work,

exceptions had an associated explicit label—the current label at the time of a

throwLIO . And, at the time of a catchLIO , the current label was raised to the

join of the exception label and current label. Unfortunately, these semantics are

unnecessarily complex due to the implementation. Specifically, the LIO monad was

implemented as a State monad with IO as the base monad and the current label and

clearance as the monad state. Since the monad state may change according to the

computation control flow, it was necessary that exceptions carry the additional state

information to ensure that the current label is not arbitrarily lowered. By removing

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

46 D. Stefan et al.

this implementation consideration, we were able to simplify the semantics to those

presented in this paper and also simplify the implementation—the key insight is that

the current label and clearance are global to the computation and thus the State

monad needs to only contain a reference to these labels. Indeed, this simplification

reduced the complexity of exception handling to the interaction of exceptions and

toLabeled .

In parallel with our initial work on exceptions, Hriţcu et al. presented the Breeze

IFC language (Hriţcu et al., 2013). Breeze explored the design space of IFC and

exceptions. Not only do they consider various calculi with exceptions, but, like

our work, also address the issue of treating IFC monitor failures as recoverable

failures. We refer the interested reader to the Breeze paper for a very comprehensive

comparison of Breeze and LIO, and a detailed analysis of different design trade-offs

that arise due to exceptions. Here, we only remark that, like Breeze, we delay the

propagation of exceptions raised in toLabeled blocks (in Breeze, these are called

brackets). Indeed, our semantics for exceptions are very similar to their calculus

λ
〈〉
throw+D. Both of these calculi differ from our original presentation (Stefan et al.,

2012b) in hiding exceptions raised in a toLabeled block where the current label is

above the supplied upper bound, see rule (toLabeledFail).

Different from most language-based IFC systems, LIO relies on the notion

of clearance to restrict information leakage due to covert channels. Bell and

La Padula (1976) formalized clearance as a bound on the current label of particular

users’ processes. In the 1980s, clearance became a requirement for high-assurance se-

cure systems purchased by the US Department of Defense (1985). HiStar (Zeldovich

et al., 2006) re-cast clearance as a bound on the label of any resource created by the

process (where raising a process’s label is but one means of creating a something

with a higher label). We adopt HiStar’s more stringent notion of clearance, which

prevents software from copying data it cannot read and facilitates bounding the

time during which possibly untrustworthy software can exploit covert channels.

8 Summary

We presented LIO, an IFC system that explores a new design point in language-based

information flow security. LIO takes a mostly coarse-grained labeling approach,

inspired by both IFC OSes and IFC programming languages. In particular, LIO only

associates a single, mutable, label—the current label with all the values in context

(lexical scope) and dictates how information flows to/from the context. Compared

to typical language-based IFC systems, where labels are explicitly associated with

values, this design approach is amenable to a fast, library implementation. But, to

allow programmers to handle differently labeled data, LIO provides an abstract

data type, Labeled , that encapsulates a term and its explicit label. (In a similar

way, we provide mutable labeled references.) Labeled values serve the dual purpose

of addressing label creep—the raising of the current label as increasingly sensitive

data is incorporated into the context—by encapsulating the result of sensitive sub-

computation, as executed by toLabeled . Unlike other language-based work, our IFC

system also implements clearance as a means for restricting the kinds of data a

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 47

computation can read/write to; LIO relies on this form of DAC to address covert

channels: code cannot leak data it cannot read. Finally, LIO provides exception

handling constructs which serve the dual purpose of encoding monitor failures, from

which untrusted code can recover. This addresses a long standing problem with

dynamic IFC enforcement—that monitor failures leak information.

We proved several security theorems for LIO. First, we showed that LIO pro-

grams, which may perform complex side-effects (e.g., mutate variables and throw

exceptions), satisfy non-interference, i.e., LIO programs satisfy data confidentiality

and integrity. Second, we showed that clearance is a form DAC. And, finally, we

showed that LIO can be used to execute terms in isolation, operating on disjoint

parts of memory.

We implemented LIO as a Haskell library, using Safe Haskell to ensure that

untrusted code executes in the LIO monad, i.e., our IFC sub-language. To illustrate

the expressiveness of LIO, we described the core of a conference review system,

λChair, that uses IFC to enforce high-level security policies. In addition to λChair,

we (and others) have used LIO to implement several other web applications, some

of which are in production use. We found the library-based approach to be very

effective, both in terms of deployment (at the time of this writing, the library has

thousands of downloads) and design (the interface matured as a result of several

iterations).

Acknowledgments

We thank the JFP reviewers for their constructive feedback and many insightful

comments. We thank Pablo Buiras, Stefan Heule, Cătălin Hriţcu, Amit Levy,

Benjamin C. Pierce, Alley Stoughton, and Edward Z. Yang for many fruitful

discussions on the design of LIO. We thank the Haskell Symposium reviewers

for useful feedback on the conference version of this paper.

References

Abadi, M., Banerjee, A., Heintze, N. & Riecke, J. (1999) A core calculus of dependency. In

Proceedings of Symposium on Principles of Programming Panguages. New York, NY, USA:

ACM.

Agat, J. (2000) Transforming out timing leaks. In Proceedings of Symposium on Principles of

Programming Languages. New York, NY, USA: ACM.

Askarov, A. & Sabelfeld, A. (2009a) Catch me if you can: Permissive yet secure error handling.

In Proceedings of Programming Languages and Analysis for Security. New York, NY, USA:

ACM.

Askarov, A. & Sabelfeld, A. (2009b) Tight enforcement of information-release policies

for dynamic languages. In Proceedings of Computer Security Foundations symposium.

Washington, DC, USA: IEEE Computer Society.

Askarov, A., Hunt, S., Sabelfeld, A. & Sands, D. (2008) Termination-insensitive noninterference

leaks more than just a bit. In Proceedings of European Symposium on Research in Computer

Security. Berlin, Heidelberg: Springer-Verlag.

Atkey, R. (2009) Parameterised notions of computation. J. Funct.Program. 19(3–4), 335–376.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

48 D. Stefan et al.

Austin, T. H. & Flanagan, C. (2009) Efficient purely-dynamic information flow analysis. In

Proceedings of Workshop on Programming Languages and Analysis for Security. New York,

NY, USA: ACM.

Austin, T. H. & Flanagan, C. (2010) Permissive dynamic information flow analysis. In

Proceedings of Workshop on Programming Languages and Analysis for Security. New York,

NY, USA: ACM.

Bell, D. E. & La Padula, L. (1976) Secure Computer System: Unified Exposition and Multics

Interpretation. Technical Report MTR-2997, Rev. 1. MITRE Corp.

Biba, K. J. (1977 April) Integrity Considerations for Secure Computer Systems. Technical

Report ESD-TR-76-372. MITRE Corp.

Buiras, P., Stefan, D. & Russo, A. (2014) On flow-sensitive floating-label systems. In

Proceedings of Computer Security Foundations Symposium. Washington, DC, USA: IEEE

Computer Society.

Crary, K., Kliger, A. & Pfenning, F. (2005) A monadic analysis of information flow security

with mutable state. J. Funct. Program. 15(2), 249–291.

Denning, D. E. (1976) A lattice model of secure information flow. Commun. ACM 19(5),

236–243.

Denning, D. E. & Denning, P. J. (1977) Certification of programs for secure information flow.

Commun. ACM 20(7), 504–513.

Department of Defense. (1985) Trusted Computer System Evaluation Criteria (Orange Book).

DoD 5200.28-STD edn. Department of Defense.

Devriese, D. & Piessens, F. (2011) Information flow enforcement in monadic libraries. In

Proceedings of Workshop on Types in Language Design and Implementation. New York, NY,

USA: ACM.

Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E., Mazières,

D., Kaashoek, F. & Morris, R. (2005) Labels and event processes in the Asbestos operating

system. In Proceedings of Symposium on Operating Systems Principles. New York, NY, USA:

ACM.

Friedman, D. P. & Wise, D. S. (1976) The impact of applicative programming on

multiprocessing. In Proceedings of International Conference on Parallel Processing. Indiana

University, Computer Science Department.

Giffin, D. B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J., & Russo, A. (2012)

Hails: Protecting data privacy in untrusted web applications. In Proceedings of Symposium

on Operating Systems Design and Implementation. Berkeley, CA, USA: USENIX.

Goguen, J. A. & Meseguer, J. (1982) Security policies and security models. In Proceedings of

Symposium on Security and Privacy. Washington, DC, USA: IEEE Computer Society.

Harrison, W. L. (2005) Achieving information flow security through precise control of effects.

In Proceedings of Computer Security Foundations Workshop. Washington, DC, USA: IEEE

Computer Society.

Hedin, D. & Sabelfeld, A. (2012) Information-flow security for a core of JavaScript. In

Proceedings of Computer Security Foundations Symposium. Washington, DC, USA: IEEE

Computer Society.

Hedin, D. & Sands, D. (2006) Noninterference in the presence of non-opaque pointers. In

Proceedings of Computer Security Foundations Workshop. Washington, DC, USA: IEEE

Computer Society.

Heintze, N. & Riecke, J. G. (1998) The SLam calculus: Programming with secrecy and

integrity. In Proceedings of Symposium on Principles of Programming Languages. New York,

NY, USA: ACM.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 49

Heule, S., Stefan, D., Yang, E. Z., Mitchell, J. C. & Russo, A. (2015) IFC inside: Retrofitting

languages with dynamic information flow control. In Proceedings of Conference on Principles

of Security and Trust. Berlin, Heidelberg: Springer.

Hriţcu, C., Greenberg, M., Karel, B., Pierce, B. C. & Morrisett, G. (2013) All your

IFC exceptions are belong to us. In Proceedings of Symposium on Security and Privacy.

Washington, DC, USA: IEEE Computer Society.

Hughes, J. (2000) Generalising monads to arrows. Sci. Comput. Program. 37(1–3), 67–111.

Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M. F., Kohler, E. & Morris, R. (2007)

Information flow control for standard OS abstractions. In Proceedings of Symposium on

Operating Systems Principles. New York, NY, USA: ACM.

Lampson, B. W. (1973) A note on the confinement problem. Commun. ACM 16(10), 613–615.

Landwehr, C. E. (1981) Formal models for computer security. Comput. Survels 13(3), 247–278.

Li, P. & Zdancewic, S. (2006) Encoding information flow in Haskell. In Proceedings of

Computer Security Foundations Workshop. Washington, DC, USA: IEEE Computer Society.

Li, P. & Zdancewic, S. (2010) Arrows for secure information flow. Theor. Comput. Sci. 411(19),

1974–1994.

Liang, S., Hudak, P. & Jones, M. (1995) Monad transformers and modular interpreters. In

Proceedings of Symposium on Principles of Programming Languages. New York, NY, USA:

ACM.

Miller, M. S. (2006) Robust Composition: Towards a Unified Approach to Access Control and

Concurrency Control. PhD Thesis, Johns Hopkins University.

Morgenstern, J. & Licata, D. R. (2010) Security-typed programming within dependently typed

programming. In Proceedings of International Conference on Functional Programming. New

York, NY, USA: ACM.

Myers, A. C. & Liskov, B. (1997) A decentralized model for information flow control. In

Proceedings of Symposium on Operating Systems Principles. New York, NY, USA: ACM.

Myers, A. C. & Liskov, B. (2000) Protecting privacy using the decentralized label model. ACM

Trans. Comput. Syst. 9(4), 410–442.

Myers, A. C., Zheng, L., Zdancewic, S., Chong, S. & Nystrom, N. (2001) Jif:

Java Information Flow. Software release. Accessed December 8, 2016. Available at:

http://www.cs.cornell.edu/jif.

Peyton Jones, S. (2001) Tackling the awkward squad: monadic input/output, concurrency,

exceptions, and foreign-language calls in Haskell. Engineering theories of software

construction. Clifton, VA, USA: IOS Press.

Pottier, F. & Simonet, V. (2002) Information flow inference for ML. In Proceedings of

Symposium on Principles of Programming Languages. New York, NY, USA: ACM.

Rondon, P. M, Kawaguci, M. & Jhala, R. (2008) Liquid types. ACM SIGPLAN Not. 43(6),

159–169.

Roy, I., Porter, D. E., Bond, M. D., McKinley, K. S. & Witchel, E. (2009) Laminar:

Practical fine-grained decentralized information flow control. In Proceedings of the 30th

ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI

’09. New York, NY, USA: ACM.

Russo, A., Claessen, K. & Hughes, J. (2008) A library for light-weight information-flow

security in Haskell. In Proceedings of Symposium on Haskell. ACM SIGPLAN.

Russo, A. & Sabelfeld, A. (2010) Dynamic vs. static flow-sensitive security analysis. In

Proceedings of Computer Security Foundations Symposium. Washington, DC, USA: IEEE

Computer Society.

Sabelfeld, A. & Myers, A. C. (2003) Language-based information-flow security. IEEE J. Sel.

Areas Commun. 21(1), 5–19.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

50 D. Stefan et al.

Sabelfeld, A. & Russo, A. (2009) From dynamic to static and back: Riding the roller coaster of

information-flow control research. In Proceedings of Conference on Perspectives of System

Informatics. Berlin, Heidelberg: Springer.

Saltzer, J. H. & Schroeder, M. D. (1975) The protection of information in computer systems.

Proc. IEEE 63(9), 1278–1308.

Simonet, V. (2003) The Flow Caml system. Software release. Accessed December 8, 2016.

Available at: http://cristal.inria.fr/ simonet/soft/flowcaml/.

Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J. C. & Mazières, D. (2012a) Addressing

covert termination and timing channels in concurrent information flow systems. In

Proceedings of International Conference on Functional Programming. New York, NY, USA:

ACM SIGPLAN.

Stefan, D., Russo, A., Mazières, D. & Mitchell, J. C. (2011a) Disjunction category labels. In

Proceedings of Nordic conference on secure IT systems. Berlin, Heidelberg: Springer.

Stefan, D., Russo, A., Mitchell, J. C. & Mazières, D. (2011b) Flexible dynamic information

flow control in Haskell. In Proceedings of Symposium on Haskell. New York, NY, USA:

ACM SIGPLAN.

Stefan, D., Russo, A., Mitchell, J. C. & Mazières, D. (2012b) Flexible dynamic information

flow control in the presence of exceptions. Preprint arxiv:1207.1457.

Stoughton, A. (1981) Access flow: A protection model which integrates access control and

information flow. In Proceedings of Symposium on Security and Privacy. Washington, DC,

USA: IEEE Computer Society.

Sulzmann, M., Duck, G. J., Peyton Jones, S. & Stuckey, P. J. (2007) Understanding functional

dependencies via constraint handling rules. J. Funct. Program. 17(1), 83–129.

Terei, D., Marlow, S., Jones, S. Peyton & Mazières, D. (2012) Safe Haskell. In Proceedings of

Symposium on Haskell. New York, NY, USA: ACM SIGPLAN.

Tsai, T., Russo, A. & Hughes, J. (2007) A library for secure multi-threaded information flow

in Haskell. In Proceedings of Computer Security Foundations Symposium. Washington, DC,

USA: IEEE Computer Society.

Tse, S. & Zdancewic, S. (2004) Translating dependency into parametricity. In Proceedings

of 9th ACM Sigplan International Conference on Functional Programming. New York, NY,

USA: ACM.

VanDeBogart, S., Efstathopoulos, P., Kohler, E., Krohn, M., Frey, C., Ziegler, D., Kaashoek,

F., Morris, R. & Mazières, D. (2007) Labels and event processes in the Asbestos operating

system. ACM Trans. Comput. Syst. 25(4), 17–30.

Waye, L., Buiras, P., King, D., Chong, S. & Russo, A. (2015) It’s my privilege: Controlling

downgrading in DC-labels. In Proceedings of Security and Trust Management - 11th

International Workshop, STM 2015. Vienna, Austria, September 21–22, 2015. Berlin,

Heidelberg: Springer, pp. 203–219.

Winskel, G. (1993) The Formal Semantics of Programming Languages: An Introduction. MIT

Press.

Zdancewic, S. & Myers, A. C. (2003) Observational determinism for concurrent program

security. In Proceedings of Computer Security Foundations Workshop. Washington, DC,

USA: IEEE Computer Society.

Zdancewic, S. A. (2002) Programming Languages for Information Security. Ph.D. thesis, Cornell

University.

Zdancewic, S. & Myers, A. C. (2001) Robust declassification. In csfw. Washington, DC, USA:

IEEE, pp. 15–23.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 51

Zeldovich, N., Boyd-Wickizer, S., Kohler, E. & Mazières, D. (2006) Making information

flow explicit in HiStar. In Proceedings of Symposium on operating systems design and

implementation.

Appendix A. Detailed Proofs

In this section, we provide expand the proof details for the results in Section 6.

Proposition 1 (Idempotence and distribution properties of the erasure function)

1. Idempotent over terms: εl (t) = εl (εl (t)).

2. Idempotent over memory✎: εl (m) = εl (εl (m)).

3. Idempotent over configurations: εl (k) = εl (εl (k)).

4. Homomorphic over substitution: εl ({t1 / x } t2) = {εl (t1) / x } εl (t2).

Proof

The first property follows by induction on term t; all cases follow trivially from

the inversion of the induction hypothesis. The second and third properties follow

from the definition of the erasure function for memories and configurations and first

property. The fourth property follows by induction on t2; most cases follow directly

from the induction hypothesis and definition of substitution. �

Since a number statements rely on several inversion and distribution properties

for the erasure function, we give these below.

Proposition 9 (Inversion properties of the erasure function)

1. Labeled values:

• If l1 	� l , then LabeledTCB

b l1 • = εl (Labeled
TCB

b l1 t) for any t .

• If l1 � l , then LabeledTCB

b l1 εl (t) = εl (Labeled
TCB

b l1 t).

2. Monadic values: LIOTCB

b εl (t) = εl (LIO
TCB

b t).

3. Configurations:

• If lcur 	� l , then 〈•, •, • | •〉 = εl (〈lcur, ccur,m | t〉) for any ccur, m and t .

• If lcur � l , then 〈lcur, ccur, εl (m) | εl (t)〉 = εl (〈lcur, ccur,m | t〉).

Proof

All properties follow directly from the definition of the erasure function. �

This proposition states that, in certain cases, we can invert the application of the

erasure function to labeled values, LIO values, and configurations.18

Simulation

Our simulation lemma follows by induction on the number of executed toLabeled

blocks. The two lemma, Lemma 2 and 3, rely on several supporting propositions.

We give these below.

18 We note that, while we can prove inversion for all terms (and cases), we only need properties 1 and 2
to prove the more interesting simulation property.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

52 D. Stefan et al.

Our first base-case simulation proposition considers the case when both the

starting and end configuration labels can flow to the attacker observation level. In

other words, the current term t does not raise the current label (e.g., with unlabel)

nor does it execute any toLabeled blocks.

Proposition 10

For any label l , such that lcur � l and l′cur � l , if 〈lcur, ccur,m | t〉 0−→
〈l′cur, c

′
cur,m

′ | t ′〉, then εl (〈lcur, ccur,m | t〉) 0−→ εl (〈l′cur, c
′
cur,m

′ | t ′〉)

Proof

By induction on t . Most cases follow directly from inversion of the first
0−→ reduction

hypothesis or Lemma 1. The >>= and catchLIO cases follow from the definition of the

single- and multi-step relations, using Propositions 9 and a supporting proposition

(not given here) whose statement is the multi-step version of this proposition. The

terms for which there is a context reduction rule (e.g., label , unlabel , etc.), we further

rely on Proposition 2. �

The next proposition considers the case when initial configuration cannot be

observed by the attacker, i.e., the initial current label does not flow to the attacker

label.

Proposition 11

For any label l , such that lcur 	� l , if 〈lcur, ccur,m | t〉 n−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then it

is also the case that εl (〈lcur, ccur,m | t〉) n−→ εl (〈l′cur, c
′
cur,m

′ | t ′〉)

Proof

We break the proof into two cases:

• Case l′cur � l : follows from Proposition 3.

• Case l′cur 	� l : follows trivially from the single-step reduction rule of an erased

configuration, (hole). �

Here, the simplicity of the proof allows us to consider the case where the number

of executed toLabeled blocks is any natural n .

The more interesting case—when the current label is raised by the current term

t—is given below. As shown below, only unlabel actually raises the current label,

hence, we can directly consider the simulation for an arbitrary number n of executed

toLabeled blocks. However, we must consider the case when unlabel is executed as

part of a bigger action (e.g., in >>= or catchLIO).

Proposition 12

For any label l , such that lcur � l and l′cur 	� l , if 〈lcur, ccur,m | t〉 n−→
〈l′cur, c

′
cur,m

′ | t ′〉, then εl (〈lcur, ccur,m | t〉) n−→l εl (〈l′cur, c
′
cur,m

′ | t ′〉)

Proof

By induction on t . Most cases follow directly by inversion of the
n−→ reduction rule

and lcur � l hypothesis. The remaining cases are:

• Case unlabel t1: Breaks down into the three reduction rules for unlabel :

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 53

— Case (unlabelCtx): Follows directly from the definition of the
n−→l

reduction rule and rule (unlabelCtx), using Propositions 1 and 2.

— Case (unlabel): Both sub-cases (where the label of the value being unlabel

can and cannot flow to l) follow directly from the definition of the
n−→l

reduction rule and rule (unlabel), using Propositions 1 and 9.

— Case (unlabelEx): Same as the (unlabel) case, but using the definition

of (unlabelEx) instead.

• Case t1 >>= t2: Straight forward induction on t1, using Propositions 1 and 9.

• Case catchLIO t1 t2: Straight forward induction on t1.
�

These supporting statements are used to prove the base-case simulation, Lemma 2,

where no toLabeled blocks are executed. However, all but one of the above

supporting propositions consider the more general case, where any number of

toLabeled blocks are executed. We need to extend Proposition 10 to arbitrary terms

to prove the inductive case.

To do this, however, we must first show simulation for the big-step reduction

relation holds (since toLabeled is defined in terms of a big-step), if the starting and

end current labels can flow to the attacker label.

Proposition 13

For any label l , such that lcur � l , if 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | LIOTCB

b t ′〉,
then 〈lcur, ccur,m | εl (t)〉 n ∗−→ 〈l′cur, c

′
cur,m

′ | LIOTCB

b εl (t
′)〉

Proof

By induction on t , most cases follow by inversion of the first
n ∗−→ reduction

hypothesis and the resulting
n−→ hypothesis. This leaves us with the terms that

reduce to LIO values: LIO , return , and throwLIO . The first follows by inversion and

Lemma 1. The latter two follow directly from the definition of the
n−→ and

n ∗−→
reduction relations. �

Using this proposition, the general version of Proposition 10 follows:

Proposition 14

For any label l , such that lcur � l and l′cur � l , if 〈lcur, ccur,m | t〉 n−→
〈l′cur, c

′
cur,m

′ | t ′〉 then εl (〈lcur, ccur,m | t〉) n−→l εl (〈l′cur, c
′
cur,m

′ | t ′〉)

Proof

We break this into two cases:

• Case n = 0: Trivially from Lemma 2.

• Case n = n ′ + 1: By induction on t . Most cases follow trivially by inversio

The remaining cases are:

— Case t1 >>= t2: By inversion we break this down into the two sub-cases

corresponding to the reduction rules (bind) and (bindEx). Both cases

follow directly from the definition of the
n−→l reduction rule, using

Propositions 1, 9, and 13.

— Case toLabeled t1 t2: By inversion we break this down into the three

sub-cases corresponding to the reduction rules:

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

54 D. Stefan et al.

– Case (toLabeledCtx): Trivially by inversion.

– Case (toLabeled): Both sub-cases (where the label of the result can and

cannot flow to l) follow directly from definition of the
n−→l reduction

rule and rule (toLabeled), using Propositions 1, 9, and 13.

– Case (toLabeledEx): Like the (toLabeled) case, but using the defini-

tion of (toLabeledEx) instead.

— Case catchLIO t1 t2: By inversion we have two cases corresponding to

(catchLIO) and (catchLIOEx), both of which follow in the same way as

the >>= case. �

Directly, the single-step simulation lemma, Lemma 3, for arbitrary terms follows.

Discretionary access control and isolation

First, we give the proof for Lemma 5, which states that the current computation

cannot write to references below the current label:

Lemma 5 (No write-access below current label✎)

Given a term t and memory m , such that ς (t) and ς (m � ccur), if the term

reduces to a value according to 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then

lcur � m = lcur � m ′.

Proof

Observe that t can only modify m by creating a new reference or writing to an

existing reference with (newLIORef) and (writeLIORef), respectively. Both of

these rules require the label of the (potentially new) reference to be above lcur. Hence

we know that the memory below the current label will remain unchanged if t takes

a single step. Using Proposition 3 we can directly extend this to an arbitrary number

of steps. �

The somewhat dual statement, Lemma 6 states that the current computation

cannot read or write to references above the current clearance (or create labeled

values labeled as such):

Lemma 6 (No access above current clearance✎)

Given term t and memory m , such that ς (t) and ς (m � ccur), if the term reduces to a

value according to 〈lcur, ccur,m | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′ | t ′〉, then m � ccur = m ′ � ccur.

Proof

Observe that t can only modify m by creating a new reference or writing to an

existing reference with (newLIORef) and (writeLIORef), respectively. Both of these

rules require the label of the (potentially new) reference to be below ccur. Hence,

we know that the memory above the current clearance will remain unchanged if t

takes a single step. Using Proposition 3, we can directly extend this to an arbitrary

number of steps. �

Indeed, since no memory above the current clearance can be accessed, we can simply

replace that part of the memory with arbitrary references:

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

Sequential LIO 55

Proposition 15 (Reduction is independent of memory above clerance✎)

If 〈lcur, ccur,m1 | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′
1 | t ′〉, ς (t), and m1 � ccur = m2 � ccur, then

〈lcur, ccur,m2 | t〉 n ∗−→ 〈l′cur, c
′
cur,m

′
2 | t ′〉 and m ′

1 � ccur = m ′
2 � ccur.

Proof

Follows in the same way as the proof for Lemma 6. �

Before delving into the term isolation proof we first give two supporting proposi-

tions. First, a straightforward property for bind:

Proposition 16 (Term evaluation is obvlivious to memory above clearance✎)

The reductions 〈lcur, ccur,m | t1〉
n1 ∗−→ 〈l′cur, c

′
cur,m

′ | LIOTCB

true ()〉 and 〈l′cur, c
′
cur,m

′ | t2〉
n2 ∗−→ 〈l′′cur, c

′′
cur,m

′′ | LIOTCB

true ()〉 hold iff 〈lcur, ccur,m | t1 >> t2〉 n ∗−→
〈l′′cur, c

′′
cur,m

′′ | LIOTCB

true ()〉 holds and n = n1 + n2.

Proof

Directly from definition of bind. �

Second, we give simple memory equivalence when store modifiers are used:

Proposition 17 (Equivalence of memory subsets✎)

For labels l1, c1, l2, and c2, such that l1 � c1, l2 � c2, l1 	� l2, l2 	� l1, c1 	� c2,

and c2 	� c1, if l1 � m � c1 = l1 � m ′ � c1 then l2 � m � c2 = l2 � m ′ � c2.

Proof

Since the labels are incomparable, it is easy to show that (l2 � m � c2) ⊂
(l1 � m � c1) and (l2 � m ′ � c2) ⊂ (l1 � m ′ � c1), from which the statement trivially

holds. �

From these, the term isolation theorem follows in a mostly straightforward way.

Theorem 2 (Term isolation✎)

Assume fresh(·) deterministically creates objects that are globally unique. Given safe

terms t1 and t2, memory m , and labels l1, c1, l2, and c2, bounded by lcur and ccur,

such that l1 � c1, l2 � c2, l1 	� l2, l2 	� l1, c1 	� c2, and c2 	� c1, if

〈lcur, ccur,m | isolate l1 c1 t1 >> isolate l2 c2 t2〉 n ∗−→ 〈lcur, ccur,m
′ | LIOTCB ()〉,s then

〈l1, c1,m | t1〉 n1 ∗−→ 〈l ′1, c′1,m1 | LIOTCB ()〉, 〈l2, c2,m | t2〉 n2 ∗−→ 〈l ′2, c′2,m2 | LIOTCB ()〉,
n = (n1 + 1) + (n2 + 1), and l1 � m � c1 = l1 � m1 � c1, l2 � m � c2 = l2 � m2 � c2,

l1 � m ′ � c1 = l1 � m1 � c1, and l2 � m ′ � c2 = l2 � m2 � c2.

Proof

From Proposition 16, we have 〈lcur, ccur,m | isolate l1 c1 t1〉
n1+1 ∗−→

〈lcur, ccur,m1 | LIOTCB

true ()〉 and 〈lcur, ccur,m1 | isolate l2 c2 t2〉
n2+1 ∗−→

〈lcur, ccur,m
′ | LIOTCB

true ()〉.
Applying Lemma 7 to the first reduction, we have m1 = (l1 � m1 � c1)∪(l1 � m � c1),

〈l1, c1,m | t1〉 n1 ∗−→ 〈l ′1, c′1,m1 | LIOTCB

true ()〉, and l1 � m � c1 = l1 � m1 � c1.

From Proposition 17 and l1 � m � c1 = l1 � m1 � c1, we have l2 � m � c2 = l2 �
m1 � c2.

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

56 D. Stefan et al.

Applying Lemma 7 to the second reduction, we have m ′ = (l2 � m ′ � c2) ∪
(l2 � m1 � c2), 〈l2, c2,m1 | t2〉 n2 ∗−→ 〈l ′2, c′2,m ′ | LIOTCB

true ()〉, and l2 � m1 � c2 =

l2 � m ′ � c2.

From Proposition 17 and l2 � m1 � c2 = l2 � m ′ � c2, we have l1 � m1 � c1 = l1 �
m ′ � c1.

Further applying Proposition 15, we have 〈l2, c2,m | t2〉 n2 ∗−→ 〈l ′2, c′2,m2 | LIOTCB

true ()〉
and m � c2 = m2 � c2. From Proposition 8, we have

l2 � m � c2 = l2 � m2 � c2. �

https://doi.org/10.1017/S0956796816000241 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000241

